Code-based cryptography IV Goppa codes: minimum distance and decoding

Tanja Lange with some slides by Tung Chou and Christiane Peters

Eindhoven University of Technology

SAC – Post-quantum cryptography

Minimum distance of $\Gamma(L,g)$. Put $s(x) = S(\mathbf{c})$

$$s(x) = \sum_{i=1}^n c_i/(x-a_i)$$

Minimum distance of $\Gamma(L,g)$. Put $s(x) = S(\mathbf{c})$

$$s(x) = \sum_{i=1}^{n} c_i / (x - a_i)$$

= $\left(\sum_{i=1}^{n} c_i \prod_{j \neq i} (x - a_j)\right) / \prod_{i=1}^{n} (x - a_i) \equiv 0 \mod g(x).$

- $g(a_i) \neq 0$ implies $gcd(x a_i, g(x)) = 1$, so g(x) divides $\sum_{i=1}^n c_i \prod_{j \neq i} (x - a_j)$.
- Let $\mathbf{c} \neq 0$ have small weight $\operatorname{wt}(\mathbf{c}) = w \leq t = \deg(g)$. For all *i* with $c_i = 0$, $x - a_i$ appears in every summand.

Minimum distance of $\Gamma(L,g)$. Put $s(x) = S(\mathbf{c})$

$$s(x) = \sum_{i=1}^{n} c_i / (x - a_i)$$

= $\left(\sum_{i=1}^{n} c_i \prod_{j \neq i} (x - a_j) \right) / \prod_{i=1}^{n} (x - a_i) \equiv 0 \mod g(x).$

- $g(a_i) \neq 0$ implies $gcd(x a_i, g(x)) = 1$, so g(x) divides $\sum_{i=1}^n c_i \prod_{j \neq i} (x - a_j)$.
- Let $\mathbf{c} \neq 0$ have small weight $\operatorname{wt}(\mathbf{c}) = w \leq t = \operatorname{deg}(g)$. For all *i* with $c_i = 0$, $x - a_i$ appears in every summand. Cancel out those $x - a_i$ with $c_i = 0$.
- The denominator is now $\prod_{i,c_i\neq 0}(x-a_i)$, of degree w.
- The numerator now has degree w 1 and deg(g) > w 1 implies that the numerator is = 0 (without reduction mod g), which is a contradiction to c ≠ 0, so wt(c) = w ≥ t + 1.

Better minimum distance for $\Gamma(L, g)$

- Let $\mathbf{c} \neq \mathbf{0}$ have small weight $wt(\mathbf{c}) = w$.
- Put $f(x) = \prod_{i=1}^{n} (x a_i)^{c_i}$ with $c_i \in \{0, 1\}$.
- Then the derivative $f'(x) = \sum_{i=1}^{n} c_i \prod_{j \neq i} (x a_i)^{c_i}$.
- Thus $s(x) = f'(x)/f(x) \equiv 0 \mod g(x)$.
- As before this implies g(x) divides the numerator f'(x).
- Note that over 𝔽_{2^m}:

$$(f_{2i+1}x^{2i+1})' = f_{2i+1}x^{2i}, \ (f_{2i}x^{2i})' = 0 \cdot f_{2i}x^{2i-1} = 0,$$

thus f'(x) contains only terms of even degree and $\deg(f') \le w - 1$. Assume w odd, thus $\deg(f') = w - 1$.

• Note that over ${\rm I\!F}_{2^m}$: $(x+1)^2=x^2+1$

Better minimum distance for $\Gamma(L, g)$

- Let $\mathbf{c} \neq \mathbf{0}$ have small weight $wt(\mathbf{c}) = w$.
- Put $f(x) = \prod_{i=1}^{n} (x a_i)^{c_i}$ with $c_i \in \{0, 1\}$.
- Then the derivative $f'(x) = \sum_{i=1}^{n} c_i \prod_{j \neq i} (x a_i)^{c_i}$.
- Thus $s(x) = f'(x)/f(x) \equiv 0 \mod g(x)$.
- As before this implies g(x) divides the numerator f'(x).
- Note that over 𝔽₂^m:

$$(f_{2i+1}x^{2i+1})' = f_{2i+1}x^{2i}, \ (f_{2i}x^{2i})' = 0 \cdot f_{2i}x^{2i-1} = 0,$$

thus f'(x) contains only terms of even degree and $\deg(f') \le w - 1$. Assume w odd, thus $\deg(f') = w - 1$.

• Note that over ${\rm I\!F}_{2^m}$: $(x+1)^2=x^2+1$ and in general

$$f'(x) = \sum_{i=0}^{(w-1)/2} f_{2i+1} x^{2i} = \left(\sum_{i=0}^{(w-1)/2} \sqrt{f_{2i+1}} x^i \right)^2 = F^2(x).$$

• Since g(x) is square-free, g(x) divides F(x), thus $w \ge 2t + 1$.

Tanja Lange

Decoding of $\mathbf{c} + \mathbf{e}$ in $\Gamma(L, g)$

- Decoding works with polynomial arithmetic.
- Fix **e**. Let $\sigma(x) = \prod_{i,e_i \neq 0} (x a_i)$. Same as f(x) before for **c**.
- σ(x) is called error locator polynomial. Given σ(x) can factor it to retrieve error positions, σ(a_i) = 0 ⇔ error in *i*.
- Split into odd and even terms: $\sigma(x) = A^2(x) + xB^2(x)$.
- Note as before $s(x) = \sigma'(x)/\sigma(x)$ and $\sigma'(x) = B^2(x)$.
- Thus

$$B^{2}(x) \equiv \sigma(x)s(x) \equiv (A^{2}(x) + xB^{2}(x))s(x) \mod g(x)$$

$$B^{2}(x)(x + 1/s(x)) \equiv A^{2}(x) \mod g(x)$$

- Put $v(x) \equiv \sqrt{x + 1/s(x)} \mod g(x)$, then $A(x) \equiv B(x)v(x) \mod g(x)$.
- Can compute v(x) from s(x).
- Use XGCD on v and g, stop part-way when

$$A(x) = B(x)v(x) + h(x)g(x),$$

with $\deg(A) \leq \lfloor t/2 \rfloor, \deg(B) \leq \lfloor (t-1)/2 \rfloor.$

Tanja Lange