Code-based cryptography V Information-set decoding

Tanja Lange with some slides by Tung Chou and Christiane Peters

Eindhoven University of Technology

SAC – Post-quantum cryptography

Generic attack: Brute force

Pick any group of t columns of K, add them and compare with **s**. Cost:

Generic attack: Brute force

Pick any group of t columns of K, add them and compare with s.

Cost: $\binom{n}{t}$ sums of t columns. Can do better so that each try costs only 1 column addition (after some initial additions). Cost: $O\binom{n}{t}$ additions of 1 column.

- **1** Permute K and bring to systematic form $K' = (X|I_{n-k})$. (If this fails, repeat with other permutation).
- **2** Then K' = UKP for some permutation matrix P and U the matrix that produces systematic form.
- **3** This updates **s** to U**s**.
- If wt(Us) = t then e' = (00...0)||Us.
 Output unpermuted version of e'.
- **5** Else return to 1 to rerandomize.

Cost:

Tanja Lange

- **1** Permute K and bring to systematic form $K' = (X|I_{n-k})$. (If this fails, repeat with other permutation).
- **2** Then K' = UKP for some permutation matrix P and U the matrix that produces systematic form.
- **3** This updates **s** to U**s**.
- If wt(Us) = t then e' = (00...0)||Us.
 Output unpermuted version of e'.
- **5** Else return to 1 to rerandomize.
- Cost: $O(\binom{n}{t} / \binom{n-k}{t})$ matrix operations.

Tanja Lange

Code-based cryptography V

- **1** Permute K and bring to systematic form $K' = (X|I_{n-k})$. (If this fails, repeat with other permutation). **s** is updated to **s**'.
- Por small p, pick p of the k columns on the left, compute their sum Xp. (p is the vector of weight p).
- **3** If $wt(\mathbf{s}' + X\mathbf{p}) = t p$ then put $\mathbf{e}' = \mathbf{p}||(\mathbf{s}' + X\mathbf{p})|$. Output unpermuted version of \mathbf{e}' .
- **4** Else return to 2 or return to 1 to rerandomize.

Cost:

Tanja Lange

- **1** Permute K and bring to systematic form $K' = (X|I_{n-k})$. (If this fails, repeat with other permutation). **s** is updated to **s**'.
- Por small p, pick p of the k columns on the left, compute their sum Xp. (p is the vector of weight p).
- **3** If $wt(\mathbf{s}' + X\mathbf{p}) = t p$ then put $\mathbf{e}' = \mathbf{p}||(\mathbf{s}' + X\mathbf{p})|$. Output unpermuted version of \mathbf{e}' .

4 Else return to 2 or return to 1 to rerandomize.

Cost: $O(\binom{n}{t}/\binom{k}{p}\binom{n-k}{t-p})$ [matrix operations+ $\binom{k}{p}$ column additions].

Tanja Lange

Leon's attack

- Setup similar to Lee-Brickell's attack.
- Random combinations of p vectors will be dense, so have wt(s' + Xp) ~ (n - k)/2.

- Idea: Introduce early abort by checking (n-k)×(n-k) identity matrix only ℓ positions (selected by set Z, green lines in the picture). This forms ℓ × k matrix X_Z, length-ℓ vector s'_Z.
- Inner loop becomes:
 - **1** Pick **p** with $wt(\mathbf{p}) = p$.
 - Compute X_Zp.
 - **3** If $\mathbf{s}'_Z + X_Z \mathbf{p} \neq 0$ goto 1.
 - 4 Else compute Xp.
 - 1 If wt($\mathbf{s}' + X\mathbf{p}$) = t p then put $\mathbf{e}' = \mathbf{p} || (\mathbf{s}' + X\mathbf{p})$. Output unpermuted version of \mathbf{e}' .
 - **2** Else return to 1 or rerandomize K.
- Note that s'_Z + X_Zp = 0 means that there are no ones in the positions specified by Z. Small loss in success, big speedup.

Stern's attack

- Setup similar to Leon's and Lee-Brickell's attacks.
- Use the early abort trick, so specify set Z.
- Improve chances of finding **p** with s' + X_Zp = 0:

- Split left part of K' into two disjoint subsets X and Y.
- Let $A = \{ \mathbf{a} \in \mathbb{F}_2^{k/2} | \operatorname{wt}(\mathbf{a}) = p \}$, $B = \{ \mathbf{b} \in \mathbb{F}_2^{k/2} | \operatorname{wt}(\mathbf{b}) = p \}$.
- Search for words having exactly p ones in X and p ones in Y and exactly t 2p ones in the remaining columns.
- Do the latter part as a collision search: Compute s'_Z + X_Za for all (many) a ∈ A, sort. Then compute Y_Zb for b ∈ B and look for collisions; expand.
- Iterate until word with wt(s' + Xa + Yb) = t 2p is found for some X, Y, Z.
- Select p, ℓ , and the subset of A to minimize overall work.

