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Notes: Please hand in this sheet at the end of the exam. You may keep the sheets
with the exercises.
This exam consists of 5 exercises. You have from 13:30 – 16:30 to solve them. You can
reach 100 points.
Make sure to justify your answers in detail and to give clear arguments. Docu-
ment all steps, in particular of algorithms; it is not sufficient to state the correct
result without the explanation. If the problem requires usage of a particular
algorithm other solutions will not be accepted even if they give the correct
result.
All answers must be submitted on paper provided by the university; should you require
more sheets ask the proctor. State your name on every sheet.
Do not write in red or with a pencil.
You are allowed to use any books and notes, e.g. your homework. You are not allowed to
use the textbooks of your colleagues.
You are allowed to use a calculator without networking abilities. Usage of laptops and cell
phones is forbidden.





Selected Areas in Cryptology Mastermath Spring 2017

1. This exercise is about the NTRU encryption system. Remember that all computa-
tions take place in R = Z[x]/(xn−1) and are done modulo 3 or modulo q. The secret
key consists of f(x), g(x) ∈ R, where f is invertible in Rq = R/q and R3, and f has
exactly df coefficients equal to 1 and df − 1 coefficients equal to −1 for some integer
df . Similarly, g has dg coefficients equal to 1 and the same number equal to −1. The
public key is h = 3g/f in Rq.

To encrypt m ∈ R with coefficients in [−1, 1] pick random, sparse r ∈ R with
dr coefficients equal to −1 and the same number equal to 1. Then compute the
ciphertext c ≡ r · h + m mod q; move all coefficients to [−q/2, q/2] to get a unique
representative of c.

To decrypt c ∈ Rq compute a = f ·c mod q, again moving all coefficients to [−q/2, q/2]
(hence we use = instead of ≡) and compute m = a/f mod 3 with coefficients in
[−1, 1].

(a) Let N = 3, p = 3, and f(x) = x2 − x + 1. Compute the inverse fp of f in R3.
Then compute f · fp in R3 to verify that the result is indeed 1.
Hint: this needs a XGCD computation. Make sure to document the steps or
state how you did this computation. Do not simply state the result or just a
verification of the result.

6 points

(b) Let df = 4, dg = 2 and dr = 4 and N = 32. Explain how decryption errors can
happen and compute how large q has to be so that decryption is guaranteed to
be correct, i.e., so that taking the coefficients of a = f · c in Rq as elements in
[−(q − 1)/2, (q − 1)/2] produces the correct message.

Note: The parameter choices are different than in the lecture to ensure that
you go through all steps of the argument. Make sure to justify all statements.

6 points

2. This exercise is about code-based cryptography.

(a) The binary Hamming code H3(2) has parity check matrix

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


and parameters [7, 4, 3].

Correct the word (0, 1, 1, 0, 0, 1, 0). 2 points
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(b) Let H be a parity-check matrix of an [n, k, d] code and assume there exists a
code word of Hamming weight d. Explain in your own words how the algorithm
by Lee and Brickell finds a codeword of weight d given H. Assume that there
is only a single such word.
State the steps performed and the probability of success for each step and how
often it is repeated on average.
Note: This exercise is not specific to the H in the previous part of the exercise.

12 points

(c) Let G be the generator matrix of a code with parameters [n, k, d] and let d =
2t + 1, i.e. d is odd. McEliece’s original encryption system uses G to encrypt
m ∈ IFk2 as c = mG+ e, where e is a random element of IFn2 of Hamming weight
exactly t.

For simplicity assume that the code is such that decoding mG + e′ with e′ of
weight > t will return a different m′ and assume that decryption uses some
validity check so that m′ would be caught as a decryption error.

Assume further that Alice will decrypt every ciphertext she receives and send
back a notification of an error if decryption gives an invalid ciphertext. If
decryption works she does not react. She does not check whether e has t or
fewer errors and her decoder works for ≤ t errors.

Explain how Eve can use this behavior of Alice to decrypt ciphertext c that
Bob sent to Alice, i.e., show how Eve can send somewhat modified ciphertexts
to Alice to learn the correct mG and thus m from observing Alice’s reactions.
State how many such queries Eve has to send to Alice to make your attack
work. 8 points

2



Selected Areas in Cryptology Mastermath Spring 2017

3. This exercise is about differential cryptanalysis of the same toy cipher from the
lectures. Using key (k1, k2, k3, k4, k5) ∈ ({0, 1}16)5 it encrypts a plaintext P =
P1|| . . . ||P16 ∈ {0, 1}16 as follows. Let S be the current state, we start with S = P .
Rounds i = 1, 2, 3 perform key mixing

S ← S ⊕ ki,

substitution using a Sbox (Table 2)

S ← Sbox(S1 . . . S4)|| . . . ||Sbox(S12 . . . S16),

and finally applies permutation πP (Table 1) on the state bits:

S ← SπP (1)|| . . . ||SπP (16) = S1||S5||S9|| . . . ||S12||S16.

Round 4 applies key mixing with round key k4, substitution using the sbox and finally
applies another key mixing with round key k5. After round 4, the cipher outputs the
current state S as the ciphertext C.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
πP (i) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Table 1: State bit permutation

In contrast to the lecture notes, we use the following SBox:

in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
out 14 6 4 1 9 3 12 8 11 0 15 7 13 10 5 2

Note most significant bit is left most bit, so 12 represents ‘1100’ in binary.

