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Secret-key cryptography



Main (Secret-key) primitives

• Block- / Stream Cipher
• Encryption of data
• Provides Secrecy

• Massage authentication code
• Authentication of data
• Provides authenticity

• Hash function
• Cryptographic checksum
• Allows efficient comparison
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Public-key cryptography



Main (public-key) primitives

• Digital signature
• Proof of authorship

• Provides: 
• Authentication

• Non-repudiation

• Public-key encryption / key exchange
• Establishment of commonly known secret key

• Provides secrecy
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Applications

• Code signing (Signatures)
• Software updates

• Software distribution

• Mobile code

• Communication security (Signatures, PKE / KEX)
• TLS, SSH, IPSec, ...

• eCommerce, online banking, eGovernment, ...

• Private online communication
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Connection security (simplified)

Hi

pk, Cert(pk belongs to shop)

PKC to establish shared secret sk

SKC secured communication using sk 



How to build PKC

(Computationally) 

hard problem
RSA

DL

QR DDH

PKC Scheme
RSA-
OAEP

ECDSA DH-
KE



Today‘s Crypto-Eco-System 

Public key cryptography: 

• Deployed schemes are based on RSA- and discrete 
logarithm problem (incl. ECC, DH...).

Secret key / Symmetric cryptography: 

• Wide range of different schemes.  

• Not based on „hard problems“, rather on „design 
principles“



What happens if the TWO 
problems are solved?
• No (practical) secure communication 

• No online payment

• No e-Commerce

• No Internet privacy 

• No private online communication 
• with insurance company, public institutions, etc.
• With private contacts (this includes Skype, whatsapp, 

etc. (although these are already questionable today..))

• Everyone in same WiFi network can listen to your 
connection



Quantum Computing



Quantum Computing

“Quantum computing studies theoretical computation 
systems (quantum computers) that make direct use of 
quantum-mechanical phenomena, such as 
superposition and entanglement, to perform 
operations on data.”

-- Wikipedia



The Quantum Threat



Quantum computing

• Qubit state: 𝛼0 |  0 + 𝛼1 |  1 with 𝛼𝑖 ∈ ℂ such that 
𝛼0
2 + 𝛼1

2 = 1

• Ket: |  0 =
1
0
, |  1 =

0
1

• Qubit can be in state 
|  0 +|  1

2
-> like computing with 0 and 1 at the same time!

• Restriction: Only invertible computation.

• Restriction: Impossible to clone (copy) quantum 
state.



Quantum computing II

• Restriction: To learn outcome one has to measure. 
• Collapses qubit to basis state

• 1 qubit leads 1 classical bit of information

• Randomized process

• Goal: Amplify amplitude of solution vector.
• See later in lecture.

• Many fancy things like quantum teleportation
• Not important for us.



Shor‘s algorithm (1994)

• Quantum computers can do FFT 
very efficiently

• Can be used to find period of 
a function

• This can be exploited to factor in
(quantum)-poly-time

• Shor also shows how to solve 
discrete log in (quantum)-poly-time



Shor‘s factoring algorithm –
classical part - outline 
1. Pick random 𝑎 < 𝑁.

2. If gcd(𝑎, 𝑁) ≠ 1 return (gcd(𝑎, 𝑁), 
N

gcd 𝑎,𝑁
).

3. Use quantum algorithm to find period π of
𝑓 𝑥 = 𝑎𝑥 mod 𝑁,

i.e., smallest π with 𝑓 𝑥 + π = 𝑓 𝑥 .

4. Set r = π − 1, i.e., 𝑟 is the order of 𝑎
(𝑎𝑟 ≡ 1mod 𝑁)

5. If 𝑟 is odd or 𝑎𝑟/2 ≡ −1mod 𝑁, restart.

6. Return (gcd(𝑎𝑟/2 + 1,𝑁), gcd(𝑎𝑟/2 − 1,𝑁)).



Shor‘s factoring algorithm – classical 
part - 𝑎𝑟/2 is non-trivial root of 1

• 𝑎𝑟 ≡ 1mod 𝑁

• If 𝑟 is even and 𝑏 = 𝑎𝑟/2 ≢ −1mod 𝑁, 
𝑎𝑟/2 is non-trivial root of 1 
(𝑎𝑟/2 ≡ 1mod 𝑁 would imply 𝑟/2 is order of 𝑎, 
but we know 𝑟 is order of 𝑎).

