
Digital Signature Schemes

and the Random Oracle Model

A. Hülsing

Today‘s goal

PAGE 111-12-2014

Review provable security of “in use”

signature schemes. (PKCS #1 v2.x)

Digital Signature

PAGE 211-12-2014

Source: http://hari-cio-8a.blog.ugm.ac.id/files/2013/03/DSA.jpg

Existential unforgeability under adaptive

chosen message attacks

PAGE 311-12-2014

PK, 1n

SIGN

SK

Mi

(σi, Mi)

(σ*, M*) Success if M* ≠ Mi , Ɐ i ∈ [0, q] and

Verify(pk,σ*,M*) = Accept

𝑞𝑠

Reduction

PAGE 411-12-2014

PK, 1n

Mi

(σi, Mi)

(σ*, M*)

Problem

Solution

Implement

SIGN
SIGN

Transform Problem

Extract Solution

𝑞𝑠

Why security reductions?

• Current RSA signature standard so far unbroken

• Vulnerabilities might exist! (And existed for previous

proposals)

• Might be possible to forge RSA signatures without

solving RSA problem or factoring!

PAGE 511-12-2014

What could possibly

go wrong?

PAGE 611-12-2014

RSA

Let (𝐍, 𝐞, 𝐝) ⟵ 𝐆𝐞𝐧𝐑𝐒𝐀(𝟏𝒌) be a PPT algorithm that

outputs a modulus 𝑵 that is the product of two 𝑘-bit

primes (except possibly with negligible probability),

along with an integer 𝒆 > 𝟎 with 𝐠𝐜𝐝(𝒆,𝝓(𝑵)) = 𝟏 and

an integer 𝒅 > 𝟎 satisfying 𝒆𝒅 = 𝟏𝐦𝐨𝐝 𝝓 𝑵 .

For any (𝐍, 𝐞, 𝐝) ⟵ 𝐆𝐞𝐧𝐑𝐒𝐀(𝟏𝒌) and any 𝒚 ∈ ℤ𝑵
∗ we have

(𝒚𝒅)𝒆= 𝒚𝒅𝒆 = 𝒚𝒅𝒆𝐦𝐨𝐝 𝝓 𝑵 = 𝒚𝟏 = 𝒚𝐦𝐨𝐝 𝑵

PAGE 711-12-2014

RSA Assumption

Definition 1. We say that the RSA problem is hard

relative to 𝐆𝐞𝐧𝐑𝐒𝐀 if for all PPT algorithms A, the

following is negligible:

𝑷𝒓[(𝑵, 𝒆, 𝒅) ← 𝐆𝐞𝐧𝐑𝐒𝐀(𝟏𝒌); 𝒚 ← ℤ𝑵
∗ ;

𝒙 ← 𝑨(𝑵, 𝒆, 𝒚): 𝒙𝒆 = 𝒚𝐦𝐨𝐝 𝑵].

PAGE 811-12-2014

A simple RSA Signature

𝐊𝐞𝐲𝐆𝐞𝐧 𝟏𝒌 : Run 𝑵, 𝒆, 𝒅 ← 𝐆𝐞𝐧𝐑𝐒𝐀 𝟏𝒌 .

Return (𝒑𝒌, 𝒔𝒌) with 𝒑𝒌 = 𝑵, 𝒆 , 𝒔𝒌 = 𝒅.

𝐒𝐢𝐠𝐧 𝒔𝒌,𝑴 : Return 𝛔 = (𝑴𝑑 𝐦𝐨𝐝 𝑵)

𝐕𝐞𝐫𝐢𝐟𝐲 𝒑𝒌,𝑴, 𝝈 : Return 1 iff 𝝈𝒆𝐦𝐨𝐝 𝑵 == 𝑴

PAGE 911-12-2014

The Blinding Attack

Given public key 𝒑𝒌 = 𝑵, 𝒆

To create a forgery on any target message 𝑴:

1. Sample random 𝒓 ∈ ℤ𝑵
∗

2. Ask for signature 𝝈 on 𝒓𝒆𝑴𝐦𝐨𝐝 𝑵

3. Output forgery (𝑴,
𝝈

𝒓
𝐦𝐨𝐝 𝑵)