Table 2: Sbox
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This SBox has the following Difference Distribution Table (Table 3:

out
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1 0 0 0
2 0 0 0
3 2 0 0 0 0 0 0 0 0 0 2 0 0 10
4 0 0 0 0 4 2 2 2 2 4 0 0 0 0 0
5 2 0 0 0 0 0 0 0 0 0 2 8 0 2
6 8 0 0 0 0 0 0 0 0 0 0 4 4 0
7 0 0 0 4 2 2 2 2 4 0 0 0 0 0

in 8 0 0 0 2 2 4 0 0 4 2 2 0 0 0 0
9 0 4 0 0 0 0 0 0 0 0 0 4 8 0
10 2 0 0 0 0 0 0 0 0 0 2 0 0 2
11 0 0 2 2 4 0 0 4 2 2 0 0 0 0
12 2 8 0 0 0 0 0 0 0 0 2 0 0 2
13 0 0 4 0 2 2 2 2 0 4 0 0 0 0
14 0 0 4 0 2 2 2 2 0 4 0 0 0 0
15 0 4 0 0 0 0 0 0 0 0 8 0 4 0

Table 3: Sbox difference distribution table

(a) Complete the DDT. You only have to write down the missing numbers in a
table. Do not just enter the numbers in this table, but make a copy on the
exam paper. 6 points

(b) Construct a differential for this cipher over the first three rounds with only one
active SBox in the third round and compute its estimated probability.

8 points

(c) Consider the boomerang with input plaintext difference

∆P = (0000 0110 0000 0000)

and output ciphertext difference

∆C = (0000 0000 1111 0000),

then a quartet (P (1), P (2), P (3), P (4)) satisfies this boomerang if

P (1) ⊕ P (2) = ∆P, P (3) ⊕ P (4) = ∆P, and

C(1) ⊕ C(3) = ∆P, C(2) ⊕ C(4) = ∆C.

Compute the total success probability of finding such quartets over all
round 1 & 2 differentials with the given ∆P and all round 3 & 4 differ-
entials with the given ∆C. (Hint: in round 2 each Sbox has either input
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difference 0 or 4 (0100), so every active round 2 Sbox contributes a term
4 × (2/16)2 + 2 × (4/16)2. Likewise, in round 3 each active Sbox has output

difference 2 (0010).) 8 points

(d) Consider all 3-round differentials that have only 1 active Sbox in round 1 and
where in round 3 only the third and/or fourth Sbox (S33 and/or S34) may be
active. Prove that all such 3-round differentials are impossible differentials, i.e.,
they have probability 0. (Hint: the only allowed output differences for active

round 2 Sboxes are 0, 1, 2, 3 (0000, 0001, 0010, 0011).) 8 points

4. This exercise is about the Merkle-Hellman scheme, explained in the following. The
scheme is a public-key scheme in which both the secret and public key contain a
sequence of ` different numbers and the secret key also includes information on how to
get from the secret sequence to the public one. The following describes key generation
followed by steps to encrypt and to decrypt a message.

Key generation: Pick ` integers a0, a1, . . . , a`−1 such that a0 > 0 and ai >
∑i−1

j=0 aj for
i > 0. The ai form a so-called super increasing sequence. Pick a positive integer M ,
the modulus, with M >

∑`−1
i=0 ai and a positive integer q < M with gcd(M, q) = 1.

Compute bi ≡ ai ·q mod M , for 0 ≤ i < `, and represent bi by an integer in [0,M−1].
Sort the bi by size and remember the permutation P from the original order to the
sorted sequence (c0, c1, . . . , c`−1) with ci = bP (j) for some j.

The secret key is ((a0, a1, . . . , a`−1),M, q, P ). The public key is (c0, c1, . . . , c`−1).

Encryption: To encrypt a number 0 ≤ n < 2` compute the binary representation of
n =

∑`−1
i=0 ni2

i with ni ∈ {0, 1} and compute the ciphertext N =
∑`−1

i=0 nici.

Decryption: To decrypt N compute K ≡ N/q mod M , using one modular inversion
(which could be precomputed) and a multiplication modulo M . Then determine
which aj of the private key were summed up to reach K. Apply P to learn which ci
were included and thus the ni. Compute the plaintext n =

∑`−1
i=0 ni2

i.

(a) Encrypt message n = 12 to a user with public key (3, 9, 29, 31). 2 points

(b) Compute the public key for secret key starting with ` = 4,
(a0, a1, a2, a3) = (2, 3, 7, 13),M = 29, q = 11.
Compute the permutation P .
Decrypt ciphertext N = 31 sent to this public key. 4 points

(c) Explain why the system works, i.e., why does decryption recover

the plaintext and why decryption can be computed efficiently. 6 points

(d) Explain what problem the attacker faces and write explicitly what system of
equations the attacker would need to solve to find the secret key for the public
key used in part 4a.
Note: You are not expected to break the system. 4 points
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5. This exercise is about password recovery. Let h : {0, 1}∗ → {0, 1}512 be a fixed 512-
bit hash function. A website stores for each user a username string u and a 512-bit
hash a = h(p) of the user’s password string p.

(a) Let P be the set of all alphabetic (i.e., ‘a...z,A...Z’) passwords of length 10.

Compute the size of the set P . 2 points

(b) Explain how one can construct an efficient map f : {0, 1}512 → P from the hash
space to the password space. It has to be approximately balanced, i.e., preimage
sizes have to be approximately equal: |f−1(p1)| ≈ |f−1(p2)| for all p1, p2 ∈ P .

6 points

(c) Explain how to apply Hellman’s time-memory trade-off attack to h to recover
passwords from the given password space P with success probability about 0.8.

6 points

(d) Assume an attacker can use a single high-end GPU for this attack that can
compute 231 evaluations of f ◦ h per second. Estimate the offline and online
runtime complexity in wall clock time (days, hours, seconds) for this attack
using this single high-end GPU as well as the storage requirements. Disregard
the effect from ’false alarms’ and assume RAM and GPU memory size are not
an issue.

6 points
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