NTRU and BLISS

Tanja Lange
Technische Universiteit Eindhoven

23 & 30 April 2019

Tanja Lange (TU/e) NTRU and BLISS

NTRU and BLISS

Tanja Lange
Technische Universiteit Eindhoven

23 & 30 April 2019

Tanja Lange (TU/e) NTRU and BLISS

NTRU

@ Introduced by Hoffstein—Pipher-Silverman in 1998.

@ Security related to lattice problems; pre-version cryptanalyzed with
LLL by Coppersmith and Shamir.

e System parameters (n, q), n prime, integer g, gcd(3,q) = 1.

@ All computations done in ring R = Z[x]/(x" — 1).

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 3/19

NTRU

@ Introduced by Hoffstein—Pipher-Silverman in 1998.

@ Security related to lattice problems; pre-version cryptanalyzed with
LLL by Coppersmith and Shamir.

System parameters (n, q), n prime, integer g, gcd(3,q) = 1.

All computations done in ring R = Z[x]|/(x" — 1).

Private key: f, g € R sparse with coefficients in {—1,0,1}.
Additional requirement: f must be invertible in R modulo g.
Public key h = 3g/f mod gq.

Can see this as lattice with basis matrix

([qlh O
e=(3" 1),

where H corresponds to multiplication by h/3 modulo x" — 1.
(g,f) is a short vector in the lattice as result of

for some polynomial k (from fh/3 = g — kq).

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 3/19

Classic NTRU

e System parameters (n, q), n prime, integer g, gcd(3,q) = 1.
@ All computations done in ring R = Z[x]/(x" — 1), some use additional
reduction modulo g, ring denoted by R,.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 4/19
/

Classic NTRU

@ System parameters (n, q), n prime, integer g, gcd(3,q) = 1.

@ All computations done in ring R = Z[x]/(x" — 1), some use additional
reduction modulo g, ring denoted by R,.

@ Private key: f, g € R with coefficients in {—1,0, 1}, almost all
coefficients are zero (small fixed number are nonzero).
Additional requirement: f must be invertible in R modulo g and
modulo 3.

@ Public key h =3g/f mod gq.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 4/19

Classic NTRU

@ System parameters (n, q), n prime, integer g, gcd(3,q) = 1.

@ All computations done in ring R = Z[x]/(x" — 1), some use additional
reduction modulo g, ring denoted by R,.

Private key: f, g € R with coefficients in {—1,0,1}, almost all
coefficients are zero (small fixed number are nonzero).

Additional requirement: f must be invertible in R modulo g and
modulo 3.

Public key h = 3g/f mod gq.

Encryption of message m € R, coefficients in {—1,0,1}:

Pick random, sparse r € R, same sample space as f; compute:

c=r-h+ mmod q.

Decryption of c € R;: Compute
a=f-c=f(rh+m)=f(3rg/f+ m)=3rg + fmmod q,

move all coefficients to [—q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 4/19

Decryption failures
Decryption of ¢ € Ry: Compute

a=f-c=f(rh+m)="f(3rg/f + m)=3rg+ fmmod q,

move all coefficients to [—q/2, q/2]. If everything is small enough then a
equals 3rg + fm in R and m = a/f mod 3.

Let
L(d,t) ={F € R|F has d coefficients equal to 1

and t coefficients equal to —1, all others 0}.

Let f € L(df,df — 1), r € L(d,,d,), and g € L(dg, dg) with d, < dj.
Then 3rg + fm has coefficients of size at most

3-2d,+2dr —1

which is larger than q/2 for typical parameters. Such large coefficients are
highly unlikely — but annoying for applications and guarantees.
Security decreases with large g; reduction is important.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 5/19

Evaluation-at-1 attack

Ciphertext equals ¢ = rh+ m and r € L(d,,d,), so r(1) =0 and
g € L(dg, dg), so h(1) = g(1)/f(1) = 0.

