Code-based cryptography V

Information-set decoding

Tanja Lange
with some slides by Tung Chou and Christiane Peters

Eindhoven University of Technology

SAC — Post-quantum cryptography

Generic attack: Brute force

Given K and s = Ke, find e with wt(e) = t.

Pick any group of t columns of K, add them and compare with s.

Cost:

Tanja Lange Code-based cryptography V.

Generic attack: Brute force

Given K and s = Ke, find e with wt(e) = t.

Pick any group of t columns of K, add them and compare with s.

Cost: ('t’) sums of t columns.

Can do better so that each try costs only 1 column addition
(after some initial additions).

Cost: O(7) additions of 1 column.

Tanja Lange Code-based cryptography V.

X

q : s = K'e!

o o L et

@ Permute K and bring to systematic form K’ = (X|l,—x).
(If this fails, repeat with other permutation).

® Then K’ = UKP for some permutation matrix P and U the matrix
that produces systematic form.

©® This updates s to Us.

O If wt(Us) =t then e’ = (00...0)||Us.
Output unpermuted version of €’.

@ Else return to 1 to rerandomize.
Cost:

Tanja Lange Code-based cryptography V. 3

X

q : s = K'e!

o o L et

@ Permute K and bring to systematic form K’ = (X|l,—x).
(If this fails, repeat with other permutation).

® Then K’ = UKP for some permutation matrix P and U the matrix
that produces systematic form.

©® This updates s to Us.

O If wt(Us) =t then e’ = (00...0)||Us.
Output unpermuted version of €’.

@ Else return to 1 to rerandomize.

Cost: O((7)/(",%)) matrix operations.

Tanja Lange Code-based cryptography V. 3

Lee—Brickell attack

Kl:é X s =K'e

| R o R et

@ Permute K and bring to systematic form K’ = (X|/,—).
(If this fails, repeat with other permutation). s is updated to s'.

® For small p, pick p of the k columns on the left, compute their sum
Xp. (p is the vector of weight p).

® If wt(s’' + Xp) =t — p then put & = p||(s' + Xp).
Output unpermuted version of €’.

® Else return to 2 or return to 1 to rerandomize.
Cost:

Tanja Lange Code-based cryptography V. 4

Lee—Brickell attack

Kl:é X s =K'e

| R o R et

@ Permute K and bring to systematic form K’ = (X|/,—).
(If this fails, repeat with other permutation). s is updated to s'.

® For small p, pick p of the k columns on the left, compute their sum
Xp. (p is the vector of weight p).

® If wt(s’' + Xp) =t — p then put & = p||(s' + Xp).
Output unpermuted version of €’.

® Else return to 2 or return to 1 to rerandomize.

Cost: O((:)/((f’) (Z:I’;)) [matrix operationer(Z) column additions].

Tanja Lange Code-based cryptography V. 4

Leon's attack N

e Setup similar to : :
Lee-Brickell's attack. X| o Z

e Random combinations of
p vectors will be dense, : ; O
so have wt(s' + Xp) ~ (n— k)/2. 11710 U T

e |dea: Introduce early abort by checking (n—Kk)x(n—k) identity matrix
only ¢ positions (selected by set Z, green lines in the picture).

This forms £ x k matrix Xz, length-£ vector s,.

e Inner loop becomes:
@ Pick p with wt(p) = p.
® Compute Xzp.

© If s, + Xzp # 0 goto 1.
@ Else compute Xp.

O If wt(s’ + Xp) =t — p then put € = p||(s’ + Xp).
Output unpermuted version of e’.
@ Else return to 1 or rerandomize K.

¢ Note that s, + Xzp = 0 means that there are no ones in the
positions specified by Z. Small loss in success, big speedup.

Tanja Lange Code-based cryptography V. 5

Stern’s attack

e Setup similar to Leon’s and
Lee-Brickell's attacks.

e Use the early abort trick, X y 7

so specify set Z.

e Improve chances of finding : : : N
p with s’ + Xzp = 0: I B T

Split left part of K’ into two d|5]0|nt subsets X and Y.

Let A = {a € FY?|wt(a) = p}, B = {b € F/*|wt(b) = p}.

Search for words having exactly p ones in X and p ones in Y and
exactly t — 2p ones in the remaining columns.

Do the latter part as a collision search:

Compute s + Xza for all (many) a € A, sort.

Then compute Yzb for b € B and look for collisions; expand.

Iterate until word with wt(s’ + Xa + Yb) =t — 2p is found for some
X, Y, Z.

e Select p, £, and the subset of A to minimize overall work.

Tanja Lange

Code-based cryptography V. 6

Running time in practice

2008 Bernstein, Lange, Peters.

Wrote attack software against original McEliece parameters,
decoding 50 errors in a [1024,524] code.

Lots of optimizations, e.g. cheap updates between s, + Xza and
next value for a; optimized frequency of K randomization.

Attack on a single computer with a 2.4GHz Intel Core 2 Quad
Q6600 CPU would need, on average, 1400 days
(258 CPU cycles) to complete the attack.

