Isogeny-basd cryptography IV Math details

Tanja Lange (with lots of slides by Lorenz Panny)

Eindhoven University of Technology

SAC – Post-quantum cryptography

Isogenies and endomorphism rings

An isogeny of elliptic curves is a non-zero map $\varphi: E \to E'$

- given by rational functions
- ▶ that is a group homomorphism.

The degree d of a separable isogeny is the size of its kernel $d = \text{ker}(\varphi)$.

For isogeny $\varphi: E \to E'$ there exists a unique dual isogeny $\hat{\varphi}: E' \to E$.

The composition $\hat{\varphi} \circ \varphi$ is the multiplication-by-*d* map on *E* and $\varphi \circ \hat{\varphi}$ the multiplication-by-*d* map on *E'*, where $d = \deg(\varphi) = \deg(\hat{\varphi})$.

An endomorphism is an isogeny from a curve E to itself.

The set of endomorphisms forms a ring End(E) under + and \circ .

The ring of k-rational endomorphisms of E/k is denoted $\operatorname{End}_k(E)$.

We now focus on curves over finite fields \mathbb{F}_q , $q = p^k$.

There are only finitely many pairs (x, y) that can satisfy the curve equation, thus there are only finitely many points on $E(\mathbb{F}_q)$.

We now focus on curves over finite fields \mathbb{F}_q , $q = p^k$.

There are only finitely many pairs (x, y) that can satisfy the curve equation, thus there are only finitely many points on $E(\mathbb{F}_q)$.

Hasse Interval:

$$#E(\mathbb{F}_q) \in [q+1-2\sqrt{q}, q+1+2\sqrt{q}]$$

We now focus on curves over finite fields \mathbb{F}_q , $q = p^k$.

There are only finitely many pairs (x, y) that can satisfy the curve equation, thus there are only finitely many points on $E(\mathbb{F}_q)$.

Hasse Interval:

$$\#E(\mathbb{F}_q) \in [q+1-2\sqrt{q}, q+1+2\sqrt{q}]$$

The following are equivalent definitions of supersingular curves:

•
$$#E(\mathbb{F}_q) = q + 1 - t$$
 with $t \equiv 0 \mod p$.

►
$$E[p] = \{\infty\}.$$

Note that $E[n] = \{P \in E(\overline{\mathbb{F}_p}) \mid nP = \infty\}.$

We now focus on curves over finite fields \mathbb{F}_q , $q = p^k$.

There are only finitely many pairs (x, y) that can satisfy the curve equation, thus there are only finitely many points on $E(\mathbb{F}_q)$.

Hasse Interval:

$$\#E(\mathbb{F}_q) \in [q+1-2\sqrt{q}, q+1+2\sqrt{q}]$$

The following are equivalent definitions of *supersingular* curves:

•
$$\#E(\mathbb{F}_q) = q + 1 - t$$
 with $t \equiv 0 \mod p$.

►
$$E[p] = \{\infty\}$$
.
Note that $E[n] = \{P \in E(\overline{\mathbb{F}_p}) \mid nP = \infty\}$.

For p > 3 the only $t \in [-2\sqrt{p}, 2\sqrt{p}]$ with $t \equiv 0 \mod p$ is t = 0.

We now focus on curves over finite fields \mathbb{F}_q , $q = p^k$.

There are only finitely many pairs (x, y) that can satisfy the curve equation, thus there are only finitely many points on $E(\mathbb{F}_q)$.

Hasse Interval:

$$\#E(\mathbb{F}_q) \in [q+1-2\sqrt{q}, q+1+2\sqrt{q}]$$

The following are equivalent definitions of *supersingular* curves:

•
$$\#E(\mathbb{F}_q) = q + 1 - t$$
 with $t \equiv 0 \mod p$.

►
$$E[p] = \{\infty\}$$
.
Note that $E[n] = \{P \in E(\overline{\mathbb{F}_p}) \mid nP = \infty\}$.

For p > 3 the only $t \in [-2\sqrt{p}, 2\sqrt{p}]$ with $t \equiv 0 \mod p$ is t = 0. Thus $\#E(\mathbb{F}_p) = p + 1$, $\#E(\mathbb{F}_{p^2}) \in \{(p-1)^2, p^2 + 1, (p+1)^2\}$ for supersingular curves and p > 3.

Tanja Lange

E'/k is a twist of elliptic curve E/k if E' is isomorphic to E over \overline{k} .

For $E: y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_p with $p \equiv 3 \mod 4$ $E': -y^2 = x^3 + Ax^2 + x$ is isomorphic to E via

$$(x,y)\mapsto (x,\sqrt{-1}y).$$

This map is defined over \mathbb{F}_{p^2} , so this is a quadratic twist.