• Hence, 𝑎𝑟 − 1 = (𝑎
𝑟

2−1)(𝑎
𝑟

2 + 1) ≡ 0 mod 𝑁

and gcd(𝑎
𝑟

2 − 1,𝑁), gcd(𝑎
𝑟

2 + 1,𝑁) are factors of 
𝑁.



Shor‘s factoring algorithm – classical 
part - 𝑎

𝑟

2 ± 1 are non-trivial factors of N

• gcd(𝑎
𝑟

2 − 1,𝑁) ≠ 𝑁, otherwise 𝑁|𝑎
𝑟

2 − 1 ⟹ 𝑎
𝑟

2 −

1 ≡ 0 mod 𝑁 ⟹ 𝑎
𝑟

2 ≡ 1mod 𝑁 (contradicts 𝑟 is order)

• gcd(𝑎
𝑟

2 − 1,𝑁) ≠ 1, otherwise ∃𝑢, 𝑣 :

𝑢 𝑎
𝑟
2 − 1 + 𝑁𝑣 = 1 | ∗ (𝑎

𝑟
2 + 1)

𝑢 𝑎𝑟 − 1 + 𝑁 𝑎
𝑟
2 + 1 𝑣 = 𝑎

𝑟
2 + 1

as𝑁| 𝑎𝑟 − 1 this implies N| 𝑎
𝑟

2 + 1 and so

𝑎
𝑟

2 + 1 ≡ 0 mod 𝑁 ⟹ 𝑎
𝑟

2 ≡ −1mod 𝑁 (false by 
construction)



Example

• 𝑁 = 15, 𝑎 = 7

• 𝑟 = 4 (check yourself)

• 𝑟 is even and 𝑎𝑟/2 = 72 = 49 ≡ 4 mod 15

• gcd 𝑎
𝑟

2 ± 1,𝑁 = gcd 49 ± 1,15

gcd 48,15 = 3
gcd 50,15 = 5



Grover‘s algorithm

• Finds „marked item“ in database with 2𝑛 elements 

using Ω(2
𝑛

2) queries

• Can be adopted to find (second-)preimages using 

Ω(2
𝑛

2) and collisions using Ω(2
𝑛

3) queries for n bit 
(hash) function

• Nice: Grover is provably optimal! (For random 
function)

• So far: This is the best known attack against 
symmetric crypto

• Double security parameter and we are fine.



Why care today?



It‘s a question of risk 
assessment





Quantum Computing

“Quantum computing studies theoretical computation 
systems (quantum computers) that make direct use of 
quantum-mechanical phenomena, such as 
superposition and entanglement, to perform 
operations on data.”

-- Wikipedia



Bad news

I will not tell you when a 
quantum computer will be built!



Quantum computers

• 1980 Theoretical concept

• 1994 Shor‘s algorithm

• 1995 First quantum gate experimentally realized

• 1996 Grover‘s algorithm

• 2014 Largest number factored: 56153



Why care today

• EU launched a one billion Euro 
project on quantum 
technologies

• Similar range is spent in China

• US administration passed a bill 
on spending $1.275 billion US 
dollar on quantum computing 
research

• Google, IBM, Microsoft, 
Alibaba, and others run their 
own research programs.

26.03.2019 https://huelsing.net 28



(Big) Players in quantum game



A comment on D-Waves quantum 
annealing computer

This is no quantum computer that breaks crypto!



Interim conclusion

• Quantum computers are powerful but not almighty

• Can be used to break some crypto but not all
crypto: Deployed asymmetric falls, symmetric 
survives

• Unclear when large scale QC‘s ready

• If we want to preserve privacy for more than a 
short time: We have to react now!



Quantum Cryptography 



Why not beat ‘em with their own 
weapons?
• QKD: Quantum Key distribution.

• Based on some nice quantum properties: entanglement & 
collapsing measurments

• Information theoretic security -> Great!
• For sale today!

• So why don‘t we use this?

• Only short distance, point-to-point connections!
• Internet? No way!

• Longer distances require „trusted-repeaters“ 
• We all know where this leads...

• More issues with actual implementations...



