Quantum computing for cryptographers II

Gates and basic circuits

Tanja Lange idea and design by Daniel J. Bernstein

Eindhoven University of Technology

SAC – Post-quantum cryptography

NOT₀ gate on 3 qubits: $(3,1,4,1,5,9,2,6) \mapsto (1,3,1,4,9,5,6,2).$

NOT₀ gate on 3 qubits: $(3,1,4,1,5,9,2,6) \mapsto (1,3,1,4,9,5,6,2)$.

NOT₀ gate on 4 qubits: $(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) \mapsto (1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).$

NOT₀ gate on 3 qubits: $(3,1,4,1,5,9,2,6) \mapsto (1,3,1,4,9,5,6,2)$.

NOT₀ gate on 4 qubits:

 $(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) \mapsto (1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).$

NOT₁ gate on 3 qubits:

 $(3,1,4,1,5,9,2,6) \mapsto (4,1,3,1,2,6,5,9).$

NOT₀ gate on 3 qubits:

$$(3,1,4,1,5,9,2,6) \mapsto (1,3,1,4,9,5,6,2).$$

NOT₀ gate on 4 qubits:

$$(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) \mapsto (1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).$$

NOT₁ gate on 3 qubits:

$$(3,1,4,1,5,9,2,6) \mapsto (4,1,3,1,2,6,5,9).$$

NOT₂ gate on 3 qubits:

$$(3,1,4,1,5,9,2,6) \mapsto$$

NOT_0 gate on 3 qubit	
$\big(3,1,4,1,5,9,2,6\big) \mapsto$	
(1, 3, 1, 4, 9, 5, 6, 2).	

 $\begin{array}{l} NOT_0 \ \text{gate on 4 qubits:} \\ (3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) \mapsto \\ (1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9). \end{array}$

NOT₁ gate on 3 qubits: $(3, 1, 4, 1, 5, 9, 2, 6) \mapsto (4, 1, 3, 1, 2, 6, 5, 9).$

NOT₂ gate on 3 qubits: $(3,1,4,1,5,9,2,6) \mapsto (5,9,2,6,3,1,4,1)$.

state	measurement
(1,0,0,0,0,0,0,0)	000 €
(0,1,0,0,0,0,0,0)	001
(0,0,1,0,0,0,0,0)	010 €
(0,0,0,1,0,0,0,0)	011
(0,0,0,0,1,0,0,0)	100 €
(0,0,0,0,0,1,0,0)	101
(0,0,0,0,0,0,1,0)	110 <
(0,0,0,0,0,0,0,1)	111

Operation on quantum state: NOT_0 , swapping pairs.

Operation after measurement: flipping bit 0 of result.

Flip: output is not input.

NOT_0 gate on 3 qubits:
$(3,1,4,1,5,9,2,6) \mapsto$
(1, 3, 1, 4, 9, 5, 6, 2).

 $\begin{array}{l} NOT_0 \text{ gate on 4 qubits:} \\ (3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) \mapsto \\ (1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9). \end{array}$

NOT₁ gate on 3 qubits: $(3,1,4,1,5,9,2,6) \mapsto (4,1,3,1,2,6,5,9)$.

NOT₂ gate on 3 qubits: $(3,1,4,1,5,9,2,6) \mapsto (5,9,2,6,3,1,4,1)$.

measurement
000 €
001
010 ←
011
100 ←
101
110 ←
111

Operation on quantum state: NOT_0 , swapping pairs. Operation after measurement: flipping bit 0 of result. Flip: output is not input.

This slide shows the effect of NOT on our representation. This way we can simulate quantum computers to see whether algorithms work.

```
e.g. C_1NOT_0: (3,1,4,1,5,9,2,6) \mapsto (3,1,1,4,5,9,6,2).
```

e.g. C_1NOT_0 : $(3,1,4,1,5,9,2,6) \mapsto (3,1,1,4,5,9,6,2)$.

Operation after measurement: flipping bit 0 *if* bit 1 is set; i.e., $(q_2, q_1, q_0) \mapsto (q_2, q_1, q_0 \oplus q_1)$.

e.g.
$$C_1NOT_0$$
:
 $(3,1,4,1,5,9,2,6) \mapsto$
 $(3,1,1,4,5,9,6,2)$.

e.g.
$$C_2NOT_0$$
:
 $(3,1,4,1,5,9,2,6) \mapsto$
 $(3,1,4,1,9,5,6,2)$.

Operation after measurement: flipping bit 0 *if* bit 1 is set; i.e., $(q_2, q_1, q_0) \mapsto (q_2, q_1, q_0 \oplus q_1)$.

