On the correct use
of the negation map

in the Pollard rho method

D. J. Bernstein
University of lllinois at Chicago

Tanja Lange
Technische Universiteit Eindhoven

Joint work with:
Peter Schwabe
Academia Sinica

Full version of paper with
entertaining historical detalls:
eprint.iacr.org/2011/003


http://eprint.iacr.org/2011/003

The rho method

Group (P) of prime order £.

Discrete-log problem for (P):
given P, kP, find £ mod 4.

Standard attack: parallel rho.

Expect (1 + o(1))+/m4/2
group operations,

matching Nechaev/Shoup bound.

Easy to distribute across CPUs.

Very
Very

Itt
Itt

e memory consumption.
e communication.



Simplified, non-parallel rho:

Make a pseudo-random walk

in the group (P),

where the next step depends

on current point: W;.1 = f(W;).

Birthday paradox:
Randomly choosing from £

elements picks one element twice
after about 1/m{/2 draws.

The walk now enters a cycle.
Cycle-finding algorithm
(e.g., Floyd) quickly detects this.



QO 0O

O

oo OO0 O O O "0

O O 0O 0O/ 0//0 O ~0O

O

C.. O O -0

O

o OO0

O

o o O/ 0 /0~ 0 O O

o o O O O O



QO 0O

O

oo OO0 O O O "0

O O 0O 0O/ 0//0 O ~0O

O

C.. O O -0

O

o OO0

O

o o O/ 0 /0~ 0 O O

o o O O O O



O ~0O O

o O O O O O
o /O O 0O O/ O

O

o O 0O O



O. O O O
O O 00
O O 0“0
OO0 Q10
O« O« O \
O O 0.0

o o O/ O O

O

o O 0O O



o O O O O O

o /O O 0O O/ O

O ~0O O

ONC O 0

o o O/ O O

O

o O 0O O



o o O/ O O

O

o O 0O O



o o O/ O O

O

o O 0O O



O O O

O O 0O

o .0 O

O O @



O O O

O O 0O

o .0 O

O O @































































Assume that for each point
we know a;, b; € Z/LZ
so that W, = [a,z']P + [bZ]Q

Then W; = W, means that
a:1P + [6:1Q = [a;1P + [6;]Q
SO bz — bj]Q — [a,j — a,i]P.

If b; # b; the DLP is solved:
k= (a; —a;)/(b; — b;).




Assume that for each point
we know a;, b; € Z/LZ
so that W, = [a,z']P + [bZ]Q

Then W; = W, means that
a:1P + [6:1Q = [a;1P + [6;]Q
SO bz — bj]Q — [a,j — a,i]P.

If b; # b; the DLP is solved:
k= (a; —a;)/(b; — b;).

e.g. "Additive walk”:

Start with Wy = P and put
f(W;) = W5 +¢c; P+ d;Q
where 7 = h(W;).




Parallel rho: Perform many walks
with different starting points

but same update function f.

If two different walks

find the same point then

their subsequent steps will match.

Terminate each walk once it hits
a distinguished point.

Attacker chooses frequency and
definition of distinguished points.
Do not wait for cycle.

Collect all distinguished points.
Two walks ending In same
distinguished point solve DLP.



o
e}
o

o

o
ooooo
o
o° p
o
o © 5
s o o
o® o g
o
oo o o
oy 0 o©
oo © &
co O o0 0gy
00 00y
O-0-0
<]
o
° oaco Q
o0 7 O o
Qoo Oo
° o
00 Qg
o
o
g o
@) Q
el Q
o © Q
o o
000
o
o
=]
C0
RS
el
o ©
<]
o
o
o o
o
o
o
P
o R
%0
SR
%o
Do
0.4 P o
GO0 oo
Sy oooo
00y O
o
< o
Mv 0000
0
°5 (@)
Q
oo
oo
o0 o
©9
Q
o
0 Vo0 Cro:g
o 9
0g® 2 Oe
o ° 5 o)
o9 4 %o
o o
o L d oomu
o
o
O o0 0
0+ 0 O g
o o,
ixe) o
o
o

500000




Elliptic-curve groups

A

W+ R

y? =z3 + az + b.



Elliptic-curve groups

A

W+ R

y? =z3 + az + b.



Elliptic-curve groups

A

W+ R

y? =z3 + az + b.
Also neutral element at 0.
—(z,y) = (z, —y).



(zw,yw) + (TR YR) =
(Zw+r YW+R) =
(N—zy—zp, AEZw—2Zwi+Rr)—YW).

Ty # TR, addition”:

A= (yr —yw)/(zR — zw).
Total cost 11 4+ 2M + 18S.

W = R and yp # 0, “doubling”:

A= (323, +a)/(2uw).
Total cost 11 +2M + 2S.

Also handle some exceptions:

(zw. yw) = (TR, —YR);
Inputs at 0.



Negation and rho

W = (z,y) and W = (z, —y)
nave same z-coordinate.

Search for z-coordinate collision.

Search space for collisions is

only [£/2]; this gives factor /2
speedup ... if f(W;) = f(—W;).
To ensure f(W;) = f(—W;):
Define 5 = A(|Wj;|) and

f(W;) = \Ws| +¢; P+ d,;Q.
Define |W;| as, e.g., lexicographic

minimum of W;, —W;.



Problem: this walk can
run into fruitless cycles!

Examp e: If ‘Wﬂ_l‘ — —VV311

and A(|Wjt1]) = 5 = h(IW;])

then Wi 2 = f(Wiy1) =
~Wit1+¢P+d;Q =
—(|Ws|+c; P+d;jQ)+cj P+d;Q =
—|Wi| so [Wiia| = [Wj

so Wiy3 =W,

so W14 = W, 5 etc.