Recall 𝝈 = (𝒓𝒆𝑴)𝒅= 𝒓𝒆𝒅𝑴𝒅 = 𝒓𝑴𝒅𝐦𝐨𝐝 𝑵

Hence
𝝈

𝒓
= 𝑴𝒅𝐦𝐨𝐝 𝑵

PAGE 1011-12-2014

A slightly better RSA Signature

Assume Hashfunction 𝑯: {𝟎, 𝟏}∗→ {𝟎, 𝟏}𝒏 for e.g. 𝒏 = 𝟏𝟔𝟎

𝐊𝐞𝐲𝐆𝐞𝐧 𝟏𝒌 : Run 𝑵, 𝒆, 𝒅 ← 𝐆𝐞𝐧𝐑𝐒𝐀 𝟏𝒌 .

Return (𝒑𝒌, 𝒔𝒌) with 𝒑𝒌 = 𝑵, 𝒆 , 𝒔𝒌 = 𝒅.

𝐒𝐢𝐠𝐧 𝒔𝒌,𝑴 : Pad with suff. zeros that

(𝟎…𝟎||𝑯 𝑴) ∈ ℤ𝑵
∗

Return 𝛔 = ((𝟎…𝟎||𝑯 𝑴)𝑑 𝐦𝐨𝐝 𝑵)

𝐕𝐞𝐫𝐢𝐟𝐲 𝒑𝒌,𝑴, 𝝈 : Return 1 iff 𝝈𝒆𝐦𝐨𝐝 𝑵 == (𝟎…𝟎||𝑯 𝑴)

PAGE 1111-12-2014

Remember Index Calculus?

Given public key 𝒑𝒌 = 𝑵, 𝒆

1. Select a bound 𝒚 and let 𝑺 = (𝒑𝟏, . . . , 𝒑𝒍) be the list of

primes smaller than 𝒚.

2. Find at least 𝒍 + 𝟏 messages 𝑴𝒊 such that each

(𝟎…𝟎||𝑯 𝑴𝒊) is a product of primes in 𝑺.

3. Express one (𝟎…𝟎||𝑯 𝑴𝒋) as a multiplicative

combination of the other (𝟎…𝟎||𝑯 𝑴𝒊) by solving a

linear system given by the exponent vectors of the

(𝟎…𝟎||𝑯 𝑴𝒊)with respect to the primes in 𝑺.

4. Ask for the signatures on all 𝑴𝒊, 𝒊 ≠ 𝒋 and forge

signature on 𝑴𝒋.

PAGE 1211-12-2014

Step 3

Write 𝛍 𝑴𝒊 = (𝟎…𝟎||𝑯 𝑴𝒊)

1. We can write ∀𝑴𝒊, 𝟏 ≤ 𝒊 ≤ 𝝉: 𝛍 𝑴𝒊 = 𝒋=𝟏
𝒍 𝒑𝒋
𝒗𝒊,𝒋

2. Associate with 𝛍 𝑴𝒊 length 𝒍 vector

𝑽𝒊 𝒗𝒊,𝟏𝐦𝐨𝐝 𝒆,… , 𝒗𝒊,𝒍𝐦𝐨𝐝 𝒆

3. 𝝉 ≥ 𝒍 + 𝟏 and there are only 𝒍 linearly independent

length 𝒍 vectors: We can express one vector as

combination of others mod e. Let this be

𝑽𝝉 = 𝒊=𝟏
𝝉−𝟏𝜷𝒊𝑽𝒊 + 𝒆𝚪 ; 𝐟𝐨𝐫 𝐬𝐨𝐦𝐞 𝚪 = (𝜸𝟏, … , 𝜸𝒍)

4. Hence

𝛍 𝑴𝝉 = (

𝒋=𝟏

𝒍

𝒑𝒋
𝜸𝒋)𝒆

𝒊=𝟏

𝝉−𝟏

𝛍 𝑴𝒊
𝜷𝒊

PAGE 1311-12-2014

Step 4

1. Ask for signatures 𝝈𝒊 = 𝛍 𝑴𝒊
𝒅𝐦𝐨𝐝 𝑵

on 𝑴𝒊 for 𝟏 ≤ 𝒊 < 𝝉

2. Compute:

𝝈 ∗ = 𝛍 𝑴𝝉
𝒅 =

𝒋=𝟏

𝒍

𝒑𝒋
𝜸𝒋

𝒊=𝟏

𝝉−𝟏

𝛍 𝑴𝒊
𝒅 𝜷𝒊𝐦𝐨𝐝 𝑵

3. Output forgery (𝝈 ∗,𝑴𝝉)

PAGE 1411-12-2014

Summing up

• Original attack (Misarsky, PKC’98) works even for

more complicated paddings (ISO/IEC 9796-2)

• Attack only works for small n!

