Mastermath Spring 2017 Exam Cryptology Course Tuesday, 04 July 2017

Name

Student number :

Exercise	1	2	3	4	5	6	total
points							

:

Notes: Please hand in this sheet at the end of the exam. You may keep the sheets with the exercises.

This exam consists of 6 exercises. You have from 14:00 - 17:00 to solve them. You can reach 100 points.

Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.

All answers must be submitted on paper provided by the university; should you require more sheets ask the proctor. State your name on every sheet.

Do not write in red or with a pencil.

You are allowed to use any books and notes, e.g. your homework. You are not allowed to use the textbooks of your colleagues.

You are allowed to use a calculator without networking abilities. Usage of laptops and cell phones is forbidden.

- 1. This exercise is about code-based cryptography.
 - (a) State the parameters (length, dimension, minimum distance) of a binary Goppa code with m = 14, i.e. length $n = 2^{14}$, using an irreducible polynomial of degree 52.3 points

Make sure to state inequalities where appropriate.

- 2. This exercise is about hash-based signatures.
 - (a) Explain in your own words how the Lamport one-time signature scheme works to sign one bit. State the public key, the private key and why the system is secure. 4 points
 - (b) Explain in your own words how to extend Lamport's one-time signature scheme to sign multiple messages of length m bits using Merkle trees. State the public key, the private key and why the system is secure. 6 points
 - (c) We use Winternitz' scheme with hash chains of length 2^8 , i.e., we process 8 bits at once. Compute the size (in bits) of the public key, the private key, and the signature for this scheme, assuming that the iteration function F and the hash function H have output length of 256 bits.

Hint: Remember that you also need to sign the second component.

8 points

3. This exercise is about differential cryptanalysis of the same toy cipher from the lectures. Using key $(k_1, k_2, k_3, k_4, k_5) \in (\{0, 1\}^{16})^5$ it encrypts a plaintext P = $P_1 || \dots || P_{16} \in \{0, 1\}^{16}$ as follows. Let S be the current state, we start with S = P. Rounds i = 1, 2, 3 perform key mixing

$$S \leftarrow S \oplus k_i,$$

substitution using a Sbox (Table 2)

$$S \leftarrow Sbox(S_1 \dots S_4) || \dots || Sbox(S_{12} \dots S_{16}),$$

and finally applies permutation π_P (Table 1) on the state bits:

$$S \leftarrow S_{\pi_P(1)} || \dots || S_{\pi_P(16)} = S_1 || S_5 || S_9 || \dots || S_{12} || S_{16}.$$

Round 4 applies key mixing with round key k_4 , substitution using the sbox and finally applies another key mixing with round key k_5 . After round 4, the cipher outputs the current state S as the ciphertext C.

i																
$\pi_P(i)$	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	16

Table 1: State bit permutation

In contrast to the lecture notes, we use the following SBox:

in	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
out	1	10	4	14	2	7	9	13	11	6	3	12	0	15	8	5

Note most significant bit is $\underline{\text{left most}}$ bit, so 12 represents '1100' in binary.

Table 2: Sbox

This SBox has the following Difference Distribution Table (Table 3:

	Δout																
		$\left \begin{array}{c} 0 \end{array} \right $	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0																
	1																
	2																
	3				0	0	4	0	4	0	0	0	0	0	0	4	4
	4				4	0	0	0	0	0	4	0	4	0	4	0	0
	5				0	4	0	6	2	2	2	0	0	0	0	0	0
	6				8	0	0	2	2	2	2	0	0	0	0	0	0
	7				4	0	0	0	0	0	0	0	0	8	0	4	0
Δin	8				0	0	0	0	2	4	0	2	0	2	0	0	0
	9				0	0	2	0	4	2	0	0	0	2	4	0	0
	10				0	0	0	2	0	2	2	2	0	0	0	0	2
	11				0	0	2	2	2	0	2	0	0	0	4	0	2
	12				0	0	2	0	0	0	2	2	2	2	0	0	0
-	13				0	2	2	2	0	0	0	2	0	2	0	4	0
	14				0	2	0	0	0	0	2	0	4	0	0	0	2
	15				0	4	0	2	0	0	0	0	2	0	0	4	2

Table 3: Sbox difference distribution table

- (a) Complete the DDT. You only have to write down the missing numbers in a table. (Hint: to fill a column fix Δout and iterate over out instead of in.) 6 points
- (b) Construct a differential for this cipher over the first three rounds with only one active SBox in the 2nd round and compute its estimated probability.

