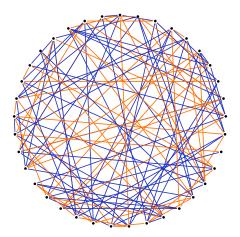
Isogeny-basd cryptography VI SIDH

Tanja Lange (with lots of slides by Lorenz Panny)

Eindhoven University of Technology

SAC – Post-quantum cryptography

SIDH - consider extension fields

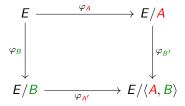


The supersingular isogeny graph over \mathbb{F}_{p^2} looks differently.

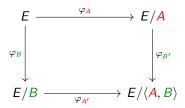
Isomorphism classes now taking isomorphisms over any extension field. Each node is one j invariant, all classed are defined over \mathbb{F}_{p^2} .

Tanja Lange

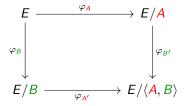
Isogeny-basd cryptography VI



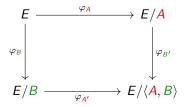
Problem: quadratic twists are identified, $\ell+1$ isogenies of degree ℓ from any curve, no more sense of direction.



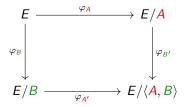
• Alice & Bob pick secret subgroups A and B of E.



- Alice & Bob pick secret subgroups A and B of E.
- ► Alice computes φ_A: E → E/A; Bob computes φ_B: E → E/B. (These isogenies correspond to walking on the isogeny graph.)

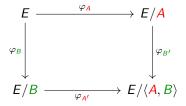


- Alice & Bob pick secret subgroups A and B of E.
- ► Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.



- Alice & Bob pick secret subgroups A and B of E.
- ► Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)

Problem: quadratic twists are identified, $\ell+1$ isogenies of degree ℓ from any curve, no more sense of direction.



- Alice & Bob pick secret subgroups A and B of E.
- Alice computes φ_A: E → E/A; Bob computes φ_B: E → E/B. (These isogenies correspond to walking on the isogeny graph.)
- Alice and Bob transmit the values E/A and E/B.
- Alice somehow obtains $A' := \varphi_B(A)$. (Similar for Bob.)
- ► They both compute the shared secret (E/B)/A' ≅ E/⟨A, B⟩ ≅ (E/A)/B'.
- ► Key is an isomorphism class; make this usable taking *j*-invariant.

Tanja Lange

Isogeny-basd cryptography VI

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only A, Bob knows only φ_B .

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$." Alice knows only A, Bob knows only φ_B .

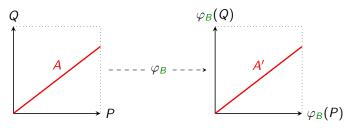
- Alice picks A as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$." Alice knows only A, Bob knows only φ_B .

<u>Solution</u>: φ_B is a group homomorphism!

- Alice picks *A* as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.
- \implies Now Alice can compute A' as $\langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$!



Using images of P and Q also lets Alice keep direction in iterative computation of φ_{A} .

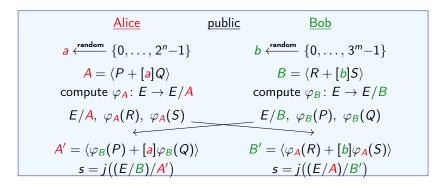
Tanja Lange

Isogeny-basd cryptography VI

SIDH in one slide

Public parameters:

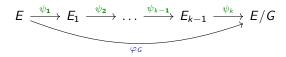
- ▶ large prime $p = 2^n 3^m 1$, supersingular E/\mathbb{F}_{p^2} with $(p+1)^2$ points.
- bases (P, Q) and (R, S) of E[2ⁿ] and E[3^m].
 Want these points defined over F_{p²} for efficiency.
 Parameter choice ensures this. Recall E[ℓ] ≅ Z/ℓ × Z/ℓ.



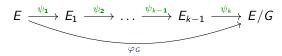
In SIDH, #A = 2ⁿ and #B = 3^m are "crypto-sized"
 Vélu's formulas take Θ(#G) to compute φ_G: E → E/G.

In SIDH, #A = 2ⁿ and #B = 3^m are "crypto-sized"
 Vélu's formulas take Θ(#G) to compute φ_G: E → E/G.

!! Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i = [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.

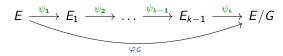


- In SIDH, #A = 2ⁿ and #B = 3^m are "crypto-sized"
 Vélu's formulas take Θ(#G) to compute φ_G: E → E/G.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i = [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.



→ Complexity: $O(k^2 \cdot \ell)$. Exponentially smaller than ℓ^k ! "Optimal strategy" improves this to $O(k \log k \cdot \ell)$.

- In SIDH, #A = 2ⁿ and #B = 3^m are "crypto-sized"
 Vélu's formulas take Θ(#G) to compute φ_G: E → E/G.
- **!!** Evaluate φ_G as a chain of small-degree isogenies: For $G \cong \mathbb{Z}/\ell^k$, set ker $\psi_i = [\ell^{k-i}](\psi_{i-1} \circ \cdots \circ \psi_1)(G)$.



- → Complexity: $O(k^2 \cdot \ell)$. Exponentially smaller than ℓ^k ! "Optimal strategy" improves this to $O(k \log k \cdot \ell)$.
 - BTW: The choice of p makes sure everything stays over \mathbb{F}_{p^2} .