• But using SHA-1 (n=160) the attack takes much less

than 𝟐𝟓𝟎 operations!

There are many ways to make mistakes...

(Similar attacks apply to encryption!)

That‘s why we want security reductions

PAGE 1511-12-2014

The Random Oracle Model

PAGE 1611-12-2014

Reduction

PAGE 1711-12-2014

PK, 1n

Mi

(σi, Mi)

(σ*, M*)

Problem

Solution

Implement

SIGN
SIGN

Transform Problem

Extract Solution

𝑞𝑠

Random Oracle Model (ROM)

• Idealized Model

• Perfectly Random Function

PAGE 1811-12-2014

Mj

Mj

H(Mj)

H(Mj)

RO

How to implement RO?

”Lazy Sampling”:

• Keep list of (xi, yi)

• Given Mj, search for xi = Mj

• If xi = Mj exists, return yi

• Else sample new y from Domain,

using uniform distribution

• Add (Mj, y) to table

• Return y

PAGE 1911-12-2014

RO

ROM security

• Take scheme that uses cryptographic hash

• For proof, replace hash by RO

• Different flavors:

Random function vs. Programmable RO

Heuristic security argument

Allows to verify construction

Worked for ”Natural schemes” so far

However: Artificial counter examples exist!

PAGE 2011-12-2014

Full Domain Hash

Signature Scheme

PAGE 2111-12-2014

Trapdoor (One-way) Permutation

PAGE 2211-12-2014

𝐹 𝑝𝑘, 𝑥 = 𝜋(𝑥)

𝐹 𝑠𝑘, 𝑦 = 𝜋−1(𝑦)

Computing 𝜋−1(𝑦)
without knowledge of sk

computationally hard

RSA Trapdoor (One-way) Permutation

PAGE 2311-12-2014

𝐹 𝑝𝑘, 𝑥 = 𝑥𝑒𝑚𝑜𝑑 𝑁

𝐹 𝑠𝑘, 𝑦 = 𝑦𝑑 𝑚𝑜𝑑 𝑁

Computing 𝜋−1(𝑦)
without knowledge of sk

computationally hard if

RSA Assumption holds

𝒑𝒌 = 𝑵, 𝒆 ; 𝒔𝒌 = 𝒅𝑵, 𝒆, 𝒅 ← 𝐆𝐞𝐧𝐑𝐒𝐀 𝟏𝒌 ;

Generic FDH: Sign

PAGE 2411-12-2014

𝜎 = 𝐹 𝑠𝑘, 𝑦 = 𝜋−1(𝑦)

M
𝑦 = 𝐻(𝑀)

𝜎 = 𝑆𝑖𝑔𝑛 𝑠𝑘,𝑀
= 𝜋−1(𝐻 𝑀)
= 𝐹(𝑠𝑘, 𝐻 𝑀)

Generic FDH: Verify

PAGE 2511-12-2014

M
𝑦 = 𝐻(𝑀)

𝑉𝑒𝑟𝑖𝑓𝑦 𝑝𝑘,𝑀, 𝜎 :
𝑐ℎ𝑒𝑐𝑘 𝑦 = 𝐻 𝑀 == 𝜋 𝜎 = 𝐹 𝑝𝑘, 𝜎 = 𝑦′

𝑦′ = 𝐹 𝑝𝑘, 𝜎 = 𝜋(𝜎)

RSA-PFDH

• Randomized FDH

• Simplified RSA-PSS

• Standardized in PKCS #1 v2

(slightly different randomization)

• Tight Reduction from RSA Assumption in ROM

PAGE 2611-12-2014

RSA-PFDH

Assume Hashfunction 𝑯: {𝟎, 𝟏}∗→ ℤ𝑵
∗

𝐊𝐞𝐲𝐆𝐞𝐧 𝟏𝒌 : Run 𝑵, 𝒆, 𝒅 ← 𝐆𝐞𝐧𝐑𝐒𝐀 𝟏𝒌 .

