
NTRU and BLISS

Tanja Lange

Technische Universiteit Eindhoven

23 & 30 April 2019

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 1 / 19

NTRU and BLISS

Tanja Lange

Technische Universiteit Eindhoven

23 & 30 April 2019

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 2 / 19

NTRU

Introduced by Hoffstein–Pipher–Silverman in 1998.

Security related to lattice problems; pre-version cryptanalyzed with
LLL by Coppersmith and Shamir.

System parameters (n, q), n prime, integer q, gcd(3, q) = 1.

All computations done in ring R = Z[x]/(xn − 1).

Private key: f , g ∈ R sparse with coefficients in {−1, 0, 1}.
Additional requirement: f must be invertible in R modulo q.

Public key h = 3g/f mod q.

Can see this as lattice with basis matrix

B =

(
q In 0
H In

)
,

where H corresponds to multiplication by h/3 modulo xn − 1.

(g , f) is a short vector in the lattice as result of

(k , f)B = (kq + f · h/3, f) = (g , f)

for some polynomial k (from fh/3 = g − kq).

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 3 / 19

NTRU

Introduced by Hoffstein–Pipher–Silverman in 1998.

Security related to lattice problems; pre-version cryptanalyzed with
LLL by Coppersmith and Shamir.

System parameters (n, q), n prime, integer q, gcd(3, q) = 1.

All computations done in ring R = Z[x]/(xn − 1).

Private key: f , g ∈ R sparse with coefficients in {−1, 0, 1}.
Additional requirement: f must be invertible in R modulo q.

Public key h = 3g/f mod q.

Can see this as lattice with basis matrix

B =

(
q In 0
H In

)
,

where H corresponds to multiplication by h/3 modulo xn − 1.

(g , f) is a short vector in the lattice as result of

(k , f)B = (kq + f · h/3, f) = (g , f)

for some polynomial k (from fh/3 = g − kq).

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 3 / 19

Classic NTRU

System parameters (n, q), n prime, integer q, gcd(3, q) = 1.

All computations done in ring R = Z[x]/(xn − 1), some use additional
reduction modulo q, ring denoted by Rq.

Private key: f , g ∈ R with coefficients in {−1, 0, 1}, almost all
coefficients are zero (small fixed number are nonzero).
Additional requirement: f must be invertible in R modulo q and
modulo 3.

Public key h = 3g/f mod q.

Encryption of message m ∈ R, coefficients in {−1, 0, 1}:
Pick random, sparse r ∈ R, same sample space as f ; compute:

c = r · h + m mod q.

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 4 / 19

Classic NTRU

System parameters (n, q), n prime, integer q, gcd(3, q) = 1.

All computations done in ring R = Z[x]/(xn − 1), some use additional
reduction modulo q, ring denoted by Rq.

Private key: f , g ∈ R with coefficients in {−1, 0, 1}, almost all
coefficients are zero (small fixed number are nonzero).
Additional requirement: f must be invertible in R modulo q and
modulo 3.

Public key h = 3g/f mod q.

Encryption of message m ∈ R, coefficients in {−1, 0, 1}:
Pick random, sparse r ∈ R, same sample space as f ; compute:

c = r · h + m mod q.

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 4 / 19

Classic NTRU

System parameters (n, q), n prime, integer q, gcd(3, q) = 1.

All computations done in ring R = Z[x]/(xn − 1), some use additional
reduction modulo q, ring denoted by Rq.

Private key: f , g ∈ R with coefficients in {−1, 0, 1}, almost all
coefficients are zero (small fixed number are nonzero).
Additional requirement: f must be invertible in R modulo q and
modulo 3.

Public key h = 3g/f mod q.

Encryption of message m ∈ R, coefficients in {−1, 0, 1}:
Pick random, sparse r ∈ R, same sample space as f ; compute:

c = r · h + m mod q.

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 4 / 19

Decryption failures

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough then a
equals 3rg + fm in R and m = a/f mod 3.
Let

L(d , t) ={F ∈ R|F has d coefficients equal to 1

and t coefficients equal to −1, all others 0}.

