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1 Introduction

Isogeny-based cryptography uses maps between elliptic curves to build public-key cryptog-
raphy. The first such system dates back to 1997, but the first publicly accessible proposals
by Couveignes [Cou06] and Rostovtsev–Stolbunov [RS06] are from 2006, after they were
used as an attack tool [GHS02, JMV05] in 2002 and 2005 and an isogeny-based hash
function [CLG09] was published in 2006. These systems use isogenies between ordinary
elliptic curves over finite fields to create a key-exchange system; the key-exchange system
is denoted CRS in the following. Stolbunov [Sto11] also shows how to use this construc-
tion for building identification schemes. Shor’s attack [Sho97], which breaks elliptic-curve
cryptography based on the discrete-logarithm problem, does not affect these constructions,
but in 2010 Childs, Jao, and Soukharev [CJS14] showed that CRS can be broken with a
sub-exponential quantum attack due to Kuperberg [Kup05]. This means that parameters
of the CRS scheme need to be scaled up asymptotically, making this already slow system
even slower, but it does not mean that the system is fundamentally broken.

In 2011, Jao and De Feo [JF11] designed a different isogeny-based system that uses iso-
genies between supersingular curves over extension fields and does not have the same weak-
ness as the above-described CRS key-exchange and which according to current knowledge
offers exponential security, even against quantum attacks. A minor downside compared
to CRS is the more complicated data flow and that the security assumption has changed
from the pure isogeny-finding problem to one where additional information is available.

In the years since, research on isogeny-based systems focused mostly on this supersingular-
isogeny Diffie-Hellman (SIDH) protocol. Many speedups were found and the security is
better understood now; one important attack [GPST16] showed that reusing keys requires
extra care such as using the Fujisaki-Okamoto transform [FO99], but for ephemeral use
no issues are known. The shared benefit of CRS and SIDH systems is that they require
very little bandwidth compared to other systems that are expected to resist attacks using
quantum computers.
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This text explains the basics of isogeny-based cryptography and the blueprint of all
attacks; it also covers state-of-the-art proposals of isogeny-based cryptography by including
pointers to a submission to the NIST project on post-quantum cryptography and more
recent developments.

The next section gives some mathematics background to have proper definitions; it is
possible to follow the other sections by knowing that an isogeny is a map between elliptic
curves that satisfies some properties. For more background on elliptic curves and isogenies
as well as proofs of the statements in the next section see, e.g., Silverman [Sil09].

2 Mathematics background: elliptic curves and iso-

genies

Let p be a prime larger than 3 and n > 0 an integer. Let Fpn denote the finite field with
pn elements. An elliptic curve E over Fpn can be written in short Weierstrass form

E : y2 = x3 + ax+ b, a, b ∈ Fpn and 4a3 + 27b2 6= 0.

Points on the elliptic curves over Fpn are all pairs (x, y) ∈ F2
pn which satisfy the curve

equation along with an extra point ∞. These points form a group with ∞ as neutral
element. This same group operation works for points over any extension field of Fpn . We
use E/Fpn to denote that E is defined over Fpn ; we use E(Fpn) to denote the group of points
on E over Fpn , and we use E when speaking about properties that hold independently of
the extension field. The number of points on an elliptic curve over Fpn is roughly pn: for
#E(Fpn) = pn + 1 − t the integer t lies in the interval [−2pn/2, 2pn/2]. An elliptic curve
over Fpn is supersingular if t ≡ 0 mod p, else the curve is ordinary.

The order of a point P ∈ E(Fpn) is the smallest integer k > 0 such that kP = ∞,
where kP means the addition of k times P . Since there are only finitely many points in
E(Fpn) the order of every point is finite; furthermore, the order of any point P ∈ E(Fpn)
divides the group order #E(Fpn). For every prime ` not dividing p there are either 1, `, or
`2 points P with `P =∞. The first case corresponds to only P =∞ satisfying kP =∞.
The second case corresponds to ` − 1 points of order ` and ∞ satisfying the equations;
these points form a cyclic group that behaves like Z/`. The third case corresponds to `2−1
points of order ` and∞ satisfying the equations; these points form a product of two cyclic
groups that behaves like Z/` × Z/`. In particular, in this case all points of order ` are
given as a linear combination aP + bQ, a, b ∈ [0, `− 1], where P and Q are points of order
` and Q is not a multiple of P .