Return (𝒑𝒌, 𝒔𝒌) with 𝒑𝒌 = 𝑵, 𝒆 , 𝒔𝒌 = 𝒅.

𝐒𝐢𝐠𝐧 𝒔𝒌,𝑴 : Sample 𝒓←
$
𝑼𝜿; Compute 𝐲 = 𝑯(𝒓||𝑴)

Return 𝛔 = (𝒓, 𝒚𝑑 𝐦𝐨𝐝 𝑵)

𝐕𝐞𝐫𝐢𝐟𝐲 𝒑𝒌,𝑴, 𝝈 : Return 1 iff 𝝈𝒆𝐦𝐨𝐝 𝑵 == 𝑯(𝒓||𝑴)

PAGE 2711-12-2014

RSA-PFDH Security

If the RSA Assumption holds, RSA-PFDH is

existentially unforgeable under adaptive chosen

message attacks.

PAGE 2811-12-2014

Proof

Idea:

Show that any forger A against RSA-PFDH can be used

to break the RSA Assumption with ~ the same time

and success probability.

”Given a forger A against RSA-PFDH with success

probability 𝜺, we construct an oracle Machine MA that

succeeds with probability 𝜺/𝟒.”

PAGE 2911-12-2014

Reduction

PAGE 3011-12-2014

pk, 1n

Mi

(σi, Mi)

(σ*, M*)

Implement

SIGN
SIGN

Transform Problem

Extract Solution

Mj

H(Mj)

𝑵, 𝒆, 𝒚

𝒙:
𝒙𝒆 = 𝒚𝐦𝐨𝐝 𝑵

Reduction: Transform Problem

PAGE 3111-12-2014

pk, 1n

Mi

(σi, Mi)

(σ*, M*)

Implement

SIGN
SIGN

Transform Problem

Extract Solution

Mj

H(Mj)

𝑵, 𝒆, 𝒚

𝒙:
𝒙𝒆 = 𝒚𝐦𝐨𝐝 𝑵

𝒑𝒌 = (𝑵, 𝒆)

𝑵, 𝒆, 𝒚

Reduction: Implement SIGN

PAGE 3211-12-2014

pk, 1n

Mi

(σi, Mi)

(σ*, M*)

Implement

SIGN
SIGN

Transform Problem

Extract Solution

Mj

H(Mj)

𝑵, 𝒆, 𝒚

𝒙:
𝒙𝒆 = 𝒚𝐦𝐨𝐝 𝑵

𝒑𝒌 = (𝑵, 𝒆)

𝑵, 𝒆, 𝒚

Implement SIGN – Implement RO

• Keep table of tripples (. , . , .)

• When A asks for 𝑯(𝒓||𝑴):

1. If there is an entry (𝒓||𝑴, 𝒙, 𝒛) in table, return 𝒛

2. If list 𝑳𝑴 already exists, go to 3. Otherwise, choose 𝒒𝒔
values 𝒓𝑴,𝟏, … , 𝒓𝑴,𝒒𝒔 ← {𝟎, 𝟏}

𝜿 and store them in a list

𝑳𝑴.

3. If 𝒓 ∈ 𝑳𝑴 then let 𝒊 be such that 𝒓 = 𝒓𝑴,𝒊. Choose

random 𝒙𝑴,𝒊 ∈ ℤ𝑵
∗ and return the answer 𝐳 =

𝒙𝑴,𝒊
𝒆𝐦𝐨𝐝 𝑵. Store (𝒓||𝑴, 𝒙𝑴,𝒊, 𝒛) in the table.

4. If 𝒓 ∉ 𝑳𝑴, choose random 𝒙 ∈ ℤ𝑵
∗ and return the answer

𝒛 = 𝒚𝒙𝒆𝐦𝐨𝐝 𝑵. Store (𝒓||𝑴, 𝒙, 𝒛) in the table.