Post-Quantum Cryptography



Quantum-secure problems

Credits: Buchmann, Bindel 2015



Conjectured quantum-secure 
problems
• Solving multivariate quadratic equations (MQ-

problem) 
-> Multivariate Crypto

• Bounded-distance decoding (BDD) 
-> Code-based crypto

• Short(est) and close(st) vector problem (SVP, CVP) 
-> Lattice-based crypto

• Breaking security of symmetric primitives (SHA-x-, 
AES-, Keccak-,... problem)
-> Hash-based signatures / symmetric crypto 



Multivariate Crypto

Credits: Buchmann, Bindel 2015



MQ-Problem
Let 𝒙 = (𝑥1, … , 𝑥𝑛) ∈ 𝔽 𝑞

𝑛 and MQ(𝑛,𝑚, 𝔽𝑞) denote the family of vectorial

functions 𝑭: 𝔽 𝑞
𝑛⟶ 𝔽 𝑞

𝑚 of degree 2 over 𝔽𝑞:

MQ 𝑛,𝑚, 𝔽𝑞

= 𝑭 𝒙 = (𝑓1 𝒙 ,… , 𝑓𝑚 𝒙 |𝑓𝑠 𝒙 = 

𝑖,𝑗

𝑎𝑖,𝑗𝑥𝑖𝑥𝑗 + 

𝑖

𝑏𝑖𝑥𝑖 , 𝑠 ∈ 1,𝑚

The MQ Problem MQ(𝑭, 𝒗) is defined as given 𝒗 ∈ 𝔽 𝑞
𝑚 find, if any, 𝒔 ∈ 𝔽 𝑞

𝑛 such 

that 𝑭 𝒔 = 𝒗.

Decisional version is NP-complete [Garey, Johnson´79]



Multivariate Signatures 
(the traditional way)

Credits: Buchmann, Bindel 2015



Multivariate Cryptography

• Breaking scheme ⇎ Solving random MQ-instance
-> NP-complete is a worst-case notion 

(there might be – and there are for MQ -- easy instances)
-> Not a random instance
Many broken proposals 
-> Oil-and-Vinegar, SFLASH, MQQ-Sig, (Enhanced) TTS, Enhanced STS. 
-> Security somewhat unclear

• Only signatures 
-> (new proposal for encryption exists but too recent)

• Really large keys

• New proposal with security reduction, small keys, but 
large signatures.



MQ-DSS / SOFIA

• New (2016 / 2018) proposal for MQ-based 
signatures

• Security reduction from MQ-problem in (Q)ROM

• Small keys, fast, large signatures (41 kB)



Coding-based cryptography - BDD

Credits: Buchmann, Bindel 2015



McEliece PKE (1978)

Credits: Buchmann, Bindel 2015



Code-based cryptography

• Breaking scheme ⇎ Solving BDD
-> NP-complete is a worst-case notion 

(there might be – and there are for BDD -- easy instances)
-> Not a random instance
However, McEliece with binary Goppa codes 
survived for almost 40 years (similar situation as for 
e.g. AES)

• Using more compact codes often leads to break

• So far, no practical signature scheme

• Really large public keys



Lattice-based cryptography

Basis: 𝐵 = 𝑏1, 𝑏2 ∈ ℤ
2×2; 𝑏1, 𝑏2 ∈ ℤ

2

Lattice: Λ 𝐵 = 𝑥 = 𝐵𝑦 𝑦 ∈ ℤ2}



Shortest vector problem (SVP)



(Worst-case) Lattice Problems

• SVP: Find shortest vector in lattice, given random 
basis. NP-hard (Ajtai’96)

• Approximate SVP (𝜶SVP): Find short vector (norm 
< 𝛼 times norm of shortest vector). Hardness 
depends on 𝛼 (for 𝛼 used in crypto not NP-hard).

• CVP: Given random point in underlying Vectorspace 
(e.g. ℤ𝑛), find the closest lattice point. 
(Generalization of SVP, reduction from SVP)

• Approximate SVP (𝜶CVP): Find a „close“ lattice 
point. (Generalization of 𝛼SVP)



(Average-case) Lattice Problems 
Short Integer Solution (SIS)
ℤ𝑝
𝑛 = n-dim. vectors with entries mod 𝑝 (≈ 𝑛3)

Goal: 
Given 𝑨 = 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒎 ∈ ℤ𝑝

𝑛×𝑚

Find „small“ 𝒔 = (𝑠1, … , 𝑠𝑚) ∈ ℤ
𝑚 such that 

𝑨𝒔 = 𝟎mod 𝑝

Reduction from worst-case 𝛼SVP. 



