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Secret-key cryptography



Main (Secret-key) primitives

Pla_intext
* Block- / Stream Cipher B
* Encryption of data Block Cipher
* Provides Secrecy Key == Encryption
|
] ] EEEEEEEE
* Massage authentication code Ciphertext

e Authentication of data
* Provides authenticity

* Hash function
e Cryptographic checksum
* Allows efficient comparison



Public-key cryptography



Main (public-key) primitives

* Digital signature
* Proof of authorship

* Provides: '/ /4
* Authentication i /\r\a\\“e
 Non-repudiation S\9

* Public-key encryption / key exchange
* Establishment of commonly known secret key
* Provides secrecy




Applications

* Code signing (Signatures)
» Software updates ql
* Software distribution
* Mobile code

 Communication security (Signatures, PKE / KEX)

* TLS, SSH, IPSec, ...

« eCommerce, online banking, eGovernment, ...
* Private online communication




Connection security (simplified)

Hi
>
pk, Cert(pk belongs to shop)
PKC to establish shared secret sk "‘
r > .TEA SHOP
p FINE TEAS & TISANES
PURE & ;LENDED
= SKC secured communication using sk
-
<




How to build PKC

(Computationally)

hard problem N PKC Scheme




Today'‘s Crypto-Eco-System

Public key cryptography:

* Deployed schemes are based on RSA- and discrete
logarithm problem (incl. ECC, DH...).

Secret key / Symmetric cryptography:
* Wide range of different schemes.

* Not based on , hard problems®, rather on , design
principles”



What happens if the TWO
problems are solved?

* No (practical) secure communication
* No online payment

* No e-Commerce

* No Internet privacy

* No private online communication
e with insurance company, public institutions, etc.

e With private contacts (this includes Skype, whatsapp,
etc. (although these are already questionable today..))

* Everyone in same WiFi network can listen to your
connection



Quantum Computing



Quantum Computing

“Ouantum computing studies theoretical computation
systems (quantum computers) that make direct use of
guantum-mechanical phenomena, such as
superposition and entanglement, to perform
operations on data. ”

-- Wikipedia



The Quantum Threat



Quantum computing

* Qubit state: ay |0) + a4 |1) with a; € C such that
as +af =1

et 0y = (1), 11y = (%)

. : : |0)+]1)
Qubit can be in state 7

-> like computing with 0 and 1 at the same time!

* Restriction: Only invertible computation.

* Restriction: Impossible to clone (copy) quantum
state.



Quantum computing |

* Restriction: To learn outcome one has to measure.

e Collapses qubit to basis state
e 1 qubit leads 1 classical bit of information
 Randomized process

* Goal: Amplify amplitude of solution vector.
* See later in lecture.

* Many fancy things like quantum teleportation
* Not important for us.



Shor's algorithm (1994)

* Quantum computers can do FFT
very efficiently

e Can be used to find period of
a function

* This can be exploited to factor in
(quantum)-poly-time

e Shor also shows how to solve
discrete log in (quantum)-poly-time




nor's factoring algorithm —

w N O WD

assical part - outline

Pick random a < N.
N
If gcd(a, N) # 1 return (gcd(a, N), gcd(a,N)).

Use quantum algorithm to find period 1t of
f(x) = a*modN,
i.e., smallest mwith f(x + 1) = f(x).

Setr=m—1,i.e., ristheorder of a
(a” = 1 mod N)

If ris odd or a”™/? = —1 mod N, restart.
Return (gcd(a™? + 1,N), gcd(a™? — 1, N)).




Shor's factoring algorithm — classical
part - a’/2 is non-trivial root of 1

ea” =1modN

e Ifrisevenand b = a"/? # —1 mod N,
a’/? is non-trivial root of 1
(a”/? = 1 mod N would imply /2 is order of a,
but we know 1 is order of a).

* Hence, a” —1= (aE—l)(cf +1)=0modN

and gcd(az — 1,N), gcd(az + 1, N) are factors of
N.



