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1. This exercise is about code-based cryptography.

(a) Code C is given by its parity check matrix

H =

 1 1 0 1 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1


Compute a generator matrix for this code. 3 points

(b) For a Goppa code with m = 10, n of maximal size, and degree of the irreducible
polynomial t = 50, compute or give bounds for the length, dimension, and
minimum distance. 4 points

2. Let H be the parity-check matrix of a code of length n, dimension k, and minimum
distance d = 2t + 1. The school-book version of the Niederreiter system encrypts a
message m ∈ IFn2 of Hamming weight t by computing the syndrome s = H ·m.

You are given access to a decryption oracle. In the following two situations, show
how to recover m and compute how many calls to the oracle are required.

(a) The oracle decrypts any ciphertext s′ 6= s provided that s′ = H ·m′ with m′ of

Hamming weight less than or equal to t. 5 points

(b) The oracle decrypts any ciphertext s′ 6= s provided that s′ = H ·m′ with m′ of

Hamming weight exactly equal to t. 10 points

3. This exercise is about the NTRU encryption system. Remember that all computa-
tions take place in R = Z[x]/(xn−1) and are done modulo 3 or modulo q. The secret
key consists of f(x), g(x) ∈ R, where f is invertible in Rq = R/q and R3, and f has
exactly df coefficients equal to 1 and df − 1 coefficients equal to −1 for some integer
df . Similarly, g has dg coefficients equal to 1 and the same number equal to −1. All
other coefficients of f and g are 0. The public key is h = 3g/f in Rq.

To encrypt m ∈ R with coefficients in {−1, 0, 1} pick random r ∈ R with dr coef-
ficients equal to −1, the same number equal to 1, and all others equal to 0. Then
compute the ciphertext c ≡ r · h + m mod q; move all coefficients to (−q/2, q/2] to
get a unique representative of c.

To decrypt c ∈ Rq compute a = f ·c mod q, again moving all coefficients to (−q/2, q/2]
(hence we use = instead of ≡) and compute m = a/f mod 3 with coefficients in
{−1, 0, 1}.

(a) Explain why decryption recovers m for sufficiently large choices of q and show
how to choose q relative to df , dg, and dr to avoid decryption failures. You can

assume that dr ≤ dg. 6 points
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(b) One tweak of NTRU is to use public key h = g/F with F = 1 + 3f , where f is
chosen to have df coefficients equal to 1 and the same number equal to −1.
Explain how this simplifies the decryption procedure and compute lower
bounds on q in terms of df , dg, and dr to avoid decryption failures.

10 points

4. This exercise is about hash-based signatures.

(a) Explain in your own words how the the Winternitz one-time-signature scheme

works. 6 points

(b) A user accidentally uses his Winternitz signature key twice. Explain how an

attacker can use these signatures to create a new signature. 6 points

5. This exercise is about differential cryptanalysis of the same toy cipher from the
lectures. Using key (k1, k2, k3, k4, k5) ∈ ({0, 1}16)5 it encrypts a plaintext P =
P1|| . . . ||P16 ∈ {0, 1}16 as follows. Let S be the current state, we start with S = P .
Rounds i = 1, 2, 3 perform key mixing

S ← S ⊕ ki,

substitution using a Sbox (Table 2)

S ← Sbox(S1 . . . S4)|| . . . ||Sbox(S12 . . . S16),

and finally applies permutation πP (Table 1) on the state bits:

S ← SπP (1)|| . . . ||SπP (16) = S1||S5||S9|| . . . ||S12||S16.

Round 4 applies key mixing with round key k4, substitution using the sbox and finally
applies another key mixing with round key k5. After round 4, the cipher outputs the
current state S as the ciphertext C.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
πP (i) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Table 1: State bit permutation

In contrast to the lecture notes, we use the following SBox:

in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
out 4 2 14 8 10 12 7 1 15 5 0 11 9 3 6 13

Note most significant bit is left most bit, so 12 represents ‘1100’ in binary.