8 points

(c) Consider the boomerang with input plaintext difference

$$\Delta P = (0000 \ 0111 \ 0000 \ 0000)$$

and output ciphertext difference

 $\Delta C = (0000 \ 0000 \ 0011 \ 0000),$

then a quartet $(P^{(1)}, P^{(2)}, P^{(3)}, P^{(4)})$ satisfies this boomerang if

$$P^{(1)} \oplus P^{(2)} = \Delta P, \quad P^{(3)} \oplus P^{(4)} = \Delta P, \text{ and}$$

 $C^{(1)} \oplus C^{(3)} = \Delta C, \quad C^{(2)} \oplus C^{(4)} = \Delta C.$

Compute the total success probability of finding such quartets over all round 1 & 2 differentials with the given ΔP and all round 3 & 4 differentials with the given ΔC . (Hint: in round 2 each Sbox has either input difference 0 or 4 (0100), so every *active* round 2 Sbox contributes a term $4 \times (4/16)^2$. Likewise, in round 3 each active Sbox has output difference 2 (0010).) 8 points

- (d) Determine an example impossible differential by limiting which round 1 Sboxes and which round 3 Sboxes may be active, show why this is the case. 8 points
- 4. This exercise is about the NTRU encryption system. Remember that all computations take place in $R = \mathbb{Z}[x]/(x^N - 1)$ and are done modulo p or modulo q. The secret key is $f(x) \in R$, $f \cdot f_p = 1$ in R/p, $f \cdot f_q = 1$ in R/q, $h = pf_q \cdot g$ in R/q, and c = rh + m in R/q for random r and message m. (We used p = 3 in the lecture and also below).
 - (a) Let N = 4, p = 3, and $f(x) = x^2 x 1$. Compute the inverse f_p of f in R/p and compute $f \cdot f_p$ in R/p to verify that the result is indeed 1. Hint: this needs a XGCD computation. Make sure to document the steps or state how you did this computation. Do *not* simply state the result or just a verification of the result.
 - (b) Explain how to attack NTRU using an algorithm to find short lattice vectors, i.e., explain how to translate the problem of finding the secret key into a problem of finding short lattice vectors. Make sure to state the lattice involved. 8 points
- 5. This exercise is about password recovery. Let $h : \{0,1\}^* \to \{0,1\}^{512}$ be a fixed 512bit hash function. A website stores for each user a username string u and a 512-bit hash a = h(p) of the user's password string p. Let \mathcal{P} be the set of all numeric (i.e., '0...9') passwords of length 15. The size of the set \mathcal{P} is $10^{15} \approx 2^{49.82}$.
 - (a) Explain how one can construct an efficient map $f : \{0, 1\}^{512} \to \mathcal{P}$, computing a password from each possible hash. It has to be approximately balanced, i.e., preimage sizes have to be approximately equal: $|f^{-1}(p_1)| \approx |f^{-1}(p_2)|$ for all $p_1, p_2 \in \mathcal{P}$.
 - (b) Hellman's time-memory trade-off attack uses multiple tables that require distinct reduction functions. Explain how to create $N < |\mathcal{P}|$ distinct reduction functions from f at very low computational cost. 4 points

- (c) Explain how to apply Hellman's time-memory trade-off attack to h to recover passwords from the given password space \mathcal{P} with success probability about 0.8. (Specify the following quantities: number of tables, number of trails, the length of each trail, and the offline and online complexity.)
- (d) Assume an attacker can use a single high-end GPU for this attack that can compute 2^{30} evaluations of $f \circ h$ per second. Estimate the offline and online runtime complexity in wall clock time (days, hours, seconds) for this attack using this single high-end GPU as well as the storage requirements. Disregard the effect from 'false alarms' and assume RAM and GPU memory size are not an issue.
- 6. This exercise is about attacks on code-based cryptography. Let G be the generator matrix of an [n, k, d] code with d = 2t+1. In the basic schoolbook-version of McEliece encryption, a message $m \in \mathbb{F}_2^k$ is encrypted by computing y = mG + e, where $e \in \mathbb{F}_2^n$ is randomly chosen of weight t.

Alice and Bob use this method to send m but Eve intercepts $y_1 = mG + e_1$ and stops the transmission. After a while, Alice resends an encryption of m, using a different error vector e_2 , so $y_2 = mG + e_2$, where both e_i have weight t.

(a) Compute the average weight of $e_1 + e_2$, where + denotes addition in \mathbb{F}_2^n , and the average weight of $e_1 \cdot e_2$, where \cdot denotes componentwise multiplication in \mathbb{F}_2^n . \mathbb{F}_2^n .

(b) Show how Eve can recover the message m.
Hint 1: Eve's task should be stated as a decoding problem of a code of length less than n.

Hint 2: First solve the problem assuming that e_1 and e_2 have no overlap in their non-zero positions. 6 points

Cryptology Course

6 points

6 points