
On the correct use

of the negation map

in the Pollard rho method

D. J. Bernstein

University of Illinois at Chicago

Tanja Lange

Technische Universiteit Eindhoven

Joint work with:

Peter Schwabe

Academia Sinica

Full version of paper with

entertaining historical details:

eprint.iacr.org/2011/003

http://eprint.iacr.org/2011/003


The rho method

Group hP i of prime order `.

Discrete-log problem for hP i:
given P; kP , find k mod `.

Standard attack: parallel rho.

Expect (1 + o(1))
p
�`=2

group operations,

matching Nechaev/Shoup bound.

Easy to distribute across CPUs.

Very little memory consumption.

Very little communication.



Simplified, non-parallel rho:

Make a pseudo-random walk

in the group hP i,
where the next step depends

on current point: Wi+1 = f(Wi).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.





























































Assume that for each point

we know ai; bi 2 Z=`Z

so that Wi = [ai]P + [bi]Q.

Then Wi = Wj means that

[ai]P + [bi]Q = [aj ]P + [bj ]Q

so [bi � bj ]Q = [aj � ai]P .

If bi 6= bj the DLP is solved:

k = (aj � ai)=(bi � bj).



Assume that for each point

we know ai; bi 2 Z=`Z

so that Wi = [ai]P + [bi]Q.

Then Wi = Wj means that

[ai]P + [bi]Q = [aj ]P + [bj ]Q

so [bi � bj ]Q = [aj � ai]P .

If bi 6= bj the DLP is solved:

k = (aj � ai)=(bi � bj).

e.g. “Additive walk”:

Start with W0 = P and put

f(Wi) = Wi + cjP + djQ

where j = h(Wi).



Parallel rho: Perform many walks

with different starting points

but same update function f .

If two different walks

find the same point then

their subsequent steps will match.

Terminate each walk once it hits

a distinguished point.

Attacker chooses frequency and

definition of distinguished points.

Do not wait for cycle.

Collect all distinguished points.

Two walks ending in same

distinguished point solve DLP.





Elliptic-curve groups

W

R

−W −R

W +R

y2 = x3 + ax + b.



Elliptic-curve groups

W

R

−W −R

W +R

2W

−2W

y2 = x3 + ax + b.



Elliptic-curve groups

W

R

−W −R

W +R

2W

−2W

y2 = x3 + ax + b.

Also neutral element at 1.

�(x; y) = (x;�y).



(xW ; yW ) + (xR; yR) =

(xW+R; yW+R) =

(�2�xW�xR; �(xW�xW+R)�yW ):

xW 6= xR, “addition”:

� = (yR � yW )=(xR � xW ).

Total cost 1I + 2M + 1S.

W = R and yW 6= 0, “doubling”:

� = (3x2
W + a)=(2yW ).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(xW ; yW ) = (xR;�yR);

inputs at 1.



Negation and rho

W = (x; y) and �W = (x;�y)

have same x-coordinate.

Search for x-coordinate collision.

Search space for collisions is

only d`=2e; this gives factor
p

2

speedup : : : if f(Wi) = f(�Wi).

To ensure f(Wi) = f(�Wi):

Define j = h(jWij) and

f(Wi) = jWij + cjP + djQ.

Define jWij as, e.g., lexicographic

minimum of Wi;�Wi.



Problem: this walk can

run into fruitless cycles!

Example: If jWi+1j = �Wi+1

and h(jWi+1j) = j = h(jWij)
then Wi+2 = f(Wi+1) =

�Wi+1 + cjP + djQ =

�(jWij+cjP+djQ)+cjP+djQ =

�jWij so jWi+2j = jWij
so Wi+3 = Wi+1

so Wi+4 = Wi+2 etc.

If h maps to r different values

then expect this example to occur

with probability 1=(2r)

at each step.



Current ECDL record:

2009.07 Bos–Kaihara–

Kleinjung–Lenstra–Montgomery

“PlayStation 3 computing

breaks 260 barrier:

112-bit prime ECDLP solved”.

Standard curve over Fp
where p = (2128 � 3)=(11 � 6949).



Current ECDL record:

2009.07 Bos–Kaihara–

Kleinjung–Lenstra–Montgomery

“PlayStation 3 computing

breaks 260 barrier:

112-bit prime ECDLP solved”.

Standard curve over Fp
where p = (2128 � 3)=(11 � 6949).

“We did not use

the common negation map

since it requires branching

and results in code that runs

slower in a SIMD environment.”

All modern CPUs are SIMD.



