
Exercise sheet 4, 04 March 2021

1. Explain in your own words how the the Lamport one-time-signature
scheme works.

2. Explain in your own words how the the Winternitz one-time-signature
scheme works.

3. Consider the simple version of Lamport’s one-time signature scheme
where bits of the message (rather than the hash of the message) are
signed. Let messages have n bits and assume that Alice has published
2n hash values as her public key and knows the matching 2n secret bit
strings representing her private key. Alice uses this signature system
multiple times with the same key. Analyze the following two scenarios
for your chances of faking a signature on a message M :

(a) You get to see signatures on random messages.

(b) You get to specify messages that Alice signs. You may not ask
Alice to sign M in this scenario.

How many signatures do you need on average in order to construct a
signature on M?

How many signatures do you need on average to be able to sign any
message?

Answer these questions in both scenarios.

4. Consider the simple version of Winternitz’ one-time signature scheme
where bits of the message (rather than the hash of the message) are
signed. A user accidentally uses his Winternitz signature key twice.
Explain how an attacker can (typically) use these signatures to create
a new signature.

5. Let H : {0, 1}∗ → {0, 1}256 be a cryptographic hash function. We use
H as the hash function inside the Lamport and the Winternitz scheme
and also as the hash function to compress messages before signing. For
the random elements in the secret key you should assume that they
each need 256 bits.

1



(a) We use Lamport’s one-time signature together with Merkle’s tree
construction. To sign H(m) of length 256 we need to have a tree
with 256 leaves. Compute the size (in bits) of the public key, the
private key, and the the signature for this scheme.

How many hash function computations are needed in signing and
how many in verifying?

(b) We use Winternitz’ scheme with parameter k = 5, i.e., we process
5 bits at once to sign H(m) of length 256. Compute the size (in
bits) of the public key, the private key, and the signature for this
scheme.
Hint: Remember that you also need to sign the checksum com-
ponent.
How many hash function computations are needed in signing and
how many in verifying?

(c) Compare the two answers above to using the Winternitz scheme
with parameter k = 8 (also for H(m) of 256 bits) in terms of the
size of keys and signature and also in terms of how many times
you need to evaluate H.

6. In the second video it is stated that c for Winternitz decreases if any
mi increases. Explain why this is the case.

7. The HORS (Hash to Obtain Random Subset) signature scheme is an
example of a few-time signature scheme. It has integer parameters
k, t, and `, uses a hash function H : {0, 1}∗ → {0, 1}k·log2 t and a one-
way function f : {0, 1}` → {0, 1}`. For simplicity assume that H is
surjective.

To generate the key pair, a user picks t strings si ∈ {0, 1}` and computes
vi = f(si) for 0 ≤ i < t. The public key is P = (v0, v1, . . . , vt−1); the
secret key is S = (s0, s1, . . . , st−1).

To sign a message m ∈ {0, 1}∗ compute H(m) = (h0, h1, . . . , hk−1),
where each hi ∈ {0, 1, 2, . . . , t − 1}. The signature on m is σ =
(sh0 , sh1 , sh2 , . . . , shk−1

).

To verify the signature, compute H(m) = (h0, h1, . . . , hk−1) and
(f(sh0), f(sh1), f(sh2), . . . , f(shk−1

)) and verify that f(shi
) = vhi

for
0 ≤ i < t.

2



(a) Let ` = 80, t = 25, and k = 3. How large (in bits) are the public
and secret keys? How large is a signature? How many different
signatures can the signer generate for a fixed key pair as H(m)
varies? Ignore that s-values could collide.

(b) The same public key can be used for r + 1 signatures if H is r-
subset-resilient, meaning that given r signatures and thus r vectors
σj = (shj,0

, shj,1
, shj,2

, . . . , shj,k−1
), 1 ≤ j ≤ r the probability that

H(m′) consists entirely of components in {hj,i|0 ≤ i < k, 1 ≤ j ≤
r} is negligible.

Even for r = 1, i.e. after seeing just one typical signature, an
attacker has an advantage at creating a fake signature. What are
the options beyond exact collisions in H?

(c) Let ` = 80, t = 25, and k = 3. Let m be a message so that
H(m) = (h0, h1, h2) satisfies that hi 6= hj for i 6= j. You get to
specify messages that Alice signs. You may not ask Alice to sign
m.

State the smallest number of HORS signatures you need to request
from Alice in order to construct a signature on m? How many calls
to H does this require on average? You should assume that H
and f do not have additional weaknesses beyond having too small
parameters. Explain how you could use under 1000 evaluations of
H if you are allowed to ask for two signatures.

3


