Code-based cryptography II Niederreiter system and schoolbook attaccks

Tanja Lange with some slides by Tung Chou and Christiane Peters

Eindhoven University of Technology

SAC – Post-quantum cryptography

Systematic form

- A systematic generator matrix is a generator matrix of the form
 (*I_k*|*Q*) where *I_k* is the *k* × *k* identity matrix and *Q* is a *k* × (*n* − *k*)
 matrix (redundant part).
- Classical decoding is about recovering *m* from *c* = *mG*; without errors *m* equals the first *k* positions of *c*.

Systematic form

- A systematic generator matrix is a generator matrix of the form
 (*I_k*|*Q*) where *I_k* is the *k* × *k* identity matrix and *Q* is a *k* × (*n* − *k*)
 matrix (redundant part).
- Classical decoding is about recovering *m* from *c* = *mG*; without errors *m* equals the first *k* positions of *c*.
- Easy to get parity-check matrix from systematic generator matrix, use H = (Q^T | I_{n-k}).

Systematic form

- A systematic generator matrix is a generator matrix of the form
 (*I_k*|*Q*) where *I_k* is the *k* × *k* identity matrix and *Q* is a *k* × (*n* − *k*)
 matrix (redundant part).
- Classical decoding is about recovering *m* from *c* = *mG*; without errors *m* equals the first *k* positions of *c*.
- Easy to get parity-check matrix from systematic generator matrix, use $H = (Q^T | I_{n-k})$. Then

$$H(\mathbf{m}G)^{\mathsf{T}} = HG^{\mathsf{T}}\mathbf{m}^{\mathsf{T}} = (Q^{\mathsf{T}}|I_{n-k})(I_k|Q)^{\mathsf{T}}\mathbf{m}^{\mathsf{T}} = 0.$$

• Can reduce storage / transmission bandwidth by leaving out the identity matrix part. E.g. for the parity-check matrix:

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

Any use of H just includes the matrix in the computations.

Tanja Lange

Code-based cryptography II

Different views on decoding

- The syndrome of x ∈ 𝔽ⁿ₂ is s = Hx. Note Hx = H(c + e) = Hc + He = He depends only on e.
- The syndrome decoding problem is to compute $\mathbf{e} \in \mathbb{F}_2^n$ given $\mathbf{s} \in \mathbb{F}_2^{n-k}$ so that $H\mathbf{e} = \mathbf{s}$ and \mathbf{e} has minimal weight.
- Syndrome decoding and (regular) decoding are equivalent:

Different views on decoding

- The syndrome of x ∈ 𝔽ⁿ₂ is s = Hx. Note Hx = H(c + e) = Hc + He = He depends only on e.
- The syndrome decoding problem is to compute $\mathbf{e} \in \mathbb{F}_2^n$ given $\mathbf{s} \in \mathbb{F}_2^{n-k}$ so that $H\mathbf{e} = \mathbf{s}$ and \mathbf{e} has minimal weight.
- Syndrome decoding and (regular) decoding are equivalent: To decode \mathbf{x} with syndrome decoder, compute \mathbf{e} from $H\mathbf{x}$, then $\mathbf{c} = \mathbf{x} + \mathbf{e}$.

To expand syndrome, assume $H = (Q^{\intercal}|I_{n-k})$.

Different views on decoding

- The syndrome of x ∈ 𝔽ⁿ₂ is s = Hx. Note Hx = H(c + e) = Hc + He = He depends only on e.
- The syndrome decoding problem is to compute $\mathbf{e} \in \mathbb{F}_2^n$ given $\mathbf{s} \in \mathbb{F}_2^{n-k}$ so that $H\mathbf{e} = \mathbf{s}$ and \mathbf{e} has minimal weight.
- Syndrome decoding and (regular) decoding are equivalent: To decode **x** with syndrome decoder, compute **e** from H**x**, then $\mathbf{c} = \mathbf{x} + \mathbf{e}$.

To expand syndrome, assume $H = (Q^{T}|I_{n-k})$. Then $\mathbf{x} = (00...0)||\mathbf{s}$ satisfies $\mathbf{s} = H\mathbf{x}$.

