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NOT gates

NOT, gate on 3 qubits:

(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).
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NOT gates
NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOT, gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).
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NOT gates

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOT, gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3’ 17 47 17 5’ 9’ 27 6) }—>
(4,1,3,1,2,6,5,9).

Tanja Lange Quantum computing for cryptographers |



NOT gates

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOT, gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3’ 17 47 17 5’ 9’ 27 6) }—>
(4, 1,3, 1,2,6,5,9).

NOT, gate on 3 qubits:
(37 17 47 17 57 9, 27 6) H
(5,9,2,6,3,1,4,1).
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NOT gates
NOT, gate on 3 qubits: state measurement
(3,1,4,1,5,9,2,6) (1,0,0,0,0,0,0,0) 000
1 1 4 2 . ) ) ) ) 9 ) )
( ;3,1,4,9,5,6, ) (0)17070’0707070 001>

(0,0,1,0,0,0,0,0) 010
011>

)

)

. )
NOT, gate on 4 qubits: (0,0,0,1,0,0,0,0)
)

)

)

)

(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3)

(13,14956,2,3,5.857939). (0,0,0,0,1,0,0,0) - 100=—,
0,0,0,0,0,1,0,0 101
NOT; gate on 3 qubits: (
(3,1,4,1,5,9,2,6) (0,0,0,0,0,0,1,0 110>
(4.1.3.1.2,6.5,9). (0,0,0,0,0,0,0,1) 111
Operation on quantum state:
NOT, gate on 3 qubits: NOTo, swapping pairs.
(3,1,4,1,5,9,2,6) — Operation after measurement:
(5,9,2,6,3,1,4,1). flipping bit O of result.

Flip: output is not input.
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NOT gates

NOT, gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(1,3,1,4,9,5,6,2).

NOT, gate on 4 qubits:
(3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3) —
(1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9).

NOT; gate on 3 qubits:
(3,1,4,1,5,9,2,6) —
(4, 1,3, 1,2,6,5,9).

NOT, gate on 3 qubits:
(37 17 47 17 57 9, 27 6) H
(5,9,2,6,3,1,4,1).

state measurement

(1,0,0,0,0,0,0,0) 000
(0,1,0,0,0,0,0,0 oo1z>

(0,0,1,0,0,0,0,0) 010
011>

)

)

)
(0,0,0,1,0,0,0,0)

) 100

) 101 =

)

)

(0,0,0,0,1,0,0,0
(0,0,0,0,0,1,0,0
(0,0,0,0,0,0,1,0 110
(0,0,0,0,0,0,0,1 111>
Operation on quantum state:
NOTy, swapping pairs.

Operation after measurement:
flipping bit O of result.

Flip: output is not input.

This slide shows the effect of NOT on our representation. This way we
can simulate quantum computers to see whether algorithms work.
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Controlled-NOT (CNOT) gates

e.g. C;NOTy:
(37 1’ 47 17 53 97
9

,6) —
(3,1,1,4,5,9,6,2).

2
6,2)
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Controlled-NOT (CNOT) gates

e.g. C;NOTy:
(3’ 1’ 47 17 53 97
(37 17 17 47 53 97

Operation after measurement:
,6) — flipping bit 0 if bit 1 is set; i.e.,
2).

2
6,2) (92,91, 90) — (G2, 91, 90 ® q1).
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Controlled-NOT (CNOT) gates

e.g. C;NOTy: Operation after measurement:

0
(3,1,4,1,5,9,2,6) — flipping bit 0 if bit 1 is set; i.e.,
(37 17 17 47 53 97 67 2) (q27 qi1, CIO) — (CI27 q1, 9o ® ql)
e.g. CoNOTy: Operation after measurement:
(3,1,4,1,5,9,2,6) — flipping bit 0 if bit 2 is set; i.e.,
(3a 1, 47 17 93 57 6, 2) (q2a a1, q()) g (q27 q1,q0 @ q2)
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e.g. C;NOTy:
(3,1,4,1,5,9,2
(3,1,1,4,5,9,6
e.g. CQNOT()Z
(3,1,4,1,5,9,2
(3,1,4,1,9,5,6

e.g. C()NOTQZ

(3,1,4,1,5,9,2,6)
(37 9747 6? 5? ]‘) 27 1)

a6)'_>
,2).

76)'—>
2).

Controlled-NOT (CNOT) gates

Operation after measurement:
flipping bit 0 if bit 1 is set; i.e.,
(92,91, Go) — (92, 91, Go ® q1).

Operation after measurement:
flipping bit O if bit 2 is set; i.e.,
(g2, G1, Qo) = (92,91, 90 © q2).

Operation after measurement:
flipping bit 2 if bit 0 is set; i.e.,
(92; G1, 90) — (9o © g2, G1, 90)-

CNOT is its own inverse, thus it is reversible.

