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Isogenies and endomorphism rings

An isogeny of elliptic curves is a non-zero map ϕ : E → E ′

I given by rational functions
I that is a group homomorphism.

The degree d of a separable isogeny is the size of its kernel d = ker(ϕ).

For isogeny ϕ : E → E ′ there exists a unique dual isogeny ϕ̂ : E ′ → E .

The composition ϕ̂◦ϕ is the multiplication-by-d map on E and ϕ◦ ϕ̂ the
multiplication-by-d map on E ′, where d = deg(ϕ) = deg(ϕ̂).

An endomorphism is an isogeny from a curve E to itself.

The set of endomorphisms forms a ring End(E ) under + and ◦.

The ring of k-rational endomorphisms of E/k is denoted Endk(E ).
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Elliptic curves over finite fields
We now focus on curves over finite fields Fq, q = pk .

There are only finitely many pairs (x , y) that can satisfy the curve
equation, thus there are only finitely many points on E (Fq).

Hasse Interval:

#E (Fq) ∈ [q + 1− 2
√
q, q + 1 + 2

√
q]

The following are equivalent definitions of supersingular curves:
I #E (Fq) = q + 1− t with t ≡ 0 mod p.
I E [p] = {∞}.

Note that E [n] = {P ∈ E (Fp) | nP =∞}.

For p > 3 the only t ∈ [−2√p, 2√p] with t ≡ 0 mod p is t = 0.
Thus #E (Fp) = p + 1, #E (Fp2) ∈ {(p − 1)2, p2 + 1, (p + 1)2}
for supersingular curves and p > 3.
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Quadratic twists

E ′/k is a twist of elliptic curve E/k if E ′ is isomorphic to E over k̄ .

For E : y2 = x3 + Ax2 + x over Fp with p ≡ 3 mod 4
E ′ : −y2 = x3 + Ax2 + x is isomorphic to E via

(x , y) 7→ (x ,
√
−1y).

This map is defined over Fp2 , so this is a quadratic twist.

E ′ is not in Weierstrass form (does not have the right shape).
E ′ is isomorphic to E ′′ : y2 = x3−Ax2 + x via (x , y) 7→ (−x , y) over Fp.

Each x ∈ Fp satisfies one of
I x3 + Ax2 + x is a square in Fp, thus there are two points

(x ,±
√
x3 + Ax2 + x) in E (Fp).

I x3 + Ax2 + x is not a square in Fp, thus there are two points
(x ,±

√
−(x3 + Ax2 + x)) in E ′(Fp).

I x3 + Ax2 + x = 0, thus (x , 0) is a point in E (Fp) and in E ′(Fp).
#E (Fp) + #E ′(Fp) = 2p + 2, thus
#E (Fp) = p + 1− t implies #E ′(Fp) = p + 1 + t.
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Isogenies and kernels

For any finite subgroup G of E , there exists a unique1

separable isogeny ϕG : E → E ′ with kernel G .

The curve E ′ is called E/G . (≈ quotient groups)

If G is defined over k , then ϕG and E/G are also defined over k .

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G )  only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired G
 this is why we use special p and curves with p + 1 points!

Not all k-rational points of E/G are in the image of k-rational points on
E ; but #E (k) = #((E/G )(k)).

1(up to isomorphism of E ′)
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Vélu’s formulas

Let P have prime order ` on EA.
For 1 ≤ i < ` let xi be the x-coordinate of iP.
Let

τ =
`−1∏
i=1

xi , σ =
`−1∑
i=1

(
xi −

1
xi

)
, f (x) = x

`−1∏
i=1

xxi − 1
x − xi

.

Then the `-isogeny with kernel 〈P〉 is given by

ϕ` : EA → EB , (x , y) 7→ (f (x), c0yf
′(x))

where B = τ(A− 3σ), and c2
0 = τ .

Main operation is to compute the xi , just some elliptic-curve additions.
Note that (`− i)P = −iP and both have the same x-coordinate.

Implementations often use projective formulas to avoid (or delay)
inversions.

Montgomery curves have efficient arithmetic using only x-coordinates.
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Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124
E199

E390 E29
E220

E295

E40
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E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over F419.

Each EA on the left has E−A on the right.
Negative direction means: flip to twist, go positive direction, flip back.
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Class groups for supersingular curves over Fp

Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
All curves in X have Fp-endomorphism ring O = Z[

√
−p].

Let π the Frobenius endomorphism. Ideal in O above `i .

li = (`i , π − 1).

Moving + in X with `i isogeny ⇐⇒ action of li on X .

More precisely:
Subgroup corresponding to li is E [li ] = E (Fp)[`i ].
(Note that ker(π − 1) is just the Fp-rational points!)

Subgroup corresponding to li is

E [li ] = {P ∈ E [`i ] | π(P) = −P}.

For supersingular Montgomery curves over Fp, p ≡ 3 mod 4

E [li ] = {(x , y) ∈ E [`i ] | x ∈ Fp; y /∈ Fp} ∪ {∞}.
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Commutative group action

cl(O) acts on X = {y2 = x3+Ax2+x over Fp with p+1 points}.
For most ideal classes the kernel is big and formulas are expensive to
compute.

I = l10
1 l−7

2 l27
3

is a “big” ideal, but we can compute the action iteratively.

cl(O) is commutative2 so we get a commutative group action..

The choice for CSIDH:
Let K = {[le11 · · · lenn ] | (e1, ..., en) is ‘short’} ⊆ cl(O).
The action of K on X is very efficient!
Pick K as the keyspace

2Important to use the Fp-endomorphism ring.


