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Edwards curves

An Edwards curve over a non-binary field k
is a curve x? 4+ y? = 1 + dx2y? with d ¢ {0,1}.

Edwards addition law: (x1,y1) + (x2,¥2) = (x3, y3) with
X1y2 + y1Xo Yiya — X1X2
X3 = —"—"—, Vs=F .
1+ dxaxoyiys 1 — dxpxoyye
Neutral element: (0,1). Negation: —(x1,y1) = (—x1, 1)
Use projective representation to avoid divisions:

> (X1 . Yl . Zl) represents (Xl/Zla Yl/Zl)
» Addition costs 10M + 1S + 1My.
» Doubling costs 3M + 4S.



Example: x2 + y? = 1 — 30x%y?
y

neutral = (0, 1)

Py = (x1, 1)

Py = (x2, 2)
(—1,0) of order 4 X
Ps = (x3,¥3)

(0, —1) of order 2
Compare to standard Jacobian V? = U3 — 3UW* + bWS:

» Addition 11M + 5S. Edwards saves 4S + 1M — 1My.
» Doubling 3M + 5S. Edwards saves 18S.
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Twisted Edwards curves

2008 Bernstein—Birkner—Joye—Lange—Peters:
Generalize to “twisted Edwards curves”

ax> +y? =1+ dx’y? with a #0,d #0,a # d.
Addition law: (x1,y1) + (X2, ¥2) = (x3, y3) with

X2t ynx iy — axixo

X3 = ) 3 — :
1+ dxaxoyrys 1 — dxixay1ys

Advantages:
» More flexible: not necessarily a point of order 4.
» Covers all Montgomery curves.
» Covers even more curves with a 2-isogeny.

» Saves time when d is a ratio of small integers.
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2008 Hisil-Wong—Carter—Dawson: dual addition law

X1y1 + Xoy>  X1y1 — X
(X1,J/1)+(X2;J/2) = ( L 272 ) L1 2y2> ;
axiXp +y1y2” X1y — yixe

extended coordinates (X : Y : Z: T) with T = XY/Z,
bouncing between projective and extended coordinates.

Addition: 9M + 1M,. Only 8M for a = —1.
Doubling: 3M + 4S + 1M,,.

Note the addition speedup for a = —1.



The p — 1 method of factorization

2232792560 _ 1 has prime divisors 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 89, 97, 103, 109, 113,
127, 131, 137, 151, 157, 181, 191, 199, etc.

An odd prime p divides 2232792560 _ 1
iff order of 2 in F:; divides 232792560.

Many ways for this to happen: 232792560 has 960 divisors.
Why so many?

232792560 = 24-32.5.7-11-13-17 - 19.

Compute ged{2232792560 _ 1 p}

to obtain the product of all primes p dividing n
such that the order of 2 in F divides 232792560.
(Assuming n squarefree for simplicity.)



ECM: the elliptic-curve method of factorization

Take a curve over Q with a point G.
E.g. Take any G, compute Edwards d from G.

Reduce this curve modulo n.
(Can recycle curve for many different n; ECM is green.)

Compute [s]G modulo n for some very smooth s.

If the order of G in E(F,) divides s

then the point [s]G is the neutral element modulo p.
Detect by a suitable gcd computation.

E modulo p has order in [p +1—2,/p,p+ 1+ 2,/p];
this may or may not be smooth but we can vary E.

Curve operations more expensive than in p — 1 method;
but varying curves makes method much faster overall.



Torsion points

Curve over Q has some torsion points: points of finite order.
All possible torsion groups (Mazur's theorem):

> Z/mfor me {1,2,3,4,5,6,7,8,9,10,12},
» Z/2 x Z/2m for m € {1,2,3,4}.

If a point has finite order on the curve over Q then
the point has the same finite order over Z/n and over F,.
Don't choose G as a torsion point.

Minimize trouble by choosing curve with torsion Z /17
No: people try to use curves with many torsion points.

e.g. 2008-2010 Bernstein—Birkner—Lange—Peters

“ECM using Edwards curves” (software: "EECM-MPFQ")
save time in ECM by using Edwards curves; construct
families of Edwards curves with torsion Z/12 or Z/2 x Z/8.
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Standard series of heuristic approximations
when ECM uses a “random” elliptic curve:

Prlprime p € [1, R] is found by this curve]
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Larger t = smaller R/t = larger Pr.



Starfish on strike

Would like to combine a = —1 speedup with large torsion.
Let’s look closer at —x? + y? = 1 — 30x?y?:
7

/

./

Singularity at infinity blows up to two points of order 2.
EECM paper proved: arbitrary d with a = —1
cannot achieve highest torsion such as Z/12 and Z/2 x Z/8.
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Starfish on strike

Would like to combine a = —1 speedup with large torsion.
Let’s look closer at —x? + y? = 1 — 30x?y?:

Singularity at infinity blows up to two points of order 2.
EECM paper proved: arbitrary d with a = —1

cannot achieve highest torsion such as Z/12 and Z/2 x Z/8.
This paper: Does a = —1 speedup outweigh smaller torsion?