Running time in practice

2008 Bernstein, Lange, Peters.

- Wrote attack software against original McEliece parameters, decoding 50 errors in a [1024, 524] code.
- Lots of optimizations, e.g. cheap updates between s'_Z + X_Za and next value for a; optimized frequency of K randomization.
- Attack on a single computer with a 2.4GHz Intel Core 2 Quad Q6600 CPU would need, on average, 1400 days (2⁵⁸ CPU cycles) to complete the attack.
- About 200 computers involved, with about 300 cores.
- Most of the cores put in far fewer than 90 days of work; some of which were considerably slower than a Core 2.
- Computation used about 8000 core-days.
- Error vector found by Walton cluster at SFI/HEA Irish Centre of High-End Computing (ICHEC).

Information-set decoding

Running time is exponential for Goppa parameters n, k, d.

Tanja Lange

Code-based cryptography V

Information-set decoding

2011 May-Meurer-Thomae and 2012 Becker-Joux-May-Meurer refine multi-level collision search.

Code-based cryptography V

Security analysis

Some papers studying algorithms for attackers: 1962 Prange; 1981 Clark–Cain, crediting Omura; 1988 Lee–Brickell; 1988 Leon; 1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey-Goodman; 1990 van Tilburg; 1991 Dumer; 1991 Coffey–Goodman–Farrell; 1993 Chabanne-Courteau; 1993 Chabaud; 1994 van Tilburg; 1994 Canteaut-Chabanne; 1998 Canteaut-Chabaud; 1998 Canteaut-Sendrier; 2008 Bernstein-Lange-Peters; 2009 Bernstein-Lange-Peters-van Tilborg; 2009 Bernstein (post-quantum); 2009 Finiasz–Sendrier; 2010 Bernstein-Lange-Peters; 2009 Bernstein-Lange-Peters-van Tilborg; 2009 Bernstein (**post-quantum**); 2009 Finiasz–Sendrier; 2010 Bernstein–Lange–Peters; 2011 May–Meurer–Thomae; 2012 Becker–Joux–May–Meurer; 2013 Hamdaoui–Sendrier; 2015 May–Ozerov; 2016 Canto Torres-Sendrier; 2017 Kachigar-Tillich (post-quantum); 2017 Both-May; 2018 Both-May; 2018 Kirshanova (post-quantum).

Improvements

- Increase *n*: The most obvious way to defend McEliece's cryptosystem is to increase the code length *n*.
- Allow values of *n* between powers of 2: Get considerably better optimization of (e.g.) the McEliece public-key size.
- Use list decoding to increase *t*: Unique decoding is ensured by CCA2-secure variants.
- 1962 Prange: simple attack idea guiding sizes in 1978 McEliece. The McEliece system (with later key-size optimizations) uses $(c_0 + o(1))\lambda^2(\lg \lambda)^2$ -bit keys as $\lambda \to \infty$ to achieve 2^{λ} security against Prange's attack. Here $c_0 \approx 0.7418860694$.

Improvements

- Increase *n*: The most obvious way to defend McEliece's cryptosystem is to increase the code length *n*.
- Allow values of *n* between powers of 2: Get considerably better optimization of (e.g.) the McEliece public-key size.
- Use list decoding to increase *t*: Unique decoding is ensured by CCA2-secure variants.
- 1962 Prange: simple attack idea guiding sizes in 1978 McEliece. The McEliece system (with later key-size optimizations) uses $(c_0 + o(1))\lambda^2(\lg \lambda)^2$ -bit keys as $\lambda \to \infty$ to achieve 2^{λ} security against Prange's attack. Here $c_0 \approx 0.7418860694$.
- Today, the McEliece system (with later key-size optimizations) uses $(c_0 + o(1))\lambda^2(\lg \lambda)^2$ -bit keys as $\lambda \to \infty$ to achieve 2^{λ} security against all these attacks.

Improvements

- Increase *n*: The most obvious way to defend McEliece's cryptosystem is to increase the code length *n*.
- Allow values of *n* between powers of 2: Get considerably better optimization of (e.g.) the McEliece public-key size.
- Use list decoding to increase *t*: Unique decoding is ensured by CCA2-secure variants.
- 1962 Prange: simple attack idea guiding sizes in 1978 McEliece. The McEliece system (with later key-size optimizations) uses $(c_0 + o(1))\lambda^2(\lg \lambda)^2$ -bit keys as $\lambda \to \infty$ to achieve 2^{λ} security against Prange's attack. Here $c_0 \approx 0.7418860694$.
- Today, the McEliece system (with later key-size optimizations) uses $(c_0 + o(1))\lambda^2(\lg \lambda)^2$ -bit keys as $\lambda \to \infty$ to achieve 2^{λ} security against all these attacks. Here $c_0 \approx 0.7418860694$.