Table 2: Sbox
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This SBox has the following Difference Distribution Table (Table 3:

∆out
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 8 0 0 0 4 4 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 4 0 0 4 4 4
3 0 0 0 0 4 4 0 0 0 0 0 4 4 0 0 0
4 0 0 0 0 0 0 8 0 0 4 0 0 0 0 4 0
5 0 0 0 0 0 0 0 0 4 0 0 0 4 4 0 4
6 0 0 0 4 4 0 0 0 4 4 0 0 0 0 0 0
7 0 0 8 4 0 4 0 0 0 0 0 0 0 0 0 0

∆in 8 0 2 0 4 0 0 0 2 0 0 0 2 2 0 2 2
9 0 2 0 0 0 4 0 2 2 2 2 0 0 2 0 0
10 0 4 2 0 2 0 0 0 0 2 0 0 2 2 2 0
11 0 0 2 0 2 0 0 4 2 0 2 2 0 0 0 2
12 0 2 0 0 0 4 0 2 2 2 2 0 0 2 0 0
13 0 2 0 4 0 0 0 2 0 0 0 2 2 0 2 2
14 0 0 2 0 2 0 0 4 2 0 2 2 0 0 0 2
15 0 4 2 0 2 0 0 0 0 2 0 0 2 2 2 0

Table 3: Sbox difference distribution table

(a) Complete the DDT. You only have to write down the missing numbers in a table.

(Hint: to fill a column: fix ∆out; iterate over out instead of in.) 8 points

(b) Construct a differential trail for this cipher over the first three rounds with only
one active SBox in the second round and compute its estimated probability.

10 points

(c) Consider the boomerang with input plaintext difference

∆P = (0000 0100 0000 0000)

and output ciphertext difference

∆C = (0000 0000 0110 0000),

then a quartet (P (1), P (2), P (3), P (4)) satisfies this boomerang if

P (1) ⊕ P (2) = ∆P, P (3) ⊕ P (4) = ∆P, and

C(1) ⊕ C(3) = ∆C, C(2) ⊕ C(4) = ∆C.

Compute the total success probability of finding such quartets over all
round 1 & 2 differentials with the given ∆P and all round 3 & 4 differentials
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with the given ∆C, i.e., compute

psuccess =

 ∑
(∆P,∆O1,∆O2)

Pr[(∆P,∆O1,∆O2)]2

·
 ∑

(∆O2,∆O3,∆C)

Pr[(∆O2,∆O3,∆C)]2


(Hint: use the fact that in round 2 each Sbox has either input difference 0 or 4
(0100), so every active round 2 Sbox contributes a term∑

(∆In=4,∆Out∈{0,...,15})

Pr[(∆In,∆Out)]2 = 2× (4/16)2 + 1× (8/16)2.

Likewise, in round 3 each active Sbox has output difference 2 (0010).

) 10 points

6. This exercise is about applying generic cryptanalytic algorithms. Let h : {0, 1}∗ →
{0, 1}128 be a 128-bit hash function. A website stores for each user a username string
u and a 128-bit hash a = h(p) of the user’s password string p, it only allows numeric
passwords (i.e., ‘0...9‘) of length 13.

(a) Explain how to apply Hellman’s time-memory trade-off attack to h to recover

passwords from the given password space P . 10 points

(b) What is the memory complexity and online time complexity? (expressed in

Bytes and in evaluations of h, respectively). 4 points

(c) Hellman’s attack allows preimage attacks against a known small preimage set
like passwords. However it turns out that a generic cryptanalytic attack can be
used against h with complexity significantly lower than the desired 2128. This is
because h is a Merkle-Damgard construction with a secure blockcipher E(K,P )
used as a compression function without using the Davies-Meyer feedforward.
That is, for a message M that is padded and split into blocks M1, . . . ,Mr, its
hash h(M) is computed as:

CV0 = IV, CVi = E(Mi, CVi−1), h(M) = CVr.

Explain how to compute a preimage significantly faster than 2128 evaluations.
(Hint: given a hash s, consider a message consisting of two blocks M1,M2 and

use CV2 = s.) 8 points
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