Digital Signature Schemes and the Random Oracle Model

A. Hülsing

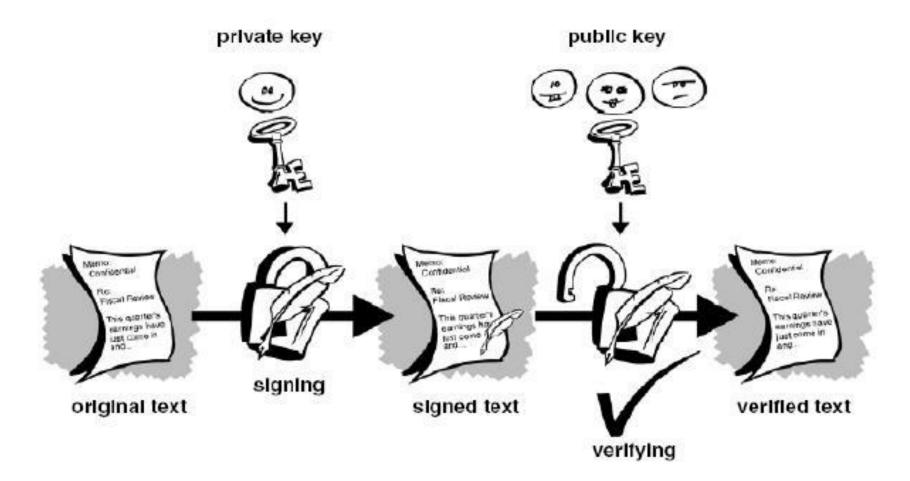
TU

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

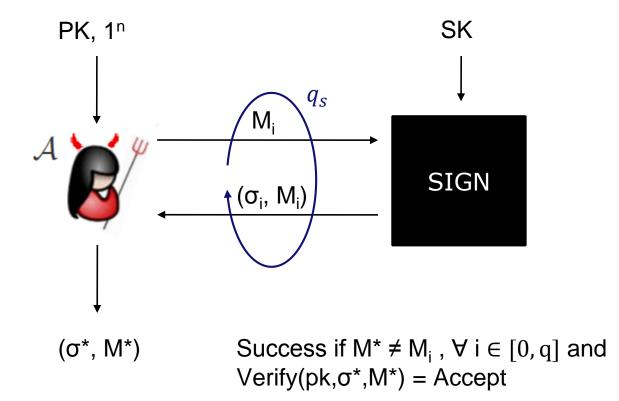
Review provable security of "in use" signature schemes. (PKCS #1 v2.x)

Digital Signature

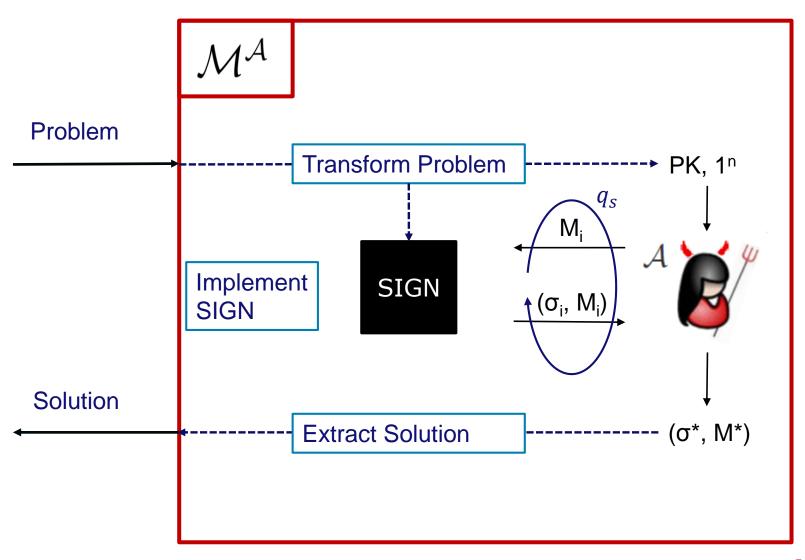


Source: http://hari-cio-8a.blog.ugm.ac.id/files/2013/03/DSA.jpg

Existential unforgeability under adaptive chosen message attacks



Reduction



Why security reductions?

- Current RSA signature standard so far unbroken
- Vulnerabilities might exist! (And existed for previous proposals)
- Might be possible to forge RSA signatures without solving RSA problem or factoring!

What could possibly go wrong?

