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Today‘s goal
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Review provable security of “in use” 

signature schemes. (PKCS #1 v2.x)



Digital Signature
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Source: http://hari-cio-8a.blog.ugm.ac.id/files/2013/03/DSA.jpg



Existential unforgeability under adaptive 

chosen message attacks 
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Reduction
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Why security reductions?

• Current RSA signature standard so far unbroken

• Vulnerabilities might exist! (And existed for previous 

proposals)

• Might be possible to forge RSA signatures without 

solving RSA problem or factoring!
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What could possibly 

go wrong?
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RSA

Let (𝐍, 𝐞, 𝐝) ⟵ 𝐆𝐞𝐧𝐑𝐒𝐀(𝟏𝒌) be a PPT algorithm that 

outputs a modulus 𝑵 that is the product of two 𝑘-bit 

primes (except possibly with negligible probability), 

along with an integer 𝒆 > 𝟎 with 𝐠𝐜𝐝(𝒆,𝝓(𝑵)) = 𝟏 and 

an integer 𝒅 > 𝟎 satisfying 𝒆𝒅 = 𝟏𝐦𝐨𝐝 𝝓 𝑵 .

For any (𝐍, 𝐞, 𝐝) ⟵ 𝐆𝐞𝐧𝐑𝐒𝐀(𝟏𝒌) and any 𝒚 ∈ ℤ𝑵
∗ we have

(𝒚𝒅)𝒆= 𝒚𝒅𝒆 = 𝒚𝒅𝒆𝐦𝐨𝐝 𝝓 𝑵 = 𝒚𝟏 = 𝒚𝐦𝐨𝐝 𝑵
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RSA Assumption

Definition 1. We say that the RSA problem is hard 

relative to 𝐆𝐞𝐧𝐑𝐒𝐀 if for all PPT algorithms A, the 

following is negligible:

𝑷𝒓[(𝑵, 𝒆, 𝒅) ← 𝐆𝐞𝐧𝐑𝐒𝐀(𝟏𝒌); 𝒚 ← ℤ𝑵
∗ ;

𝒙 ← 𝑨(𝑵, 𝒆, 𝒚): 𝒙𝒆 = 𝒚𝐦𝐨𝐝 𝑵].
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A simple RSA Signature

𝐊𝐞𝐲𝐆𝐞𝐧 𝟏𝒌 : Run 𝑵, 𝒆, 𝒅 ← 𝐆𝐞𝐧𝐑𝐒𝐀 𝟏𝒌 . 

Return (𝒑𝒌, 𝒔𝒌) with 𝒑𝒌 = 𝑵, 𝒆 , 𝒔𝒌 = 𝒅.

𝐒𝐢𝐠𝐧 𝒔𝒌,𝑴 : Return 𝛔 = (𝑴𝑑 𝐦𝐨𝐝 𝑵)

𝐕𝐞𝐫𝐢𝐟𝐲 𝒑𝒌,𝑴, 𝝈 : Return 1 iff 𝝈𝒆𝐦𝐨𝐝 𝑵 == 𝑴
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The Blinding Attack

Given public key 𝒑𝒌 = 𝑵, 𝒆

To create a forgery on any target message 𝑴:

1. Sample random 𝒓 ∈ ℤ𝑵
∗

2. Ask for signature 𝝈 on 𝒓𝒆𝑴𝐦𝐨𝐝 𝑵

3. Output forgery (𝑴,
𝝈

𝒓
𝐦𝐨𝐝 𝑵)

Recall 𝝈 = (𝒓𝒆𝑴)𝒅= 𝒓𝒆𝒅𝑴𝒅 = 𝒓𝑴𝒅𝐦𝐨𝐝 𝑵

Hence 
𝝈

𝒓
= 𝑴𝒅𝐦𝐨𝐝 𝑵
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A slightly better RSA Signature

Assume Hashfunction 𝑯: {𝟎, 𝟏}∗→ {𝟎, 𝟏}𝒏 for  e.g. 𝒏 = 𝟏𝟔𝟎

𝐊𝐞𝐲𝐆𝐞𝐧 𝟏𝒌 : Run 𝑵, 𝒆, 𝒅 ← 𝐆𝐞𝐧𝐑𝐒𝐀 𝟏𝒌 . 

Return (𝒑𝒌, 𝒔𝒌) with 𝒑𝒌 = 𝑵, 𝒆 , 𝒔𝒌 = 𝒅.