• Note that this x is not a solution to the syndrome decoding problem, unless it has very low weight.

The Niederreiter cryptosystem I

Developed in 1986 by Harald Niederreiter as a variant of the McEliece cryptosystem. This is the schoolbook version.

- Use $n \times n$ permutation matrix P and $n k \times n k$ invertible matrix S.
- Public Key: a scrambled parity-check matrix $K = SHP \in \mathbb{F}_2^{(n-k) \times n}$.
- Encryption: The plaintext **e** is an *n*-bit vector of weight *t*. The ciphertext **s** is the (n k)-bit vector

$$\mathbf{s} = K\mathbf{e}.$$

- Decryption: Find a *n*-bit vector \mathbf{e} with $wt(\mathbf{e}) = t$ such that $\mathbf{s} = K\mathbf{e}$.
- The passive attacker is facing a *t*-error correcting problem for the public key, which seems to be random.

The Niederreiter cryptosystem II

- Public Key: a scrambled parity-check matrix K = SHP.
- Encryption: The plaintext e is an *n*-bit vector of weight *t*. The ciphertext s is the (n k)-bit vector

$$\mathbf{s} = K\mathbf{e}$$

• Decryption using secret key: Compute

$$S^{-1}\mathbf{s} = S^{-1}K\mathbf{e} = S^{-1}(SHP)\mathbf{e}$$
$$= H(P\mathbf{e})$$

and observe that $wt(P\mathbf{e}) = t$, because P permutes. Use efficient syndrome decoder for H to find $\mathbf{e}' = P\mathbf{e}$ and thus $\mathbf{e} = P^{-1}\mathbf{e}'$.

Note on codes

- McEliece proposed to use binary Goppa codes. These are still used today.
- Niederreiter described his scheme using Reed-Solomon codes. These were broken in 1992 by Sidelnikov and Chestakov.
- More corpses on the way: concatenated codes, Reed-Muller codes, several Algebraic Geometry (AG) codes, Gabidulin codes, several LDPC codes, cyclic codes.
- Some other constructions look OK (for now).
 NIST competition has several entries on QCMDPC codes.

Do not use the schoolbook versions!

Sloppy Alice attacks! 1998 Verheul, Doumen, van Tilborg

- Assume that the decoding algorithm decodes up to t errors,
 i. e. it decodes y = c + e to c if wt(e) ≤ t.
- Eve intercepts ciphertext y = mG' + e.
 Eve poses as Alice towards Bob and sends him tweaks of y.
 She uses Bob's reactions (success of failure to decrypt) to recover m.
- Assume $wt(\mathbf{e}) = t$. (Else flip more bits till Bob fails).
- Eve sends y_i = y + e_i for e_i the *i*-th unit vector.
 If Bob returns error, position *i* in e is 0 (so the number of errors has increased to t + 1 and Bob fails).
 Else position *i* in e is 1.
- After k steps Eve knows the first k positions of mG' without error. Invert the k × k submatrix of G' to get m

Sloppy Alice attacks! 1998 Verheul, Doumen, van Tilborg

- Assume that the decoding algorithm decodes up to t errors,
 i. e. it decodes y = c + e to c if wt(e) ≤ t.
- Eve intercepts ciphertext y = mG' + e.
 Eve poses as Alice towards Bob and sends him tweaks of y.
 She uses Bob's reactions (success of failure to decrypt) to recover m.
- Assume $wt(\mathbf{e}) = t$. (Else flip more bits till Bob fails).
- Eve sends y_i = y + e_i for e_i the *i*-th unit vector.
 If Bob returns error, position *i* in e is 0 (so the number of errors has increased to t + 1 and Bob fails).
 Else position *i* in e is 1.
- After k steps Eve knows the first k positions of mG' without error. Invert the k × k submatrix of G' to get m assuming it is invertible.
- Proper attack: figure out invertible submatrix of G' at beginning; recover matching k coordinates.