There are other representations of elliptic curves, most notably Montgomery form [Mon87]

BY 2 = X3 + AX2 +X, A,B ∈ Fpn and B(A2 − 4) 6= 0

and Edwards form [BL07]

au2 + v2 = 1 + du2v2, a, d ∈ Fpn and ad(d− a) 6= 0
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which have advantages for implementations and, sometimes, for exposition.
Two elliptic curves E1/Fpn and E2/Fpn are isomorphic over Fpn if there exists a poly-

nomial map over Fpn that maps points (x, y) on E1 to points on E2 in a one-to-one way
which is compatible with the group operation. If E1 and E2 are given in short Weierstrass
form with ab 6= 0 any isomorphism has the form (x, y) 7→ (u2x, u3y) for some u 6= 0.

The systems we present later will consider elliptic curves up to isomorphism, i.e., work
with isomorphism classes. They thus require a unique representative for each class. The
typical choice of invariant for isomorphism classes is the j-invariant which for curves in
Weierstrass form is j = 1728 · 4a3/(4a3 + 27b2). For the example (x, y) 7→ (u2x, u3y) map
given above the curve coefficients satisfy a2 = u4a1 and b2 = u6b1 which gives the same j
for E1 and E2.

An isogeny between two elliptic curves E1/Fpn and E2/Fpn is a non-constant rational
function that maps points from E1 to points on E2 and is compatible with the group law.
In particular, it maps the neutral element ∞1 on E1 to the neutral element ∞2 on E2.
Unlike isomorphisms, isogenies need not be 1-to-1 but can have several points map to ∞2.
For isogenies of interest in cryptography1, the degree ` of an isogeny is the number of points
on E1, taken over any extension field of Fpn , mapping to ∞2. Note, this does not mean
that E2 has fewer points than E1 over Fpn , just that some points on E2 are not in the image
of points on E1 over Fpn . In fact E1/Fpn and E2/Fpn are isogenous if and only if they have
the same number of points over Fpn , i.e., #E1(Fpn) = #E2(Fpn). The set of curves that
are isogenous to E is called the isogeny class of E. Note that if E is supersingular then
all curves in its isogeny class are supersingular; similarly, ordinary curves are isogenous to
ordinary curves.

The requirement that an isogeny be compatible with the group operation means that
points of some order m coprime to ` are mapped to points of order m. An isogeny φ
of degree ` has as kernel (i.e., points mapped to ∞2) a cyclic subgroup of order `, i.e.,
containing ` points, and each kernel uniquely defines an isogeny. These points may be
defined over Fpn or over some extension field. One way of computing an isogeny is to start
with such a subgroup and then to use Vélu’s formulas [V7́1], which give an explicit equation
of the image curve and φ in terms of the coordinates of the points in the kernel. The
computational complexity of these formulas grows linearly in ` and requires computations
in the extension field over which the points in the kernel are defined.

For each isogeny φ : E1 → E2 there exists a dual isogeny φ̂ : E2 → E1 which has the
same degree ` and for which it holds that the composition φ̂◦φ = [`]E1 is the multiplication-
by-` map on E1 and likewise φ ◦ φ̂ = [`]E2 .

The `-isogeny graph over Fpn is an undirected graph that has as nodes the isomorphism
classes of elliptic curves over Fpn and two such classes are connected if there exists an `
isogeny from one curve in the class to one in the other class. (By combining the isogeny
with an isomorphism each curve in the class can be reached; note that different schemes
use different extensions of Fpn for defining the isomorphisms). The graph is undirected

because for each isogeny φ : E1 → E2, the dual isogeny φ̂ provides a map back. In an

1technically, for separable isogenies
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`-isogeny graph each node has zero, one, two, or ` + 1 edges. This number depends on
the structure of the set of points of order ` on the elliptic curve, which is a subgroup of
Z/` × Z/`. Each order-` subgroup defines an isogeny over some extension field and zero,
one, two, or ` + 1 curves that are `-isogenous to this curve may be defined over the same
field.