𝐒𝐢𝐠𝐧 𝒔𝒌,𝑴 : Pad with suff. zeros that 

(𝟎…𝟎||𝑯 𝑴 ) ∈ ℤ𝑵
∗

Return 𝛔 = ((𝟎…𝟎||𝑯 𝑴 )𝑑 𝐦𝐨𝐝 𝑵)

𝐕𝐞𝐫𝐢𝐟𝐲 𝒑𝒌,𝑴, 𝝈 : Return 1 iff 𝝈𝒆𝐦𝐨𝐝 𝑵 == (𝟎…𝟎||𝑯 𝑴 )
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Remember Index Calculus?

Given public key 𝒑𝒌 = 𝑵, 𝒆

1. Select a bound 𝒚 and let 𝑺 = (𝒑𝟏, . . . , 𝒑𝒍) be the list of 

primes smaller than 𝒚.

2. Find at least 𝒍 + 𝟏 messages 𝑴𝒊 such that each 

(𝟎…𝟎||𝑯 𝑴𝒊 ) is a product of primes in 𝑺.

3. Express one (𝟎…𝟎||𝑯 𝑴𝒋 ) as a multiplicative 

combination of the other (𝟎…𝟎||𝑯 𝑴𝒊 ) by solving a 

linear system given by the exponent vectors of the 

(𝟎…𝟎||𝑯 𝑴𝒊 )with respect to the primes in 𝑺.

4. Ask for the signatures on all 𝑴𝒊, 𝒊 ≠ 𝒋 and forge 

signature on 𝑴𝒋.
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Step 3

Write 𝛍 𝑴𝒊 = (𝟎…𝟎||𝑯 𝑴𝒊 )

1. We can write ∀𝑴𝒊, 𝟏 ≤ 𝒊 ≤ 𝝉: 𝛍 𝑴𝒊 =  𝒋=𝟏
𝒍 𝒑𝒋
𝒗𝒊,𝒋

2. Associate with 𝛍 𝑴𝒊 length 𝒍 vector 

𝑽𝒊 𝒗𝒊,𝟏𝐦𝐨𝐝 𝒆,… , 𝒗𝒊,𝒍𝐦𝐨𝐝 𝒆

3. 𝝉 ≥ 𝒍 + 𝟏 and there are only 𝒍 linearly independent 

length 𝒍 vectors: We can express one vector as 

combination of others mod e. Let this be

𝑽𝝉 =  𝒊=𝟏
𝝉−𝟏𝜷𝒊𝑽𝒊 + 𝒆𝚪 ; 𝐟𝐨𝐫 𝐬𝐨𝐦𝐞 𝚪 = (𝜸𝟏, … , 𝜸𝒍)

4. Hence 

𝛍 𝑴𝝉 = ( 

𝒋=𝟏

𝒍

𝒑𝒋
𝜸𝒋)𝒆 

𝒊=𝟏

𝝉−𝟏

𝛍 𝑴𝒊
𝜷𝒊
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Step 4

1. Ask for signatures 𝝈𝒊 = 𝛍 𝑴𝒊
𝒅𝐦𝐨𝐝 𝑵

on 𝑴𝒊 for 𝟏 ≤ 𝒊 < 𝝉

2. Compute:

𝝈 ∗ = 𝛍 𝑴𝝉
𝒅 =  

𝒋=𝟏

𝒍

𝒑𝒋
𝜸𝒋  

𝒊=𝟏

𝝉−𝟏

𝛍 𝑴𝒊
𝒅 𝜷𝒊𝐦𝐨𝐝 𝑵

3. Output forgery (𝝈 ∗,𝑴𝝉)
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Summing up

• Original attack (Misarsky, PKC’98) works even for 

more complicated paddings (ISO/IEC 9796-2)

• Attack only works for small n!

• But using SHA-1 (n=160) the attack takes much less 

than 𝟐𝟓𝟎 operations!

There are many ways to make mistakes...

(Similar attacks apply to encryption!)

That‘s why we want security reductions
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The Random Oracle Model
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Reduction
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Random Oracle Model (ROM)

• Idealized Model

• Perfectly Random Function
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How to implement RO?

