
ECDLP course

ECC2K-130

Daniel J. Bernstein

University of Illinois at Chicago

Tanja Lange

Technische Universiteit Eindhoven

The target: ECC2K-130

1997: Certicom announces several

elliptic-curve challenges.

“The Challenge is to compute the

ECC private keys from the given

list of ECC public keys

and associated system parameters.

This is the type of problem

facing an adversary who

wishes to completely defeat

an elliptic curve cryptosystem.”

Goals: help users select key sizes;

compare random and Koblitz;

compare F2m and Fp; etc.

1997: ECCp-79 broken by

Baisley and Harley.

1997: ECC2-79 broken by

Harley et al.

1998: ECCp-89, ECC2-89 broken

by Harley et al.

1998: ECCp-97 broken by Harley

et al. (1288 computers).

1998: ECC2K-95 broken by Harley

et al. (200 computers).

1999: ECC2-97 broken by Harley

et al. (740 computers).

2000: ECC2K-108 broken by Harley

et al. (9500 computers).

Certicom: “The 109-bit Level I

challenges are feasible using a

very large network of computers.

The 131-bit Level I challenges

are expected to be infeasible

against realistic software and

hardware attacks, unless of

course, a new algorithm for the

ECDLP is discovered.”

2002: ECCp-109 broken by Monico

et al. (10000 computers).

2004: ECC2-109 broken by Monico

et al. (2600 computers).

Next challenge: ECC2K-130.

The attacker: ECRYPT

European Union has funded

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

ECRYPT II: KU Leuven; ENS;

EPFL; RU Bochum; RHUL; TU

Eindhoven; TU Graz; U Bristol;

U Salerno; France Télécom; IBM

Research; 22 adjoint members.

Work is handled by “virtual labs”:

� SymLab: secret-key crypto;

� MAYA: public-key crypto;

� VAMPIRE: implementations.

Working groups in VAMPIRE:

� VAM1: “Efficient

Implementation of

Security Systems”.

� VAM2: “Physical Security”.

2009.02: VAMPIRE (VAM1)

sets its sights on ECC2K-130.

Exactly how difficult

is breaking ECC2K-130?

Also ECC2-131 etc.

Sensible topic for implementors.

Optimizing ECC attacks

isn’t far from optimizing ECC.

With our latest implementations,

ECC2K-130 is breakable

in two years on average by

� 1595 Phenom II x4 955 CPUs,

With our latest implementations,

ECC2K-130 is breakable

in two years on average by

� 1595 Phenom II x4 955 CPUs,

� or 1231 Playstation 3s,

With our latest implementations,

ECC2K-130 is breakable

in two years on average by

� 1595 Phenom II x4 955 CPUs,

� or 1231 Playstation 3s,

� or 631 GTX 295 cards,

With our latest implementations,

ECC2K-130 is breakable

in two years on average by

� 1595 Phenom II x4 955 CPUs,

� or 1231 Playstation 3s,

� or 631 GTX 295 cards,

� or 308 XC3S5000 FPGAs,

With our latest implementations,

ECC2K-130 is breakable

in two years on average by

� 1595 Phenom II x4 955 CPUs,

� or 1231 Playstation 3s,

� or 631 GTX 295 cards,

� or 308 XC3S5000 FPGAs,

� or any combination thereof.

With our latest implementations,

ECC2K-130 is breakable

in two years on average by

� 1595 Phenom II x4 955 CPUs,

� or 1231 Playstation 3s,

� or 631 GTX 295 cards,

� or 308 XC3S5000 FPGAs,

� or any combination thereof.

This is a computation that

Certicom called “infeasible”?

With our latest implementations,

ECC2K-130 is breakable

in two years on average by

� 1595 Phenom II x4 955 CPUs,

� or 1231 Playstation 3s,

� or 631 GTX 295 cards,

� or 308 XC3S5000 FPGAs,

� or any combination thereof.

This is a computation that

Certicom called “infeasible”?

Certicom has now backpedaled,

saying that ECC2K-130

“may be within reach”.

The target: ECC2K-130

The Koblitz curve

y2 + xy = x3 + 1

over F2131 has 4` points,

where ` is prime.

Field representation uses

irreducible polynomial

f = z131 + z13 + z2 + z + 1.

Certicom generated their

challenge points as two random

points in order-` subgroup by

taking two random points on the

curve and multiplying them by 4.