Shor’s factoring algorithm — classical
part - az + 1 are non-trivial factors of N

r

» gcd(az — 1,N) # N, otherwise N|az — 1 = az —

1= 0modN = az = 1 mod N (contradicts r is order)

e gcd(az —1,N) # 1, otherwise (Ju, v):
r r
wlaz = 1) + Nw =1 | % (aZ + 1)
r r
u(a" —1) + N(az + 1)17 = (aZ + 1)
as N|(a” — 1) this implies N| (aE + 1) and so

az+1= 0mod N = az = —1 mod N (false by
construction)



Example

e N=15,a=7
* r = 4 (check yourself)

e risevenand a”/? = 72 = 49 = 4 mod 15

» ocd (ag + 1, N) = gcd(49 + 1,15)

ocd(48,15) = 3
gcd(50,15) =5



Grover's algorithm

* Finds ,,marked item” in database with 2™ elements
using 0(22) queries
* Can be adopted to find (second-)preimages using

(1(22) and collisions using £1(23) queries for n bit
(hash) function

* Nice: Grover is provably optimal! (For random
function)

* So far: This is the best known attack against
symmetric crypto

* Double security parameter and we are fine.



Why care today?



't's a question of risk
assessment



How soon do we need to worry?

Depends on:

= How long do you need your keys to be secure?
(x yea rs?

= How much time will it take to re-tool the existing
infrastructure with large-scale quantum-safe
solution? (y years)

= How long will it take for a large-scale quantum
computer to be built (or for any other relevant
advance? (z years)

Theorem 1: If x + y > z, then worry.

What do we do here??
K_H

—mt keys revealed

time

LIWaTERLGO | 1QC 55 CryptoWorks21
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Quantum Computing

“Ouantum computing studies theoretical computation
systems (quantum computers) that make direct use of
guantum-mechanical phenomena, such as
superposition and entanglement, to perform
operations on data. ”

-- Wikipedia



Bad news

| will not tell you when a
guantum computer will be built!



Quantum computers

e 1980 Theoretical concept

* 1994 Shor‘s algorithm

e 1995 First quantum gate experimentally realized
* 1996 Grover’s algorithm

e 2014 Largest number factored: 56153



Why care today
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(Big) Players in guantum game
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A comment on D-Waves quantum
annealing computer




Interim conclusion

* Quantum computers are powerful but not almighty

e Can be used to break some crypto but not all
crypto: Deployed asymmetric falls, symmetric
survives

e Unclear when large scale QC’s ready

* If we want to preserve privacy for more than a
short time: We have to react now!
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Why not beat ‘em with their own
Weapons?

 QKD: Quantum Key distribution.

* Based on some nice quantum properties: entanglement &
collapsing measurments

* Information theoretic security -> Great!
* For sale today!

* So why don‘t we use this?

* Only short distance, point-to-point connections!
* Internet? No way!

* Longer distances require ,trusted-repeaters” ©
* We all know where this leads...

* More issues with actual implementations...



Post-Quantum Cryptography



Quantum-secure problems

No provably quantum resistant problems

We must look here

Bounded-Error
Quantum
Polynomial-Time

Credits: Buchmann, Bindel 2015



Conjectured guantum-secure
problems

* Solving multivariate quadratic equations (MQ-
problem)
-> Multivariate Crypto

* Bounded-distance decoding (BDD)
-> Code-based crypto

 Short(est) and close(st) vector problem (SVP, CVP)
-> Lattice-based crypto

* Breaking security of symmetric primitives (SHA-x-,
AES-, Keccak-,... problem)
-> Hash-based signatures / symmetric crypto



Multivariate Crypto

4x +x* +y?z =1 mod 13

7y? + 2xz? = 12 mod 13
X +y? + 12xz° =4 mod 13

Solution: x =15, y =29, z=45

Credits: Buchmann, Bindel 2015



MQ-Problem

Let x = (X3, ..., X,) € F g and MQ(n, m, F,;) denote the family of vectorial
functions F: F ; — F ' of degree 2 over F:

MQ(n,m, F,)
= {F(x) = (A, fa @U@ = ) ayxpg+ ) bix, el m]}
i,j i

The MQ Problem MQ(F, v) is defined as given v € F ' find, ifany, s € FF ; such
that F(s) = v.

Decisional version is NP-complete [Garey, Johnson'79]



Multivariate Signatures

(the traditional way)

P: F* - F™ easily invertible non-linear

SSF* > F" T:F™ - F™ affine linear

Public key: G = S°P°T, hard to invert
Secret Key: S, P,T allows to find G~1
G™l= T 1eplest

Signing: s =T 1eP~1eS~1(m)
Verifying: G(s) ="' m
Forging signature: Solve G(s) —m =0

Credits: Buchmann, Bindel 2015

Fast

Large keys:

100 kBit for 100 bit
security
Compared to

1776 bit

RSA modulus

UOV , Goubin et al., 1999
Rainbow, Ding, et al. 2005
pFlash, Cheng, 2007

Gui, Ding, Petzoldt, 2015




Multivariate Cryptography

* Breaking scheme < Solving random MQ-instance

-> NP-complete is a worst-case notion
(there might be — and there are for MQ_ -- easy instances)
-> Not a random instance

Many broken proposals
-> Qil-and-Vinegar, SFLASH, MQQ-Sig, (Enhanced) TTS, Enhanced STS.
-> Security somewhat unclear

* Only signatures
-> (new proposal for encryption exists but too recent)

. Really |ATE € keys

* New proposal with security reduction, small keys, but
large signatures.