RSA

Let $(N, e, d) \leftarrow \text{GenRSA}(1^k)$ be a PPT algorithm that outputs a modulus N that is the product of two k-bit primes (except possibly with negligible probability), along with an integer e > 0 with $gcd(e, \phi(N)) = 1$ and an integer d > 0 satisfying $ed = 1 \mod \phi(N)$.

For any $(N, e, d) \leftarrow \text{GenRSA}(1^k)$ and any $y \in \mathbb{Z}_N^*$ we have $(y^d)^e = y^{de} = y^{de \mod \phi(N)} = y^1 = y \mod N$

Definition 1. We say that the RSA problem is hard relative to GenRSA if for all PPT algorithms A, the following is negligible:

 $Pr[(N, e, d) \leftarrow GenRSA(1^k); y \leftarrow \mathbb{Z}_N^*; x \leftarrow A(N, e, y): x^e = y \mod N].$

KeyGen (1^k) : Run $(N, e, d) \leftarrow \text{GenRSA}(1^k)$. Return (pk, sk) with pk = (N, e), sk = d.

Sign(*sk*, *M*): Return $\sigma = (M^d \mod N)$

Verify(pk, M, σ): Return 1 iff $\sigma^e \mod N == M$

Given public key pk = (N, e)To create a forgery on any target message *M*:

- **1.** Sample random $r \in \mathbb{Z}_N^*$
- **2.** Ask for signature σ on $r^e M \mod N$
- **3.** Output forgery $(M, \frac{\sigma}{r} \mod N)$

Recall
$$\sigma = (r^e M)^d = r^{ed} M^d = r M^d \mod N$$

Hence $\frac{\sigma}{r} = M^d \mod N$

Assume Hashfunction $H: \{0, 1\}^* \rightarrow \{0, 1\}^n$ for e.g. n = 160

KeyGen (1^k) : Run $(N, e, d) \leftarrow \text{GenRSA}(1^k)$. Return (pk, sk) with pk = (N, e), sk = d.

Sign(*sk*, *M*): Pad with suff. zeros that $(0 \dots 0 || H(M)) \in \mathbb{Z}_N^*$ Return $\sigma = ((0 \dots 0 || H(M))^d \mod N)$

Verify(pk, M, σ): Return 1 iff $\sigma^e \mod N == (0 \dots 0 || H(M))$

Given public key pk = (N, e)

- 1. Select a bound y and let $S = (p_1, ..., p_l)$ be the list of primes smaller than y.
- 2. Find at least l + 1 messages M_i such that each $(0 \dots 0 || H(M_i))$ is a product of primes in *S*.
- 3. Express one $(0 \dots 0 || H(M_j))$ as a multiplicative combination of the other $(0 \dots 0 || H(M_i))$ by solving a linear system given by the exponent vectors of the $(0 \dots 0 || H(M_i))$ with respect to the primes in *S*.
- 4. Ask for the signatures on all M_i , $i \neq j$ and forge signature on M_j .

Step 3

Write $\mu(M_i) = (0 ... 0 || H(M_i))$

- 1. We can write $\forall M_i, 1 \le i \le \tau$: $\mu(M_i) = \prod_{j=1}^l p_j^{v_{i,j}}$
- 2. Associate with $\mu(M_i)$ length l vector $V_i(v_{i,1} \mod e, \dots, v_{i,l} \mod e)$
- 3. $\tau \ge l + 1$ and there are only *l* linearly independent length *l* vectors: We can express one vector as combination of others mod e. Let this be $V_{\tau} = \sum_{i=1}^{\tau-1} \beta_i V_i + e\Gamma$; for some $\Gamma = (\gamma_1, ..., \gamma_l)$

4. Hence

$$\mu(M_{\tau}) = \left(\prod_{j=1}^{l} p_{j}^{\gamma_{j}}\right)^{e} \prod_{i=1}^{\tau-1} \mu(M_{i})^{\beta_{i}}$$

Step 4

- 1. Ask for signatures $\sigma_i = \mu(M_i)^d \mod N$ on M_i for $1 \le i < \tau$
- 2. Compute:

$$\sigma^* = \mu(M_{\tau})^d = \left(\prod_{j=1}^l p_j^{\gamma_j}\right) \prod_{i=1}^{\tau-1} (\mu(M_i)^d)^{\beta_i} \mod N$$