This produced the following

points P;Q:

x(P) = 05 1C99BFA6 F18DE467 C80C23B9 8C7994AA
y(P) = 04 2EA2D112 ECEC71FC F7E000D7 EFC978BD
x(Q) = 06 C997F3E7 F2C66A4A 5D2FDA13 756A37B1
y(Q) = 04 A38D1182 9D32D347 BD0C0F58 4D546E9A

(unique encoding of F2131 in hex).

The challenge:

Find an integer

k 2 f0; 1; : : : ; `� 1g
such that [k]P = Q.

Bigger picture:

128-bit curves have been proposed

for real (RFID, TinyTate).

Equivalence classes for Koblitz curves

P and �P have same x-coordinate.

Search for x-coordinate collision.

Search space is only `=2; this

gives factor
p

2 speedup : : :

provided that f(Pi) = f(�Pi).

Equivalence classes for Koblitz curves

P and �P have same x-coordinate.

Search for x-coordinate collision.

Search space is only `=2; this

gives factor
p

2 speedup : : :

provided that f(Pi) = f(�Pi).
More savings: P and �i(P) have

x(�j(P)) = x(P)2
j
.

Consider equivalence classes under

Frobenius and �; gain

additional factor
p
n =

p
131.

Need to ensure that the iteration

function satisfies

f(Pi) = f(��j(Pi)) for any j.

Could again define adding walk

starting from jPij.
Redefine jPij as canonical

representative of class containing

Pi: e.g., lexicographic minimum

of Pi, �Pi, �(Pi), etc.

Iterations now involve many

squarings, but squarings are not

so expensive in characteristic 2.

Iteration function for Koblitz curves

Normal basis of finite field

F2n has elements

f�; �2; �22
; �23

; : : : ; �2n�1g.
Representation for x and x2

Pn�1
i=0 xi�

2i = (x0; x1; x2; : : : ; xn�1)Pn
i=1 xi�

2i = (xn�1; x0; : : : ; xn�2)

using (�2n�1
)2 = �2n = �.

Harley and Gallant-Lambert-

Vanstone observe that in normal

basis, x(P) and x(P)2
j

have

same Hamming weight

HW(x(P)) =
Pn�1

i=0 xi
(addition over Z).

Suggestion:

Pi+1 = Pi + �j(Pi);

as iteration function.

Choice of j depends on HW(x(P)).

This ensures that the walk is

well defined on classes since

f(��m(Pi)) =

� �m(Pi) + �j(��m(Pi)) =

� (�m(Pi) + �m(�j(Pi))) =

� �m(Pi + �j(Pi)) =

� �m(Pi+1):

GLV suggest using

j = hash(HW(x(P))),

where the hash function

maps to [1; n].

Harley uses a smaller set of

exponents; for his attack on

ECC2K-108 he takes

j 2 f1; 2; 4; 5; 6; 7; 8g;
computed as

j = (HW(x(P)) mod 7) + 2

and replacing 3 by 1.

Our choice of iteration function

Restricting size of j matters –

squarings are cheap but:

� in bitslicing need to compute all

powers (no branches allowed);

� code size matters

(in particular for Cell CPU);

� logic costs area for FPGA;

� having a large set doesn’t

actually gain much randomness.

Analysis of the loss in randomness

similar to Wednesday’s.

Having few coefficients lets us

exclude short fruitless cycles.

To do so, compute

the shortest vector in the latticen
v :
Q

j(1 + �j)vj = 1
o

.

Usually the shortest vector has

negative coefficients (which

cannot happen with the iteration);

shortest vector with positive

coefficients is somewhat longer.

For implementation it is better

to have a continuous interval of

exponents, so shift the interval if

shortest vector is short.

Our iteration function:

Pi+1 = Pi + �j(Pi) where

j = (HW(x(P))=2 mod 8) + 3,

so j 2 f3; 4; 5; 6; 7; 8; 9; 10g.
Shortest combination of these

powers is long.

Note that HW(x(P)) is even.

Iteration consists of

� computing the Hamming weight

HW(x(P)) of the normal-basis

representation of x(P);

� checking for distinguished

points (is HW(x(P)) � 34?);

� computing j and P + �j(P).

Analysis of our iteration function

For a perfectly random walk

�p�`=2 iterations

are expected on average.

