Isogeny-basd cryptography III Isogenies

Tanja Lange (with lots of slides by Lorenz Panny)

Eindhoven University of Technology

SAC - Post-quantum cryptography

An isogeny of elliptic curves is a non-zero map $E \to E'$

- ► given by rational functions
- ▶ that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map $E \to E'$

- ▶ given by rational functions
- ▶ that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #1: For each $m \neq 0$, the multiplication-by-m map

$$[m]: E \rightarrow E$$

is an isogeny from E to itself.

If $m \neq 0$ in the base field, its kernel is

$$E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m$$
.

Thus [m] is a degree- m^2 isogeny.

An isogeny of elliptic curves is a non-zero map $E \to E'$

- ▶ given by rational functions
- ▶ that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #2: For any a and b, the map $\iota: (x,y) \mapsto (-x,\sqrt{-1}\cdot y)$ defines a degree-1 isogeny of the elliptic curves

$${y^2 = x^3 + ax + b} \longrightarrow {y^2 = x^3 + ax - b}.$$

It is an isomorphism; its kernel is $\{\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \to E'$

- ▶ given by rational functions
- ▶ that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #3:

$$(x,y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{x^3 - 6x^2 - 14x + 35}{(x-2)^3} \cdot y\right)$$

defines a degree-3 isogeny of the elliptic curves

$${y^2 = x^3 + x} \longrightarrow {y^2 = x^3 - 3x + 3}$$

over \mathbb{F}_{71} . Its kernel is $\{(2,9), (2,-9), \infty\}$.

Topic of this lecture

▶ Isogenies are well-behaved maps between elliptic curves.

Topic of this lecture

- ▶ Isogenies are well-behaved maps between elliptic curves.
- → Isogeny graph: Nodes are curves, edges are isogenies.
 (We usually care about subgraphs with certain properties.)
- ► Isogenies give rise to post-quantum Diffie—Hellman (and more!)

Components of well-chosen isogeny graphs look like this:

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto?

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto? Both.

At this time, there are two distinct families of systems:

Why CSIDH?

- Closest thing we have in PQC to normal DH key exchange: Keys can be reused, blinded; no difference between initiator &responder.
- ▶ Public keys are represented by some $A \in \mathbb{F}_p$; p fixed prime.
- ► Alice computes and distributes her public key *A*. Bob computes and distributes his public key *B*.
- ► Alice and Bob do computations on each other's public keys to obtain shared secret.
- ► Fancy math: computations start on some elliptic curve $E_A: y^2 = x^3 + Ax^2 + x$, use isogenies to move to a different curve.
- ► Computations need arithmetic (add, mult, div) modulo *p* and elliptic-curve computations.

- ▶ Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.

- ▶ Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ► Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$

- ▶ Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ▶ Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- ▶ Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

- ► Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ▶ Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- ▶ Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

- ▶ Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ▶ Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- ▶ Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

▶ Walking "left" and "right" on any ℓ_i -subgraph is efficient.

- ▶ Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ▶ Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- ▶ Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.

- ▶ Walking "left" and "right" on any ℓ_i -subgraph is efficient.
- ▶ We can represent $E \in X$ as a single coefficient $A \in \mathbb{F}_p$.