Let f ∈ L(df , df − 1), r ∈ L(dr , dr), and g ∈ L(dg , dg) with dr < dg .
Then 3rg + fm has coefficients of size at most

3 · 2dr + 2df − 1

which is larger than q/2 for typical parameters. Such large coefficients are
highly unlikely – but annoying for applications and guarantees.
Security decreases with large q; reduction is important.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 5 / 19

Evaluation-at-1 attack

Ciphertext equals c = rh + m and r ∈ L(dr , dr), so r(1) = 0 and
g ∈ L(dg , dg), so h(1) = g(1)/f (1) = 0.

This implies
c(1) = r(1)h(1) + m(1) = m(1)

which gives information about m, in particular if |m(1)| is large.

NTRU rejects extreme messages – this is dealt with by randomizing m via
a padding (not mentioned so far).

For other choices of r and h, such as L(dr , dr − 1) or such,
one knows r(1) and h is public, so evaluation at 1 leaks m(1).

Could also replace xn − 1 by Φn = (xn − 1)/(x − 1) to avoid attack.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 6 / 19

Evaluation-at-1 attack

Ciphertext equals c = rh + m and r ∈ L(dr , dr), so r(1) = 0 and
g ∈ L(dg , dg), so h(1) = g(1)/f (1) = 0.

This implies
c(1) = r(1)h(1) + m(1) = m(1)

which gives information about m, in particular if |m(1)| is large.

NTRU rejects extreme messages – this is dealt with by randomizing m via
a padding (not mentioned so far).

For other choices of r and h, such as L(dr , dr − 1) or such,
one knows r(1) and h is public, so evaluation at 1 leaks m(1).

Could also replace xn − 1 by Φn = (xn − 1)/(x − 1) to avoid attack.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 6 / 19

Mathematical attacks

Meet-in-the-middle attack;

Lattice-basis reduction (e.g. LLL, BKZ);

Hybrid attack, combining both.

Crypto attacks:

Chosen-ciphertext attacks;

Decryption-failure attacks;

Complicated padding systems.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 7 / 19

Odlyzko’s meet-in-the-middle attack on NTRU

Idea: split the possibilities for f in two parts

h = (f1 + f2)−13g

f1 · h = 3g − f2 · h.

If there was no g : collision search in f1 · h and −f2 · h

Solution: look for collisions in c(f1 · h) and c(−f2 · h) with

c(a0 + a1x + · · ·+ an−1x
n−1) = (1(a0 > 0), . . . , 1(an−1 > 0))

using that g is small and thus +g often does not change the sign.

If c(f1 · h) = c(−f2 · h) check whether h(f1 + f2) is in L(dg , dg).

Basically runs in squareroot of size of search space.

General running time / memory mitm (Christine van Vredendaal)

L =
√
|S |/
√
s.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 8 / 19

Odlyzko’s meet-in-the-middle attack on NTRU

Idea: split the possibilities for f in two parts

h = (f1 + f2)−13g

f1 · h = 3g − f2 · h.

If there was no g : collision search in f1 · h and −f2 · h
Solution: look for collisions in c(f1 · h) and c(−f2 · h) with

c(a0 + a1x + · · ·+ an−1x
n−1) = (1(a0 > 0), . . . , 1(an−1 > 0))

using that g is small and thus +g often does not change the sign.

If c(f1 · h) = c(−f2 · h) check whether h(f1 + f2) is in L(dg , dg).

Basically runs in squareroot of size of search space.

General running time / memory mitm (Christine van Vredendaal)

L =
√
|S |/
√
s.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 8 / 19

Odlyzko’s meet-in-the-middle attack on NTRU

Idea: split the possibilities for f in two parts

h = (f1 + f2)−13g

f1 · h = 3g − f2 · h.

If there was no g : collision search in f1 · h and −f2 · h
Solution: look for collisions in c(f1 · h) and c(−f2 · h) with

c(a0 + a1x + · · ·+ an−1x
n−1) = (1(a0 > 0), . . . , 1(an−1 > 0))

using that g is small and thus +g often does not change the sign.

If c(f1 · h) = c(−f2 · h) check whether h(f1 + f2) is in L(dg , dg).

Basically runs in squareroot of size of search space.

