Exercise sheet 6, 18 March 2021

I expect you to use Sage or Magma for computing multiples of points. For Sage, the following might be useful:

```
p=17
R.<x,y> = PolynomialRing(GF(p))
E0 = EllipticCurve(y^2-(x^3+x))
P=E0.random_point()
S=3*P
```

- 1. Let $p = 419 = 4 \cdot 3 \cdot 5 \cdot 7 1$ and let $E_0: y^2 = x^3 + x$.
 - (a) Find a point P of order 105 on E_0 . Compute R = 35P, a point of order 3.
 - (b) Compute τ_3, σ_3 and $f_3(x)$ for $\langle R \rangle$ to compute the curve coefficient *B* of the curve isogenous to E_0 under the 3-isogeny induced by *R*. Check that this matches the picture in the slides for part IV.
 - (c) Compute the image $P' = \varphi_3(P)$ under the 3-isogeny and verify that the resulting point P' has order 35. Why does this happen?
 - (d) Compute 7P' and use it to compute the 5-isogeny, getting the curve parameter and the image $P'' = \varphi_5(P')$. Check that P' has order 7 and that the curve matches the picture in part IV.
 - (e) Finally do the same for the 7 isogeny coming from P''.
- 2. Let p be a prime with p ≡ 3 mod 4. Show that E : y² = x³ + x has p + 1 points.
 Hint: You can argue similar to how I showed that the curve and its quadratic twist together have 2p+2 points. Remember that in F^{*}_p there

are exactly (p - 1)/2 squares and as many non-squares.
3. The slides for part V say that there is a meet-in-the-middle attack on CSIDH. For the CSIDH-512 parameters explain how you would mount such an attack if you can use memory. (For the low-memory version see the paper by Delfs and Galbraith, but here you're not supposed to report what that paper said but think through the easier version yourself.)

4. Let p = 431 and note that $p + 1 = 432 = 2^4 \cdot 3^3$. The curve $E_0 : y^2 = x^3 + x$ is a supersingular curve over \mathbb{F}_p and has p + 1 points. Consider the curve over \mathbb{F}_{p^2} where it has $(p+1)^2$ points. Find points P and Q of order 2^4 so that $Q \notin \langle P \rangle$ and points R and S of order 3^3 so that $R \notin \langle S \rangle$.

Hint: Remember how the negative direction is defined for CSIDH to find the independent points.

5. Let ℓ be a prime. Show that there exist $\ell + 1$ different isomorphism classes of curves that are ℓ -isogenous to a given supersingular elliptic curve E/\mathbb{F}_{p^2} . Note that the isogenies need not be defined over \mathbb{F}_{p^2} but can be defined over an extension field.