MQ-DSS / SOFIA

* New (2016 / 2018) proposal for MQ-based
signatures

 Security reduction from MQ-problem in (Q)ROM
* Small keys, fast, large signatures (41 kB)



Coding-based cryptography - BDD

Given:  Linearcode C € Fj
* YEF
« teEN

Find: « X€C dist(xy) <t

BDD is NP-complete (Berlekamp et al. 1978) (Decisional version)

Credits: Buchmann, Bindel 2015



McEliece PKE (1978)

S, G, P matrices over F

G generator matrix for Goppa code <«

Public key: G' = SeGeP, t
Secret Key: P, S G

Encryption: c=mG +z€F"
Decryption: x=cP™1 = mSG + zP~!
solve BDD to get y = mSG

decode to obtain m

Credits: Buchmann, Bindel 2015

Allows to
solve BDD

Fast

Large public keys!
500 kBits for 100 bit security

Compared to 1776 bit RSA
modulus

IND-CPA secure version




Code-based cryptography

* Breaking scheme & Solving BDD

-> NP-complete is a worst-case notion
(there might be — and there are for BDD -- easy instances)
-> Not a random instance

However, McEliece with binary Goppa codes
survived for almost 40 years (similar situation as for
e.g. AES)

* Using more compact codes often leads to break
* So far, no practical signature scheme

* Really Ia rge public keys



Lattice-based cryptography

Basis: B = (b, b,) € Z?*?; by, b, € Z*
Lattice: A(B) = {x = By | y € Z?)

y;



Shortest vector problem (SVP)



(Worst-case) Lattice Problems

* SVP: Find shortest vector in lattice, given random
basis. NP-hard (Ajtai’96)

* Approximate SVP (aSVP): Find short vector (hnorm
< a times norm of shortest vector). Hardness
depends on a (for a used in crypto not NP-hard).

* CVP: Given random point in underlying Vectorspace
(e.g. Z™), find the closest lattice point.
(Generalization of SVP, reduction from SVP)

e Approximate SVP (aCVP): Find a ,,close” lattice
point. (Generalization of aSVP)



(Average-case) Lattice Problems
Short Integer Solution (SIS)

. . . . ~ 3
L, = n-dim. vectors with entries mod p (= n~)

Goal:
Given A = (aq,ay, ..., ay,) € Z;"™
Find ,small“s = (sq, ..., ;) € Z™ such that

As = O0modp

Reduction from worst-case aSVP.



Hash function

Setm > nlogp and define fj4: {0,1}"—> Z as
fa1(x) = Axmodp

Collision-resistance: Given short x4, x, with Ax; =
Ax, we can find a short solution as
Ax1 = AXZ = Ax1 —sz =0
A(x1 — xz) =0

So, Z = xq1 — Xy is a solution and it is short as x¢, X5
are short.



Lattice-based crypto

* SIS: Allows to construct signature schemes, hash
functions, ..., basically minicrypt.

* For more advanced applications: Learning with
errors (LWE)
* Allows to build PKE, IBE, FHE,...

 Performance: Sizes can almost reach those of RSA
(just small const. factor), really fast.

* BUT: Exact security not well accessed, yet.
Especially, no good estimate for quantum computer
aided attacks.



Hash-based Signature Schemes

[Mer89]

FI6 1 :
AN BUTHENTIEATION TREE WITH N = 8,

Page 41B

~

26-3-2019 PAGE 51



RSA — DSA — EC-DSA...




Merkle’s Hash-based Sighatures

ESIG =(=2,25.00,0)

P

A [@ [w\ [w\ [w\ [w)

P p JO e Jo L Jo Jo

OTS: OTS QTS QTS QTS QTS OTS  OTS
1% 1 7 1 1 sk i 1 1 I =

* o
v, .
......



Hash-based sighatures

* Only signatures

* Minimal security assumptions

* Well understood

* Fast & compact (2kB, few ms), but stateful, or

* Stateless, bigger and slower (41kB, several ms).

