Quantum computing for cryptographers IV Gover's algorithm

> Tanja Lange idea and design by Daniel J. Bernstein

> > Eindhoven University of Technology

SAC – Post-quantum cryptography

Grover's algorithm

Grover's algorithm is often described as a search in unstructured data, but it does need a function that can capture this search.

Let

$$f: \{0,1\}^n \to \{0,1\}.$$

This need not be a function from \mathbf{F}_2^n .

Assume: unique $s \in \{0,1\}^n$ has f(s) = 0.

Traditional algorithm to find *s*: compute *f* for many inputs, hope to find output 0. Success probability is very low until #inputs approaches 2^{*n*}.

Grover's algorithm

Grover's algorithm is often described as a search in unstructured data, but it does need a function that can capture this search.

Let

 $f: \{0,1\}^n \to \{0,1\}.$

This need not be a function from \mathbf{F}_2^n .

Assume: unique $s \in \{0,1\}^n$ has f(s) = 0.

Traditional algorithm to find *s*: compute *f* for many inputs, hope to find output 0. Success probability is very low until #inputs approaches 2^n .

Grover's algorithm takes only $2^{n/2}$ reversible computations of f. Typically: reversibility overhead is small enough that this easily beats traditional algorithm.

Start from uniform superposition over all *n*-bit strings *u*.

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Start from uniform superposition over all n-bit strings u.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s.

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after Step 1:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after Step 1 + Step 2:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after Step 1 + Step 2 + Step 1:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $2 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $3 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $4 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $5 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $6 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after 7 × (Step 1 + Step 2):

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $8 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $9 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $10 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $11 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $12 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $13 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $14 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $15 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $16 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $17 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $18 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $19 \times (\text{Step } 1 + \text{Step } 2)$:

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after 20 × (Step 1 + Step 2):

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after 25 × (Step 1 + Step 2):

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after 30 × (Step 1 + Step 2):

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $35 \times (\text{Step } 1 + \text{Step } 2)$:

Good moment to stop, measure.

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after 40 × (Step 1 + Step 2):

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after 45 × (Step 1 + Step 2):

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after 50 × (Step 1 + Step 2):

Traditional moment to stop measure.

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after 60 × (Step 1 + Step 2):

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after 70 × (Step 1 + Step 2):

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after 80 × (Step 1 + Step 2):

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after 90 × (Step 1 + Step 2):

Start from uniform superposition over all *n*-bit strings *u*.

Step 1: Set $a \leftarrow b$ where $b_u = -a_u$ if f(u) = 0, $b_u = a_u$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat Step 1 + Step 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the n qubits. With high probability this finds s. Normalized graph of $u \mapsto a_u$ for an example with n = 12after $100 \times (\text{Step } 1 + \text{Step } 2)$:

Very bad stopping point.