Code-based cryptography IV

Goppa codes: minimum distance and decoding

Tanja Lange
with some slides by Tung Chou and Christiane Peters

Eindhoven University of Technology

SAC — Post-quantum cryptography



Minimum distance of ['(L, g). Put s(x) = S(c)

Tanja Lange Code-based cryptography IV



Minimum distance of ['(L, g). Put s(x) = S(c)

n

s(x) = Z ¢i/(x — a)

i=1

= ZC;H(X—QJ') /H(X—a,-)EOmod g(x).

=1 ji

e g(a;) # 0 implies ged(x — a;, g(x)) =1,
so g(x) divides 377, ¢; [T ;(x — ).

e Let c # 0 have small weight wt(c) = w < t = deg(g).
For all i with ¢; =0, x — a; appears in every summand.

Tanja Lange Code-based cryptography IV



Minimum distance of ['(L, g). Put s(x) = S(c)

n

s(x) = Z ¢i/(x — a)

i=1

Z G H(x —aj) /H(X — a;) = 0 mod g(x).

=1 ji

e g(a;) # 0 implies ged(x — a;, g(x)) =1,
so g(x) divides 377, ¢; [T ;(x — ).

e Let c # 0 have small weight wt(c) = w < t = deg(g).
For all i with ¢; = 0, x — a; appears in every summand.
Cancel out those x — a; with ¢; = 0.

e The denominator is now []; __o(x — a;), of degree w.

e The numerator now has degree w — 1 and deg(g) > w — 1 implies
that the numerator is = 0 (without reduction mod g),
which is a contradiction to ¢ # 0, so wt(c) =w >t + 1.

Tanja Lange Code-based cryptography IV



Better minimum distance for I'(L, g)

o Let c # 0 have small weight wt(c) = w.

o Put f(x) =[], (x — a)% with ¢; € {0,1}.

o Then the derivative '(x) = 37, ¢ [[;_.;(x — &))"

e Thus s(x) = f'(x)/f(x) = 0 mod g(x).

o As before this implies g(x) divides the numerator /(x).
e Note that over IFom:

2i4+1y/ _ 2 2i\/ __ 2i—1 __
(hitix™ ™) = hipix™, (Hix™) =0-fHix" 7" =0,

thus f’(x) contains only terms of even degree and deg(f’) < w — 1.
Assume w odd, thus deg(f') = w — 1.

e Note that over IFom: (x +1)%2 = x>+ 1

Tanja Lange Code-based cryptography IV



Better minimum distance for I'(L, g)

Let ¢ # 0 have small weight wt(c) = w.

Put f(x) = [[/_,(x — a;)% with ¢; € {0, 1}.

Then the derivative f'(x) = 31, ¢ [1;.4(x — a;)°.
Thus s(x) = f/(x)/f(x) = 0 mod g(x).

As before this implies g(x) divides the numerator f'(x).
Note that over IFom:

2i4+1y/ _ 2 2i\/ __ 2i—1 __
(hitix™ ™) = hipix™, (Hix™) =0-fHix" 7" =0,

thus f’(x) contains only terms of even degree and deg(f’) < w — 1.

Assume w odd, thus deg(f') = w — 1.
Note that over Fom: (x +1)?> = x> + 1 and in general

(w—1)/2 (w—1)/2 2

Z foip1x° Z Vhinx' | = F(x).

e Since g(x) is square-free, g(x) divides F(x), thus w > 2t + 1.

Tanja Lange Code-based cryptography IV



Decoding of ¢ + e in (L, g)

Decoding works with polynomial arithmetic.

Fix e. Let o(x) = I[; o..o(x — @). Same as f(x) before for c.
o(x) is called error locator polynomial. Given o(x) can factor it to
retrieve error positions, o(a;) = 0 < error in i.

Split into odd and even terms: o(x) = A%(x) + xB?(x).
Note as before s(x) = o/(x)/o(x) and o’(x) = B2(x).
Thus
B%(x) = o(x)s(x) = (A%(x) 4+ xB?(x))s(x) mod g(x)
B%(x)(x + 1/s(x)) = A?(x) mod g(x)
Put v(x) = /x + 1/s(x) mod g(x), then
A(x) = B(x)v(x) mod g(x).
Can compute v(x) from s(x).
Use XGCD on v and g, stop part-way when
A(x) = B(x)v(x) + h(x)g(x),
with deg(A) < /2], deg(B) < [(t — 1)/2].

Tanja Lange Code-based cryptography IV



