Hash-based signatures III Stateful signatures

Tanja Lange (with some slides by Daniel J. Bernstein)

Eindhoven University of Technology

SAC – Post-quantum cryptography

Merkle's (e.g.) 8-time signature system

Hash 8 one-time public keys into a single Merkle public key P_{15} .

 $S_i \rightarrow P_i$ can be Lamport or Winternitz one-time signature system. Each such pair (S_i, P_i) may be used only once.

Signature in 8-time Merkle hash tree

Signature of first message: $(sign(m, S_1), P_1, P_2, P_{10}, P_{14})$.

Signature in 8-time Merkle hash tree

Signature of first message: $(sign(m, S_1), P_1, P_2, P_{10}, P_{14})$.

Verify signature sign (m, S_1) with public key P_1 (provided in signature). Link P_1 against public key P_{15} by computing $P'_9 = H(P_1, P_2)$, $P'_{13} = H(P'_9, P_{10})$, and comparing $H(P'_{13}, P_{14})$ with P_{15} . Reject if $H(P'_{13}, P_{14}) \neq P_{15}$ of if the signature verification failed.

Tanja Lange

Improvements to Merkle's scheme

- Each key is good only for fixed number of messages, typically 2^n .
- The public key is very short: just one hash output. But each signature contains n public keys along with the one-time signature.
- Computing the public key requires computing and storing 2ⁿ one-time signature keys.

Improvements to Merkle's scheme

- Each key is good only for fixed number of messages, typically 2^n .
- The public key is very short: just one hash output. But each signature contains n public keys along with the one-time signature.
- Computing the public key requires computing and storing 2ⁿ one-time signature keys.
- Can trade time for space by computing the secret keys S_i deterministically from a short secret seed.
 Very little storage for the seed but more time in signature generation.

Improvements to Merkle's scheme

- Each key is good only for fixed number of messages, typically 2^n .
- The public key is very short: just one hash output. But each signature contains n public keys along with the one-time signature.
- Computing the public key requires computing and storing 2ⁿ one-time signature keys.
- Can trade time for space by computing the secret keys S_i deterministically from a short secret seed.
 Very little storage for the seed but more time in signature generation.
- Can build trees of trees where each leaf of the top tree signs the root of a tree below it. Only the top tree is needed in key generation. This increases the signature length (one one-time signature per tree) and signing time. See PhD thesis of Andreas Hülsing for an optimized schedule of what to store and when to precompute.

Stateful hash-based signatures

- Only one prerequisite: a good hash function, e.g. SHA3-512. Hash functions map long strings to fixed-length strings. Signature schemes use hash functions in handling plaintext.
- Old idea: 1979 Lamport one-time signatures.
- ▶ 1979 Merkle extends to more signatures.

Pros:

- Post quantum
- Only need secure hash function
- Security well understood
- Fast

Cons:

- Biggish signature though some tradeoffs possible
- Stateful, i.e., ever reusing a subkey breaks security.
 Adam Langley "for most environments it's a huge foot-cannon."

Stateful hash-based signatures

- Only one prerequisite: a good hash function, e.g. SHA3-512. Hash functions map long strings to fixed-length strings. Signature schemes use hash functions in handling plaintext.
- Old idea: 1979 Lamport one-time signatures.
- ▶ 1979 Merkle extends to more signatures.

Pros:

- Post quantum
- Only need secure hash function
- Security well understood
- Fast
- We can count: OS update, code signing, ... naturally keep state.

Cons:

- Biggish signature though some tradeoffs possible
- Stateful, i.e., ever reusing a subkey breaks security.
 Adam Langley "for most environments it's a huge foot-cannon."

Standardization progress

CFRG has published 2 RFCs: RFC 8391 and RFC 8554

Standardization progress

PROJECTS

- CFRG has published 2 RFCs: RFC 8391 and RFC 8554
- NIST has gone through two rounds of requests for public input, most are positive and recommend standardizing XMSS and LMS. Only concern is about statefulness in general.

Information Technology Laboratory
COMPUTER SECURITY RESOURCE CENTER

Stateful Hash-Based Signatures

Standardization progress

- CFRG has published 2 RFCs: RFC 8391 and RFC 8554
- NIST has gone through two rounds of requests for public input, most are positive and recommend standardizing XMSS and LMS. Only concern is about statefulness in general.

	NIST
	Information Technology Laboratory
	COMPUTER SECURITY RESOURCE CENTER

Stateful Hash-Based Signatures

 ISO SC27 JTC1 WG2 has started a study period on stateful hash-based signatures.