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Systematic form

• A systematic generator matrix is a generator matrix of the form
(Ik |Q) where Ik is the k × k identity matrix and Q is a k × (n − k)
matrix (redundant part).

• Classical decoding is about recovering m from c = mG ;
without errors m equals the first k positions of c .

• Easy to get parity-check matrix from systematic generator matrix,
use H = (Qᵀ|In−k).
Then

H(mG )ᵀ = HGᵀmᵀ = (Qᵀ|In−k)(Ik |Q)ᵀmᵀ = 0.

• Can reduce storage / transmission bandwidth by leaving out the
identity matrix part. E.g. for the parity-check matrix:

H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 
1 1 0 1

1 0 1 1
0 1 1 1


Any use of H just includes the matrix in the computations.
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Different views on decoding

• The syndrome of x ∈ IFn
2 is s = Hx.

Note Hx = H(c + e) = Hc + He = He depends only on e.

• The syndrome decoding problem is to compute e ∈ IFn
2 given

s ∈ IFn−k
2 so that He = s and e has minimal weight.

• Syndrome decoding and (regular) decoding are equivalent:

To decode x with syndrome decoder, compute e from Hx, then
c = x + e.
To expand syndrome, assume H = (Qᵀ|In−k).
Then x = (00 . . . 0)||s satisfies s = Hx.

• Note that this x is not a solution to the syndrome decoding problem,
unless it has very low weight.
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The Niederreiter cryptosystem I

Developed in 1986 by Harald Niederreiter as a variant of the McEliece
cryptosystem. This is the schoolbook version.

• Use n× n permutation matrix P and n− k × n− k invertible matrix
S .

• Public Key: a scrambled parity-check matrix K = SHP ∈ IF
(n−k)×n
2 .

• Encryption: The plaintext e is an n-bit vector of weight t. The
ciphertext s is the (n − k)-bit vector

s = Ke.

• Decryption: Find a n-bit vector e with wt(e) = t such that s = Ke.

• The passive attacker is facing a t-error correcting problem for the
public key, which seems to be random.
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The Niederreiter cryptosystem II

• Public Key: a scrambled parity-check matrix K = SHP.

• Encryption: The plaintext e is an n-bit vector of weight t. The
ciphertext s is the (n − k)-bit vector

s = Ke.

• Decryption using secret key: Compute

S−1s = S−1Ke = S−1(SHP)e

= H(Pe)

and observe that wt(Pe) = t, because P permutes.
Use efficient syndrome decoder for H to find e′ = Pe and thus
e = P−1e′.
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Note on codes

• McEliece proposed to use binary Goppa codes.
These are still used today.

• Niederreiter described his scheme using Reed-Solomon codes.
These were broken in 1992 by Sidelnikov and Chestakov.

• More corpses on the way: concatenated codes, Reed-Muller codes,
several Algebraic Geometry (AG) codes, Gabidulin codes, several
LDPC codes, cyclic codes.

• Some other constructions look OK (for now).
NIST competition has several entries on QCMDPC codes.
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Do not use the schoolbook versions!
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Sloppy Alice attacks! 1998 Verheul, Doumen, van Tilborg

• Assume that the decoding algorithm decodes up to t errors,
i. e. it decodes y = c + e to c if wt(e) ≤ t.

• Eve intercepts ciphertext y = mG ′ + e.
Eve poses as Alice towards Bob and sends him tweaks of y.
She uses Bob’s reactions (success of failure to decrypt) to recover m.

• Assume wt(e) = t. (Else flip more bits till Bob fails).

• Eve sends yi = y + ei for ei the i-th unit vector.
If Bob returns error, position i in e is 0 (so the number of errors has
increased to t + 1 and Bob fails).
Else position i in e is 1.

• After k steps Eve knows the first k positions of mG ′ without error.
Invert the k × k submatrix of G ′ to get m

assuming it is invertible.

• Proper attack: figure out invertible submatrix of G ′ at beginning;
recover matching k coordinates.
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More on sloppy Alice

• This attack has Eve send Bob variations of the same ciphertext; so
Bob will think that Alice is sloppy.

• Note, this is more complicated if IFq instead of IF2 is used.

• Other name: reaction attack.
(1999 Hall, Goldberg, and Schneier)

• Attack also works on Niederreiter version:

Bitflip corresponds to sending si = s + Ki ,
where Ki is the i-th column of K .

• More involved but doable (for McEliece and Niederreiter)
if decryption requires exactly t errors.
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Berson’s attack

• Eve knows y1 = mG ′ + e1 and y2 = mG ′ + e2;
these have the same m.

• Then y1 + y2 = e1 + e2 = ē. This has weight in [0, 2t].

• If wt(ē) = 2t:
All zero positions in ē are error free in both ciphertexts.
Invert G ′ in those columns to recover m as in previous attack.

• Else: ignore the 2w = wt(ē) < 2t positions in G ′ and y1.
Solve decoding problem for k × (n − 2w) generator matrix G ′′ and
vector y′1 with t − w errors; typically much easier.
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• If wt(ē) = 2t:
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Formal security notions

• McEliece/Niederreiter are One-Way Encryption (OWE) schemes.

• However, the schemes as presented are not CCA–II secure:
• Given challenge y = mG ′ + e, Eve can ask for decryptions of

anything but y.

• Eve picks a random code word c = m̄G ′,
asks for decryption of y + c.

• This is different from challenge y, so Bob answers.
• Answer is m + m̄.

• Fix by using CCA2 transformation (e.g. Fujisaki-Okamoto
transform) or (easier) KEM/DEM version:
pick random e of weight t, use hash(e) as secret key to encrypt and
authenticate (for McEliece or Niederreiter).
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