Tanja Lange
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Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CCGNOTo: (3,1,4,1,5,9,2,6) — (3,1,4,1,5,9,6,2).
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Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CCGNOTo: (3,1,4,1,5,9,2,6) — (3,1,4,1,5,9,6,2).

Operation after measurement:
(92,91, G0) — (92, 91, Go © q1.G2).
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Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CCGNOTo: (3,1,4,1,5,9,2,6) — (3,1,4,1,5,9,6,2).

Operation after measurement:
(92,91, G0) — (92, 91, Go © q1.G2).

e.g. CoCiNOTy: (3,1,4,1,5,9,2,6) — (3,1,4,6,5,9,2,1).
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Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CCGNOTo: (3,1,4,1,5,9,2,6) — (3,1,4,1,5,9,6,2).

Operation after measurement:
(g2, 91, 90) = (92, G1, 90 © q1G2).

e.g. CoCiNOTy: (3,1,4,1,5,9,2,6) — (3,1,4,6,5,9,2,1).

Operation after measurement:
(g2, G1,0) — (92 © qoq1, 1, Qo).

Toffoli is its own inverse, thus it is reversible.
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More shuffling

Combine NOT, CNOT, Toffoli to build other permutations.

Tanja Lange Quantum computing for cryptographers |



More shuffling

Combine NOT, CNOT, Toffoli to build other permutations.

e.g. series of gates to rotate 8 positions by distance 1:

CoCiNOT, ><
3 1. 4 66— 5 9_ 2
CoNOT, ><
6~ 4 1
NOT X, X, X
17 4
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Hadamard gates
Hadamardg

(a, b) — (a+ b,a—b).



Hadamard gates

Hadamardy:
(a,b) — (a+ b,a—b).

Hadamard;:

(a,b,c,d) —
(a+c¢,b+d,a—c,b—d).



Some uses of Hadamard gates

Hadamardg, Hadamardg:



Some uses of Hadamard gates

Hadamardg, NOTg, Hadamardp:
Hadamardg, Hadamardg:

XX

2 —4
10 18 4 12 ‘ ‘ ><‘ ‘ ><‘
“Multiply each amplitude by 2.” 6

This is not physically observable.
Disappears normally in scaling.
Hadamard is self inverse.



Some uses of Hadamard gates

Hadamardg, Hadamardg:

8 —4
X1 [X]
10 18 4 12

“Multiply each amplitude by 2."

This is not physically observable.
Disappears normally in scaling.
Hadamard is self inverse.

Hadamardg, NOTg, Hadamardp:

2 4 4 14 —4 8

XXX

-2 10 —18 4 -—-12

“Multiply each amplitude by 2,
Negate amplitude if qq is set.”

No effect on measuring now.



Getting towards affecting measurements

31410000

CoCiNOT,
31400001

Hadamard, ‘ ‘
3717471737141

NOT,
37174=-1I3"1°4°1

Hadamard» ‘ ‘
6°2°8°0°000°0-2

CoC1NOT,
6 28-20000
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Getting towards affecting measurements

31410000

CoCiNOT,
31400001

Hadamard, ‘ ‘
3717471737141

NOT,
37174=-1I3"1°4°1

Hadamard» ‘ ‘
6°2°8°0°000°0-2

CoC1NOT,
6 28-20000

“Negate amplitude if goqy is set.”
Assumes g, = 0: “ancilla” qubit.
Returns g, = 0 “clean”.
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Getting towards affecting measurements

CoCiNOT,

Hadamard,

NOT,

Hadamard»

CoCiNOT,

31410000

31400001

| PR

371747173141
37174=-1I3"1°4°1

6728707000 0-2

6 28-20000

“Negate amplitude if goqy is set.”
Assumes g, = 0: “ancilla” qubit.
Returns g, = 0 “clean”.

Ho

H:

Hy

31 4 1 0 0 0 O
Xl i) XX
9 5 -1-10 0 0 O
-95 -1-10 0 0 O
XX X I
—-4-14-2 0 0 0 0 O
ST Dk
—-6-14-2-140 0 0 O



Getting towards affecting measurements

CoCiNOT,

Hadamard,

NOT,

Hadamard»

CoCiNOT,

31410000

31400001

| PR

371747173141
37174=-1I3"1°4°1

6728707000 0-2

6 28-20000

“Negate amplitude if goqy is set.”
Assumes g, = 0: “ancilla” qubit.
Returns g, = 0 “clean”.

31 4 1 0 0 0 O
w X IXE X 1X
4 2 5 0O 0 0 O
i | XK
9 5 -1-10 0 0 O
- -9 5 -1-10 0 O
v IXIXIX]IX
—-4-14-2 0 0 0 O

| ICK KK

—-6-14-2-140 0 O

“Negate amplitude around its

average.”
(3,1,4,1) — (1.5,3.5,0.5,3.5).
This affects measurements.
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