Exercise sheet 5, 11 March 2021

The addition law on Weierstrass curves $y^2 = x^3 + ax + b$ is given by ∞ being the neutral element, -(x, y) = (x, -y) and

$$(x_1, y_1) + (x_2, y_2) = (x_3, y_3) = (\lambda^2 - x_1 - x_2, \lambda(x_1 - x_3) - y_1),$$

where

$$\lambda = \begin{cases} \frac{y_1 - y_2}{x_1 - x_2} & \text{for } \begin{cases} P_1 \neq \pm P_2 \\ P_1 = P_2 \neq -P_2 \end{cases}$$

1. Let

$$E/\mathbb{Q}: y^2 = x^3 + 1$$

and observe that $(-1, 0), (0, 1) \in E(\mathbb{Q})$.

- (a) Compute (-1, 0) + (0, 1) using addition law.
- (b) Compute 2(0, 1) using the addition law.
- (c) Compute the order of (0, 1). (Note that over the rationals a point need not have finite order, but this one does.
- 2. Let

$$E_1/\mathbb{F}_{17}: y^2 = x^3 + 1, \qquad E_2/\mathbb{F}_{17}: y^2 = x^3 - 10.$$

and

$$E_3/\mathbb{F}_{17}: y^2 = x^3 + 2x + 5.$$

(a) Check that

$$f: (x,y) \mapsto ((x^3+4)/x^2, (x^3y-8y)/x^3)$$

defines a map $E_1 \to E_2$.

- (b) Detemine the kernel of f.
- (c) What is the degree of f?
- (d) Calculate the points in the preimage of (3,0) under f.
- (e) Compute the number of points on $E_1(\mathbb{F}_{17}), E_2(\mathbb{F}_{17})$, and $E_3(\mathbb{F}_{17})$.
- (f) Compute $j(E_1), j(E_2)$, and $j(E_3)$.
- (g) Show that E_1 and E_2 are not isomorphic over \mathbb{F}_{17} but that they are isomorphic over \mathbb{F}_{17^2} .

(h) Check that

$$g: (x,y) \mapsto ((x^2+x+3)/(x+1), (x^2y+2xy+15y)/(x^2+2x+1))$$

defines a map $E_1 \to E_3$.

- (i) Determinne the kernel of g.
- (j) What is the degree of g?
- 3. Let ℓ be a prime. Show that there are $\ell + 1$ size- ℓ subgroups of $\mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$.