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Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗

p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a
random←−−− {0...q−1} b

random←−−− {0...q−1}

g a gb

k = hash(((gb)a) k = hash((g a)b)

Fundamental reason this works: ·a and ·b commute!
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Diffie–Hellman: Bob vs. Eve

Bob
1. Set t ← g .

2. Set t ← t · g .
3. Set t ← t · g .
4. Set t ← t · g .
...

b−2. Set t ← t · g .
b−1. Set t ← t · g .

b. Publish B ← t · g .

Is this a good idea?

Effort for both: O(#G ). Bob needs to be smarter.
(There also exist better attacks)
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Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.
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Exponential separation

Constructive computation:
With square-and-multiply, applying b takes Θ(log2 #G ).

Attack costs:
For well-chosen groups, recovering b takes Θ(

√
#G ).

(For less-well chosen groups the attacks are faster.)

As √
#G = 20.5 log2 #G

attacks are exponentially harder.

On a sufficiently large quantum computer, Shor’s algorithm quantumly
computes b from gb in any group in polynomial time.
Isogeny graphs to the rescue!
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Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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