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Schoolbook RSA encryption
1977 Rivest, Shamir, Adleman. Do not use Schoolbook RSA in practice!
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Schoolbook RSA encryption
1977 Rivest, Shamir, Adleman. Do not use Schoolbook RSA in practice!

KeyGen:

1. Pick large primes p,q; p # q.

Compute n = p- g, ¢(n) = (p— 1)(g — 1).
Pick 1 < e < n with gecd(e, p(n)) = 1.
Compute d = e~ mod ¢(n).

Output public key (n, e), private key (n, d).

A
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Schoolbook RSA encryption
1977 Rivest, Shamir, Adleman. Do not use Schoolbook RSA in practice!
KeyGen:
1. Pick large primes p,q; p # q.
2. Compute n=p-q, ¢(n) = (p—1)(g — 1)
3. Pick 1 < e < n with gcd(e, ¢(n)) = 1.
4. Compute d = e~ mod o(n).
5. Output public key (n, e), private key (n, d).
Enc message 0 < m < n:

1. Compute ¢ = m® mod n.
2. Output c.

Dec ciphertext 0 < ¢ < n:

1. Compute m’ = ¢ mod n.
2. Output m'.
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Schoolbook RSA encryption
1977 Rivest, Shamir, Adleman. Do not use Schoolbook RSA in practice!

KeyGen:
1. Pick large primes p,q; p # q.
2. Compute n=p-q, ¢(n) = (p— 1)(q — 1).
3. Pick 1 < e < n with gcd(e, ¢(n)) = 1.
4. Compute d = e~ mod (n).
5. Output public key (n, €), private key (n, d).
Enc message 0 < m < n:

1. Compute ¢ = m® mod n.

2. Output c.

Dec ciphertext 0 < ¢ < n: Some k exists with ed = 1 + kg(n)
1. Compute m’ = ¢? mod n. Use Fermat’s little theorem.
2. Output m'.

This works:

m =c? = (m®)? = m* = m*ke) = m . (m?M)k=m . 1= m mod n.
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Shor’s algorithm as a black box

> In 1994 Shor showed that quantum computers can efficiently

compute the period of a function.

» He showed how to use this to solve factoring and discrete logarithms.

Algorithms for Quantum Computation:
Discrete Logarithms and Factoring

Peter W, Shor
AT&T Bell Labs
Room 2D-149
600 Mountain Ave.
Murray Hill, NJ 07974, USA

Abstract

A computer is generally considered to be a universal
computational device; i.e., it is believed able to simulate
any physical computational device with a cost in com-
putation time of at most a polynomial factor. It is not
clear whether this is still true when quantum mechanics

[1, 2]. Although he did not ask whether quantum mechan-
ics conferred extra power to computation, he did show that
a Turing machine could be simulated by the reversible uni-
tary evolution of a quantum process, which is a necessary
prerequisite for quantum computation. Deutsch [9, 10] was
the first to give an explicit model of quantum computation.
He defined both quantum Turing machines and quantum

is in{gnggnsideration. Several researchers, starting o, cirguits and investigated some of their properties. 5
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How to break RSA by finding a period?
Let n = p- g with p, g prime (and odd).
> Pick a with ged(a, n) = 1 (but else we have found a factor of n).
» Ask Shor for period of function

f, : x — a* mod n.

This requires a circuit for £, for x in superposition.
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How to break RSA by finding a period?
Let n = p- g with p, g prime (and odd).
> Pick a with ged(a, n) = 1 (but else we have found a factor of n).
» Ask Shor for period of function

f, : x — a* mod n.

This requires a circuit for £, for x in superposition.

» Obtain s with f3(x + s) = f3(x) for all x.
Note: s may be a multiple of the period of f..

X+s

a7 =3"modn
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How to break RSA by finding a period?
Let n = p - q with p, g prime (and odd).
> Pick a with ged(a, n) = 1 (but else we have found a factor of n).
» Ask Shor for period of function

f, : x — a* mod n.

This requires a circuit for £, for x in superposition.

» Obtain s with f3(x + s) = f3(x) for all x.
Note: s may be a multiple of the period of f..

X+s

2™ = 3" mod n thus @ =1 mod n

and we have found the order of a mod n (or a multiple thereof).
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How to break RSA by finding a period?
Let n = p - q with p, g prime (and odd).
> Pick a with ged(a, n) = 1 (but else we have found a factor of n).
» Ask Shor for period of function

f,: x+— a“mod n.

This requires a circuit for £, for x in superposition.

Obtain s with f,(x + s) = f,(x) for all x.
Note: s may be a multiple of the period of f..

v

X+s

2™ = 3" mod n thus @ =1 mod n

and we have found the order of a mod n (or a multiple thereof).

v

If s is odd, try again with a new choice of a.

v

Else put s = 2" - t, with t odd, compute a* mod n.
> If a' = £1 mod n try again with a new choice of a.
» Square the previous result.

> If this gives -1, try again with a new choice of a.
> If this gives 1, compute the gcd of the previous result minus 1 with n.
> Else repeat this step.
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Explanation using CRT

> There are 2 square roots of 1 in IF,, namely £1.

» If 3 =1 mod p and a = —1 mod q then

ged(a® —1,n) = p.
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Explanation using CRT

> There are 2 square roots of 1 in IF,, namely £1.

» If 3 =1 mod p and a = —1 mod q then

ged(a® —1,n) = p.

» We can notice this situation by observing

a* =1 mod n and a° # 41 mod n.
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Explanation using CRT

> There are 2 square roots of 1 in IF,, namely £1.

» If 3 =1 mod p and a = —1 mod q then

ged(a® —1,n) = p.

» We can notice this situation by observing

a* =1 mod n and a° # 41 mod n.

» We cannot find such a ¢ by chance.
That's where Shor's algorithm comes in:
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Explanation using CRT

v

There are 2 square roots of 1 in IF,, namely £1.

v

If a =1 mod p and a° = —1 mod g then

ged(a® —1,n) = p.

» We can notice this situation by observing

a* =1 mod n and a° # 41 mod n.

» We cannot find such a ¢ by chance.
That's where Shor's algorithm comes in:

r
s:a2tE

a 1 mod n

means that we can look at r candidates for c.

» If s is odd (no candidates) or we encounter —1 then (a, s) does not
factor n and we try again.

» Improvement: pick a with Jacobi symbol (a|n) = —1, so s is even.
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