”Lazy Sampling”:

• Keep list of (xi, yi)

• Given Mj, search for xi = Mj

• If xi = Mj exists, return yi

• Else sample new y from Domain,

using uniform distribution

• Add (Mj, y)  to table

• Return y 
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RO



ROM security

• Take scheme that uses cryptographic hash

• For proof, replace hash by RO

• Different flavors: 

Random function vs. Programmable RO

Heuristic security argument

Allows to verify construction

Worked for ”Natural schemes” so far

However: Artificial counter examples exist!
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Full Domain Hash 

Signature Scheme
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Trapdoor (One-way) Permutation
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𝐹 𝑝𝑘, 𝑥 = 𝜋(𝑥)

𝐹 𝑠𝑘, 𝑦 = 𝜋−1(𝑦)

Computing 𝜋−1(𝑦)
without knowledge of sk

computationally hard



RSA Trapdoor (One-way) Permutation
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𝐹 𝑝𝑘, 𝑥 = 𝑥𝑒𝑚𝑜𝑑 𝑁

𝐹 𝑠𝑘, 𝑦 = 𝑦𝑑 𝑚𝑜𝑑 𝑁

Computing 𝜋−1(𝑦)
without knowledge of sk

computationally hard if 

RSA Assumption holds

𝒑𝒌 = 𝑵, 𝒆 ; 𝒔𝒌 = 𝒅𝑵, 𝒆, 𝒅 ← 𝐆𝐞𝐧𝐑𝐒𝐀 𝟏𝒌 ;



Generic FDH: Sign
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𝜎 = 𝐹 𝑠𝑘, 𝑦 = 𝜋−1(𝑦)

M
𝑦 = 𝐻(𝑀)

𝜎 = 𝑆𝑖𝑔𝑛 𝑠𝑘,𝑀
= 𝜋−1(𝐻 𝑀 )
= 𝐹(𝑠𝑘, 𝐻 𝑀 )



Generic FDH: Verify
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M
𝑦 = 𝐻(𝑀)

𝑉𝑒𝑟𝑖𝑓𝑦 𝑝𝑘,𝑀, 𝜎 :
𝑐ℎ𝑒𝑐𝑘 𝑦 = 𝐻 𝑀 == 𝜋 𝜎 = 𝐹 𝑝𝑘, 𝜎 = 𝑦′

𝑦′ = 𝐹 𝑝𝑘, 𝜎 = 𝜋(𝜎)



RSA-PFDH

• Randomized FDH

• Simplified RSA-PSS

• Standardized in PKCS #1 v2 

(slightly different randomization)

• Tight Reduction from RSA Assumption in ROM
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RSA-PFDH

Assume Hashfunction 𝑯: {𝟎, 𝟏}∗→ ℤ𝑵
∗

𝐊𝐞𝐲𝐆𝐞𝐧 𝟏𝒌 : Run 𝑵, 𝒆, 𝒅 ← 𝐆𝐞𝐧𝐑𝐒𝐀 𝟏𝒌 . 

Return (𝒑𝒌, 𝒔𝒌) with 𝒑𝒌 = 𝑵, 𝒆 , 𝒔𝒌 = 𝒅.

𝐒𝐢𝐠𝐧 𝒔𝒌,𝑴 : Sample 𝒓←
$
𝑼𝜿; Compute 𝐲 = 𝑯(𝒓||𝑴)

Return 𝛔 = (𝒓, 𝒚𝑑 𝐦𝐨𝐝 𝑵)

𝐕𝐞𝐫𝐢𝐟𝐲 𝒑𝒌,𝑴, 𝝈 : Return 1 iff 𝝈𝒆𝐦𝐨𝐝 𝑵 == 𝑯(𝒓||𝑴)
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RSA-PFDH Security

If the RSA Assumption holds, RSA-PFDH is 

existentially unforgeable under adaptive chosen 

message attacks.
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Proof

Idea: 

Show that any forger A against RSA-PFDH can be used 

to break the RSA Assumption with ~ the same time 

and success probability.

”Given a forger A against RSA-PFDH with success 

probability 𝜺, we construct an oracle Machine MA that 

succeeds with probability 𝜺/𝟒.”
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Reduction
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Reduction: Transform Problem
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Reduction: Implement SIGN
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Implement SIGN – Implement RO

• Keep table of tripples ( . , . , . )

• When A asks for 𝑯(𝒓||𝑴):

1. If there is an entry (𝒓||𝑴, 𝒙, 𝒛) in table, return 𝒛

2. If list 𝑳𝑴 already exists, go to 3. Otherwise, choose 𝒒𝒔
values 𝒓𝑴,𝟏, … , 𝒓𝑴,𝒒𝒔 ← {𝟎, 𝟏}

𝜿 and store them in a list 

𝑳𝑴.