General running time / memory mitm (Christine van Vredendaal)

L =
√
|S |/
√
s.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 8 / 19

Attackable rotations

In NTRU, x i f is simply a rotation of f , so it has the same coefficients, just
at different positions. This means, x i f also gives a solution in the mitm
attack: hx i f = x ig has same sparsity etc., increasing the number of
targets.
Decryption using x i f works the same as with f for NTRU, so each target
is valid.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 9 / 19

Security against Odlyzko’s meet-in-the-middle attack

Number of choices for f is (
n

t

)(
n − t

t − 1

)
because f has 2t − 1 non-zero coefficients.

Number of rotations is n.

Running time / memory against NTRU

L =

√(n
t

)(n−t
t−1
)

√
n

.

Memory requirement can be reduced.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 10 / 19

Security against Odlyzko’s meet-in-the-middle attack

Number of choices for f is (
n

t

)(
n − t

t − 1

)
because f has 2t − 1 non-zero coefficients.

Number of rotations is n.

Running time / memory against NTRU

L =

√(n
t

)(n−t
t−1
)

√
n

.

Memory requirement can be reduced.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 10 / 19

Security against lattice sieving

Recall h = 3g/f in R/q.

This implies that for k ∈ R: f · h/3 + k · q = g .

NTRU lattice

(
k f

)(qIn 0
H In

)
=
(
g f

)
.

Keypair (g , f) is a short vector in this lattice.

Asymptotically sieving works in 20.292·2p+o(p) using 20.208·2p+o(p)

memory.

Crossover point between sieving and BKZ is still unclear.

Memory is more an issue than time.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 11 / 19

Security against lattice sieving

Recall h = 3g/f in R/q.

This implies that for k ∈ R: f · h/3 + k · q = g .

NTRU lattice

(
k f

)(qIn 0
H In

)
=
(
g f

)
.

Keypair (g , f) is a short vector in this lattice.

Asymptotically sieving works in 20.292·2p+o(p) using 20.208·2p+o(p)

memory.

Crossover point between sieving and BKZ is still unclear.

Memory is more an issue than time.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 11 / 19

Hybrid attack

Howgrave-Graham combines lattice basis reduction and
meet-in-the-middle attack.

Idea: reduce submatrix of the NTRU lattice,
then perform mitm on the rest.

Use BKZ on submatrix B to get B ′:

C ·
(
qIn 0
H In

)
=

qIw 0 0

∗ B ′ 0

∗ ∗ Iw ′

 .

Guess options for last w ′ coordinates of f , using collision search (as
before).

If the Hermite factor of B ′ is small enough, then a rounding algorithm
can detect collision of halfguesses.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 12 / 19

Hybrid attack

Howgrave-Graham combines lattice basis reduction and
meet-in-the-middle attack.

Idea: reduce submatrix of the NTRU lattice,
then perform mitm on the rest.

Use BKZ on submatrix B to get B ′:

C ·
(
qIn 0
H In

)
=

qIw 0 0

∗ B ′ 0

∗ ∗ Iw ′

 .

Guess options for last w ′ coordinates of f , using collision search (as
before).

If the Hermite factor of B ′ is small enough, then a rounding algorithm
can detect collision of halfguesses.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 12 / 19

Security against the hybrid attack

Balance the costs of the BKZ and mitm phase.

Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang
[HPSWZ15] published simplfied analyzis tool.

Compute BKZ costs with Chen-Nguyen simulator.

Estimate the mitm costs by estimating the size of
the projected space [HPSWZ15].

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 13 / 19

Security against the hybrid attack

Balance the costs of the BKZ and mitm phase.

Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang
[HPSWZ15] published simplfied analyzis tool.

Compute BKZ costs with Chen-Nguyen simulator.

Estimate the mitm costs by estimating the size of
the projected space [HPSWZ15].

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 13 / 19

How about other interesting candidates?

Bimodal Lattice Signature Scheme (BLISS) (CRYPTO ’13 by Léo
Ducas and Alain Durmus and Tancrède Lepoint and Vadim
Lyubashevsky)

Pretty short and efficient; already included in strongSwan (library for
IPsec-based VPN).

Needs noise from discrete Gaussian distribution.