Hash function

Set 𝑚 > 𝑛 log 𝑝 and define 𝑓𝑨: {0,1}
𝑚→ ℤ𝑝

𝑛 as

𝑓𝑨 𝒙 = 𝑨𝒙mod 𝑝

Collision-resistance: Given short 𝒙𝟏, 𝒙𝟐 with 𝑨𝒙𝟏 =
𝑨𝒙𝟐 we can find a short solution as 

𝑨𝒙𝟏 = 𝑨𝒙𝟐 ⇒ 𝑨𝒙𝟏 − 𝑨𝒙𝟐 = 𝟎
𝑨(𝒙𝟏 − 𝒙𝟐) = 𝟎

So, 𝒛 = 𝒙𝟏 − 𝒙𝟐 is a solution and it is short as 𝒙𝟏, 𝒙𝟐
are short.



Lattice-based crypto

• SIS: Allows to construct signature schemes, hash 
functions, ... , basically minicrypt.

• For more advanced applications: Learning with 
errors (LWE)
• Allows to build PKE, IBE, FHE,... 

• Performance: Sizes can almost reach those of RSA 
(just small const. factor), really fast.

• BUT: Exact security not well accessed, yet. 
Especially, no good estimate for quantum computer 
aided attacks.



Hash-based Signature Schemes
[Mer89]

26-3-2019 PAGE 51

Post quantum

Only secure hash function

Security well understood

Fast



RSA – DSA – EC-DSA...

26-3-2019 PAGE 52

Intractability 
Assumption

Digital 
signature 
scheme

Cryptographic 
hash function

RSA, DH, SVP, 
MQ, …



Merkle’s Hash-based Signatures
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OTS

OTS OTS OTS OTS OTS OTS OTS

HH H H H H H H

H H H H

H H

H

PK

SIG = (i=2,    ,     ,     ,     ,      )

OTS

SK



Hash-based signatures

• Only signatures

• Minimal security assumptions

• Well understood

• Fast & compact (2kB, few ms), but stateful, or

• Stateless, bigger and slower (41kB, several ms).

• Two Internet drafts (drafts for RFCs), one in „RFC 
Editor queue“



NIST Competition

553/26/2019 Andreas Hülsing https://huelsing.net



Resources

• PQ Summer School: 
https://2017.pqcrypto.org/school/index.html

• NIST PQC Standardization Project: 
https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography

• Master Math (Selected Areas in Cryptology): 
https://elo.mastermath.nl/

https://2017.pqcrypto.org/school/index.html
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://elo.mastermath.nl/


(Hash) function families

• 𝐻𝑛 ≔ ℎ𝑘: {0,1}𝑚 𝑛 → {0,1}𝑛

• 𝑚(𝑛) ≥ 𝑛

• „efficient“
ℎ𝑘

{0,1}𝑚 𝑛

{0,1}𝑛



One-wayness

𝐻𝑛 ≔ ℎ𝑘: {0,1}𝑚 𝑛 → {0,1}𝑛

ℎ𝑘 
$
𝐻𝑛

𝑥 
$

{0,1}𝑚 𝑛

𝑦𝑐  ℎ𝑘 𝑥

Success if  ℎ𝑘 𝑥
∗ = 𝑦𝑐

𝑦𝑐 , 𝑘

𝑥∗



Collision resistance

𝐻𝑛 ≔ ℎ𝑘: {0,1}𝑚 𝑛 → {0,1}𝑛

ℎ𝑘 
$
𝐻𝑛

Success if  
ℎ𝑘 𝑥1

∗ = ℎ𝑘 𝑥2
∗

𝑘

(𝑥1
∗, 𝑥2
∗)



Second-preimage resistance

𝐻𝑛 ≔ ℎ𝑘: {0,1}𝑚 𝑛 → {0,1}𝑛

ℎ𝑘 
$
𝐻𝑛

𝑥𝑐 
$

{0,1}𝑚 𝑛

Success if  
ℎ𝑘 𝑥𝑐 = ℎ𝑘 𝑥

∗

𝑥𝑐 , 𝑘

𝑥∗



Undetectability

𝐻𝑛 ≔ ℎ𝑘: {0,1}𝑚 𝑛 → {0,1}𝑛

ℎ𝑘 
$
𝐻𝑛

𝑏 
$
{0,1}

If 𝑏 = 1

𝑥 
$

{0,1}𝑚 𝑛

𝑦𝑐  ℎ𝑘(𝑥)

else

𝑦𝑐 
$

{0,1}𝑛

𝑦𝑐 , 𝑘

𝑏*



Pseudorandomness

𝐻𝑛 ≔ ℎ𝑘: {0,1}𝑚 𝑛 → {0,1}𝑛

1𝑛

g

𝑏

𝑥

𝑦 = 𝑔(𝑥)

