Isogeny-basd cryptography II Key exchange on graphs

Tanja Lange (with lots of slides by Lorenz Panny)

Eindhoven University of Technology

SAC – Post-quantum cryptography

Diffie-Hellman key exchange '76

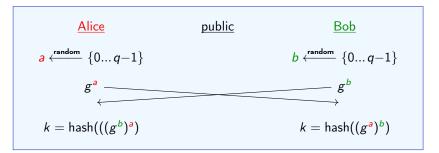
Public parameters:

- a finite group G (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q

Diffie-Hellman key exchange '76

Public parameters:

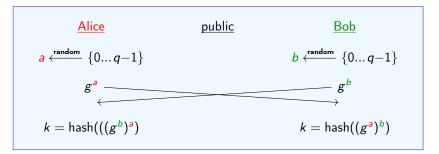
- a finite group G (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q



Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (traditionally \mathbb{F}_p^* , today elliptic curves)
- an element $g \in G$ of prime order q



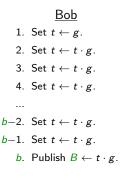
Fundamental reason this works: \cdot^{a} and \cdot^{b} commute!

Bob

- 1. Set $t \leftarrow g$.
- 2. Set $t \leftarrow t \cdot g$.
- 3. Set $t \leftarrow t \cdot g$.
- 4. Set $t \leftarrow t \cdot g$.

• • •

- b-2. Set $t \leftarrow t \cdot g$.
- b-1. Set $t \leftarrow t \cdot g$.
 - b. Publish $B \leftarrow t \cdot g$.



Is this a good idea?

	<u>Bob</u>
1.	Set $t \leftarrow g$.
2.	Set $t \leftarrow t \cdot g$.
3.	Set $t \leftarrow t \cdot g$.
4.	Set $t \leftarrow t \cdot g$.
<i>b</i> -2.	Set $t \leftarrow t \cdot g$.
<i>b</i> -1.	Set $t \leftarrow t \cdot g$.
,	

b. Publish
$$B \leftarrow t \cdot g$$
.

Attacker Eve

- 1. Set $t \leftarrow g$. If t = B return 1.
- 2. Set $t \leftarrow t \cdot g$. If t = B return 2.

3. Set
$$t \leftarrow t \cdot g$$
. If $t = B$ return 3.

4. Set
$$t \leftarrow t \cdot g$$
. If $t = B$ return 3.

$$b-2$$
. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-2$.

$$b-1$$
. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-1$.

b. Set
$$t \leftarrow t \cdot g$$
. If $t = B$ return b.

$$b+1$$
. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+1$.

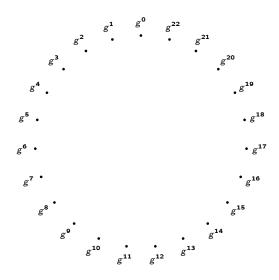
$$b+2$$
. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+2$.

	Bob
1.	Set $t \leftarrow g$.
2.	Set $t \leftarrow t \cdot g$.
3.	Set $t \leftarrow t \cdot g$.
4.	Set $t \leftarrow t \cdot g$.
-2.	Set $t \leftarrow t \cdot g$.
-1.	Set $t \leftarrow t \cdot g$.
Ь.	Publish $B \leftarrow t \cdot g$.

Attacker Eve
1. Set $t \leftarrow g$. If $t = B$ return 1.
2. Set $t \leftarrow t \cdot g$. If $t = B$ return 2.
3. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
4. Set $t \leftarrow t \cdot g$. If $t = B$ return 3.
$b-2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-2$.
$b-1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b-1$.
b. Set $t \leftarrow t \cdot g$. If $t = B$ return b.
$b+1$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+1$.
$b+2$. Set $t \leftarrow t \cdot g$. If $t = B$ return $b+2$.

Effort for both: O(#G). Bob needs to be smarter. (There also exist better attacks)

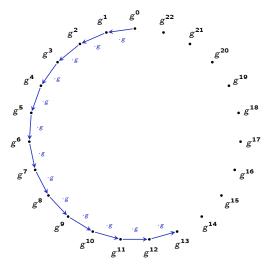
b b



Reminder: DH in group with #G = 23. Bob computes g^{13} .

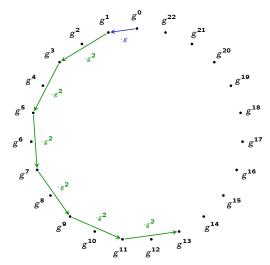
Tanja Lange

multiply



Reminder: DH in group with #G = 23. Bob computes g^{13} .