This implies
c(1) = r(1)h(1) + m(1) = m(1)
which gives information about m, in particular if |m(1)] is large.

NTRU rejects extreme messages — this is dealt with by randomizing m via
a padding (not mentioned so far).

For other choices of r and h, such as L(d,,d, — 1) or such,
one knows r(1) and h is public, so evaluation at 1 leaks m(1).

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 6 /19

Evaluation-at-1 attack

Ciphertext equals ¢ = rh+ m and r € L(d,,d,), so r(1) =0 and
g € L(dg, dg), so h(1) = g(1)/f(1) = 0.
This implies

c(1) = r(1)h(1) + m(1) = m(1)

which gives information about m, in particular if |m(1)] is large.

NTRU rejects extreme messages — this is dealt with by randomizing m via
a padding (not mentioned so far).

For other choices of r and h, such as L(d,,d, — 1) or such,
one knows r(1) and h is public, so evaluation at 1 leaks m(1).

Could also replace x” — 1 by ®, = (x" — 1)/(x — 1) to avoid attack.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 6 /19

Mathematical attacks

@ Meet-in-the-middle attack;
o Lattice-basis reduction (e.g. LLL, BKZ);
@ Hybrid attack, combining both.

Crypto attacks:
@ Chosen-ciphertext attacks;
o Decryption-failure attacks;

@ Complicated padding systems.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 7 /19

Odlyzko's meet-in-the-middle attack on NTRU

@ ldea: split the possibilities for f in two parts

h=(f+5H)13g
fi-h=3g—f-h

o If there was no g: collision search in f; - hand —f> - h

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019

8/19

Odlyzko's meet-in-the-middle attack on NTRU

@ ldea: split the possibilities for f in two parts

h=(h+hH)13g
fi-h=3g—f-h

If there was no g: collision search in f; - hand —f> - h

Solution: look for collisions in ¢(f; - h) and c(—f - h) with
c(ao + arx + -+ ap-1x"1) = (L(ap > 0),...,1(ap-1 > 0))

using that g is small and thus +g often does not change the sign.
If c(fi - h) = c(—f> - h) check whether h(f; + f) is in L(dg, dg).
Basically runs in squareroot of size of search space.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 8 /19

Odlyzko's meet-in-the-middle attack on NTRU

@ ldea: split the possibilities for f in two parts

h=(h+h)'3g
f1-h=3g—f2~h.

If there was no g: collision search in f; - hand —f> - h

Solution: look for collisions in ¢(f; - h) and c(—f - h) with
clag + aix+ -+ ap_1x"1) = (1(ag > 0),...,1(ap_1 > 0))

using that g is small and thus +g often does not change the sign.
If c(fi - h) = c(—f> - h) check whether h(f; + f) is in L(dg, dg).
Basically runs in squareroot of size of search space.

General running time / memory mitm (Christine van Vredendaal)

L=/SI/V5.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 8 /19

Attackable rotations

In NTRU, x/f is simply a rotation of f, so it has the same coefficients, just
at different positions. This means, x'f also gives a solution in the mitm
attack: hx'f = x’g has same sparsity etc., increasing the number of
targets.

Decryption using x'f works the same as with f for NTRU, so each target
is valid.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 9 /19

Security against Odlyzko's meet-in-the-middle attack

@ Number of choices for f is

()

because f has 2t — 1 non-zero coefficients.

@ Number of rotations is n.

@ Running time / memory against NTRU

=T

Tanja Lange (TU/e) NTRU and BLISS

R

23 & 30 April 2019

10 / 19

Security against Odlyzko's meet-in-the-middle attack

Number of choices for f is

()

because f has 2t — 1 non-zero coefficients.

Number of rotations is n.