E'/k is a twist of elliptic curve E/k if E' is isomorphic to E over \overline{k} .

For
$$E: y^2 = x^3 + Ax^2 + x$$
 over \mathbb{F}_p with $p \equiv 3 \mod 4$
 $E': -y^2 = x^3 + Ax^2 + x$ is isomorphic to E via
 $(x, y) \mapsto (x, \sqrt{-1}y).$

This map is defined over \mathbb{F}_{p^2} , so this is a quadratic twist.

E' is not in Weierstrass form (does not have the right shape). *E'* is isomorphic to $E'': y^2 = x^3 - Ax^2 + x$ via $(x, y) \mapsto (-x, y)$ over \mathbb{F}_p .

E'/k is a twist of elliptic curve E/k if E' is isomorphic to E over \overline{k} .

For
$$E: y^2 = x^3 + Ax^2 + x$$
 over \mathbb{F}_p with $p \equiv 3 \mod 4$
 $E': -y^2 = x^3 + Ax^2 + x$ is isomorphic to E via
 $(x, y) \mapsto (x, \sqrt{-1}y).$

This map is defined over \mathbb{F}_{p^2} , so this is a quadratic twist.

E' is not in Weierstrass form (does not have the right shape). E' is isomorphic to $E'': y^2 = x^3 - Ax^2 + x$ via $(x, y) \mapsto (-x, y)$ over \mathbb{F}_p .

Each $x \in \mathbb{F}_p$ satisfies one of

- ► $x^3 + Ax^2 + x$ is a square in \mathbb{F}_p , thus there are two points $(x, \pm \sqrt{x^3 + Ax^2 + x})$ in $E(\mathbb{F}_p)$.
- ► $x^3 + Ax^2 + x$ is not a square in \mathbb{F}_p , thus there are two points $(x, \pm \sqrt{-(x^3 + Ax^2 + x)})$ in $E'(\mathbb{F}_p)$.
- ▶ $x^3 + Ax^2 + x = 0$, thus (x, 0) is a point in $E(\mathbb{F}_p)$ and in $E'(\mathbb{F}_p)$.

E'/k is a twist of elliptic curve E/k if E' is isomorphic to E over \overline{k} .

For
$$E: y^2 = x^3 + Ax^2 + x$$
 over \mathbb{F}_p with $p \equiv 3 \mod 4$
 $E': -y^2 = x^3 + Ax^2 + x$ is isomorphic to E via
 $(x, y) \mapsto (x, \sqrt{-1}y).$

This map is defined over \mathbb{F}_{p^2} , so this is a quadratic twist.

E' is not in Weierstrass form (does not have the right shape). E' is isomorphic to $E'': y^2 = x^3 - Ax^2 + x$ via $(x, y) \mapsto (-x, y)$ over \mathbb{F}_p .

Each $x \in \mathbb{F}_p$ satisfies one of

- ► $x^3 + Ax^2 + x$ is a square in \mathbb{F}_p , thus there are two points $(x, \pm \sqrt{x^3 + Ax^2 + x})$ in $E(\mathbb{F}_p)$.
- x³ + Ax² + x is not a square in 𝔽_p, thus there are two points (x,±√(-(x³ + Ax² + x))) in E'(𝔽_p).
- ▶ $x^3 + Ax^2 + x = 0$, thus (x, 0) is a point in $E(\mathbb{F}_p)$ and in $E'(\mathbb{F}_p)$. $\#E(\mathbb{F}_p) + \#E'(\mathbb{F}_p) = 2p + 2$, thus $\#E(\mathbb{F}_p) = p + 1 - t$ implies $\#E'(\mathbb{F}_p) = p + 1 + t$.

Tanja Lange

Isogeny-basd cryptography IV

Isogenies and kernels

For any finite subgroup G of E, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is called E/G. (\approx quotient groups)

If G is defined over k, then φ_G and E/G are also defined over k.

Isogenies and kernels

For any finite subgroup G of E, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is called E/G. (\approx quotient groups)

If G is defined over k, then φ_G and E/G are also defined over k.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

Isogenies and kernels

For any finite subgroup G of E, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is called E/G. (\approx quotient groups)

If G is defined over k, then φ_G and E/G are also defined over k.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

Vélu operates in the field where the points in G live. \rightsquigarrow need to make sure extensions stay small for desired G \rightsquigarrow this is why we use special p and curves with p + 1 points!

Not all k-rational points of E/G are in the image of k-rational points on E; but #E(k) = #((E/G)(k)).

