
Hash-based signatures II
Lamport and Winternitz one-time signatures

Tanja Lange
(with some slides by Daniel J. Bernstein)

Eindhoven University of Technology

SAC – Post-quantum cryptography



Lamport’s 1-time signature system
Sign arbitrary-length message by signing its 256-bit hash:

def keypair():

keys = [signbit.keypair() for n in range(256)]

public,secret = zip(*keys)

return public,secret

def sign(message,secret):

msg = message.to_bytes(200, byteorder="little")

h = sha3_256(msg)

hbits = [1 & (h[i//8])>>(i%8) for i in range(256)]

sigs = [signbit.sign(hbits[i],secret[i]) for i in range(256)]

return sigs, message

def open(sm,public):

message = sm[1]

msg = message.to_bytes(200, byteorder="little")

h = sha3_256(msg)

hbits = [1 & (h[i//8])>>(i%8) for i in range(256)]

for i in range(256):

if hbits[i] != signbit.open(sm[0][i],public[i]):

raise Exception(’bit %d of hash does not match’ % i)

return message

Tanja Lange Hash-based signatures II 2



Want to sign 4 bits with just 32 bytes

I Lamport’s signatures have 2× 256 hash outputs (each 32 bytes) as
public key and the signature has 256 times 32 bytes.

I Define
H i (x) = H(H i−1(x)) = H(H(. . . (H(x))))︸ ︷︷ ︸

i times

.

I Pick random sk, compute pk= H16(sk).

I For message m reveal s = Hm(sk) as signature.

I To verify check that pk= H16−m(s).



Weak Winternitz
def keypair():

secret = sha3_256(os.urandom(32))

public = sha3_256(secret)

for i in range(16): public = sha3_256(public)

return public,secret

def sign(m,secret):

if type(m) != int: raise Exception(’message must be int’)

if m < 0 or m > 15: raise Exception(’message must be between 0 and 15’)

sign = secret

for i in range(m): sign = sha3_256(sign)

return sign, m

def open(sm,public):

if type(sm[1]) != int: raise Exception(’message must be int’)

if sm[1] < 0 or sm[1] > 15: raise Exception(’message must be between 0 and 15’)

check = sm[0]

for i in range(16-sm[1]): check = sha3_256(check)

if sha3_256(check) != public: raise Exception(’bad signature’)

return sm[1]



Want to sign 4 bits with just 32 bytes

I Lamport’s signatures have 2× 256 hash outputs (each 32 bytes) as
public key and the signature has 256 times 32 bytes.

I Define
H i (x) = H(H i−1(x)) = H(H(. . . (H(x))))︸ ︷︷ ︸

i times

.

I Pick random sk, compute pk= H16(sk).

I For message m reveal s = Hm(sk) as signature.

I To verify check that pk= H16−m(s).

I This works – but is insecure!

Eve can take H(s) as signature on m + 1 (for m < 15).

I Fix by doubling the key-sizes again, running one chain forward, one
in reverse.



Want to sign 4 bits with just 32 bytes

I Lamport’s signatures have 2× 256 hash outputs (each 32 bytes) as
public key and the signature has 256 times 32 bytes.

I Define
H i (x) = H(H i−1(x)) = H(H(. . . (H(x))))︸ ︷︷ ︸

i times

.

I Pick random sk, compute pk= H16(sk).

I For message m reveal s = Hm(sk) as signature.

I To verify check that pk= H16−m(s).

I This works – but is insecure!
Eve can take H(s) as signature on m + 1 (for m < 15).

I Fix by doubling the key-sizes again, running one chain forward, one
in reverse.



Want to sign 4 bits with just 32 bytes

I Lamport’s signatures have 2× 256 hash outputs (each 32 bytes) as
public key and the signature has 256 times 32 bytes.

I Define
H i (x) = H(H i−1(x)) = H(H(. . . (H(x))))︸ ︷︷ ︸

i times

.

I Pick random sk, compute pk= H16(sk).

I For message m reveal s = Hm(sk) as signature.

I To verify check that pk= H16−m(s).

I This works – but is insecure!
Eve can take H(s) as signature on m + 1 (for m < 15).

I Fix by doubling the key-sizes again, running one chain forward, one
in reverse.



Slow Winternitz 1-time signature system for 4 bits
Could stop at 15 iterations, but convenient to reuse code here:

import weak_winternitz

def keypair():

keys = [weak_winternitz.keypair() for n in range(2)]

public,secret = zip(*keys)

return public,secret

def sign(m,secret):

sign0 = weak_winternitz.sign(m,secret[0])

sign1 = weak_winternitz.sign(16-m,secret[1])

return sign0, sign1, m

def open(sm,public):

m0 = weak_winternitz.open(sm[0],public[0])

m1 = weak_winternitz.open(sm[1],public[1])

if m0 != sm[2] or m1 != (16-sm[2]): raise Exception(’Invalid signature’)

return sm[2]

Tanja Lange Hash-based signatures II 6



Winternitz 1-time signature system
I Define parameter w . Each chain will run for 2w steps.

I For signing a 256-bit hash this needs t1 = d256/we chains.
Write m in base 2w (integers of w bits):

m = (mt1−1, . . . ,m1,m0)

(zero–padding if necessary).

I Put

c =
t1−1∑
i=0

(2w −mi )

Note that c ≤ t12w .

I The checksum c gets larger if mi is smaller.

I Write c in base 2w . This takes t2 = 1 + db(log2 t1c+ 1)/we
w -bit integers

c = (ct2−1, . . . , c1, c0).

I Publish t1 + t2 public keys, sign with chains of lengths

mt1−1, . . . ,m1,m0, ct2−1, . . . , c1, c0.

Tanja Lange Hash-based signatures II 7



Winternitz 1-time signature system for w = 8
I Define parameter w = 8. Each chain will run for 28 = 256 steps.

I For signing a 256-bit hash this needs t1 = d256/8e = 32 chains.
Write m in base 28 (integers of 8 bits):

m = (m31, . . . ,m1,m0)

(zero–padding if necessary).

I Put

c =
31∑
i=0

(28 −mi )

Note that c ≤ 32 · 28 = 213.

I The checksum c gets larger if mi is smaller.

I Write c in base 28. This takes t2 = 1 + d(5 + 1)/8e = 2
8-bit integers

c = (c1, c0).

I Publish t1 + t2 = 34 public keys, sign with chains of lengths

m31, . . . ,m1,m0, c1, c0.

Tanja Lange Hash-based signatures II 8