2009.07 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery “On the

security of 1024-bit RSA and 160-

bit elliptic curve cryptography”:

Group order q � p;

“expected number of iterations”

is “
q

��q
2 � 8:4 � 1016”; “we

do not use the negation map”;

“456 clock cycles per iteration

per SPU”; “24-bit distinguishing

property” ) “260 gigabytes”.

“The overall calculation

can be expected to take

approximately 60 PS3 years.”



2009.09 Bos–Kaihara–

Montgomery “Pollard rho

on the PlayStation 3”:

“Our software implementation is

optimized for the SPE : : : the

computational overhead for

[the negation map], due to the

conditional branches required to

check for fruitless cycles [13],

results (in our implementation

on this architecture) in an overall

performance degradation.”

“[13]” is 2000 Gallant–Lambert–

Vanstone.



2010.07 Bos–Kleinjung–Lenstra

“On the use of the negation map

in the Pollard rho method”:

“If the Pollard rho method is

parallelized in SIMD fashion,

it is a challenge to achieve any

speedup at all. : : : Dealing with

cycles entails administrative

overhead and branching, which

cause a non-negligible slowdown

when running multiple walks in

SIMD-parallel fashion. : : :

[This] is a major obstacle

to the negation map

in SIMD environments.”



This paper: Our software solves

random ECDL on the same curve

(with no precomputation)

in 35.6 PS3 years on average.

For comparison:

Bos–Kaihara–Kleinjung–Lenstra–

Montgomery software

uses 65 PS3 years on average.



This paper: Our software solves

random ECDL on the same curve

(with no precomputation)

in 35.6 PS3 years on average.

For comparison:

Bos–Kaihara–Kleinjung–Lenstra–

Montgomery software

uses 65 PS3 years on average.

Computation used 158000 kWh

(if PS3 ran at only 300W),

wasting >70000 kWh,

unnecessarily generating >10000

kilograms of carbon dioxide.

(0.143 kg CO2 per Swiss kWh.)



Several levels of speedups,

starting with fast arithmetic

mod p = (2128 � 3)=(11 � 6949)

and continuing up through rho.

Most important speedup:

We use the negation map.



Several levels of speedups,

starting with fast arithmetic

mod p = (2128 � 3)=(11 � 6949)

and continuing up through rho.

Most important speedup:

We use the negation map.

Extra cost in each iteration:

extract bit of “s”

(normalized y, needed anyway);

expand bit into mask;

use mask to conditionally

replace (s; y) by (�s;�y).

5.5 SPU cycles (� 1:5% of total).

No conditional branches.



Bos–Kleinjung–Lenstra say

that “on average more elliptic

curve group operations are

required per step of each walk.

This is unavoidable” etc.

Specifically: If the precomputed

additive-walk table has r points,

need 1 extra doubling to escape

a cycle after � 2r additions.

And more: “cycle reduction” etc.

Bos–Kleinjung–Lenstra say

that the benefit of large r

is “wiped out by

cache inefficiencies.”



There’s really no problem here!

We use r = 2048.

1=(2r) = 1=4096; negligible.

Recall: p has 112 bits.

28 bytes for table entry (x; y).

We expand to 36 bytes

to accelerate arithmetic.

We compress to 32 bytes

by insisting on small x; y;

very fast initial computation.

Only 64KB for table.

Our Cell table-load cost: 0,

overlapping loads with arithmetic.

No “cache inefficiencies.”



What about fruitless cycles?

We run 45 iterations.

We then save s;

run 2 slightly slower iterations

tracking minimum (s; x; y);

then double tracked (x; y)

if new s equals saved s.

(Occasionally replace 2 by 12

to detect 4-cycles, 6-cycles.

Such cycles are almost

too rare to worry about,

but detecting them has a

completely negligible cost.)



Maybe fruitless cycles waste

some of the 47 iterations.

: : : but this is infrequent.

Lose � 0.6% of all iterations.

Tracking minimum isn’t free,

but most iterations skip it!

Same for final s comparison.

Still no conditional branches.

Overall cost � 1:3%.

Doubling occurs for only

� 1=4096 of all iterations.

We use SIMD quite lazily here;

overall cost � 0:6%.

Can reduce this cost further.



To confirm iteration effectiveness

we have run many experiments

on y2 = x3 � 3x + 9

over the same Fp,

using smaller-order P .

Matched DL cost predictions.

Final conclusions:

Sensible use of negation,

with or without SIMD,

has negligible impact

on cost of each iteration.

Impact on number of iterations

is almost exactly
p

2.

Overall benefit is

extremely close to
p

2.


