
Mastermath course: Cryptology, Spring 2015
Examples of exercises

Here is what the exam will say as a foreword. This set of exercises is much more than 3h
worth of work.
Make sure to justify your answers in detail and to give clear arguments. Document all
steps, in particular of algorithms; it is not sufficient to state the correct result without the
explanation. If the problem requires usage of a particular algorithm other solutions will
not be accepted even if they give the correct result.
Do not write in red or with a pencil.
You are allowed to use any books and notes. You are not allowed to use the textbooks of
your colleagues.
You are allowed to use a calculator without networking abilities. Usage of laptops and cell
phones is forbidden.

1. Exercises on code-based crypto:

(a) The binary Hamming code H4(2) has parity check matrix

H =


0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


and parameters [15, 11, 3].

Correct the word (0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1).

(b) State the parameters of a Goppa code of length n = 220 using an irreducible
polynomial of degree s = 70.

(c) Let C be a binary code, given by parity-check matrix H. Stern’s method
searches for low-weight words in C. Assume that we know that there exists
a word of weight t. In the algorithm we shuffle the columns of H and turn the
rightmost n− k vectors into an identity matrix.

In one of the following steps we search for partial collisions, i.e., collisions on `
positions, in two column vectors. One vector is the sum of p columns in X and
the other vector is the sum of p columns in Y , where X and Y form a partition
of those k columns of H which are not part of the identity matrix. Compute
the probability that the sum of these 2p vectors of length n − k has value 0 in
those (randomly chosen) ` positions and compute the conditional probability
that this sum has Hamming weight t− 2p, given that those ` positions are all 0.

(d) Make sure to read how Stern’s attack (and the simpler ones) work. Try a small
example.



Mastermath Cryptology TU/e

(e) Make sure to understand why the school-book version of McEliece is not a
good idea and that we need to have messages with some prescribed format.
(Remember the attack in which you ask for decryption of c+ ei, for ei the i-th
unit vector.)

2. This exercise is about hash-based signatures.

(a) Take Lamport’s one-time signature scheme. Let messages be of length n and
assume that Alice has published 2n hash results as her public key and knows 2n
secret strings, which are her private keys, which lead to those 2n hash results.
Alice uses this signature system multiple times with the same key. Analyze the
following two scenarios for your chances of faking a signature on m: 1. You
get to see signatures on random messages. 2. You get to specify messages that
Alice signs. You may not ask Alice to sign m in the second scenario. How many
signatures do you need on average in order to construct a signature on m? How
many signatures do you need on average to be able to sign any message? Answer
these questions in both scenarios.

(b) The Winternitz one-time signature scheme is another one-time signature scheme.
The advantage is that instead of having two hash values per bit, we sign strings
of k bits at once: Starting from a secret value v0 we compute v1 = H(v0), v2 =
H(v1) = H2(v0), . . . , v2k−1 = H2k−1(v0) = p. We publish p as public key and
keep v0 as secret key. To sign a message of k bits, we take this message as an
integer m in [0, 2k− 1] (just read the bits as binary expansion of a number) and
reveal vm. The verifier can then check that H2k−m−1(vm) = p. Note that so far
this system could be abused: knowing vm means knowing vm+1, vm+2, dots., so
we need some protection against this. For that we add another signature which
signs 2k −m− 1 using the same system.

To sign a message (m0,m1, . . . ,mj−1), mi ∈ [0, 2k − 1], i ∈ [0, j − 1], of kj bits,
use j such signatures with public values p0, p1, . . . pj−1, compute σ =

∑j−1
i=0 (2k−

mi− 1) and sign σ using the same method (using dlog2(σ)/ke more signatures).

Check out http://www.cdc.informatik.tu-darmstadt.de/~dahmen/

papers/hashbasedcrypto.pdf for a detailed description.

Let k = 4 and j = 16. Draw the dataflow and compute how many extra
signatures (beyond the j) are needed for the checksum signatures.

(c) Read up on how to design few-times signatures from one-time signatures.

3. This exercise is about the NTRU encryption system. The system has three general
public parameters: namely positive integers N, p, and q, where gcd(p, q) = 1 and q
is much larger than p. For this exercise we use p = 3, q = 101, and N = 7.

All computations take place in R = Z[x]/(xN − 1), i.e. all elements are represented
by polynomials of degree < N . Some computations additionally reduce modulo p or
modulo q.

2



Mastermath Cryptology TU/e

The private key of user Alice is a polynomial f(x) ∈ R which satisfies that f is
invertible in R/p = (Z/p)[x]/(xN − 1) and in R/q = (Z/q)[x]/(xN − 1).

To generate her public key, Alice picks a polynomial g(x) ∈ R and computes fp = f−1

in R/p, fq = f−1 in R/q and h = fq · g in R/q. Alice’s public key is h along with the
public parameters p, q, and N .

To encrypt message m(x) ∈ R (with coefficients in [−(p− 1)/2, (p− 1)/2]) to a user
with public key h take a random polynomial φ(x) ∈ R and compute c = p · φ · h+m
in R/q.

To decrypt ciphertext c ∈ R/q use private key f and compute a = f · c in R/q,
choosing coefficients in [−(q − 1)/2, (q − 1)/2]. [If you’re a mathematician, lift a to
R, i.e. forget about the reduction modulo q]. Then compute m′ = a · fp in R/p,
taking coefficients from [−(p− 1)/2, (p− 1)/2].

(a) Let f(x) = x6 − x3 + x ∈ R.
Compute (91x6 + 35x5 + 52x4 + 28x3 + 42x2 + 63x+ 94) · (x6 − x3 + x) in R/q
to verify that fq = 91x6 + 35x5 + 52x4 + 28x3 + 42x2 + 63x+ 94.

(b) Compute the inverse of f = x6 − x3 + x in R/p.
Hint: this needs a XGCD computation. Make sure to document the steps or
state how you did this computation. Do not simply state the result or just a
verification of the result.

(c) Your secret key is f = x6 − x3 + x; you have computed
fp = −x6 + x5 + x4 − x3 + 1 in setting up your key.
Somebody sends you ciphertext c = 6x5 + 4x4 + 3x3 + 92x+ 99.
Compute m′.

(d) Show that the system correctly recovers the message, i.e. m = m′ if f, g, and φ
are very sparse and small, i.e. have very few non-zero coefficients chosen from
{−1, 1} and m has coefficients in [−(p− 1)/2, (p− 1)/2].
For the parameters given here, g and φ each have one coefficient
equal to 1 and one equal to −1.

4. The GGH encryption system (see e.g. the slide deck for lecture 1 by Thijs Laarhoven)
looks very similar to the McEliece cryptosystem. Explain the differences.

See also http://larc.usp.br/~pbarreto/PQC-3.pdf for Peikert’s scheme and re-
lations.

3