Example: Constructing Z/8 with a = —1

Twisted Edwards curve has 1 affine point of order 2 at (0, —1).
Points of order 4 doubling to (0, —1) exist iff a= or d = .
For a = —1 only possibility is d = [J.

Many more restrictions on d to construct points of order 8
and non-torsion point G. Resulting theorem:

Let (r,s) be a rational point with r;s # 0 and s # +4r

on the elliptic curve S? = R® + 48R over Q.

Define u = 2r/s, v = (2r* — s%)/s?, d = (16u*)/(4u* — 1)2.
Then the twisted Edwards curve —x? 4 y?> = 1 + dx?y? has
torsion group Z/8 and non-torsion point (2u?, (4u* —1)/v).

Can take (4, —16) and its multiples as values for (r, s).
Paper has similar constructions for Z/2 x Z /4 and Z/6; note
that torsion groups are half-size compared to EECM paper.



Experiments and conclusions

We modified EECM-MPFQ to support our new curves.

EECM paper optimized EECM-MPFQ s etc. for old curves.
We tried those parameters with thousands of our curves
for all b-bit primes for each b € {15,16,...,26}.
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We modified EECM-MPFQ to support our new curves.

EECM paper optimized EECM-MPFQ s etc. for old curves.
We tried those parameters with thousands of our curves
for all b-bit primes for each b € {15,16,...,26}.

Happy observation: Our new Z/6 a = —1 curves
are the new price/performance leaders for ECM!
EECM-MPFQ now uses these curves by default.
Gain in # modular multiplications per curve
outweighs loss in # primes found per curve.

Surprising observation: It's a gain, not a loss!

Switching from Z /2 x Z/8 to our new curves

decreases torsion but increases # primes found per curve.
Some particular curves are even more effective.



Number of modular multiplications per prime found

15-bit primes 16-bit primes
800 — T T T 1050 — T T T
780
1000
760
740 - 950
720 -
900
700
680 | 850 |
660 |
800
640 -
620 —~ 750 —-

1 250 500 750 1000 1 250 500 750 1000



Number of modular multiplications per prime found

17-bit primes 18-bit primes
1350 — T T T 1750 — T T T
1300 | 1700
1650
1250
1600
1200 -
1550
1150 -
1500
1100
1450 |
1050 ¢ 1400
1000 1350

250 500 750 1000 250 500 750 1000
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Number of modular multiplications per prime found
19-bit primes 20-bit primes

2100 —

2650 —

2600 -
2050
2550
2000
2500 -

1950 -
2450 -

1900 |- 2400 |-

2350 |-
1850 |-

2300 | |
1800 -

2250 |-
1750 |-

2200 |-
1700 Lo 2150

1 250 500 750 1000 1 250 500 750 1000



Number of modular multiplications per prime found

21-bit primes 22-bit primes
3500 — T T T 4400 — T T T
/_/ e
3400 | 1 4300 |
/////
-
/
3300 /’/ 4200 -
3200 | // 4100 |
)

3100 (/ 1 4000 -

!
3000 " R 3900 -

I
2900 | 1 3800 | |
2800 | 1 3700 -
2700 Lo 3600 =
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Number of modular multiplications per prime found

23-bit primes 24-bit primes
5400 —— o 6800 — —
///// ///////
— 6700 | o
5300 - - 1 /
,}/
(" 6600 - g
5200 | | 1 |
| 6500 - / 1
) |
5100/ 1 6400 - '/ 1
|
] \
5000 | 1 6300 [ | 1
\ |
6200 | |
4900 | | 1 ‘
\ 6100 | |
4800 | 1 ‘
\ 6000 - 1
4700 | | ] | /J//// ,
| 5900
4600 e : 5800 L e :
250 500 750 1000 1 250 500 750 1000

-



Number of modular multiplications per prime found

25-bit primes 26-bit primes
8600 — : 10600 — —
/////,/
-
sa00 | R 10400
/// /
— (
/
10200 | ]
8200 | ( 1 ‘
e 10000 | ﬁ’///// ]
8000 | /f’f/// ] |
\‘/ 9800 | | ]
7800 | | ] |
| 9600 | ‘\ 1
| |
7600 | ] “
‘ 9400 | ]
J |
7400 ¢ /’I ] 9200 | //_,/_/j ,
9000 <= P ‘

7200 Lo . . . .
1 250 500 750 1000 1



The end



Thanks!




