
Code-based cryptography V
Information-set decoding

Tanja Lange
with some slides by Tung Chou and Christiane Peters

Eindhoven University of Technology

SAC – Post-quantum cryptography

Generic attack: Brute force

Given K and s = Ke, find e with wt(e) = t.

K =

Pick any group of t columns of K , add them and compare with s.

Cost:

(
n
t

)
sums of t columns.

Can do better so that each try costs only 1 column addition
(after some initial additions).
Cost: O

(
n
t

)
additions of 1 column.

Tanja Lange Code-based cryptography V 2

Generic attack: Brute force

Given K and s = Ke, find e with wt(e) = t.

K =

Pick any group of t columns of K , add them and compare with s.

Cost:
(
n
t

)
sums of t columns.

Can do better so that each try costs only 1 column addition
(after some initial additions).
Cost: O

(
n
t

)
additions of 1 column.

Tanja Lange Code-based cryptography V 2

Generic attack: Information-set decoding, 1962 Prange

K ′ =

1

0

1

0

X

•

•
•
•

•

s′ = K ′e′

1 Permute K and bring to systematic form K ′ = (X |In−k).
(If this fails, repeat with other permutation).

2 Then K ′ = UKP for some permutation matrix P and U the matrix
that produces systematic form.

3 This updates s to Us.

4 If wt(Us) = t then e′ = (00 . . . 0)||Us.
Output unpermuted version of e′.

5 Else return to 1 to rerandomize.

Cost:

O(
(
n
t

)
/
(
n−k
t

)
) matrix operations.

Tanja Lange Code-based cryptography V 3

Generic attack: Information-set decoding, 1962 Prange

K ′ =

1

0

1

0

X

•

•
•
•

•

s′ = K ′e′

1 Permute K and bring to systematic form K ′ = (X |In−k).
(If this fails, repeat with other permutation).

2 Then K ′ = UKP for some permutation matrix P and U the matrix
that produces systematic form.

3 This updates s to Us.

4 If wt(Us) = t then e′ = (00 . . . 0)||Us.
Output unpermuted version of e′.

5 Else return to 1 to rerandomize.

Cost: O(
(
n
t

)
/
(
n−k
t

)
) matrix operations.

Tanja Lange Code-based cryptography V 3

Lee–Brickell attack

K ′ =

1

0

1

0

X

•

•

•

s′ = K ′e′

1 Permute K and bring to systematic form K ′ = (X |In−k).
(If this fails, repeat with other permutation). s is updated to s′.

2 For small p, pick p of the k columns on the left, compute their sum
Xp. (p is the vector of weight p).

3 If wt(s′ + Xp) = t − p then put e′ = p||(s′ + Xp).
Output unpermuted version of e′.

4 Else return to 2 or return to 1 to rerandomize.

Cost:

O(
(
n
t

)
/(
(
k
p

)(
n−k
t−p

)
) [matrix operations+

(
k
p

)
column additions].

Tanja Lange Code-based cryptography V 4

Lee–Brickell attack

K ′ =

1

0

1

0

X

•

•

•

s′ = K ′e′

1 Permute K and bring to systematic form K ′ = (X |In−k).
(If this fails, repeat with other permutation). s is updated to s′.

2 For small p, pick p of the k columns on the left, compute their sum
Xp. (p is the vector of weight p).

3 If wt(s′ + Xp) = t − p then put e′ = p||(s′ + Xp).
Output unpermuted version of e′.

4 Else return to 2 or return to 1 to rerandomize.

Cost: O(
(
n
t

)
/(
(
k
p

)(
n−k
t−p

)
) [matrix operations+

(
k
p

)
column additions].

Tanja Lange Code-based cryptography V 4

Leon’s attack 1

1

ZX

︸ ︷︷ ︸
(n−k)×(n−k) identity matrix

• Setup similar to
Lee-Brickell’s attack.

• Random combinations of
p vectors will be dense,
so have wt(s′ + Xp) ∼ (n − k)/2.

• Idea: Introduce early abort by checking
only ` positions (selected by set Z , green lines in the picture).
This forms `× k matrix XZ , length-` vector s′Z .

• Inner loop becomes:

1 Pick p with wt(p) = p.
2 Compute XZp.
3 If s′Z + XZp 6= 0 goto 1.
4 Else compute Xp.

1 If wt(s′ + Xp) = t − p then put e′ = p||(s′ + Xp).
Output unpermuted version of e′.

2 Else return to 1 or rerandomize K .

• Note that s′Z + XZp = 0 means that there are no ones in the
positions specified by Z . Small loss in success, big speedup.

Tanja Lange Code-based cryptography V 5

Stern’s attack
1

1

X Y Z

A

B

• Setup similar to Leon’s and
Lee-Brickell’s attacks.

• Use the early abort trick,
so specify set Z .

• Improve chances of finding
p with s′ + XZp = 0:
• Split left part of K ′ into two disjoint subsets X and Y .
• Let A = {a ∈ IF

k/2
2 |wt(a) = p}, B = {b ∈ IF

k/2
2 |wt(b) = p}.

• Search for words having exactly p ones in X and p ones in Y and
exactly t − 2p ones in the remaining columns.