Have ` � 2131=4 for ECC2K-130.

A perfectly random walk

on classes under � and Frobenius

would reduce number of iterations

by
p

2 � 131.

Analysis of our iteration function

For a perfectly random walk

�p�`=2 iterations

are expected on average.

Have ` � 2131=4 for ECC2K-130.

A perfectly random walk

on classes under � and Frobenius

would reduce number of iterations

by
p

2 � 131.

Loss of randomness

from having only 8 choices of j.

Further loss from non-randomness

of Hamming weights:

Hamming weights around 66

are much more likely than at the

edges; effect still noticeable

after reduction to 8 choices.

Hamming weights around 66

are much more likely than at the

edges; effect still noticeable

after reduction to 8 choices.

Our
q

1�Pi p
2
i heuristic says

that the total loss is 6.9993%.

(Higher-order anti-collision

analysis: actually above 7%.)

This loss is justified by

the very fast iteration function.

Hamming weights around 66

are much more likely than at the

edges; effect still noticeable

after reduction to 8 choices.

Our
q

1�Pi p
2
i heuristic says

that the total loss is 6.9993%.

(Higher-order anti-collision

analysis: actually above 7%.)

This loss is justified by

the very fast iteration function.

Average number of iterations for

our attack against ECC2K-130:p
�`=(2 � 2 � 131) � 1:069993

� 260:9.

Some highlights:

Detailed analysis of

randomness of iteration function.

Could increase randomness of the

walk but then iteration function

gets slower. Optimized for

time per iteration � # iterations.

Do not remember multiset of j’s;

instead recompute this from seed

when collision is found

(cheaper, less storage).

Comparative study of normal

basis and polynomial basis

representation;

new: optimal polynomial bases.

Cost of iteration function

1 normal-basis Hamming-weight

computation;

1 application of �j for some

j 2 f3; 4; : : : ; 10g: �20S if

computed as a series of squarings;

1 elliptic-curve addition:

1I+2M+1S+7a

in affine coordinates.

With Montgomery inversion,

each iteration costs

� (1=N)(I�3M)+5M+21S+7a

plus a Hamming-weight

computation in normal basis.

Bit operations

We can compute an iteration

using a straight-line (branchless)

sequence of 70467 + 70263=N

two-input bit operations.

e.g. 71880 bit operations/iteration

for N = 51.

Bit operations:

“AND” and “XOR”; i.e.,

multiplication and addition in F2.

Bit operations

We can compute an iteration

using a straight-line (branchless)

sequence of 70467 + 70263=N

two-input bit operations.

e.g. 71880 bit operations/iteration

for N = 51.

Bit operations:

“AND” and “XOR”; i.e.,

multiplication and addition in F2.

Compare to 34061 bit operations

(1312 ANDs + 1302 XORs)

for one schoolbook multiplication

of two 131-bit polynomials.

Details on the multiplication

Define M(n) as minimum

bit operations for

multiplying n-bit polys.

e.g. M(131) � 34061 from

schoolbook multiplication:

1312 ANDs + 1302 XORs.

Details on the multiplication

Define M(n) as minimum

bit operations for

multiplying n-bit polys.

e.g. M(131) � 34061 from

schoolbook multiplication:

1312 ANDs + 1302 XORs.

Much lower costs are known

from Karatsuba, Toom, etc.

Current record (CRYPTO 2009):

M(131) � 11961.

“Your metric is too simple!

Hardware has area-time tradeoffs!

Software does not work on bits!”

“Your metric is too simple!

Hardware has area-time tradeoffs!

Software does not work on bits!”

Response: Optimizing

bit operations is very close to

optimizing the throughput

of unrolled, pipelined hardware.

See, e.g., ECC2K-130 FPGA

paper at FPL 2010.

“Your metric is too simple!

Hardware has area-time tradeoffs!

Software does not work on bits!”

Response: Optimizing

bit operations is very close to

optimizing the throughput

of unrolled, pipelined hardware.

See, e.g., ECC2K-130 FPGA

paper at FPL 2010.

Also very close to optimizing

the speed of software using

vectorized bit operations.

More on this tomorrow.

All of the implementations of the

ECC2K-130 attack started with

the standard pentanomial basis

1; z; z2; : : : ; z130 of F2131 =

F2[z]=(z
131 + z13 + z2 + z + 1).