* Two Internet drafts (drafts for RFCs), one in ,,RFC
Editor queue”



NIST Competition

National Institute of Standards and Technology )

e =0 - T
Computer Security Division

Computer Security Resource Center

CSRC Home About Projects | Research Publications News & Events

CSRC HOME > GROUPS > CT > POST-QUANTUM CRYPTOGRAPHY PROJECT
Post-Quantum Cryptography

. »

Project POST-QUANTUM CRYPTO PROJECT
D t . .

PLM RIS - NEWS -- December 15, 2016: The National Institute of Standards and
Workshops / Timeline Technology (NIST) is now accepting submissions for quantum-resistant public-key
Federal Register Notices cryptographic algorithms. The deadline for submission is November 30, 2017.
Enibsene Please see the Post-Quantum Cryptography Standardization menu at left for the

i complete submission requirements and evaluation criteria.
PQC Project Contact

Archive Information )
In recent years, there has been a substantial amount of research on quantum
computers — machines that exploit quantum mechanical phenomena to solve
Post-Quantum Cryptography mathematical problems that are difficult or intractable for conventional computers.
Standardization If large-scale quantum computers are ever built, they will be able to break many of

tha nithlic_kav rnmtncvietame ciirranths in 1iea Thice winnild eariniichs camnramica

3/26/2019 Andreas Hulsing https://huelsing.net 55



Resources

* PQ Summer School:
https://2017.pqcrypto.org/school/index.html

* NIST PQC Standardization Project:
https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography

* Master Math (Selected Areas in Cryptology):
https://elo.mastermath.nl/

PQCRYPTO
P4 Pacrypto ICT-645622



https://2017.pqcrypto.org/school/index.html
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://elo.mastermath.nl/

(Hash) function families

+ Hy = {he: {0,1)" ™ > {0,1)"}
‘m(n) =n

o efficient”




One-wayness
H,, = {h;:{0,1)™™ > {0,1}"} Ve, k
$
hk — Hn

X i {01y
Ve < hk(x)

Success if hi(x*) =y,



Collision resistance

Hy, = {h:{0,1Y™™ > {0,1)"} k

$ |
hk — Hn A Sawd U
Success if
hie(xh) = hy (3 l

(x1, x3)



Second-preimage resistance

H,, = {h;:{0,1)™™ > {0,1}"} X, k

$ |
hk ($— Hn A Saw? U
xC « {Oil}m(n) &
Success if l
hi(xc) = hyp(x™) x*



Undetectability

H, = {h:{0,2)™™ = {0,1}") Yer k
$

hk$(_ Hy l

b < {0,1}

else

$
yC - {Oil}n



Pseudorandomness

Hy, = {hy: {0,1™ > {0,13")

1n

Ifb—1

ql g Hy

b
l
x).

EISG

9 <_ Um(n) n

b*



Hash-function properties

stronger /
easier to
break

Assumption /

Attacks

weaker /
harder to
break

26-3-2019 PAGE 63



Attacks on Hash Functions

MD5 MD5
Collisions Collisions
(theo.) (practical!)
SHA-1 MD5 & SHA-1
Collisions No (Second-) Preimage
(theo.) Attacks!
2004 2005 2008 2015

26-3-2019

PAGE 64



Basic Construction

26-3-2019 PAGE 65



Lamport-Diffie OTS (am9

Message M =bl,...,bm, OWF H * = n bit
SK /. .\H
H \-I / H
PK ® ® ) pl;:n,o\ ki
bl bm Mux
v
S|g ° ° ) K bm

26-3-2019 PAGE 66



EU-CMA for OTS

(o, M)

Success if M* #= M and
Verify(pk,c*, M*) = Accept




Security

Theorem:

If H is one-way then LD-OTS is one-time eu-cma-
secure.



Reduction

Input: y., k
Set H « hk

Replace random pk;,

P

sk, o sky 4
H H
L Pk, 4

sk 0 SK.1
H H
pkm,o pkm,l




Reduction

Adv. Message: M = bl,...,bm
If bi = b return fail
Set H « hy, else return Sign(M)

Replace random pk;,

Input: y,, k

S

/\

sk, o sky 4 ? L4 SKm,o SKpm,1
! !
H / H H / H
Pk1,o\ dkl,l pkm.O\ Iqkm,l
bl Mux b2 Mux bm Mux

Ky p1 ° ° ° sk

m,bm




Reduction

. X — %k E 3
Input: v, k Forgery: M* = b1*,...,bm*,
O = 01, ..,01
Set H « hy If bi # b return fail
Choose random pk; , Else return o,
sk, o sky 4 Oj* O ) sk 0 SK.1
H H H H H
Pll;,o pll;,1 -_ L b 1 pl;:n,o pl;:n,l




Reduction - Analysis

Abort in two cases:

1.bi=b
probability 2 : b is a random bit

2.bi#b

probability 1 - 1/m: At least one bit has to flip as
M* #= M

Reduction succeeds with A’s success probability
times 1/2m.