𝑏*

If 𝑏 = 1

𝑔 
$
𝐻𝑛

else

𝑔 
$
𝑈𝑚 𝑛 ,𝑛



Hash-function properties 
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Collision-Resistance

2nd-Preimage-
Resistance

One-way Pseudorandom

A
ss

u
m

p
ti

o
n

 /
 

A
tt

ac
ks

stronger / 
easier to 
break

weaker /
harder to 
break



Attacks on Hash Functions

26-3-2019 PAGE 64

2004 2005 2008

MD5

Collisions
(theo.)

SHA-1

Collisions
(theo.)

MD5 

Collisions
(practical!)

2015

MD5 & SHA-1

No (Second-) Preimage 
Attacks!



Basic Construction

26-3-2019 PAGE 65



Lamport-Diffie OTS [Lam79]

Message M = b1,…,bm, OWF H                     = n bit

SK

PK

Sig

26-3-2019 PAGE 66

sk1,0 sk1,1 skm,0 skm,1

pk1,0 pk1,1 pkm,0 pkm,1

H H H H H H

sk1,b1 skm,bm

*

Muxb1 Muxb2 Muxbm



EU-CMA for OTS

𝑝𝑘, 1𝑛

SIGN

𝑠𝑘

𝑀

(𝜎,𝑀)

(𝜎∗, 𝑀∗) Success if 𝑀∗ ≠ 𝑀 and 
Verify 𝑝𝑘, 𝜎∗, 𝑀∗ = Accept 

23.09.2013 |  TU Darmstadt |  Andreas Hülsing |  67



Security

Theorem:

If H is one-way then LD-OTS is one-time eu-cma-
secure.



Reduction
Input: 𝑦𝑐 , 𝑘

Set 𝐻  ℎ𝑘
Replace random pki,b

sk1,0 sk1,1 skm,0 skm,1

pk1,0 pk1,1 pkm,0 pkm,1

H H H H H H

𝑦𝑐



Reduction
Input: 𝑦𝑐 , 𝑘

Set 𝐻  ℎ𝑘
Replace random pki,b

sk1,0 sk1,1 skm,0 skm,1

pk1,0 pk1,1 pkm,0 pkm,1

H H H H H

sk1,b1 skm,bm

Muxb1 Muxb2 Muxbm

𝑦𝑐

Adv. Message: M = b1,…,bm
If bi = b return fail
else return Sign(M)

?



Reduction
Input: 𝑦𝑐 , 𝑘

Set 𝐻  ℎ𝑘
Choose random pki,b

sk1,0 sk1,1 skm,0 skm,1

pk1,0 pk1,1 pkm,0 pkm,1

H H H H H

𝑦𝑐

Forgery: M* = b1*,…,bm*,
𝜎 = 𝜎1, … , 𝜎𝑚

If bi ≠ b return fail
Else return 𝜎𝑖∗

? 𝜎𝑖∗𝜎𝑖∗



Reduction - Analysis

Abort in two cases:

1. bi = b
probability ½ : b is a random bit

2. bi ≠ b

probability 1 - 1/m: At least one bit has to flip as 
M* ≠M

Reduction succeeds with A‘s success probability 
times 1/2m.



Merkle’s Hash-based Signatures

26-3-2019 PAGE 73

OTS

OTS OTS OTS OTS OTS OTS OTS

HH H H H H H H

H H H H

H H

H

PK

SIG = (i=2,    ,     ,     ,     ,      )

OTS

SK



Security

Theorem:

MSS is eu-cma-secure if OTS is a one-time eu-cma 
secure signature scheme and H is a random element 
from a family of collision resistant hash functions.



Reduction

Input: 𝑘, 𝑝𝑘𝑂𝑇𝑆

1. Choose random 0 ≤ 𝑖 < 2ℎ

2. Generate key pair using 𝑝𝑘𝑂𝑇𝑆 as 𝑖th OTS public 
key and 𝐻  ℎ𝑘

3. Answer all signature queries using sk or sign 
oracle (for index 𝑖)

4. Extract OTS-forgery or collision from forgery



Reduction (Step 4, Extraction)

Forgery: (𝑖∗, 𝜎𝑂𝑇𝑆
∗ , 𝑝𝑘𝑂𝑇𝑆

∗ , AUTH)

1. If 𝑝𝑘𝑂𝑇𝑆
∗ equals OTS pk we used for 𝑖∗ OTS, we got 

an OTS forgery. 
• Can only be used if 𝑖∗ = 𝑖.