The set of all curves over a field Fpn splits into multiple disjoint components consisting
of curves `-isogenous to one another. In the following, we only consider curves having the
same number of points, i.e. curves that are isogenous under an isogeny of some degree.
Note that this does not imply that all of these curves are connected under an ` isogeny for
some fixed `.

Figure 1: Isogeny graph for 2-
isogenies forming a volcano with rim
and two more levels. Image credit:
Lorenz Panny.

Components of the `-isogeny graph consisting of
ordinary curves form (parts of) volcanoes (see Fig-
ure 1 for an illustration). A full volcano consists of
a circular rim (the top of the volcano) and each of
the nodes of the rim additionally has ` − 1 edges
pointing downwards, each node on lower levels has `
edges pointing downwards. Cryptosystems use only
the top of the volcano and thus pick isogeny classes
where that part is large. Each node in the top has
exactly two neighbors and repeated application of
` isogenies makes multiple steps in the same direc-
tion. For different isogeny degrees `i the rim might
split into multiple rims or multiple rims get com-
bined into a larger one. The maximal size of the rim
is the class number of the endomorphism ring; for
details on what this means see [Sut12]. An impor-
tant property for the CRS system is that the action
of isogenies on ordinary elliptic curves is commutative, i.e., the order of applying `1 and `2
isogenies does not change the isomorphism class of the image curve.

All isomorphism classes of supersingular elliptic curves over extensions of Fp have j-
invariant defined over Fp2 , so considering isomorphism classes of supersingular elliptic
curves over Fp2 covers all classes of supersingular curves, where the isomorphisms are
taken over extension fields of Fp2 . This graph consists of roughly p/12 isomorphism classes
and is (almost) ` + 1 regular and Ramanujan. This means that the graph is very well
connected and any node in the graph can be reached in few steps from any other node
(rapid mixing). It also means that there is no sense of direction – in computing multiple `
isogenies one can avoid going back but each step offers a choice of ` other edges forward.

3 The CRS system

The CRS system [Cou06, RS06] resembles closely the regular Diffie-Hellman key exchange.
It uses the overlay of multiple isogeny graphs for the same set of ordinary curves isogenous
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to one another (when allowing the isomorphism to be over a larger field). The system
parameters fix a finite field Fp, a starting curve E of known order N , and a set of primes
`i > 2, 1 ≤ i ≤ r, so that for each of these primes an `i isogeny can be computed with
not too much effort and in a unique manner. For a properly-chosen curve the number of
curves isogenous to it are on the order of

√
p.

For each of the primes `i Alice picks an exponent ai and computes the curve EA which
is
∏
`aii isogenous to E. This is typically computed as a sequence of a1 isogenies of degree

`1, a2 isogenies of degree `2, etc. Computing another `1 isogeny on φ`1(E) works similar to
the computation on E and continues on the rim of the `1 isogeny volcano. Alice’s public
key is EA and her secret key is the exponent vector (a1, a2, . . . , ar).

Similarly, Bob picks (b1, b2, . . . , br) and computes and publishes EB.
To check that Bob’s key is valid Alice verifies that the number of points on EB is N .

Starting from Bob’s curve EB, Alice computes the curve EBA which is
∏
`aii isogenous to

EB; similarly Bob computes the curve EAB which is
∏
`bii isogenous to EA. The resulting

curves are isomorphic because it does not matter whether Alice’s or Bob’s isogenies are
applied first, thus j(EBA) = j(EAB) and Alice and Bob use a key derived from j(EBA) as
their shared secret.