Security is related to lattice-based problem; direct reduction to SISq

= Short Integer Solution mod q.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 14 / 19

https://wiki.strongswan.org/projects/strongswan/wiki/Bliss

Background

Work in R = Z[x]/(xn + 1), n = 2r , and Rq = (Z/q)[x]/(xn + 1) for
q prime.

Switch representation between polynomial and vector notation.

f (x) =
n−1∑
i=0

fix
i ⇔ f = (fn−1, fn−2, . . . , f1, f0).

Polynomial multiplication then corresponds to vector-matrix
multiplication. Let f , g ,∈ Rq, then

f · g = fG = gF ,

where F ,G ∈ (Z/q)n×n match vectors of x i f and x jg .
f0 −fn−1 −fn−2 . . . −f1
f1 f0 −fn−1 . . . −f2
...

...
. . .

...
fn−1 fn−2 fn−3 . . . f0

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 15 / 19

Simplified BLISS

Secret key S = (s1, s2) = (f , 2g + 1) ∈ R2
q , f , g sparse in {0,±1}n.

Public key A = (a1, a2) ∈ R2
2q, with key equation

a1s1 + a2s2 ≡ q mod 2q.

Computed as aq = (2g + 1)/f mod q (restart if f is not invertible);
then A = (2aq, q − 2) mod 2q.

2aqs1 + (q − 2)s2 ≡ 2(2g + 1)/f · f + (q − 2)(2g + 1) ≡ q mod 2q.

Attacker can verify key guess for f with key equation; g computable;
−S just as good as S .

To sign m, sample y from discrete n-dim Gaussian Dn
σ .

c = H(Ay mod 2q,m) // H special sparse hash function.

Signature: (z , c) with z = y + (−1)bs1 · c mod 2q. // b random
Algorithm uses rejection sampling so that it does not leak s1.

Accept signature if z is short and c = H(Az + qc mod 2q,m).
Works: Az + qc ≡ A(y + (−1)bSc) + qc ≡ A(y + (−1)bs1c) + qc ≡
Ay + ((−1)bAS + q) ≡ Ay mod 2q

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 16 / 19

Simplified BLISS

Secret key S = (s1, s2) = (f , 2g + 1) ∈ R2
q , f , g sparse in {0,±1}n.

Public key A = (a1, a2) ∈ R2
2q, with key equation

a1s1 + a2s2 ≡ q mod 2q.

Computed as aq = (2g + 1)/f mod q (restart if f is not invertible);
then A = (2aq, q − 2) mod 2q.

2aqs1 + (q − 2)s2 ≡ 2(2g + 1)/f · f + (q − 2)(2g + 1) ≡ q mod 2q.

Attacker can verify key guess for f with key equation; g computable;
−S just as good as S .

To sign m, sample y from discrete n-dim Gaussian Dn
σ .

c = H(Ay mod 2q,m) // H special sparse hash function.

Signature: (z , c) with z = y + (−1)bs1 · c mod 2q. // b random
Algorithm uses rejection sampling so that it does not leak s1.

Accept signature if z is short and c = H(Az + qc mod 2q,m).
Works: Az + qc ≡ A(y + (−1)bSc) + qc ≡ A(y + (−1)bs1c) + qc ≡
Ay + ((−1)bAS + q) ≡ Ay mod 2q

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 16 / 19

Simplified BLISS

Secret key S = (s1, s2) = (f , 2g + 1) ∈ R2
q , f , g sparse in {0,±1}n.

Public key A = (a1, a2) ∈ R2
2q, with key equation

a1s1 + a2s2 ≡ q mod 2q.

Computed as aq = (2g + 1)/f mod q (restart if f is not invertible);
then A = (2aq, q − 2) mod 2q.

2aqs1 + (q − 2)s2 ≡ 2(2g + 1)/f · f + (q − 2)(2g + 1) ≡ q mod 2q.

Attacker can verify key guess for f with key equation; g computable;
−S just as good as S .

To sign m, sample y from discrete n-dim Gaussian Dn
σ .

c = H(Ay mod 2q,m) // H special sparse hash function.