Running time / memory against NTRU

R

=T

@ Memory requirement can be reduced.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019

10 / 19

Security against lattice sieving

@ Recall h=3g/f in R/q.
@ This implies that for k e R: f-h/3+ k-q=g.
o NTRU lattice

(%))= 0.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019

11 /19

Security against lattice sieving

Recall h=3g/f in R/q.
This implies that for k € R: f-h/3+ k-q=g.
NTRU lattice

(%))= 0.

Keypair (g, f) is a short vector in this lattice.

Asymptotically sieving works in 20-292:2p+0(P) ysjng 20-208-2p+0(p)
memory.

Crossover point between sieving and BKZ is still unclear.

Memory is more an issue than time.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 1 /19

Hybrid attack

Howgrave-Graham combines lattice basis reduction and
meet-in-the-middle attack.

@ |dea: reduce submatrix of the NTRU Ilattice,
then perform mitm on the rest.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 12 /19
/

Hybrid attack

Howgrave-Graham combines lattice basis reduction and
meet-in-the-middle attack.

o ldea: reduce submatrix of the NTRU lattice,
then perform mitm on the rest.

@ Use BKZ on submatrix B to get B’
gl, 0 0
) qlh 0\ _ 7
C (H /n> = x B 0

* %y

@ Guess options for last w’ coordinates of f, using collision search (as
before).

o If the Hermite factor of B’ is small enough, then a rounding algorithm
can detect collision of halfguesses.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 12 /19

Security against the hybrid attack

@ Balance the costs of the BKZ and mitm phase.

Tanja Lange (TU/e) NTRU and BLISS

Security against the hybrid attack

@ Balance the costs of the BKZ and mitm phase.

@ Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang
[HPSWZ15] published simplfied analyzis tool.

o Compute BKZ costs with Chen-Nguyen simulator.

@ Estimate the mitm costs by estimating the size of
the projected space [HPSWZ15].

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 13 /19

How about other interesting candidates?

Bimodal Lattice Signature Scheme (BLISS) (CRYPTO '13 by Léo
Ducas and Alain Durmus and Tancrede Lepoint and Vadim
Lyubashevsky)

Pretty short and efficient; already included in strongSwan (library for
IPsec-based VPN).

Needs noise from discrete Gaussian distribution.

Security is related to lattice-based problem; direct reduction to SIS,
= Short Integer Solution mod q.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 14 /19

https://wiki.strongswan.org/projects/strongswan/wiki/Bliss

Background

e Work in R =Z[x]/(x"+ 1), n=2", and Ry = (Z/q)[x]/(x" + 1) for

g prime.
@ Switch representation between polynomial and vector notation.
n—1
Fx) = fix' & f=(fo1,foa,....h,h).
i=0
@ Polynomial multiplication then corresponds to vector-matrix
multiplication. Let f, g, € Rq, then

f-g=1G=gF,
where F, G € (Z/q)™" match vectors of x'f and x/g.
fo —foo1 —fho ... —A
fi o, —foo1 ... —Hh
fn—l fn—2 fn—3 fb

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019

15 / 19

Simplified BLISS
@ Secret key S = (s1,%) = (f,2g +1) € R2, f, g sparse in {0,41}".
@ Public key A= (a1, a) € R22q, with key equation
a1s1 + a»s» = g mod 2q.
e Computed as ag = (2g + 1)/f mod q (restart if f is not invertible);
then A = (2a4, ¢ — 2) mod 2q.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 16 / 19

Simplified BLISS

@ Secret key S = (s1,%) = (f,2g +1) € R2, f, g sparse in {0,41}".
@ Public key A= (a1,a2) € R22q, with key equation
ais1 + a»s» = g mod 2q.
o Computed as a; = (2g + 1)/f mod q (restart if f is not invertible);
then A = (2a4, ¢ — 2) mod 2q.
@ 2agsi +(q—2)s, =2(2g +1)/f - f + (g —2)(2g + 1) = g mod 2q.
o Attacker can verify key guess for f with key equation; g computable;
—S just as good as S.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 16 / 19

Simplified BLISS

o Secret key S = (s1,5) = (f,2g +1) € Rg, f,g sparse in {0, £1}".
Public key A= (a1,a;) € R22q, with key equation

ais1 + a»s» = g mod 2q.