2. Else adversary used different OTS pk.
• Hence, different leaves. 

• Still same root!

• Pigeon-hole principle: Collision on path to root.



Winternitz-OTS



Recap LD-OTS [Lam79]

Message M = b1,…,bm, OWF H                                 = n bit

SK

PK

Sig

sk1,0 sk1,1 skm,0 skm,1

pk1,0 pk1,1 pkm,0 pkm,1

H H H H H H

sk1,b1 skm,bm

*

Muxb1 Muxb2 Muxbn



LD-OTS in MSS

Verification:

1. Verify 

2. Verify authenticity of 

We can do better!

SIG = (i=2,    ,     ,     ,     ,      )



Trivial Optimization
Message M = b1,…,bm, OWF H                                = n bit

sk1,0 sk1,1 skm,0 skm,1

pk1,0 pk1,1 pkm,0 pkm,1

H H H H H H

sig1,0

*

Muxb1

sig1,1

Mux ¬b1

sigm,0

Muxbm

sigm,1

Mux ¬bm

Sig

PK

SK



Optimized LD-OTS in MSS

Verification:

1. Compute        from 

2. Verify authenticity of 

Steps 1 + 2 together verify

SIG = (i=2,    ,     ,     ,     ,      )X



Germans love their „Ordnung“!
Message M = b1,…,bm, OWF H                    

SK: sk1,…,skm,skm+1,…,sk2m

PK: H(sk1),…,H(skm),H(skm+1),…,H(sk2m)

Encode M: M‘ = M||¬M = b1,…,bm,¬b1,…,¬bm

(instead of b1,¬b1,…,bm,¬bm )

ski , if bi = 1

Sig: sigi = 

H(ski)  , otherwise

Checksum with bad 
performance!



Optimized LD-OTS
Message M = b1,…,bm, OWF H                    

SK: sk1,…,skm,skm+1,…,skm+log m

PK: H(sk1),…,H(skm),H(skm+1),…,H(skm+log m)

Encode M: M‘ = b1,…,bm,¬ 1
𝑚 𝑏𝑖

ski , if bi = 1

Sig: sigi = 

H(ski)  , otherwise

IF one bi is flipped from 1 to 0, another bj will flip from 0 to 1



Function chains

Function family: 𝐻𝑛≔ ℎ𝑘: {0,1}𝑛→ {0,1}𝑛

ℎ𝑘 
$
𝐻𝑛

Parameter 𝑤

Chain: 

c0(x) = x

𝑐1(𝑥) = ℎ𝑘(𝑥)
𝒄𝒘−𝟏(𝑥)

  


timesi

kkk

i

k

i xhhhxchxc
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WOTS
Winternitz parameter w, security parameter n, 

message length m, function family 𝐻𝑛

Key Generation: Compute 𝑙, sample ℎ𝑘

c0(skl ) = skl

c1(skl ) pkl= cw-1(skl )

c0(sk1) = sk1

c1(sk1)

pk1 = cw-1(sk1)



WOTS Signature generation

M

b1 b2 b3 b4 … … … … … … … bm‘ bm‘+1 bm‘+2 … … bl

C

c0(skl ) = skl

pkl= cw-1(skl )

c0(sk1) = sk1
pk1 = cw-1(sk1)

σ1=cb1(sk1) 

σl=cbl (skl ) 

Signature: 

σ = (σ1, …, σl )



WOTS Signature Verification

b1 b2 b3 b4 … … … … … … … bm‘ bm‘+1 bl 1+2 … … bl

pkl

pk1

Signature: 

σ = (σ1, …, σl )

σ1

σl

𝒄𝟏 (σ1)

𝒄𝟐(σ1)

𝒄𝟑(σ1)

𝒄𝒘−𝟏−𝒃𝟏 (σ1)

𝒄𝒘−𝟏−𝒃𝒍 (σl )

=?

=?