Signature: (z , c) with z = y + (−1)bs1 · c mod 2q. // b random
Algorithm uses rejection sampling so that it does not leak s1.

Accept signature if z is short and c = H(Az + qc mod 2q,m).
Works: Az + qc ≡ A(y + (−1)bSc) + qc ≡ A(y + (−1)bs1c) + qc ≡
Ay + ((−1)bAS + q) ≡ Ay mod 2q

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 16 / 19

Discrete Gaussian

Step 1 in signature algorithm: y ← Dm
σ

This is required to achieve (provable) security and small signature size.
Not straightforward to do in practice: high precision required.
Side-channel attack on sampling gives (part of) y .
Can get ±s1 = (z − y)/c ∈ Rq if we know y , the error
vector/polynomial; (c needs to be invertible).
Full details in https://eprint.iacr.org/2016/300 (with Groot
Bruinderink, Hülsing, and Yarom).

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 17 / 19

https://eprint.iacr.org/2016/300

LLL conditions

Lenstra Lenstra Lovasz (1982)

On input a basis {v1, v2, . . . , vn} output a short vector v ′1.

Actually, LLL outputs a new, shorter and more orthogonal basis.

LLL uses many elements from Gram-Schmidt orthogonalization:
I for j = 1 to n
I for i = 1 to j − 1
I µij =

〈v∗
i ,vj〉
〈v∗

i ,v
∗
i 〉

I v∗j = vj −
∑j−1

i=1 µijv
∗
i

Note that the µij are not integers, so the v∗j are not in the lattice.

A lattice basis is LLL reduced for parameter 0.25 < δ < 1 if
I |µij | ≤ 0.5 for all 1 ≤ j < i ≤ n,
I (δ − µ2

i−1i)||v∗i−1||2 ≤ ||v∗i ||2.

This guarantees ||v1|| ≤ 2(n−1)/4 det(L), where det(L) is the
determinant of the lattice.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 18 / 19

LLL conditions

Lenstra Lenstra Lovasz (1982)

On input a basis {v1, v2, . . . , vn} output a short vector v ′1.

Actually, LLL outputs a new, shorter and more orthogonal basis.

LLL uses many elements from Gram-Schmidt orthogonalization:
I for j = 1 to n
I for i = 1 to j − 1
I µij =

〈v∗
i ,vj〉
〈v∗

i ,v
∗
i 〉

I v∗j = vj −
∑j−1

i=1 µijv
∗
i

Note that the µij are not integers, so the v∗j are not in the lattice.

A lattice basis is LLL reduced for parameter 0.25 < δ < 1 if
I |µij | ≤ 0.5 for all 1 ≤ j < i ≤ n,
I (δ − µ2

i−1i)||v∗i−1||2 ≤ ||v∗i ||2.

This guarantees ||v1|| ≤ 2(n−1)/4 det(L), where det(L) is the
determinant of the lattice.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 18 / 19

LLL algorithm (from Cohen, GTM 138, transposed)

Input: Basis {v1, v2, . . . , vn} of lattice L, 0.25 < δ < 1
Output: LLL reduced basis for L with parameter δ

1 k ← 2, kmax ← 1, v∗1 ← v1, V1 = 〈v1, v1〉
2 If k ≤ kmax go to step 3; else kmax ← k , v∗k ← vk . For j = 1 to k − 1

I put µjk ← 〈v∗j , vk〉/Vj and v∗k ← v∗k − µjkv
∗
j

Vk = 〈vk , vk〉
3 Execute RED(k , k − 1). If (δ − µ2i−1i)Vk−1 > Vk execute SWAP(k)

and k ← max{2, k − 1}; else for = k − 2 down to 1 execute
RED(k , j) and k ← k + 1.

4 If k ≤ n to to step 2; else output basis {v1, v2, . . . , vn}.

RED(k , j): If |µjk | ≤ 0.5 return; else q ← bµjke, vk ← vk − qvj ,
µjk ← µjk − q, for i = 1 to j − 1 put µik ← µik − qµij and return.

SWAP(k): Swap vk and vk−1. If k > 2 for j = 1 to k − 2 swap µjk
and µjk−1 and update all variables to match (see p.88 in Cohen)

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 19 / 19