• Do the latter part as a collision search:
Compute s′Z + XZa for all (many) a ∈ A, sort.
Then compute YZb for b ∈ B and look for collisions; expand.

• Iterate until word with wt(s′ + Xa + Y b) = t − 2p is found for some
X ,Y ,Z .

• Select p, `, and the subset of A to minimize overall work.

Tanja Lange Code-based cryptography V 6

Running time in practice

2008 Bernstein, Lange, Peters.

• Wrote attack software against original McEliece parameters,
decoding 50 errors in a [1024, 524] code.

• Lots of optimizations, e.g. cheap updates between s′Z + XZa and
next value for a; optimized frequency of K randomization.

• Attack on a single computer with a 2.4GHz Intel Core 2 Quad
Q6600 CPU would need, on average, 1400 days
(258 CPU cycles) to complete the attack.

• About 200 computers involved, with about 300 cores.

• Most of the cores put in far fewer than 90 days of work; some of
which were considerably slower than a Core 2.

• Computation used about 8000 core-days.

• Error vector found by Walton cluster at SFI/HEA Irish Centre of
High-End Computing (ICHEC).

Tanja Lange Code-based cryptography V 7

Information-set decoding

Methods differ in where the “errors” are allowed to be.

k n − k

Lee-Brickell
p t − p

k ℓ n − k − ℓ
Leon

p 0 t − p

Stern
p p 0 t − 2p

Running time is exponential for Goppa parameters n, k, d .

Tanja Lange Code-based cryptography V 8

Information-set decoding

Methods differ in where the errors are allowed to be.

k n − k

Lee-Brickell
p t − p

k ℓ n − k − ℓ
Leon

p 0 t − p

Stern
p p 0 t − 2p

Ball-collision decoding/Dumer/Finiasz-Sendrier
p p q q t − 2p − 2q

k1 k2 ℓ1 ℓ2 n − k − ℓ

2011 May-Meurer-Thomae and 2012 Becker-Joux-May-Meurer refine
multi-level collision search.

Tanja Lange Code-based cryptography V 9

Security analysis

Some papers studying algorithms for attackers:
1962 Prange; 1981 Clark–Cain, crediting Omura; 1988 Lee–Brickell; 1988 Leon;

1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey–Goodman; 1990 van

Tilburg; 1991 Dumer; 1991 Coffey–Goodman–Farrell; 1993

Chabanne–Courteau; 1993 Chabaud; 1994 van Tilburg; 1994

Canteaut–Chabanne; 1998 Canteaut–Chabaud; 1998 Canteaut–Sendrier; 2008

Bernstein–Lange–Peters; 2009 Bernstein–Lange–Peters–van Tilborg; 2009

Bernstein (post-quantum); 2009 Finiasz–Sendrier; 2010

Bernstein–Lange–Peters; 2009 Bernstein–Lange–Peters–van Tilborg; 2009

Bernstein (post-quantum); 2009 Finiasz–Sendrier; 2010

Bernstein–Lange–Peters; 2011 May–Meurer–Thomae; 2012

Becker–Joux–May–Meurer; 2013 Hamdaoui–Sendrier; 2015 May–Ozerov; 2016

Canto Torres–Sendrier; 2017 Kachigar–Tillich (post-quantum); 2017

Both–May; 2018 Both–May; 2018 Kirshanova (post-quantum).

Tanja Lange Code-based cryptography V 10

Improvements

• Increase n: The most obvious way to defend McEliece’s
cryptosystem is to increase the code length n.

• Allow values of n between powers of 2: Get considerably better
optimization of (e.g.) the McEliece public-key size.

• Use list decoding to increase t: Unique decoding is ensured by
CCA2-secure variants.

• 1962 Prange: simple attack idea guiding sizes in 1978 McEliece.
The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against Prange’s attack.
Here c0 ≈ 0.7418860694.

• Today, the McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all these attacks.
Here c0 ≈ 0.7418860694.

Tanja Lange Code-based cryptography V 11

Improvements

• Increase n: The most obvious way to defend McEliece’s
cryptosystem is to increase the code length n.

• Allow values of n between powers of 2: Get considerably better
optimization of (e.g.) the McEliece public-key size.

• Use list decoding to increase t: Unique decoding is ensured by
CCA2-secure variants.

• 1962 Prange: simple attack idea guiding sizes in 1978 McEliece.
The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against Prange’s attack.
Here c0 ≈ 0.7418860694.

• Today, the McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all these attacks.

Here c0 ≈ 0.7418860694.

Tanja Lange Code-based cryptography V 11

Improvements

• Increase n: The most obvious way to defend McEliece’s
cryptosystem is to increase the code length n.

• Allow values of n between powers of 2: Get considerably better
optimization of (e.g.) the McEliece public-key size.

• Use list decoding to increase t: Unique decoding is ensured by
CCA2-secure variants.

• 1962 Prange: simple attack idea guiding sizes in 1978 McEliece.
The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against Prange’s attack.
Here c0 ≈ 0.7418860694.

• Today, the McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all these attacks.
Here c0 ≈ 0.7418860694.

Tanja Lange Code-based cryptography V 11

