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Isogenies and endomorphism rings

An isogeny of elliptic curves is a non-zero map ¢ : E — E’
» given by rational functions
» that is a group homomorphism.

The degree d of a separable isogeny is the size of its kernel d = ker(¢p).

For isogeny o : E — E’ there exists a unique dual isogeny ¢ : E/ — E.

The composition ¢ o ¢ is the multiplication-by-d map on E and po( the
multiplication-by-d map on E’, where d = deg(y) = deg(p).

An endomorphism is an isogeny from a curve E to itself.
The set of endomorphisms forms a ring End(E) under + and o.

The ring of k-rational endomorphisms of E/k is denoted End(E).
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Elliptic curves over finite fields
We now focus on curves over finite fields F,, g = p*.

There are only finitely many pairs (x, y) that can satisfy the curve
equation, thus there are only finitely many points on E(F,).
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Elliptic curves over finite fields
We now focus on curves over finite fields F,, g = p*.

There are only finitely many pairs (x, y) that can satisfy the curve
equation, thus there are only finitely many points on E(F,).

Hasse Interval:

#E(F,) eg+1—-2/q,9+1+2\/q]
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Elliptic curves over finite fields
We now focus on curves over finite fields F,, g = p*.

There are only finitely many pairs (x, y) that can satisfy the curve
equation, thus there are only finitely many points on E(F,).

Hasse Interval:

#E(F,) eg+1—-2/q,9+1+2\/q]

The following are equivalent definitions of supersingular curves:
» #E(F;) =g+ 1—t with t =0 mod p.

> E[p] = {0},
Note that E[n] = {P € E(F,) | nP = oc}.
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Elliptic curves over finite fields
We now focus on curves over finite fields F,, g = p*.

There are only finitely many pairs (x, y) that can satisfy the curve
equation, thus there are only finitely many points on E(F,).

Hasse Interval:

#E(F,) eg+1—-2/q,9+1+2\/q]

The following are equivalent definitions of supersingular curves:
» #E(F;) =g+ 1—t with t =0 mod p.

> E[p] = {0},
Note that E[n] = {P € E(F,) | nP = oc}.

For p > 3 the only t € [-2,/p,2,/p] with t =0 mod pis t = 0.
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Elliptic curves over finite fields
We now focus on curves over finite fields F,, g = p*.

There are only finitely many pairs (x, y) that can satisfy the curve
equation, thus there are only finitely many points on E(F,).

Hasse Interval:

#E(F,) eg+1—-2/q,9+1+2\/q]

The following are equivalent definitions of supersingular curves:
» #E(F;) =g+ 1—t with t =0 mod p.
> Elp] = {oc}.
Note that E[n] = {P € E(F,) | nP = oc}.
For p > 3 the only t € [-2,/p,2,/p] with t =0 mod pis t = 0.

Thus #E(F,) = p+ 1, #E(F,2) € {(p — 1)%, p* + 1, (p + 1)}
for supersingular curves and p > 3.
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Quadratic twists

’ E'/k is a twist of elliptic curve E/k if E’ is isomorphic to E over k.

For E : y? = x3 + Ax? + x over F,, with p = 3 mod 4
E': —y? = x3 4+ Ax® + x is isomorphic to E via

(x,y) = (x,V=1y).

This map is defined over F 2, so this is a quadratic twist.
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Quadratic twists

’ E'/k is a twist of elliptic curve E/k if E’ is isomorphic to E over k.

For E : y? = x3 + Ax? + x over F,, with p = 3 mod 4
E': —y? = x3 4+ Ax® + x is isomorphic to E via

(x,y) = (x,V=1y).

This map is defined over F 2, so this is a quadratic twist.

E’ is not in Weierstrass form (does not have the right shape).
E' is isomorphic to E” : y? = x3—Ax? + x via (x,y) + (—x, y) over F,.
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Quadratic twists

’ E'/k is a twist of elliptic curve E/k if E’ is isomorphic to E over k.

For E : y? = x3 + Ax? + x over F,, with p = 3 mod 4
E': —y? = x3 4+ Ax® + x is isomorphic to E via

(x,y) = (x,V=1y).

This map is defined over F 2, so this is a quadratic twist.

E’ is not in Weierstrass form (does not have the right shape).
E' is isomorphic to E” : y? = x3—Ax? + x via (x,y) + (—x, y) over F,.
Each x € IF,, satisfies one of
» x3 4+ Ax? + x is a square in Fp, thus there are two points
(x, £Vx3 + Ax? + x) in E(Fp).
» x3 4+ Ax? + x is not a square in Fp, thus there are two points
(x, £1/=(x3 + Ax2 + x)) in E'(F).
» x>+ Ax? + x = 0, thus (x,0) is a point in E(F,) and in E'(F,).
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Quadratic twists

’ E'/k is a twist of elliptic curve E/k if E’ is isomorphic to E over k.