Merkle’s Hash-based Sighatures

ESIG =(=2,25.00,0)

P

A [@ [w\ [w\ [w\ [w)

P p JO e Jo L Jo Jo

OTS: OTS QTS QTS QTS QTS OTS  OTS
1% 1 7 1 1 sk i 1 1 I =

* o
v, .
......



Security

Theorem:

MSS is eu-cma-secure if OTS is a one-time eu-cma
secure signature scheme and H is a random element
from a family of collision resistant hash functions.



Reduction
|npUt: k, pkOTS

1. Choose random 0 < i < 2"

2. Generate key pair using pk s as ith OTS public
key and H < h,,

3. Answer all signature queries using sk or sign
oracle (for index i)

4. Extract OTS-forgery or collision from forgery



Reduction (Step 4, Extraction)

Forgery: (i*, oprs, Pkors, AUTH)

1. If pkyrg equals OTS pk we used for i* OTS, we got
an OTS forgery.
 Canonly beusedifi* = i.

2. Else adversary used different OTS pk.
 Hence, different leaves.
* Still same root!
* Pigeon-hole principle: Collision on path to root.



Winternitz-OTS



Recap LD-OTS [tam7s]

Message M = b1,...,bm, OWFH

SK sk, o sk, 4
H H
PK pk1,o\ #k1,1
bl Mux b2

Si g SKy b1

sk

m.0 sk

m,1

H /

pk

mo) gk

m,1

bn

Mux

m,bm




LD-OTS in MSS
7.00.0)

SIG = (i=2, 0,

Verification:
1. Verity [
2. Verify authenticity of °

We can do better!



Trivial Optimization

Message M = b1,...,,bm, OWFH * = n bit

SK skqo skq 4 L L L4 SKn,o Skm.1
H H H H H H

PK Pky o pkyy o o o PKm.o PKm.1

bl‘l\ Mux /\ Mux /L —-b1 bm—l\ Mux /\ Mux /L —bm
. | | |

Sig Sig1 o Sigy 4 ° ° ° Si8m.0 Sigm 1




Optimized LD-OTS in MSS
SIG = (i:2,x OO0

Verification:

1. Compute ° from L
2. Verify authenticity of .°

Steps 1 + 2 together verify




Germans love their ,,Ordnung”

Message M =b,,....b,,, OWFH
SK: sk, ...,5K,SK 115+, SKo
PK: H(sk,),...,H(sk.),H(sk.),...,H(sky)

Encode M: M=M| |=M =b,,.. ,b
(instead of by, —b,,.- b —b—

—

sk, ,ifb =1

Sig: sig; = ~

H(sk) , otherwise

Checksum with bad
performance!



Optimized LD-OTS

Message M =b,,....b,,, OWFH

SK: SKy,..., KKK 108 m

PK: H(sk,),...,H(skp,), H(SK 1), s H(SK 1 pog m)
Encode M: M‘ =b,,...,b_,— D" b,

—

sk, ,ifb =1

Sig: sig; = —

H(sk) , otherwise

IF one b is flipped from 1 to 0, another b; will flip from 0 to 1



Function chains

Function family: H,,:= {h;:{0,1}"— {0,1}"}
hy < Hi,

Parameter w

Chain: c¢'(x)=h (c"*(x)) = hk oh,o...oh (xz

I—times

cO(x) = x

®
)

O o ) o ) o ) o ) o ) o ) o ) o )
Y Y Y Y Y Y Y Y

ct(x) = hy(x)



WOTS

Winternitz parameter W, security parameter n,
message length m, function family H,

Key Generation: Compute [, sample h;,
c(sk,) = sk, pk; = c"1(sky)

O o ) o ) o ) o ) o ) o ) o ) o ) o ) ;O
Y Y Y Y Y Y Y Y Y g

/ c(sky)
%

\b ci(sk,) pk= ci(sk,)
o . . . . . . . . . . .
- O—O—O—O—O—O—O—O—O—O—O—O

cO(sk,) = sk,

@
Q

O
O
O
O
O
O
O
O
O
O



WOTS Signature generation

Signhature: _

o — (Gla sy G/) ' pk,= c¥1(sk,)

