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Error correction

• Digital media is exposed to memory corruption.

• Many systems check whether data was corrupted in transit:
• ISBN numbers have check digit to detect corruption.
• ECC RAM detects up to two errors and can correct one error.

64 bits are stored as 72 bits: extra 8 bits for checks and recovery.

• In general, k bits of data get stored in n bits, adding some
redundancy.

• If no error occurred, these n bits satisfy n − k parity check
equations; else can correct errors from the error pattern.

• Good codes can correct many errors without blowing up storage too
much;
offer guarantee to correct t errors (often can correct or at least
detect more).
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Linear codes

A binary linear code C of length n and dimension k is a k-dimensional
subspace of IFn

2.
C is usually specified as

• the row space of a generating matrix G ∈ IFk×n
2

C = {mG |m ∈ IFk
2}

• the kernel space of a parity-check matrix H ∈ IF
(n−k)×n
2

C = {c|Hcᵀ = 0, c ∈ IFn
2}

Leaving out the ᵀ from now on.

• Names: code word c, error vector e, received word b = c + e.
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Example: Hamming code

Parity check matrix (n = 7, k = 4):

H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


An error-free string of 7 bits b = (b0, b1, b2, b3, b4, b5, b6) satisfies these
three equations:

b0 +b1 +b3 +b4 = 0
b0 +b2 +b3 +b5 = 0

b1 +b2 +b3 +b6 = 0

If one error occurred at least one of these equations will not hold.
Failure pattern uniquely identifies the error location,
e.g., 1, 0, 1 means

b1 flipped.
In math notation, the failure pattern is H · b.
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Linear codes are linear

Example with generator matrix:

G =

1 0 1 0 1
1 1 0 0 0
1 1 1 1 0


c = (111)G = (10011) is a code word.

Linear codes are linear:
The sum of two code words is a code word:

c1 + c2 = m1G + m2G = (m1 + m2)G .

Same with parity-check matrix:

H(c1 + c2) = Hc1 + Hc2 = 0 + 0 = 0.
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Hamming weight and distance

• The Hamming weight of a word is the number of nonzero
coordinates.

wt(1, 0, 0, 1, 1) = 3

• The Hamming distance between two words in IFn
2 is the number of

coordinates in which they differ.

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 1)) =

1

The Hamming distance between x and y equals the Hamming
weight of x + y:

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 1)) = wt(0, 1, 0, 0, 0).
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Minimum distance

• The minimum distance of a linear code C is the smallest Hamming
weight of a nonzero code word in C .

d = min
06=c∈C

{wt(c)} = min
b6=c∈C

{d(b, c)}

• In code with minimum distance d = 2t + 1, any vector x = c + e
with wt(e) ≤ t is uniquely decodable to c;
i. e. there is no closer code word.
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Decoding problem

Decoding problem: find the closest code word c ∈ C to a given x ∈ IFn
2,

assuming that there is a unique closest code word. Let x = c + e. Note
that finding e is an equivalent problem.

• If c is t errors away from x, i.e., the Hamming weight of e is t, this
is called a t-error correcting problem.

• There are lots of code families with fast decoding algorithms, e.g.,
Reed–Solomon codes, Goppa codes/alternant codes, etc.

• However, the general decoding problem is hard: Information-set
decoding (see later) takes exponential time.
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The McEliece cryptosystem I

• Due to Robert McEliece 1978.

• Let C be a length-n binary Goppa code Γ of dimension k with
minimum distance 2t + 1 where t ≈ (n − k)/ log2(n); original
parameters (1978) n = 1024, k = 524, t = 50.

• The McEliece secret key consists of a generator matrix G for Γ, an
efficient t-error correcting decoding algorithm for Γ; an n × n
permutation matrix P and a nonsingular k × k matrix S .

• n, k, t are public; but Γ, P, S are randomly generated secrets.

• The McEliece public key is the k × n matrix G ′ = SGP.
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The McEliece cryptosystem II

• Encrypt: Compute mG ′ and add a random error vector e of weight t
and length n. Send y = mG ′ + e.

• Decrypt: Compute yP−1 = mG ′P−1 + eP−1 = (mS)G + eP−1.
This works because eP−1 has the same weight as e

because P is a permutation matrix.
Use fast decoding to find mS and m.

• Attacker is faced with decoding y to nearest code word mG ′ in the
code generated by G ′.
This is general decoding if G ′ does not expose any structure.
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