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SIDH – consider extension fields

The supersingular isogeny graph over Fp2 looks differently.

Isomorphism classes now taking isomorphisms over any extension field.
Each node is one j invariant, all classed are defined over Fp2 .
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SIDH: High-level view (2011 Jao–De Feo)
Problem: quadratic twists are identified, `+ 1 isogenies of degree ` from
any curve, no more sense of direction.

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E .
I Alice computes ϕA : E → E/A; Bob computes ϕB : E → E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B ′.

I Key is an isomorphism class; make this usable taking j-invariant.
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SIDH’s auxiliary points
Previous slide: “Alice somehow obtains A′ := ϕB(A).”

Alice knows only A, Bob knows only ϕB .

Solution: ϕB is a group homomorphism!
I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E .
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉!

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

Using images of P and Q also lets Alice keep direction in iterative
computation of ϕA.
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SIDH in one slide

Public parameters:
I large prime p = 2n3m − 1, supersingular E/Fp2 with (p + 1)2 points.
I bases (P,Q) and (R,S) of E [2n] and E [3m].

Want these points defined over Fp2 for efficiency.
Parameter choice ensures this. Recall E [`] ∼= Z/`× Z/`.

Alice public Bob

a
random←−−− {0, . . . , 2n−1} b

random←−−− {0, . . . , 3m−1}

A = 〈P + [a]Q〉
compute ϕA : E → E/A

B = 〈R + [b]S〉
compute ϕB : E → E/B

E/A, ϕA(R), ϕA(S) E/B, ϕB(P), ϕB(Q)

A′ = 〈ϕB(P) + [a]ϕB(Q)〉
s = j

(
(E/B)/A′

) B ′ = 〈ϕA(R) + [b]ϕA(S)〉
s = j

(
(E/A)/B ′

)
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Decomposing smooth isogenies

I In SIDH, #A = 2n and #B = 3m are “crypto-sized”
Vélu’s formulas take Θ(#G ) to compute ϕG : E → E/G .

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k , set kerψi = [`k−i ](ψi−1 ◦ · · · ◦ ψ1)(G ).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k !
“Optimal strategy” improves this to O(k log k · `).

I BTW: The choice of p makes sure everything stays over Fp2 .
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Security of SIDH

The SIDH graph has size bp/12c+ ε.
Each secret isogeny ϕA, ϕB is a walk of about log p/2 steps.
Alice & Bob can choose from about

√
p secret keys each,

so their keys are in small corners of the key space.

Classical attacks:
I Cannot reuse keys without extra caution. (next slide)

I Meet-in-the-middle: Õ(p1/4) time & space.
I Collision finding: Õ(p3/8/

√
memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6). 2019 Jaques–Schank: Õ(p1/4):

“An adversary with enough quantum memory to run Tani’s algorithm
with the query-optimal parameters could break SIKE faster by using
the classical control hardware to run van Oorschot–Wiener.”

Tanja Lange Isogeny-basd cryptography VI 7



Security of SIDH

The SIDH graph has size bp/12c+ ε.
Each secret isogeny ϕA, ϕB is a walk of about log p/2 steps.
Alice & Bob can choose from about

√
p secret keys each,

so their keys are in small corners of the key space.

Classical attacks:
I Cannot reuse keys without extra caution. (next slide)

I Meet-in-the-middle: Õ(p1/4) time & space.
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I Collision finding: Õ(p3/8/
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“An adversary with enough quantum memory to run Tani’s algorithm
with the query-optimal parameters could break SIKE faster by using
the classical control hardware to run van Oorschot–Wiener.”

Tanja Lange Isogeny-basd cryptography VI 7



Thou shalt not reuse SIDH keys

I Recall: Bob sends P ′ = ϕB(P) and Q ′ = ϕB(Q) to Alice.
She computes A′ = 〈P ′ + [a]Q ′〉 and, from that, obtains s.

I Bob cheats and sends Q ′′ = Q ′ + [2n−1]P ′ instead of Q ′.
Alice computes A′′ = 〈P ′ + [a]Q ′′〉.
If a = 2u : [a]Q ′′ = [a]Q ′ + [u][2n]P ′ = [a]Q ′.
If a = 2u+1:
[a]Q ′′ = [a]Q ′ + [u][2n]P ′ + [2n−1]P ′ = [a]Q ′ + [2n−1]P ′.

=⇒ Bob learns the parity of a.

Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM “SIKE.”.
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Comparison

Key bits where all known attacks take 2λ operations
(naive serial attack metric, ignoring memory cost):

pre-quantum post-quantum
SIDH, SIKE (24 + o(1))λ (36 + o(1))λ
compressed (14 + o(1))λ (21 + o(1))λ
CSIDH (4 + o(1))λ superlinear
ECDH (2 + o(1))λ exponential

Find more attacks on SIDH.
See “How to not break SIDH” https://eprint.iacr.org/2019/558
by Chloe Martindale and Lorenz Panny for some failed attempts.
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