
Isogeny-basd cryptography II
Key exchange on graphs

Tanja Lange
(with lots of slides by Lorenz Panny)

Eindhoven University of Technology

SAC – Post-quantum cryptography



Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗

p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a
random←−−− {0...q−1} b

random←−−− {0...q−1}

g a gb

k = hash(((gb)a) k = hash((g a)b)

Fundamental reason this works: ·a and ·b commute!

Tanja Lange Isogeny-basd cryptography II 2



Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗

p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a
random←−−− {0...q−1} b

random←−−− {0...q−1}

g a gb

k = hash(((gb)a) k = hash((g a)b)

Fundamental reason this works: ·a and ·b commute!

Tanja Lange Isogeny-basd cryptography II 2



Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗

p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a
random←−−− {0...q−1} b

random←−−− {0...q−1}

g a gb

k = hash(((gb)a) k = hash((g a)b)

Fundamental reason this works: ·a and ·b commute!

Tanja Lange Isogeny-basd cryptography II 2



Diffie–Hellman: Bob vs. Eve

Bob
1. Set t ← g .

2. Set t ← t · g .
3. Set t ← t · g .
4. Set t ← t · g .
...

b−2. Set t ← t · g .
b−1. Set t ← t · g .

b. Publish B ← t · g .

Is this a good idea?

Effort for both: O(#G ). Bob needs to be smarter.
(There also exist better attacks)

Tanja Lange Isogeny-basd cryptography II 3



Diffie–Hellman: Bob vs. Eve

Bob
1. Set t ← g .

2. Set t ← t · g .
3. Set t ← t · g .
4. Set t ← t · g .
...

b−2. Set t ← t · g .
b−1. Set t ← t · g .

b. Publish B ← t · g .

Is this a good idea?

Effort for both: O(#G ). Bob needs to be smarter.
(There also exist better attacks)

Tanja Lange Isogeny-basd cryptography II 3



Diffie–Hellman: Bob vs. Eve

Bob
1. Set t ← g .

2. Set t ← t · g .
3. Set t ← t · g .
4. Set t ← t · g .
...

b−2. Set t ← t · g .
b−1. Set t ← t · g .

b. Publish B ← t · g .

Attacker Eve
1. Set t ← g . If t = B return 1.

2. Set t ← t · g . If t = B return 2.

3. Set t ← t · g . If t = B return 3.

4. Set t ← t · g . If t = B return 3.

...

b−2. Set t ← t · g . If t = B return b−2.
b−1. Set t ← t · g . If t = B return b−1.

b. Set t ← t · g . If t = B return b.

b+1. Set t ← t · g . If t = B return b + 1.

b+2. Set t ← t · g . If t = B return b + 2.

...

Effort for both: O(#G ). Bob needs to be smarter.
(There also exist better attacks)

Tanja Lange Isogeny-basd cryptography II 3



Diffie–Hellman: Bob vs. Eve

Bob
1. Set t ← g .

2. Set t ← t · g .
3. Set t ← t · g .
4. Set t ← t · g .
...

b−2. Set t ← t · g .
b−1. Set t ← t · g .

b. Publish B ← t · g .

Attacker Eve
1. Set t ← g . If t = B return 1.

2. Set t ← t · g . If t = B return 2.

3. Set t ← t · g . If t = B return 3.

4. Set t ← t · g . If t = B return 3.

...

b−2. Set t ← t · g . If t = B return b−2.
b−1. Set t ← t · g . If t = B return b−1.

b. Set t ← t · g . If t = B return b.

b+1. Set t ← t · g . If t = B return b + 1.

b+2. Set t ← t · g . If t = B return b + 2.

...

Effort for both: O(#G ). Bob needs to be smarter.
(There also exist better attacks)

Tanja Lange Isogeny-basd cryptography II 3



Square-and-multiply-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-basd cryptography II 4



Square-and-

multiply

-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-basd cryptography II 4



Square-and-multiply

-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-basd cryptography II 4



Square-and-multiply-and-square-and-multiply

-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-basd cryptography II 4



Square-and-multiply-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-basd cryptography II 4



Square-and-multiply as graphs

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-basd cryptography II 4



Square-and-multiply as graphs

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-basd cryptography II 4



Square-and-multiply as graphs

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-basd cryptography II 4



Square-and-multiply as graphs

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-basd cryptography II 4



Square-and-multiply as a graph

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-basd cryptography II 4



Square-and-multiply as a graph

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-basd cryptography II 4



Exponential separation

Constructive computation:
With square-and-multiply, applying b takes Θ(log2 #G ).

Attack costs:
For well-chosen groups, recovering b takes Θ(

√
#G ).

(For less-well chosen groups the attacks are faster.)

As √
#G = 20.5 log2 #G

attacks are exponentially harder.

On a sufficiently large quantum computer, Shor’s algorithm quantumly
computes b from gb in any group in polynomial time.
Isogeny graphs to the rescue!

Tanja Lange Isogeny-basd cryptography II 5



Exponential separation until quantum computers come

Constructive computation:
With square-and-multiply, applying b takes Θ(log2 #G ).

Attack costs:
For well-chosen groups, recovering b takes Θ(

√
#G ).

(For less-well chosen groups the attacks are faster.)

As √
#G = 20.5 log2 #G

attacks are exponentially harder.

On a sufficiently large quantum computer, Shor’s algorithm quantumly
computes b from gb in any group in polynomial time.

Isogeny graphs to the rescue!

Tanja Lange Isogeny-basd cryptography II 5



Exponential separation until quantum computers come

Constructive computation:
With square-and-multiply, applying b takes Θ(log2 #G ).

Attack costs:
For well-chosen groups, recovering b takes Θ(

√
#G ).

(For less-well chosen groups the attacks are faster.)

As √
#G = 20.5 log2 #G

attacks are exponentially harder.

On a sufficiently large quantum computer, Shor’s algorithm quantumly
computes b from gb in any group in polynomial time.
Isogeny graphs to the rescue!

Tanja Lange Isogeny-basd cryptography II 5



Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

Tanja Lange Isogeny-basd cryptography II 6



Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

Tanja Lange Isogeny-basd cryptography II 6



Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

Tanja Lange Isogeny-basd cryptography II 6



Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

Tanja Lange Isogeny-basd cryptography II 6



Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

Tanja Lange Isogeny-basd cryptography II 6



Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

Tanja Lange Isogeny-basd cryptography II 6