About 200 computers involved, with about 300 cores.

Most of the cores put in far fewer than 90 days of work; some of
which were considerably slower than a Core 2.

Computation used about 8000 core-days.

Error vector found by Walton cluster at SFI/HEA lIrish Centre of
High-End Computing (ICHEC).

Tanja Lange Code-based cryptography V.

Information-set decoding

Methods differ in where the “errors” are allowed to be.

k n—k ————

Lee-Brickell

| P || t—p

Coon k «—(—>«—— n—k—{ ——
| P L0 | t—p

Stern

| p__IL_P, [0 | t—2p

Running time is exponential for Goppa parameters n, k, d.

Tanja Lange Code-based cryptography V.

Information-set decoding

Methods differ in where the errors are allowed to be.

k n—k —————

Lee-Brickell
| P I t—p
Ceon k ~—(—<~—— n—k—{ ——
| p Lo]| t—p |
Stern
N | - | t—2p |
Ball-collision decoding/Dumer/Finiasz-Sendrier
L, I, Jla]lall t—2p—2q |

kl k2 +€1><—€2><— n—k—{ ——

2011 May-Meurer-Thomae and 2012 Becker-Joux-May-Meurer refine
multi-level collision search.

Tanja Lange Code-based cryptography V.

Security analysis

Some papers studying algorithms for attackers:

1962 Prange; 1981 Clark—Cain, crediting Omura; 1988 Lee—Brickell; 1988 Leon;
1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey—-Goodman; 1990 van
Tilburg; 1991 Dumer; 1991 Coffey—Goodman—Farrell; 1993
Chabanne—Courteau; 1993 Chabaud; 1994 van Tilburg; 1994
Canteaut—Chabanne; 1998 Canteaut—Chabaud; 1998 Canteaut—Sendrier; 2008
Bernstein—Lange—Peters; 2009 Bernstein—Lange—Peters—van Tilborg; 2009
Bernstein (post-quantum); 2009 Finiasz—Sendrier; 2010
Bernstein—Lange—Peters; 2009 Bernstein—Lange—Peters—van Tilborg; 2009
Bernstein (post-quantum); 2009 Finiasz—Sendrier; 2010
Bernstein—Lange—Peters; 2011 May—Meurer—Thomae; 2012
Becker—Joux—May—Meurer; 2013 Hamdaoui—Sendrier; 2015 May—Ozerov; 2016
Canto Torres—Sendrier; 2017 Kachigar-Tillich (post-quantum); 2017
Both—May; 2018 Both—May; 2018 Kirshanova (post-quantum).

Tanja Lange Code-based cryptography V 10

Improvements

e Increase n: The most obvious way to defend McEliece's
cryptosystem is to increase the code length n.

o Allow values of n between powers of 2: Get considerably better
optimization of (e.g.) the McEliece public-key size.

e Use list decoding to increase t: Unique decoding is ensured by
CCA2-secure variants.

e 1962 Prange: simple attack idea guiding sizes in 1978 McEliece.
The McEliece system (with later key-size optimizations)
uses (co + o(1))A?(lg A)2-bit keys as A — oo
to achieve 2* security against Prange’s attack.
Here ¢y =~ 0.7418860694.

Tanja Lange Code-based cryptography V 11

Improvements

e Increase n: The most obvious way to defend McEliece's
cryptosystem is to increase the code length n.

o Allow values of n between powers of 2: Get considerably better
optimization of (e.g.) the McEliece public-key size.

e Use list decoding to increase t: Unique decoding is ensured by
CCA2-secure variants.

e 1962 Prange: simple attack idea guiding sizes in 1978 McEliece.
The McEliece system (with later key-size optimizations)
uses (co + o(1))A?(lg A)2-bit keys as A — oo
to achieve 2* security against Prange’s attack.
Here ¢y =~ 0.7418860694.

e Today, the McEliece system (with later key-size optimizations)
uses (co + o(1))A2(Ig \)2-bit keys as A — oo
to achieve 2* security against all these attacks.

Tanja Lange Code-based cryptography V

Improvements

e Increase n: The most obvious way to defend McEliece's
cryptosystem is to increase the code length n.

o Allow values of n between powers of 2: Get considerably better
optimization of (e.g.) the McEliece public-key size.

e Use list decoding to increase t: Unique decoding is ensured by
CCA2-secure variants.

e 1962 Prange: simple attack idea guiding sizes in 1978 McEliece.
The McEliece system (with later key-size optimizations)
uses (co + o(1))A?(lg A)2-bit keys as A — oo
to achieve 2* security against Prange’s attack.
Here ¢y =~ 0.7418860694.
e Today, the McEliece system (with later key-size optimizations)
uses (co + o(1))A2(Ig \)2-bit keys as A — oo
to achieve 2* security against all these attacks.
Here ¢y =~ 0.7418860694.

Tanja Lange Code-based cryptography V