Security of SIDH

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Each secret isogeny φ_A, φ_B is a walk of about $\log p/2$ steps. Alice & Bob can choose from about \sqrt{p} secret keys each, so their keys are in small corners of the key space.

Security of SIDH

```
The SIDH graph has size \lfloor p/12 \rfloor + \varepsilon.
Each secret isogeny \varphi_A, \varphi_B is a walk of about \log p/2 steps.
Alice & Bob can choose from about \sqrt{p} secret keys each,
so their keys are in small corners of the key space.
```

<u>Classical</u> attacks:

- ► Cannot reuse keys without extra caution. (next slide)
- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space.
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

Security of SIDH

The SIDH graph has size $\lfloor p/12 \rfloor + \varepsilon$. Each secret isogeny φ_A, φ_B is a walk of about $\log p/2$ steps. Alice & Bob can choose from about \sqrt{p} secret keys each, so their keys are in small corners of the key space.

<u>Classical</u> attacks:

- ► Cannot reuse keys without extra caution. (next slide)
- Meet-in-the-middle: $\tilde{\mathcal{O}}(p^{1/4})$ time & space.
- Collision finding: $\tilde{\mathcal{O}}(p^{3/8}/\sqrt{memory}/cores)$.

Quantum attacks:

► Claw finding: claimed $\tilde{\mathcal{O}}(p^{1/6})$. 2019 Jaques–Schank: $\tilde{\mathcal{O}}(p^{1/4})$:

"An adversary with enough quantum memory to run Tani's algorithm with the query-optimal parameters could break SIKE faster by using the classical control hardware to run van Oorschot–Wiener."

► Recall: Bob sends P' = φ_B(P) and Q' = φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.

- ► Recall: Bob sends P' = φ_B(P) and Q' = φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ▶ Bob cheats and sends Q'' = Q' + [2ⁿ⁻¹]P' instead of Q'. Alice computes A'' = ⟨P' + [a]Q''⟩.

- ► Recall: Bob sends P' = φ_B(P) and Q' = φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ▶ Bob cheats and sends Q'' = Q' + [2ⁿ⁻¹]P' instead of Q'. Alice computes A'' = ⟨P' + [a]Q''⟩.
 If a = 2u : [a]Q'' = [a]Q' + [u][2ⁿ]P' = [a]Q'.
 If a = 2u+1: [a]Q'' = [a]Q' + [u][2ⁿ]P' + [2ⁿ⁻¹]P' = [a]Q' + [2ⁿ⁻¹]P'.

- ► Recall: Bob sends P' = φ_B(P) and Q' = φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ▶ Bob cheats and sends Q'' = Q' + [2ⁿ⁻¹]P' instead of Q'. Alice computes A'' = ⟨P' + [a]Q''⟩.
 If a = 2u : [a]Q'' = [a]Q' + [u][2ⁿ]P' = [a]Q'.
 If a = 2u+1:
 [a]Q'' = [a]Q' + [u][2ⁿ]P' + [2ⁿ⁻¹]P' = [a]Q' + [2ⁿ⁻¹]P'.

 \implies Bob learns the parity of *a*.

- ► Recall: Bob sends P' = φ_B(P) and Q' = φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ▶ Bob cheats and sends Q'' = Q' + [2ⁿ⁻¹]P' instead of Q'. Alice computes A'' = ⟨P' + [a]Q''⟩.
 If a = 2u : [a]Q'' = [a]Q' + [u][2ⁿ]P' = [a]Q'.
 If a = 2u+1:
 [a]Q'' = [a]Q' + [u][2ⁿ]P' + [2ⁿ⁻¹]P' = [a]Q' + [2ⁿ⁻¹]P'.

 \implies Bob learns the parity of *a*.

Similarly, he can completely recover a in O(n) queries.

- ► Recall: Bob sends P' = φ_B(P) and Q' = φ_B(Q) to Alice. She computes A' = ⟨P' + [a]Q'⟩ and, from that, obtains s.
- ▶ Bob cheats and sends Q'' = Q' + [2ⁿ⁻¹]P' instead of Q'. Alice computes A'' = ⟨P' + [a]Q''⟩.
 If a = 2u : [a]Q'' = [a]Q' + [u][2ⁿ]P' = [a]Q'.
 If a = 2u+1:
 [a]Q'' = [a]Q' + [u][2ⁿ]P' + [2ⁿ⁻¹]P' = [a]Q' + [2ⁿ⁻¹]P'.

 \implies Bob learns the parity of *a*.

Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is \approx as hard as breaking SIDH.

 \implies only usable with ephemeral keys or as a KEM "SIKE.".

Tanja Lange

Comparison

Key bits where all known attacks take 2^{λ} operations (naive serial attack metric, ignoring memory cost):

	pre-quantum	post-quantum
SIDH, SIKE	$(24 + o(1))\lambda$	$(36 + o(1))\lambda$
compressed	$(14+o(1))\lambda$	$(21+o(1))\lambda$
CSIDH	$(4+o(1))\lambda$	superlinear
ECDH	$(2+o(1))\lambda$	exponential

Find more attacks on SIDH.

See "How to not break SIDH" https://eprint.iacr.org/2019/558 by Chloe Martindale and Lorenz Panny for some failed attempts.