Operation after measurement: flipping bit 0 *if* bit 2 is set; i.e., $(q_2, q_1, q_0) \mapsto (q_2, q_1, q_0 \oplus q_2)$.

e.g.
$$C_1NOT_0$$
:
 $(3,1,4,1,5,9,2,6) \mapsto$
 $(3,1,1,4,5,9,6,2)$.

e.g.
$$C_2NOT_0$$
:
 $(3,1,4,1,5,9,2,6) \mapsto$
 $(3,1,4,1,9,5,6,2)$.

e.g.
$$C_0NOT_2$$
:
 $(3,1,4,1,5,9,2,6) \mapsto$
 $(3,9,4,6,5,1,2,1)$.

Operation after measurement: flipping bit 0 *if* bit 1 is set; i.e., $(q_2, q_1, q_0) \mapsto (q_2, q_1, q_0 \oplus q_1)$.

Operation after measurement: flipping bit 0 *if* bit 2 is set; i.e., $(q_2, q_1, q_0) \mapsto (q_2, q_1, q_0 \oplus q_2)$.

Operation after measurement: flipping bit 2 *if* bit 0 is set; i.e., $(q_2, q_1, q_0) \mapsto (q_0 \oplus q_2, q_1, q_0)$.

CNOT is its own inverse, thus it is reversible.

Also known as CCNOT gates: controlled-controlled-NOT gates.

e.g. $C_2C_1NOT_0$: $(3,1,4,1,5,9,2,6) \mapsto (3,1,4,1,5,9,6,2)$.

Also known as CCNOT gates: controlled-controlled-NOT gates.

e.g.
$$C_2C_1NOT_0$$
: $(3, 1, 4, 1, 5, 9, 2, 6) \mapsto (3, 1, 4, 1, 5, 9, 6, 2)$.

Operation after measurement:

$$(q_2, q_1, q_0) \mapsto (q_2, q_1, q_0 \oplus q_1 q_2).$$

Also known as CCNOT gates: controlled-controlled-NOT gates.

e.g.
$$C_2C_1NOT_0$$
: $(3, 1, 4, 1, 5, 9, 2, 6) \mapsto (3, 1, 4, 1, 5, 9, 6, 2)$.

Operation after measurement:

$$(q_2, q_1, q_0) \mapsto (q_2, q_1, q_0 \oplus q_1 q_2).$$

e.g.
$$C_0C_1NOT_2$$
: $(3, 1, 4, 1, 5, 9, 2, 6) \mapsto (3, 1, 4, 6, 5, 9, 2, 1)$.

Also known as CCNOT gates: controlled-controlled-NOT gates.

e.g.
$$C_2C_1NOT_0$$
: $(3, 1, 4, 1, 5, 9, 2, 6) \mapsto (3, 1, 4, 1, 5, 9, 6, 2)$.

Operation after measurement:

$$(q_2, q_1, q_0) \mapsto (q_2, q_1, q_0 \oplus q_1 q_2).$$

e.g.
$$C_0C_1NOT_2$$
: $(3, 1, 4, 1, 5, 9, 2, 6) \mapsto (3, 1, 4, 6, 5, 9, 2, 1)$.

Operation after measurement:

$$(q_2, q_1, q_0) \mapsto (q_2 \oplus q_0 q_1, q_1, q_0).$$

Toffoli is its own inverse, thus it is reversible.

More shuffling

Combine NOT, CNOT, Toffoli to build other permutations.

More shuffling

Combine NOT, CNOT, Toffoli to build other permutations.

e.g. series of gates to rotate 8 positions by distance 1:

Hadamard gates

Hadamard₀:

$$(a,b)\mapsto (a+b,a-b).$$

Hadamard gates

Hadamard₀:

$$(a,b)\mapsto (a+b,a-b).$$

Hadamard₁:

$$(a,b,c,d) \mapsto (a+c,b+d,a-c,b-d).$$

Some uses of Hadamard gates

Hadamard₀, Hadamard₀:

Some uses of Hadamard gates

Hadamard₀, Hadamard₀:

"Multiply each amplitude by 2."

This is not physically observable. Disappears normally in scaling. Hadamard is self inverse.

 $Hadamard_0$, NOT_0 , $Hadamard_0$:

Some uses of Hadamard gates

Hadamard₀, Hadamard₀:

"Multiply each amplitude by 2."

This is not physically observable. Disappears normally in scaling. Hadamard is self inverse.

 $Hadamard_0$, NOT_0 , $Hadamard_0$:

"Multiply each amplitude by 2, Negate amplitude if q_0 is set."

No effect on measuring now.

"Negate amplitude if q_0q_1 is set." Assumes $q_2=0$: "ancilla" qubit. Returns $q_2=0$ "clean".

"Negate amplitude if q_0q_1 is set." Assumes $q_2=0$: "ancilla" qubit. Returns $q_2=0$ "clean".

"Negate amplitude if q_0q_1 is set." Assumes $q_2=0$: "ancilla" qubit. Returns $q_2=0$ "clean". "Negate amplitude around its average." $(3,1,4,1) \mapsto (1.5,3.5,0.5,3.5)$. This affects measurements.