The cost of computing the isogenies depends on the degrees `i and, when using Vélu’s
formulas, the extension field of Fp over which points of order `i are defined. If all ai are
chosen from an interval of size m, at most mr different curves can be reached. In order to
be able to reach all ≈ √p isogenous curves efficiently it is important to overlay multiple
isogeny graphs, i.e. choose r sufficiently large, else a lot more steps are needed. This means
that the system cannot stick to primes `i for which points of order `i are defined over Fp
but needs to move to more primes and extension fields. The timing in [Sto10] makes the
system too slow to be practical, and the security of the chosen parameters was later revised
downwards.

4 The SIDH system

The SIDH system [JF11, DFJP14] uses the isogeny graph of supersingular curves over Fp2 .
Choosing p = 2nA3nB − 1 and E : Y 2 = X3 + X as starting curve means that the curves
have (p+ 1)2 = 22nA32nB points and that all 22nA − 1 points of order 2nA and all 32nB − 1
of order 3nB are defined over Fp2 . Computing degree 2nA or 3nB isogenies is very efficient
using Vélu’s formulas as the kernels are subgroups defined over Fp2 . The same holds for
all curves in the graph. The parameters are chosen so that 2nA ≈ 3nB ≈ √p.

In SIDH, Alice works with 2nA isogenies and Bob works with 3nB isogenies. Note that
unlike in CRS the degrees are known publicly, but there are about

√
p choices left; to

see this we need to look at the number of choices for a kernel of these maps. The points
of order 2nA form a space of dimension two, we can find points PA and QA of order 2nA

with QA 6= 〈PA〉. Then the subgroups of order 2nA are given by 〈PA〉, 〈PA + QA〉, 〈PA +
2QA〉, . . . , 〈PA + (2nA − 1)QA〉; each of these subgroups determines a unique 2nA isogeny.

The system parameters for SIDH are p and E as above, a basis PA, QA of the points of
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order 2nA on E, and similarly a basis PB, QB of the points of order 3nB on E.
Alice picks a secret 0 ≤ a < 2nA , computes TA = PA + aQA and the isogeny φA with

kernel 〈TA〉, landing at EA, which is (part of) her public key. Similarly, Bob picks a secret
0 ≤ b < 3nB , computes TB = PB + bQB and the isogeny φB with kernel 〈TB〉 to EB.

E EA

EB EAB

φA

φB φ′B
φ′A

Figure 2: SIDH key exchange for Al-
ice and Bob.

One difficulty in defining this system is that Alice
cannot compute an isogeny φ′A on EB that matches
φA translated by φB without having more informa-
tion on φB, but φB is Bob’s secret, so cannot be
given to Alice. The way out found by Jao and De
Feo is to include additional points in the public keys
of Alice and Bob, namely Bob also computes and
publishes φB(PA) and φB(QA). With that informa-
tion, Alice can compute T ′A = φB(PA) + aφB(QA)
and the isogeny φ′A with kernel 〈T ′A〉, landing at EBA. The use of the image points means
that EBA and Bob’s EAB are isomorphic. SIDH uses the j-invariant of the resulting curve
to compute a shared key.

In summary, Alice’s secret key is a and her public key is (EA, φA(PB), φA(QB)). Bob’s
secret key is b and his public key is (EB, φB(PA), φB(QA)).

One problem, recognized by [GPST16], is that Alice cannot validate the key she receives
from Bob. An evil Bob can perform a reaction attack on Alice to learn a by sending
her malformed public keys, e.g. sending (EB, φB(PA), φB(QA) + 2nA−1φB(PA)) has Alice
compute the same j-invariant as Bob if and only if a is even (because then T ′A = φB(PA) +
aφB(QA) = φB(PA) + a(φB(QA) + 2nA−1φB(PA)) as 2nAφB(PA) =∞B), learning one bit of
Alice’s secret. See Section 6 for how to deal with this issue.