¹(up to isomorphism of E')

Vélu's formulas

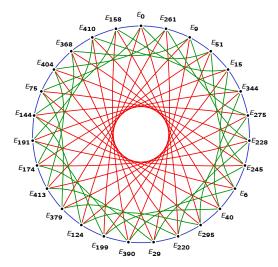
Let P have prime order ℓ on E_A . For $1 \leq i < \ell$ let x_i be the x-coordinate of *iP*. Let $\tau = \prod_{i=1}^{\ell-1} x_i, \quad \sigma = \sum_{i=1}^{\ell-1} \left(x_i - \frac{1}{x_i} \right), \quad f(x) = x \prod_{i=1}^{\ell-1} \frac{x x_i - 1}{x - x_i}.$ Then the ℓ -isogeny with kernel $\langle P \rangle$ is given by $\varphi_{\ell}: E_{A} \to E_{B}, (x, y) \mapsto (f(x), c_{0}yf'(x))$ where $B = \tau (A - 3\sigma)$, and $c_0^2 = \tau$.

Main operation is to compute the x_i , just some elliptic-curve additions. Note that $(\ell - i)P = -iP$ and both have the same x-coordinate.

Implementations often use projective formulas to avoid (or delay) inversions.

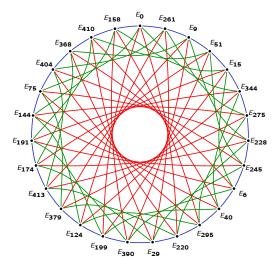
Montgomery curves have efficient arithmetic using only x-coordinates.

Graphs of elliptic curves



Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Graphs of elliptic curves



Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} . Each E_A on the left has E_{-A} on the right. Negative direction means: flip to twist, go positive direction, flip back.

Tanja Lange

Isogeny-basd cryptography IV

Class groups for supersingular curves over \mathbb{F}_p

Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$ All curves in X have \mathbb{F}_p -endomorphism ring $\mathcal{O} = \mathbb{Z}[\sqrt{-p}].$

Let π the Frobenius endomorphism. Ideal in \mathcal{O} above ℓ_i .

$$\mathfrak{l}_i = (\ell_i, \pi - 1).$$

Moving + in X with ℓ_i isogeny \iff action of l_i on X.

Class groups for supersingular curves over \mathbb{F}_p

Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$ All curves in X have \mathbb{F}_p -endomorphism ring $\mathcal{O} = \mathbb{Z}[\sqrt{-p}].$

Let π the Frobenius endomorphism. Ideal in \mathcal{O} above ℓ_i .

$$\mathfrak{l}_i = (\ell_i, \pi - 1).$$

Moving + in X with ℓ_i isogeny \iff action of l_i on X.

More precisely: Subgroup corresponding to l_i is $E[l_i] = E(\mathbb{F}_p)[\ell_i]$. (Note that ker $(\pi - 1)$ is just the \mathbb{F}_p -rational points!)

Subgroup corresponding to $\overline{\mathfrak{l}_i}$ is

$$E[\overline{\mathfrak{l}_i}] = \{ P \in E[\ell_i] \mid \pi(P) = -P \}.$$

Class groups for supersingular curves over \mathbb{F}_p

Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$ All curves in X have \mathbb{F}_p -endomorphism ring $\mathcal{O} = \mathbb{Z}[\sqrt{-p}].$

Let π the Frobenius endomorphism. Ideal in \mathcal{O} above ℓ_i .

$$\mathfrak{l}_i = (\ell_i, \pi - 1).$$

Moving + in X with ℓ_i isogeny \iff action of l_i on X.

More precisely: Subgroup corresponding to l_i is $E[l_i] = E(\mathbb{F}_p)[\ell_i]$. (Note that ker $(\pi - 1)$ is just the \mathbb{F}_p -rational points!)

Subgroup corresponding to $\overline{\mathfrak{l}_i}$ is

$$E[\overline{\iota_i}] = \{P \in E[\ell_i] \mid \pi(P) = -P\}.$$

For supersingular Montgomery curves over \mathbb{F}_p , $p \equiv 3 \mod 4$

$$E[\overline{l_i}] = \{(x, y) \in E[\ell_i] \mid x \in \mathbb{F}_p; y \notin \mathbb{F}_p\} \cup \{\infty\}.$$

Commutative group action

cl(\mathcal{O}) acts on $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}$. For most ideal classes the kernel is big and formulas are expensive to compute.

$$l = l_1^{10} l_2^{-7} l_3^{27}$$

is a "big" ideal, but we can compute the action iteratively.

 $\mathrm{cl}(\mathcal{O})$ is commutative^2 so we get a commutative group action..

The choice for CSIDH: Let $K = \{ [l_1^{e_1} \cdots l_n^{e_n}] \mid (e_1, ..., e_n) \text{ is 'short'} \} \subseteq cl(\mathcal{O}).$ The action of K on X is very efficient! Pick K as the keyspace

²Important to use the \mathbb{F}_p -endomorphism ring.