Shor vs. RSA

Tanja Lange

Eindhoven University of Technology

SAC – Post-quantum cryptography

1977 Rivest, Shamir, Adleman. Do not use Schoolbook RSA in practice!

1977 Rivest, Shamir, Adleman. Do not use Schoolbook RSA in practice! KeyGen:

- 1. Pick large primes $p, q; p \neq q$.
- 2. Compute $n = p \cdot q$, $\varphi(n) = (p 1)(q 1)$.
- 3. Pick 1 < e < n with $gcd(e, \varphi(n)) = 1$.
- 4. Compute $d \equiv e^{-1} \mod \varphi(n)$.
- 5. Output public key (n, e), private key (n, d).

1977 Rivest, Shamir, Adleman. Do not use Schoolbook RSA in practice! KeyGen:

- 1. Pick large primes $p, q; p \neq q$.
- 2. Compute $n = p \cdot q$, $\varphi(n) = (p 1)(q 1)$.
- 3. Pick 1 < e < n with $gcd(e, \varphi(n)) = 1$.
- 4. Compute $d \equiv e^{-1} \mod \varphi(n)$.
- 5. Output public key (n, e), private key (n, d).

Enc message $0 \le m < n$:

- 1. Compute $c \equiv m^e \mod n$.
- 2. Output c.

Dec ciphertext $0 \le c < n$:

- 1. Compute $m' \equiv c^d \mod n$.
- 2. Output m'.

1977 Rivest, Shamir, Adleman. Do not use Schoolbook RSA in practice! KeyGen:

- 1. Pick large primes $p, q; p \neq q$.
- 2. Compute $n = p \cdot q$, $\varphi(n) = (p 1)(q 1)$.
- 3. Pick 1 < e < n with $gcd(e, \varphi(n)) = 1$.
- 4. Compute $d \equiv e^{-1} \mod \varphi(n)$.
- 5. Output public key (n, e), private key (n, d).

Enc message $0 \le m < n$:

- 1. Compute $c \equiv m^e \mod n$.
- 2. Output c.

Dec ciphertext $0 \le c < n$:

- 1. Compute $m' \equiv c^d \mod n$.
- 2. Output m'.

This works:

 $m' \equiv c^d \equiv (m^e)^d \equiv m^{ed} = m^{1+k\varphi(n)} \equiv m \cdot (m^{\varphi(n)})^k \stackrel{\checkmark}{\equiv} m \cdot 1 \equiv m \mod n.$

Tanja Lange

Some k exists with $ed = 1 + k\varphi(n)$

Use Fermat's little theorem.

Shor's algorithm as a black box

- In 1994 Shor showed that quantum computers can efficiently compute the period of a function.
- He showed how to use this to solve factoring and discrete logarithms.

Algorithms for Quantum Computation: Discrete Logarithms and Factoring

Peter W. Shor AT&T Bell Labs Room 2D-149 600 Mountain Ave. Murray Hill, NJ 07974, USA

Abstract

A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken jrtg.consideration. Several researchers, starting Shor

[1, 2]. Although he did not ask whether quantum mechanics conferred extra power to computation, he did show that a Turing machine could be simulated by the reversible unitary evolution of a quantum process, which is a necessary prerequisite for quantum computation. Deutsch [9, 10] was the first to give an explicit model of quantum computation. He defined both quantum Turing machines and quantum girguits and investigated some of their properties. 3

Let $n = p \cdot q$ with p, q prime (and odd).

- Pick a with gcd(a, n) = 1 (but else we have found a factor of n).
- Ask Shor for period of function

$$f_a: x \mapsto a^x \mod n.$$

This requires a circuit for f_a for x in superposition.

Let $n = p \cdot q$ with p, q prime (and odd).

- Pick a with gcd(a, n) = 1 (but else we have found a factor of n).
- Ask Shor for period of function

 $f_a: x \mapsto a^x \mod n.$

This requires a circuit for f_a for x in superposition.

Obtain s with f_a(x + s) = f_a(x) for all x.
Note: s may be a multiple of the period of f_a.

$$a^{x+s} \equiv a^x \mod n$$

Let $n = p \cdot q$ with p, q prime (and odd).

- Pick a with gcd(a, n) = 1 (but else we have found a factor of n).
- Ask Shor for period of function

$$f_a: x \mapsto a^x \mod n.$$

This requires a circuit for f_a for x in superposition.

Obtain s with f_a(x + s) = f_a(x) for all x.
Note: s may be a multiple of the period of f_a.

$$a^{x+s} \equiv a^x \mod n$$
 thus $a^s \equiv 1 \mod n$

and we have found the order of $a \mod n$ (or a multiple thereof).

Let $n = p \cdot q$ with p, q prime (and odd).

- Pick a with gcd(a, n) = 1 (but else we have found a factor of n).
- Ask Shor for period of function

$$f_a: x \mapsto a^x \mod n.$$

This requires a circuit for f_a for x in superposition.

▶ Obtain s with f_a(x + s) = f_a(x) for all x. Note: s may be a multiple of the period of f_a.

 $a^{x+s} \equiv a^x \mod n$ thus $a^s \equiv 1 \mod n$

and we have found the order of $a \mod n$ (or a multiple thereof).

- If s is odd, try again with a new choice of a.
- Else put $s = 2^r \cdot t$, with t odd, compute $a^t \mod n$.
 - If $a^t \equiv \pm 1 \mod n$ try again with a new choice of a.
 - Square the previous result.
 - If this gives -1, try again with a new choice of a.
 - ▶ If this gives 1, compute the gcd of the previous result minus 1 with *n*.
 - Else repeat this step.

Tanja Lange

- There are 2 square roots of 1 in \mathbb{F}_p , namely ± 1 .
- If $a^c \equiv 1 \mod p$ and $a^c \equiv -1 \mod q$ then

$$gcd(a^c-1,n)=p.$$

- There are 2 square roots of 1 in \mathbb{F}_p , namely ± 1 .
- ▶ If $a^c \equiv 1 \mod p$ and $a^c \equiv -1 \mod q$ then

$$gcd(a^c-1,n)=p.$$

We can notice this situation by observing

$$a^{2c} \equiv 1 \mod n$$
 and $a^c \not\equiv \pm 1 \mod n$.

- There are 2 square roots of 1 in \mathbb{F}_p , namely ± 1 .
- If $a^c \equiv 1 \mod p$ and $a^c \equiv -1 \mod q$ then

$$gcd(a^c-1,n)=p.$$

We can notice this situation by observing

$$a^{2c} \equiv 1 \mod n$$
 and $a^c \not\equiv \pm 1 \mod n$.

We cannot find such a c by chance. That's where Shor's algorithm comes in:

- There are 2 square roots of 1 in \mathbb{F}_p , namely ± 1 .
- If $a^c \equiv 1 \mod p$ and $a^c \equiv -1 \mod q$ then

$$gcd(a^c-1,n)=p.$$

We can notice this situation by observing

$$a^{2c} \equiv 1 \mod n$$
 and $a^c \not\equiv \pm 1 \mod n$.

We cannot find such a c by chance. That's where Shor's algorithm comes in:

$$a^s = a^{2^r t} \equiv 1 \mod n$$

means that we can look at r candidates for c.

- ► If s is odd (no candidates) or we encounter -1 then (a, s) does not factor n and we try again.
- Improvement: pick a with Jacobi symbol (a|n) = -1, so s is even.

Tanja Lange