Cost M(131) + 455

for multiplication.

Cost 203 for squaring.

Our final attack iteration has

5 mults, 21 squarings,

1 normal-basis Hamming weight.

Question at start of project:

Work entirely in normal basis?

Critical issue: mult speed.

Type-I normal basis of F2n

is a permutation of

�; �2; : : : ; �n

in F2[�]=(�
n + � � �+ � + 1).

Cost M(n) to multiply,

obtaining coefficients of

�2; �3; : : : ; �2n.

Cost 2n� 2 to reduce

�2; �3; : : : ; �2n

to �; �2; : : : ; �n.

Alternative (1989 Itoh–Tsujii),

slightly faster when n is large:

redundant 1; �; : : : ; �n;

cost M(n + 1) + n.

But F2131 doesn’t have

a type-I normal basis.

F2131 has a type-II

normal basis � + ��1,

�2 + ��2, �4 + ��4,

: : : , �2130
+ ��2130

where

� is a primitive 263rd root of 1.

1995 Gao–von zur Gathen–

Panario: Can multiply on

type-II normal basis of F2n

by multiplying in

F2[�]=(�
2n + � � �+ 1).

Cost > 2M(n).

2001 Bolotov–Gashkov:

Can quickly convert

from type-II normal basis

c; c2; c4; : : : ; c2
n�1

to “standard basis”

1; c; c2; : : : ; cn�1

where c = � + ��1.

Cost � (n=2) lgn + 3n.

e.g. � 853 for n = 131.

Same cost for inverse.

(Analysis is too pessimistic;

actual cost is lower.)

Bolotov–Gashkov multiply

in this “standard basis”

with a poly mult, cost M(n),

and a reduction modulo

the minimal polynomial of c.

e.g. c131 + c130 + c128 + c124 +

c123 + c122 + c120 + c115 + c114 +

c112 + c99 + c98 + c96 + c67 + c66 +

c64 + c3 + c2 + 1 = 0 for n = 131.

Bolotov–Gashkov reduction

uses sparsity; cost � 2340.

Overall cost � M(131) + 4899

for type-II normal-basis mult.

Still too slow to be useful.

2007 Shokrollahi

(first published in Ph.D. thesis,

then in WAIFI 2007 paper

by von zur Gathen, Shokrollahi,

and Shokrollahi):

Convert from type-II normal basis

to redundant 1; c; c2; : : : ; cn.

Multiply polynomials, producing

redundant 1; c; c2; : : : ; c2n.

Convert to redundant

1, � + ��1, �2 + ��2,

�3 + ��3, : : : �2n + ��2n.

Use �2n+1 = 1

to eliminate redundancy.

For n = 131:

Shokrollahi’s analysis says

� M(132) + 3462.

Our analysis of Shokrollahi’s

algorithm says M(132) + 1559.

Easy speedup: M(131) + 1559.

5 mults, other iteration overhead:

5M(131) + 12249.

Compare to pentanomial basis:

5M(131) + 14372.

Do even better by mixing

permuted type-II optimal normal

basis � + ��1, �2 + ��2,

�3 + ��3, : : : , �n + ��n

with “type-II optimal polynomial

basis” � + ��1, (� + ��1)2,

(� + ��1)3, : : : , (� + ��1)n.

Use normal basis for outputs

that will be provided to squaring,

poly basis for outputs

that will be provided to mult.

Use a new reduction algorithm

for poly-basis output.

See paper for details.

Current iteration cost:

5M(131) + 10305.

Practical impact:

All of the ECC2K-130

implementations have upgraded

from pentanomial basis

to type-II bases, saving time.

Addendum

In general, an efficiently

computable endomorphism � of

order r speeds up Pollard rho

method by factor
p
r.

Can define walk on classes by

inspecting all 2r points

�P;��(P); : : : ;��r�1(P)

to choose unique representative

for class and then doing an

adding walk.

So y2 = x3 + ax and y2 = x3 + b

come at a security loss of
p

2.

GLS curves also have

endomorphisms of order 2.

As in the case of GLV curves, loss

of factor
p

2 is fully made up for

by the faster arithmetic.

Security of DLP might not be

sufficient for your protocol; some

are based on hardness of static

Diffie-Hellman problem.

Recent observation (Granger

2010): Oracle assisted DHP is

easier on GLS curves than on

curves over prime fields.