Computed as a; = (2g + 1)/f mod q (restart if f is not invertible);
then A = (2a4, ¢ — 2) mod 2q.

2ag51+(q—2)so =2(2g +1)/f - f + (9 — 2)(2g + 1) = g mod 2q.
Attacker can verify key guess for f with key equation; g computable;
—S just as good as S.

@ To sign m, sample y from discrete n-dim Gaussian D].
e ¢ = H(Ay mod 2q, m) // H special sparse hash function.
e Signature: (z,¢) with z=y + (=1)Ps; - ¢ mod 2gq. // b random

Algorithm uses rejection sampling so that it does not leak s;.

Accept signature if z is short and ¢ = H(Az + gc mod 2q, m).
Works: Az + gc = A(y + (—1)2Sc) + gc = A(y + (—1)Psic) + gc =
Ay + ((—1)PAS + q) = Ay mod 2¢q

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 16 / 19

Discrete Gaussian

N

Step 1 in signature algorithm: y < D"

This is required to achieve (provable) security and small signature size.
Not straightforward to do in practice: high precision required.
Side-channel attack on sampling gives (part of) y.

Can get +s1 = (z — y)/c € Ry if we know y, the error

vector /polynomial; (¢ needs to be invertible).

e Full details in https://eprint.iacr.org/2016/300 (with Groot
Bruinderink, Hiilsing, and Yarom).

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 17 /19

https://eprint.iacr.org/2016/300

LLL conditions

Lenstra Lenstra Lovasz (1982)

@ On input a basis {vi, v2,...,v,} output a short vector vj.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 18 /19

LLL conditions

Lenstra Lenstra Lovasz (1982)
@ On input a basis {vi, v2,...,v,} output a short vector vj.

@ Actually, LLL outputs a new, shorter and more orthogonal basis.
@ LLL uses many elements from Gram-Schmidt orthogonalization:
» forj=1ton
» fori=1toj—1

> I <V,'*)Vj>

Hij = (v ,v*)

i
* __

) J—1 ok
V= D Y

A lattice basis is LLL reduced for parameter 0.25 < § < 1 if
> |pi] <05foralll1<j<i<n,
> (0= pEg)Iviall? < vyl
This guarantees ||vi|| < 2("=1/*det(L), where det(L) is the
determinant of the lattice.

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019

Note that the i are not integers, so the vj* are not in the lattice.

18 / 19

LLL algorithm (from Cohen, GTM 138, transposed)

Input: Basis {v1, va,..., vy} of lattice L, 0.25 < § < 1
Output: LLL reduced basis for L with parameter ¢
Q k<« 2, kmax — 1, Vl* <~ Vi, V1 = <V1, V1>
@ If k < kmax go to step 3; else kmax < k, v <= vi. For j=1to k—1
> put pjx < (v, vi)/Vj and v < v — v
Vie = (vi, vk)
© Execute RED(k, k —1). If (6 — p? |;)Vik—1 > Vi execute SWAP(k)
and k <+ max{2, k — 1}; else for = k — 2 down to 1 execute
RED(k,j) and k < k+ 1.

Q If k < nto to step 2; else output basis {v1, v, ..., vp}.

e RED(k,j): If |pujk] < 0.5 return; else g < |pjk |, vk < vk — qv;,
Wik < pjk — q, for i =1 to j — 1 put pjx < pix — qujj and return.

o SWAP(k): Swap v, and vi_1. If k > 2 for j =1 to k — 2 swap pjx

and pj,—1 and update all variables to match (see p.88 in Cohen)

Tanja Lange (TU/e) NTRU and BLISS 23 & 30 April 2019 19 /19