PAGE 3311-12-2014

Implement SIGN

• When A requests some message 𝑴 to be signed for

the 𝒊 th time:

• let 𝒓𝑴,𝒊 be the 𝒊 th value in 𝑳𝑴 and

• compute 𝐳 = 𝐇(𝒓𝑴,𝒊||𝑴) using RO.

• Let (𝒓||𝑴, 𝒙𝑴,𝒊, 𝒛) be the corresponding entry in the RO

table.

• Output signature (𝒓𝑴,𝒊, 𝒙𝑴,𝒊).

PAGE 3411-12-2014

Observation

• All SIGN queries can be answered!

• SIGN queries are answered using hash

𝐇(𝒓𝑴,𝒊| 𝑴 = 𝐳 = 𝒙𝑴,𝒊
𝒆𝐦𝐨𝐝 𝑵

Signature (𝒓𝑴,𝒊, 𝒙𝑴,𝒊) known by programming RO

• All other hash queries are answered with

𝐇(𝒓| 𝑴 = 𝒛 = 𝒚𝒙𝒆𝐦𝐨𝐝 𝑵

Signature not known!

BUT: Allows to extract solution from forgery!

PAGE 3511-12-2014

Reduction: Extract Solution

PAGE 3611-12-2014

pk, 1n

Mi

(σi, Mi)

(σ*, M*)

Implement

SIGN
SIGN

Transform Problem

Extract Solution

Mj

H(Mj)

𝑵, 𝒆, 𝒚

𝒙:
𝒙𝒆 = 𝒚𝐦𝐨𝐝 𝑵

𝒑𝒌 = (𝑵, 𝒆)

𝑵, 𝒆, 𝒚 𝑞𝑠
𝑞𝐻

Reduction: Extract Solution

• If A outputs a forgery (𝑴∗, (𝒓∗, 𝝈∗)):

• If 𝒓∗ ∈ 𝑳𝑴∗ abort.

• Else, let (𝒓∗||𝑴∗, 𝒙, 𝒛) be the corresponding entry of the

table.

• Output
𝝈∗

𝒙
𝐦𝐨𝐝 𝑵.

• Note:

𝝈∗

𝒙

𝒆

=
𝝈∗𝒆

𝒙𝒆
=
𝑯 𝒓∗||𝑴∗

𝒙𝒆
=
𝒚𝒙𝒆

𝒙𝒆
= 𝒚𝐦𝐨𝐝 𝑵

⟹
𝝈∗

𝒙
= 𝒆 𝒚𝐦𝐨𝐝 𝑵

PAGE 3711-12-2014

Analysis

• Transform Problem:

• Succeeds always

• Generates exactly matching distribution

• Implement SIGN / RO:

• Succeeds always (we choose 𝒓)

• Generates exactly matching distribution:

− RO: Outputs are uniform in ℤ𝑵
∗

− SIGN: Follows from RO

• Extract Solution:

• Succeeds iff A succeeds AND

• 𝒓∗ ∉ 𝑳𝑴∗ ⇒ 𝐩 = 𝐏𝐫 𝒓
∗ ∉ 𝑳𝑴∗ = (𝟏 − 𝟐

−𝜿)𝒒𝒔

Setting 𝜿 = 𝐥𝐨𝐠𝟐 𝒒𝒔: 𝒑 ≥
𝟏

𝟒
assuming 𝒒𝒔 ≥ 𝟐

PAGE 3811-12-2014

What have we shown?

• We can turn any forger A against RSA-PFDH with

success probability 𝜺 into an algorithm MA that

solves the RSA problem with probability 𝜺/𝟒.

• In reverse:

If there exists no algorithm to solve the RSA problem

with probability ≥ 𝜺 then there exists no forger

against RSA-PFDH that succeeds with probability ≥
𝟒𝜺.

• As proof is in ROM we have to add

”... As long as the used hash function behaves like a

RO.”

PAGE 3911-12-2014

Conclusion

• Ad Hoc constructions problematic

• Blinding / Index Calculus

• Proofs (even in ROM) allow to check construction

• There is one standardized RSA Sig with proof

• Similar situation for DSA (ROM proof)

PAGE 4011-12-2014

Thank you!

Questions?

PAGE 4111-12-2014