More on sloppy Alice

- This attack has Eve send Bob variations of the same ciphertext; so Bob will think that Alice is sloppy.
- Note, this is more complicated if \mathbb{F}_q instead of \mathbb{F}_2 is used.
- Other name: reaction attack. (1999 Hall, Goldberg, and Schneier)
- Attack also works on Niederreiter version:

More on sloppy Alice

- This attack has Eve send Bob variations of the same ciphertext; so Bob will think that Alice is sloppy.
- Note, this is more complicated if \mathbb{F}_q instead of \mathbb{F}_2 is used.
- Other name: reaction attack. (1999 Hall, Goldberg, and Schneier)
- Attack also works on Niederreiter version: Bitflip corresponds to sending $\mathbf{s}_i = \mathbf{s} + K_i$, where K_i is the *i*-th column of K.
- More involved but doable (for McEliece and Niederreiter) if decryption requires exactly *t* errors.

• Eve knows $\mathbf{y}_1 = \mathbf{m}G' + \mathbf{e}_1$ and $\mathbf{y}_2 = \mathbf{m}G' + \mathbf{e}_2$; these have the same \mathbf{m} .

- Eve knows $\mathbf{y}_1 = \mathbf{m}G' + \mathbf{e}_1$ and $\mathbf{y}_2 = \mathbf{m}G' + \mathbf{e}_2$; these have the same \mathbf{m} .
- Then $\mathbf{y}_1 + \mathbf{y}_2 = \mathbf{e}_1 + \mathbf{e}_2 = \mathbf{\bar{e}}$. This has weight in [0, 2t].

• If
$$wt(\bar{\mathbf{e}}) = 2t$$
:

- Eve knows $\mathbf{y}_1 = \mathbf{m}G' + \mathbf{e}_1$ and $\mathbf{y}_2 = \mathbf{m}G' + \mathbf{e}_2$; these have the same \mathbf{m} .
- Then $\mathbf{y}_1 + \mathbf{y}_2 = \mathbf{e}_1 + \mathbf{e}_2 = \mathbf{\bar{e}}$. This has weight in [0, 2t].
- If wt(ē) = 2t:
 All zero positions in ē are error free in both ciphertexts.
 Invert G' in those columns to recover m as in previous attack.
- Else:

- Eve knows $\mathbf{y}_1 = \mathbf{m}G' + \mathbf{e}_1$ and $\mathbf{y}_2 = \mathbf{m}G' + \mathbf{e}_2$; these have the same \mathbf{m} .
- Then $\mathbf{y}_1 + \mathbf{y}_2 = \mathbf{e}_1 + \mathbf{e}_2 = \mathbf{\bar{e}}$. This has weight in [0, 2t].
- If wt(ē) = 2t:
 All zero positions in ē are error free in both ciphertexts.
 Invert G' in those columns to recover m as in previous attack.
- Else: ignore the 2w = wt(ē) < 2t positions in G' and y₁.
 Solve decoding problem for k × (n 2w) generator matrix G" and vector y'₁ with t w errors; typically much easier.

Formal security notions

- McEliece/Niederreiter are One-Way Encryption (OWE) schemes.
- However, the schemes as presented are not CCA-II secure:
 - Given challenge $\mathbf{y} = \mathbf{m}G' + \mathbf{e}$, Eve can ask for decryptions of anything but \mathbf{y} .

Formal security notions

- McEliece/Niederreiter are One-Way Encryption (OWE) schemes.
- However, the schemes as presented are not CCA-II secure:
 - Given challenge y = mG' + e, Eve can ask for decryptions of anything but y.
 - Eve picks a random code word c = m
 G', asks for decryption of y + c.
 - This is different from challenge y, so Bob answers.

Formal security notions

- McEliece/Niederreiter are One-Way Encryption (OWE) schemes.
- However, the schemes as presented are not CCA-II secure:
 - Given challenge y = mG' + e, Eve can ask for decryptions of anything but y.
 - Eve picks a random code word c = m
 G', asks for decryption of y + c.
 - This is different from challenge **y**, so Bob answers.
 - Answer is $\mathbf{m} + \mathbf{\bar{m}}$.
- Fix by using CCA2 transformation (e.g. Fujisaki-Okamoto transform) or (easier) KEM/DEM version: pick random e of weight t, use hash(e) as secret key to encrypt and authenticate (for McEliece or Niederreiter).