Computing φA in one go would be very inefficient because the cost grows linearly with
the degree and φA has degree 2nA . Hence, SIDH decomposes this 2nA isogeny into nA
computations of 2 isogenies. These start with a 2 isogeny φ2 with kernel 〈2nA−1TA〉 and
compute the image φ2(TA), which is a point of order 2nA−1 on a 2-isogenous curve, so
that computing φA is the same as computing φ2 followed by a 2nA−1 isogeny with kernel
〈φ2(TA)〉. Likewise, the images of PB and QB are pushed through the 2 isogenies. A fast
sequence of steps is proposed in [DFJP14] to reduce the cost of this computation.

5 Security analysis

For CRS, an attacker is confronted with the problem of finding EAB given E, EA, and EB.
Analogous to the situation of discrete logarithms and Diffie-Hellman, there is no known
attack faster than computing Alice’s or Bob’s isogeny to get EAB.

Obviously, the number of keys has to be large enough to protect against brute force
searches or their more intelligent meet-in-the-middle variants. These search for the key in
time square-root of the search space, so in roughly 4

√
p if the key space is large enough so

that all isogenous curves can be reached.
A quantum attacker can use the attack by Childs, Jao, and Soukharev [CJS14] which

6



requires a subexponential number of calls to an oracle which compute isogenies in quantum
superposition. A very recent analysis [BLMP19] for the case of CSIDH (see below) shows
that the cost of each such oracle call contributes significantly to the cost of the attack so
that for low security levels the main concern is to defend against the above non-quantum
attacks.

For SIDH an attacker is confronted with the problem of finding EAB given E, EA,
φA(PB), φA(QB), EB, φB(PA), and φB(QA). The additional points have raised some con-
cern but no attack for balanced 2nA ≈ 3nB , such as the parameters proposed in SIKE (see
below), is known.

Alice’s and Bob’s key spaces have size ≈ √p, so meet-in-the-middle attacks run in
time roughly 4

√
p. A recent analysis [ACC+18] has shown that the cost of these attacks is

typically underestimated, meaning that smaller parameters would offer sufficient security.
On the quantum side, similarly [JS19] showed that the attack costs of the so-called

claw finding attack with 6
√
p underestimate security when taking into account the full cost

of quantum computation (RAM model) so that choosing parameters to protect against
non-quantum attacks suffices to remain secure against quantum attackers.

6 Complete instantiations of isogeny-based encryp-

tion

The only isogeny-based submission to the NIST competition is SIKE [JAC+] by Jao,
Azarderakhsh, Campagna, Costello, De Feo, Hess, Jalali, Koziel, LaMacchia, Longa, Naehrig,
Renes, Soukharev, and Urbanik. SIKE is based on SIDH and uses a transformation to
achieve CCA security and prove that ciphertexts are properly generated. Of the can-
didates that advanced to the second round, SIKE has the smallest public keys and the
smallest combined size of message and public key.

SIDH for use in TLS 1.3 has been tested by Cloudflare https://blog.cloudflare.

com/sidh-go/ in a hybrid construct with regular elliptic-curve cryptography.
After the submission deadline for the NIST competition, De Feo, Kieffer, and Smith

published [DKS18] a new way to construct curves for CRS so that the resulting system
becomes less slow. A much bigger speedup was obtained by Castryck, Lange, Martindale,
Panny, and Renes in their recent CSIDH [CLM+18] system. CSIDH works with isogenies
between Fp-isomorphism classes of supersingular curves defined over Fp. It uses the fact
that isogenies when restricted to this subset of supersingular curves commute, so that a
protocol with the same data flow as CRS becomes feasible, i.e. no additional points are
needed. The number of points on such a curve is p+1 making it very easy to control which
isogenies are defined over Fp: CSIDH puts p = 4`1 · `2 · · · `r−1 for some r and distinct odd
primes `i. This means that the resulting curve has points of order `i and Vélu’s formulas
can be used. A downside is that subexponential attacks similar to those on CRS apply but
the upshot is that speeds of CSIDH are comparable to those of SIDH while the keys are
smaller, at least at lower security levels, because no additional points are needed.
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