O—O—O—0O—0O ) ) :r% ) O—O—0O—0O
—/ N\ —/ T\ -/ —/ -/ —/ —/ -/ —/

cO(sk,) = sk, o,=cP(sk,)



WOTS Signature Verification

Verifier knows: M, w

~

~,
~
~.
~
~.
~
~,
~.
~.
~.
~
~.
~
~.
~
~.
~
~.
~
~,
~.
~.
~
~.
~,
~,
~.
~
~.
~
~,
~
~.,
~
~.
~
~.
~.
~,
SS
~

CH HCH pky
M M) M) M) 1 SN O =2 O
—/ —/ —/ -/ —/ —/ Pty —/ -
o c*(oy) 1701 (6,)
Signature:
G - (Gl, e o o , G/)
Pk,

O
Q
Q

O—O—0 =0
O, cW1-bi (c,)




WOTS Function Chains

For x € {0,1}" define ¢’ (x) = x and
« WOTS: ¢! (x) = hy(c*"1(x))

* WOTS®: ¢! (x) = R -1y (1)

« WOTS*: ¢! (x) = hpe (ci71(x) ® 1)



WOTS Security

Theorem (informally):

W-OTS is strongly unforgeable under chosen message attacks if H,,
IS a collision resistant family of undetectable one-way functions.

W-OTS? is existentially unforgeable under chosen message attacks if
H., i1s a pseudorandom function family.

W-OTSH is strongly unforgeable under chosen message attacks if H,
is a 2"d-preimage resistant family of undetectable one-way
functions.



XMSS



XMSS

Tree: Uses bitmasks

Leafs: Use binary tree
with bitmasks

OTS: WOTS?

Mesage digest:
Randomized hashing

Collision-resilient
-> signature size halved




Multi-Tree XMSS

Uses multiple layers of trees

-> Key generation
(= Building first tree on each layer)
O(2") — ©(d2hd)
1 1

-> Allows to reduce 0-=-q |

worst-case signing times
1 1
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Protest?
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Few-Time Sighature Schemes




Recap LD-OTS

Message M = b1,...,bn, OWF H * = n bit
- /é\sksk
H \-I / H
PK o o ) Pkool | Pkoz
bl bn Mux
Sig e o o sk,
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HORS (rro2]

Message M, OWF H, CRHF H’

Parameters t=23,k, with m = ka (typical a=16, k=32)

S K skl1 sk, °

P K pk, pk, b

= n bit




HORS mapping function

Message M, OWF H, CRHF H’ * = n bit
Parameters t=23,k, with m = ka (typical a=16, k=32)




HORS

Message M, OWF H, CRHF H’ * = n bit
Parameters t=22,k, with m = ka (typical a=16, k=32)

SK
PK
H’ (M)
1 1
i1 Mux Mux ik
Si((u ® ® ® S;(ik
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HORS Security

* M mapped to k element index set M! € {1, ..., t}*
* Each signature publishes k out of t secrets
* Either break one-wayness or...

* r-Subset-Resilience: After seeing index sets MJ' forr
messages msg;, 1 < j < r, hard to find msg, 1 #

msg; such that M,,‘,+1 e U, <]<TM‘ @
k

* Best generic attack: Succ, «(4,q) = q (%)

— Security shrinks with each signhature!



HORST

Using HORS with MSS requires adding PK (tn) to MSS
signature.

HORST: Merkle Tree on top of HORS-PK

* New PK = Root

* Publish Authentication Paths for HORS signature values
* PK can be computed from Sig

e With optimizations: tn — (k(logt - x + 1) + 2¥)n
* E.g. SPHINCS-256: 2 MB — 16 KB

* Use randomized message hash



SPHINCS

e Stateless Scheme C Owar O

« XMSSMT + HORST m{ LN
+ (pseudo-)random index

* Collision-resilient
* Deterministic signing

* SPHINCS-256: .
 128-bit post-quantum secure TREE,

* Hundrest of signatures / sec Oy

e 41 kb signature

* 1 kb keys logt I HORST
<O >

i




PQ-Crypto is currently a hot topic

PQCRYPTO
ICT-645622

@ PQCrypto 2016 M X ler
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Thank you!
Questions?

g £

For references & further literature see
https://huelsing.wordpress.com/hash-based-signature-schemes/literature/



