Exercise sheet 7, 24 March 2022

1. Last time there were some questions about how to do enumeration when actual work is needed.

Remember that

$$b_2^* = b_2 - (\langle b_1, b_2 \rangle / \langle b_1, b_1 \rangle) b_1$$

Show that for $v = a_1b_1 + a_2b_2$ you have

$$||v|| \ge |a_2| \cdot ||b_2^*||.$$

Hint: Note that the square of the Euclidean norm matches the inner product

$$||x||^2 = \langle x, x \rangle.$$

Note that that limits the choices of a_2 you need to consider in enumeration.

- 2. Explain how $f' = x^i f$, instead of f, can be used to decrypt in the NTRU system for $0 \le i < n$
- 3. Check out the lattice attack from slides 53 and 54 of the latticehacks talk to understand why the attack worked.
- 4. Let F be a multivariate-quadratic system of equations and G its polar form (as defined in the second video). We have shown that $G(\mathbf{x}, \mathbf{y})$ is bilinear if the constant terms $c^{(k)}$ in F are all zero. How can you change G so that it remains bilinear if the constant terms are nonzero? How does that change the system?
- 5. For the Sakumoto-Shirai-Hiwatari identification scheme we have shown that a malicious prover who does not know \mathbf{s} can provide valid answers if he knows that b = 0 will be chosen. Investigate what the malicious signer can do in the other case. Does he need to know α as well before computing the commitments?
- 6. Use $g(z) = z^3 + z + 1$ to obtain the field extension $\mathbb{F}_{2^3} \cong \mathbb{F}_2[z]/g(z)$. Let $s(X) = X^{2^2+1}$ be the central map for a C^*/HFE system with n = m and let $M = N = I_3$. Let $\phi \mathbb{F}_{2^3} \to \mathbb{F}_2^3$ for the basis $\{1, z, z^2\}$. Find a preimage for (1, 0, 1). Use Sage or Magma for the computation.