Verifier knows: M, w 



WOTS Function Chains

For 𝑥 ∈ 0,1 𝑛 define 𝑐0 𝑥 = 𝑥 and 

• WOTS: 𝑐𝑖 𝑥 = ℎ𝑘(𝑐
𝑖−1 𝑥 )

• WOTS$: 𝑐𝑖 𝑥 = ℎ𝑐𝑖−1 𝑥 (𝑟)

• WOTS+: 𝑐𝑖 𝑥 = ℎ𝑘(𝑐
𝑖−1 𝑥 ⨁ 𝑟𝑖)



WOTS Security

Theorem (informally):

W-OTS is strongly unforgeable under chosen message attacks if 𝐻𝑛
is a collision resistant family of undetectable one-way functions.

W-OTS$ is existentially unforgeable under chosen message attacks if 
𝐻𝑛 is a pseudorandom function family.

W-OTS+ is strongly unforgeable under chosen message attacks if 𝐻𝑛
is a 2nd-preimage resistant family of undetectable one-way 
functions.



XMSS



XMSS

Tree: Uses bitmasks

Leafs: Use binary tree
with bitmasks

OTS: WOTS+

Mesage digest: 
Randomized hashing

Collision-resilient

-> signature size halved

H

bi

H



Multi-Tree XMSS

Uses multiple layers of trees

-> Key generation
(= Building first tree on each layer) 

Θ(2h) → Θ(d2h/d)

-> Allows to reduce
worst-case signing times
Θ(h/2) → Θ(h/2d)



How to Eliminate the State



Protest?
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Few-Time Signature Schemes
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Recap LD-OTS

Message M = b1,…,bn, OWF H                     = n bit

SK

PK

Sig
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sk1,0 sk1,1 skn,0 skn,1

pk1,0 pk1,1 pkn,0 pkn,1

H H H H H H

sk1,b1 skn,bn

*

Muxb1 Muxb2 Muxbn



HORS [RR02]

Message M, OWF H, CRHF H’                       = n bit

Parameters t=2a,k, with m = ka (typical a=16, k=32)

SK

PK
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sk1 sk2 skt-1 skt

pk1 pk1 pkt-1 pkt

H H H H H H

*



HORS mapping function

Message M, OWF H, CRHF H’                       = n bit

Parameters t=2a,k, with m = ka (typical a=16, k=32)
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b1 b2 ba bar

M

H’

i1 ik

*



HORS
Message M, OWF H, CRHF H’                       = n bit

Parameters t=2a,k, with m = ka (typical a=16, k=32)
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sk1 sk2 skt-1 skt

pk1 pk1 pkt-1 pkt

H H H H H H

*

b1 b2 ba ba+1 bka-2 bka-1 bka

i1 ik

ski1 skik

Mux Mux

SK

PK

H’(M)



HORS Security

• 𝑀 mapped to 𝑘 element index set 𝑀𝑖 ∈ {1, … , 𝑡}𝑘

• Each signature publishes 𝑘 out of 𝑡 secrets
• Either break one-wayness or…

• r-Subset-Resilience: After seeing index sets 𝑀𝑗
𝑖 for 𝑟

messages 𝑚𝑠𝑔𝑗 , 1 ≤ 𝑗 ≤ 𝑟, hard to find 𝑚𝑠𝑔𝑟+1 ≠
𝑚𝑠𝑔𝑗 such that 𝑀𝑟+1

𝑖 ∈ ⋃1 ≤𝑗≤𝑟𝑀𝑗
𝑖.

• Best generic attack: Succr-SSR(𝐴, 𝑞) = 𝑞
𝑟𝑘

𝑡

𝑘

→ Security shrinks with each signature!
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HORST

Using HORS with MSS requires adding PK (tn) to MSS 
signature.

HORST: Merkle Tree on top of HORS-PK

• New PK = Root

• Publish Authentication Paths for HORS signature values

• PK can be computed from Sig

• With optimizations: tn → (k(log t − x + 1) + 2x)n
• E.g. SPHINCS-256: 2 MB → 16 KB

• Use randomized message hash
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SPHINCS

• Stateless Scheme

• XMSSMT + HORST 
+ (pseudo-)random index

• Collision-resilient

• Deterministic signing

• SPHINCS-256:
• 128-bit post-quantum secure
• Hundrest of signatures / sec
• 41 kb signature
• 1 kb keys



PQ-Crypto is currently a hot topic



Thank you!

Questions?
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For references & further literature see 
https://huelsing.wordpress.com/hash-based-signature-schemes/literature/