If A maps to r different values
then expect this example to occur

with probability 1/(27)
at each step.




Current ECDL record:

2009.07 Bos—Kaihara-
Kleinjung—Lenstra—Montgomery
“PlayStation 3 computing

breaks 299 barrier:
112-bit prime ECDLP solved™.

Standard curve over Fy,
where p = (2128 — 3)/(11 - 6949).



Current ECDL record:

2009.07 Bos—Kaihara-
Kleinjung—Lenstra—Montgomery
“PlayStation 3 computing

breaks 299 barrier:
112-bit prime ECDLP solved™.

Standard curve over Fy,
where p = (2128 — 3)/(11 - 6949).

“We did not use

the common negation map
since It requires branching

and results in code that runs
slower in a SIMD environment.”

All modern CPUs are SIMD.



2009.07 Bos—Kaihara—Kleinjung—
Lenstra—Montgomery “On the
security of 1024-bit RSA and 160-
bit elliptic curve cryptography™:

Group order g ~ p;

expectec number of iterations”

IS \/ ~ 8.4 -10%0"; “we

do not use the negation map’;
"456 clock cycles per iteration
per SPU"; “24-bit distinguishing
property’ = 260 gigabytes’ .

“The overall calculation
can be expected to take
approximately 60 PS3 years.”



2009.09 Bos—Kaihara-
Montgomery “Pollard rho

on the PlayStation 3":

“Our software implementation is
optimized for the SPE ... the
computational overhead for
[the negation map], due to the

conditional branches required to
check for fruitless cycles [13],
results (in our implementation

on this architecture) in an overall
performance degradation.”

“[13]" is 2000 Gallant—Lambert—
Vanstone.



2010.07 Bos—Kleinjung—Lenstra
“On the use of the negation map

in the Pollard rho method":

“If the Pollard rho method is
parallelized in SIMD fashion,

it Is a challenge to achieve any
speedup at all. ... Dealing with
cycles entails administrative
overhead and branching, which
cause a non-negligible slowdown

when running multiple walks In

SIMD-parallel fashion. . ..
[This] is a major obstacle
to the negation map

in SIMD environments.”



This paper: Our software solves
random ECDL on the same curve

(with no precomputation)
in 35.6 PS3 years on average.

For comparison:
Bos—Kaihara—Kleinjung—Lenstra-
Montgomery software

uses 65 PS3 years on average.



This paper: Our software solves
random ECDL on the same curve

(with no precomputation)
in 35.6 PS3 years on average.

For comparison:
Bos—Kaihara—Kleinjung—Lenstra-
Montgomery software

uses 65 PS3 years on average.

Computation used 158000 kWh
(if PS3 ran at only 300W),
wasting >70000 kWh,
unnecessarily generating >10000
kilograms of carbon dioxide

(0.143 kg CO2 per Swiss kWh.)




Several levels of speedups,
starting with fast arithmetic
mod p = (2128 — 3)/(11 - 6949)
and continuing up through rho.

Most important speedup:
We use the negation map.



Several levels of speedups,
starting with fast arithmetic
mod p = (2128 — 3)/(11 - 6949)
and continuing up through rho.

Most important speedup:
We use the negation map.

Extra cost in each iteration:
extract bit of “s”

(normalized y, needed anyway);
expand bit into mask;

use mask to conditionally
replace (s,y) by (—s, —vy).

5.5 SPU cycles (~ 1.5% of total).

No conditional branches.




Bos—Kleinjung—Lenstra say
that “on average more elliptic
curve group operations are
required per step of each walk.
This Is unavoidable” etc.

Specifically: If the precomputed
additive-walk table has r points,
need 1 extra doubling to escape
a cycle after & 2r additions.

And more: “cycle reduction” etc.

Bos—Kleinjung—Lenstra say
that the benefit of large r

Is “wiped out by
cache inefficiencies.”



There's really no problem herel

We use r = 2048.
1/(2r) = 1/4096; negligible.

Recall: » has 112 bits.
28 bytes for table entry (z,y).

We expand to 36 bytes

to accelerate arithmetic.

We compress to 32 bytes

by insisting on small z, y;
very fast initial computation.

Only 64KB for table.

Our Cell table-load cost: 0,
overlapping loads with arithmetic.
No “cache inefficiencies.”



What about fruitless cycles?

We run 45 iterations.

We then save s;

run 2 slightly slower iterations
tracking minimum (s, z,vy);
then double tracked (z, y)

if new s equals saved s.

(Occasionally replace 2 by 12
to detect 4-cycles, 6-cycles.

Such cycles are almost
too rare to worry about,
but detecting them has a

completely negligible cost.)



Maybe fruitless cycles waste

some of the 47 iterations.
.but this is infrequent.

Lose 0.6% of all iterations.

Tracking minimum isn't free,
but most iterations skip it!

Same for final s comparison.
Still no conditional branches.

Overall cost ~ 1.3%.

Doubling occurs for only

~ 1/4096 of all iterations.

We use SIMD quite lazily here;
overall cost ~ 0.6%.

Can reduce this cost further.



To confirm iteration effectiveness
we have run many experiments
ony?=x3-3z+09

over the same Fy,

using smaller-order P.

Matched DL cost predictions.

Final conclusions:

Sensible use of negation,

with or without SIMD,

has negligible impact

on cost of each iteration.
Impact on number of iterations
is almost exactly /2.

Overall benefit is

extremely close to /2.