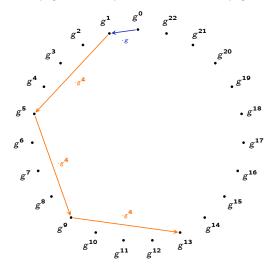
Square-and-multiply



Reminder: DH in group with #G = 23. Bob computes g^{13} .

Tanja Lange

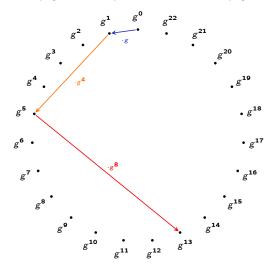
Square-and-multiply-and-square-and-multiply



Reminder: DH in group with #G = 23. Bob computes g^{13} .

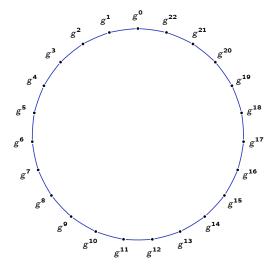
Tanja Lange

Square-and-multiply-and-square-and-multiply-and-square-and-



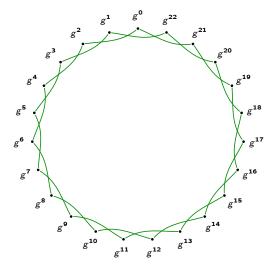
Reminder: DH in group with #G = 23. Bob computes g^{13} .

Tanja Lange



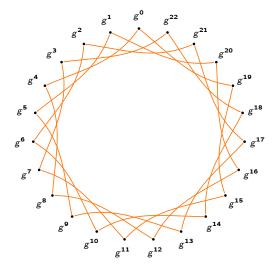
Reminder: DH in group with #G = 23. Bob computes g^{13} .

Tanja Lange



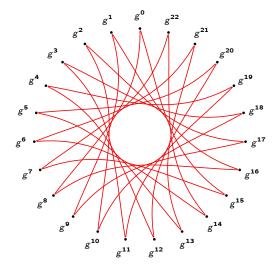
Reminder: DH in group with #G = 23. Bob computes g^{13} .

Tanja Lange



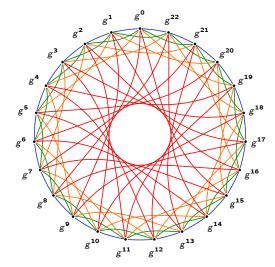
Reminder: DH in group with #G = 23. Bob computes g^{13} .

Tanja Lange



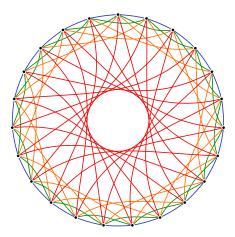
Reminder: DH in group with #G = 23. Bob computes g^{13} .

Tanja Lange



Reminder: DH in group with #G = 23. Bob computes g^{13} .

Tanja Lange



Fast mixing: paths of length log(# nodes) to everywhere.

Exponential separation

Constructive computation:

With square-and-multiply, applying b takes $\Theta(\log_2 \# G)$.

Attack costs:

For well-chosen groups, recovering b takes $\Theta(\sqrt{\#G})$.

(For less-well chosen groups the attacks are faster.)

As

$$\sqrt{\#G} = 2^{0.5 \log_2 \#G}$$

attacks are exponentially harder.

Exponential separation until quantum computers come

Constructive computation:

With square-and-multiply, applying b takes $\Theta(\log_2 \# G)$.

Attack costs: For well-chosen groups, recovering b takes $\Theta(\sqrt{\#G})$.

(For less-well chosen groups the attacks are faster.)

As

$$\sqrt{\#G} = 2^{0.5 \log_2 \#G}$$

attacks are exponentially harder.

On a sufficiently large quantum computer, Shor's algorithm quantumly computes b from g^b in any group in polynomial time.

Exponential separation until quantum computers come

Constructive computation:

With square-and-multiply, applying b takes $\Theta(\log_2 \# G)$.

Attack costs: For well-chosen groups, recovering *b* takes $\Theta(\sqrt{\#G})$.

(For less-well chosen groups the attacks are faster.)

As

$$\sqrt{\#G} = 2^{0.5 \log_2 \#G}$$

attacks are exponentially harder.

On a sufficiently large quantum computer, Shor's algorithm quantumly computes b from g^b in any group in polynomial time. Isogeny graphs to the rescue!

Tanja Lange

► <u>Isogenies</u> are a source of exponentially-sized graphs.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (Both classical and quantum!)

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (Both classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some well-behaved "directions" to describe paths. More later.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No efficient* algorithms to recover paths from endpoints. (Both classical and quantum!)
- Enough structure to navigate the graph meaningfully. That is: some well-behaved "directions" to describe paths. More later.

It is easy to construct graphs that satisfy *almost* all of these — not enough for crypto!