3. If 𝒓 ∈ 𝑳𝑴 then let 𝒊 be such that 𝒓 = 𝒓𝑴,𝒊. Choose 

random 𝒙𝑴,𝒊 ∈ ℤ𝑵
∗ and return the answer 𝐳 =

𝒙𝑴,𝒊
𝒆𝐦𝐨𝐝 𝑵. Store (𝒓||𝑴, 𝒙𝑴,𝒊, 𝒛) in the table.

4. If 𝒓 ∉ 𝑳𝑴, choose random 𝒙 ∈ ℤ𝑵
∗ and return the answer

𝒛 = 𝒚𝒙𝒆𝐦𝐨𝐝 𝑵. Store (𝒓||𝑴, 𝒙, 𝒛) in the table.
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Implement SIGN

• When A requests some message 𝑴 to be signed for 

the 𝒊 th time: 

• let 𝒓𝑴,𝒊 be the 𝒊 th value in 𝑳𝑴 and 

• compute 𝐳 = 𝐇(𝒓𝑴,𝒊||𝑴) using RO. 

• Let (𝒓||𝑴, 𝒙𝑴,𝒊, 𝒛) be the corresponding entry in the RO 

table. 

• Output signature (𝒓𝑴,𝒊, 𝒙𝑴,𝒊).
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Observation

• All SIGN queries can be answered!

• SIGN queries are answered using hash

𝐇(𝒓𝑴,𝒊| 𝑴 = 𝐳 = 𝒙𝑴,𝒊
𝒆𝐦𝐨𝐝 𝑵

Signature (𝒓𝑴,𝒊, 𝒙𝑴,𝒊) known by programming RO

• All other hash queries are answered with 

𝐇(𝒓| 𝑴 = 𝒛 = 𝒚𝒙𝒆𝐦𝐨𝐝 𝑵

Signature not known!

BUT: Allows to extract solution from forgery!

PAGE 3511-12-2014



Reduction: Extract Solution
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Reduction: Extract Solution

• If A outputs a forgery (𝑴∗, (𝒓∗, 𝝈∗)):

• If 𝒓∗ ∈ 𝑳𝑴∗ abort. 

• Else, let (𝒓∗||𝑴∗, 𝒙, 𝒛) be the corresponding entry of the 

table.

• Output 
𝝈∗

𝒙
𝐦𝐨𝐝 𝑵.

• Note:

𝝈∗

𝒙

𝒆

=
𝝈∗𝒆

𝒙𝒆
=
𝑯 𝒓∗||𝑴∗

𝒙𝒆
=
𝒚𝒙𝒆

𝒙𝒆
= 𝒚𝐦𝐨𝐝 𝑵

⟹
𝝈∗

𝒙
= 𝒆 𝒚𝐦𝐨𝐝 𝑵
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Analysis

• Transform Problem: 

• Succeeds always 

• Generates exactly matching distribution

• Implement SIGN / RO:

• Succeeds always (we choose 𝒓)

• Generates exactly matching distribution:

− RO: Outputs are uniform in ℤ𝑵
∗

− SIGN: Follows from RO

• Extract Solution:

• Succeeds iff A succeeds AND

• 𝒓∗ ∉ 𝑳𝑴∗ ⇒ 𝐩 = 𝐏𝐫 𝒓
∗ ∉ 𝑳𝑴∗ = (𝟏 − 𝟐

−𝜿)𝒒𝒔

Setting 𝜿 = 𝐥𝐨𝐠𝟐 𝒒𝒔: 𝒑 ≥
𝟏

𝟒
assuming 𝒒𝒔 ≥ 𝟐

PAGE 3811-12-2014



What have we shown?

• We can turn any forger A against RSA-PFDH with 

success probability 𝜺 into an algorithm MA that 

solves the RSA problem with probability 𝜺/𝟒.

• In reverse:

If there exists no algorithm to solve the RSA problem 

with probability ≥ 𝜺 then there exists no forger 

against RSA-PFDH that succeeds with probability ≥
𝟒𝜺.

• As proof is in ROM we have to add

”... As long as the used hash function behaves like a 

RO.”
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Conclusion

• Ad Hoc constructions problematic

• Blinding / Index Calculus

• Proofs (even in ROM) allow to check construction

• There is one standardized RSA Sig with proof

• Similar situation for DSA (ROM proof)
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Thank you!

Questions?
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