For E : y? = x3 + Ax? + x over F,, with p = 3 mod 4
E': —y? = x3 4+ Ax® + x is isomorphic to E via

(x,y) = (x,V=1y).

This map is defined over F 2, so this is a quadratic twist.

E’ is not in Weierstrass form (does not have the right shape).
E' is isomorphic to E” : y? = x3—Ax? + x via (x,y) + (—x, y) over F,.
Each x € IF,, satisfies one of
» x3 4+ Ax? + x is a square in Fp, thus there are two points
(x, £Vx3 + Ax? + x) in E(Fp).
» x3 4+ Ax? + x is not a square in Fp, thus there are two points
(x, £1/=(x3 + Ax2 + x)) in E'(F).
» x>+ Ax? + x = 0, thus (x,0) is a point in E(F,) and in E'(F,).
#E(Fp) + #E'(Fp) = 2p+ 2, thus
#E(Fp) =p+1—timplies #E'(F,) =p+1+t.
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Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E' is called E/G & quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

1(up to isomorphism of E’)
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Vélu '71:
Formulas for computing E/G and evaluating ¢ at a point.
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Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E' is called E/G (& quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

Vélu '71:
Formulas for computing E/G and evaluating ¢ at a point.

Complexity: ©(#G) ~ only suitable for small degrees.

Vélu operates in the field where the points in G live.

~~ need to make sure extensions stay small for desired G
~ this is why we use special p and curves with p + 1 points!

Not all k-rational points of E/G are in the image of k-rational points on

E; but #E(K) = #((E/G)(K)).

1(up to isomorphism of E’)



Vélu's formulas

Let P have prime order £ on Ep.
For 1 <j </ let x; be the x-coordinate of iP.
Let

{—1

= 1 xxi — 1
T21:[1X;, 0:Z(X,-)q), f(x):xlj[ < x

i=1

Then the ¢-isogeny with kernel (P) is given by
Pe - EA — EBa (Xay) = (f(X)7 COyf/(X))

where B = 7(A —30), and ¢ = 7.

Main operation is to compute the x;, just some elliptic-curve additions.
Note that (¢ — /)P = —iP and both have the same x-coordinate.

Implementations often use projective formulas to avoid (or delay)
inversions.

Montgomery curves have efficient arithmetic using only x-coordinates.
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Graphs of elliptic curves
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Nodes: Supersingular elliptic curves Ex: y? = x3 + Ax? + x over F419.
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Graphs of elliptic curves
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Nodes: Supersingular elliptic curves Ea: y? = x3 + Ax? + x over Fs19
Each E4 on the left has E_4 on the right.

Negative direction means: flip to twist, go positive direction, flip back
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Class groups for supersingular curves over I,

Let X = {y? =x3>+Ax?+x over F, with p+1 points}.
All curves in X have Fp-endomorphism ring O = Z[\/—p].

Let 7 the Frobenius endomorphism. Ideal in O above ;.

[,‘ = (E;,Tr - 1)

Moving + in X with /; isogeny <= action of [; on X.
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Class groups for supersingular curves over I,

Let X = {y? =x3>+Ax?+x over F, with p+1 points}.
All curves in X have Fp-endomorphism ring O = Z[\/—p].

Let 7 the Frobenius endomorphism. Ideal in O above ;.

[,‘ = (E;,Tr — 1)

Moving + in X with /; isogeny <= action of [; on X.
More precisely:
Subgroup corresponding to [; is E[l;] = E(IF,)[¢;].

Note that ker(m — 1) is just the Fj-rational points!
J p P

Subgroup corresponding to [; is
E[] = {P € E[t:] | 7(P) = —P}.
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Class groups for supersingular curves over I,

Let X = {y? =x3>+Ax?+x over F, with p+1 points}.
All curves in X have Fp-endomorphism ring O = Z[\/—p].

Let 7 the Frobenius endomorphism. Ideal in O above ;.

[,‘ = (E;,Tr — 1)

Moving + in X with /; isogeny <= action of [; on X.
More precisely:
Subgroup corresponding to [; is E[l;] = E(IF,)[¢;].

Note that ker(m — 1) is just the Fj-rational points!
J p P

Subgroup corresponding to [; is
E[] = {P € E[t:] | 7(P) = —P}.

For supersingular Montgomery curves over Fj,, p = 3 mod 4

E[l] ={(x,y) € E[ti] | x € Fp; y € Fp} U {oo}.
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Commutative group action

cl(0) acts on X = {y? =x3+Ax?+x over F, with p+1 points}.
For most ideal classes the kernel is big and formulas are expensive to
compute.

I =105 7E

is a “big" ideal, but we can compute the action iteratively.
cl(O) is commutative? so we get a commutative group action..

The choice for CSIDH:

Let K = {[I5*--- 2] | (e1, ..., &) is ‘short’} C cl(O).
The action of K on X is very efficient!

Pick K as the keyspace

2Important to use the F,-endomorphism ring.