3. Output forgery (σ^*, M_{τ})

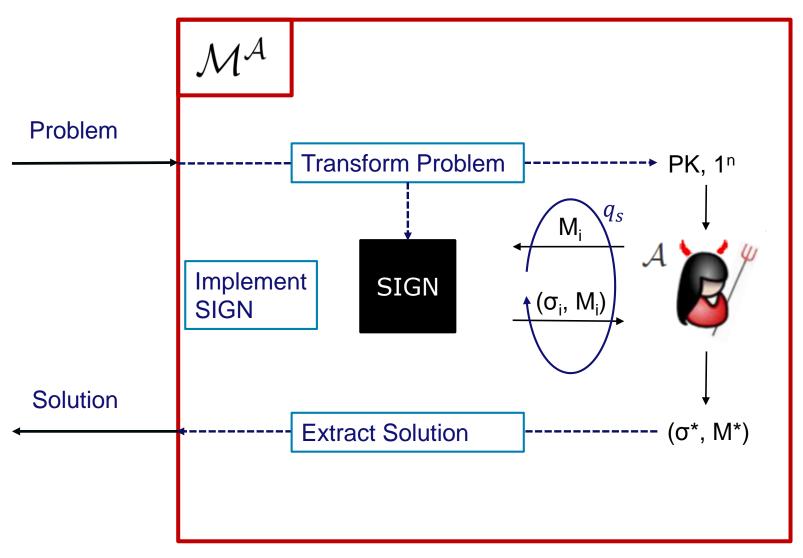
Summing up

- Original attack (Misarsky, PKC'98) works even for more complicated paddings (ISO/IEC 9796-2)
- Attack only works for small n!
- But using SHA-1 (n=160) the attack takes much less than 2⁵⁰ operations!

There are many ways to make mistakes... (Similar attacks apply to encryption!) That's why we want security reductions

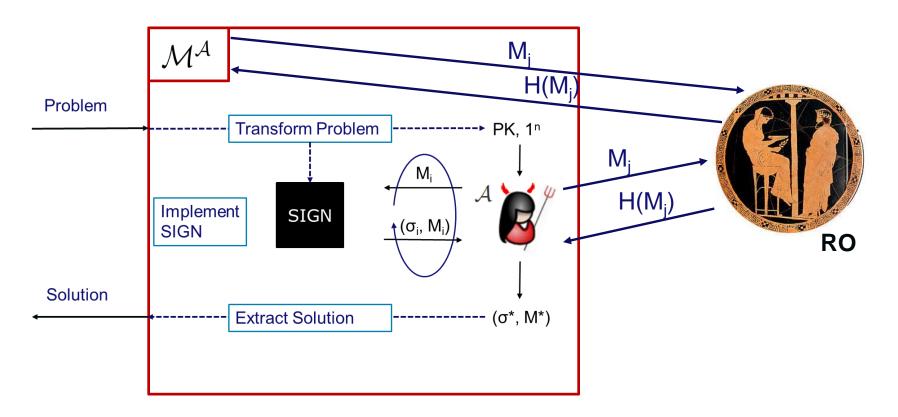
The Random Oracle Model

Reduction



Random Oracle Model (ROM)

- Idealized Model
- Perfectly Random Function



How to implement RO?

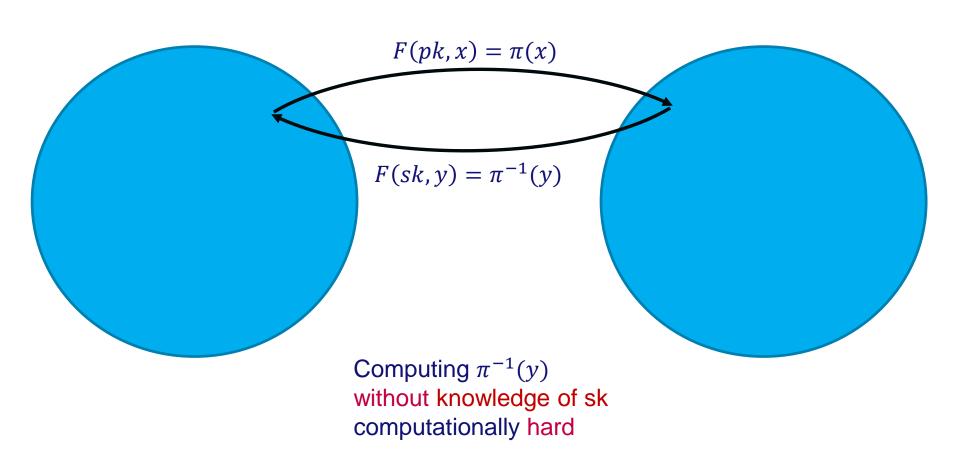
- "Lazy Sampling":
- Keep list of (x_i, y_i)
- Given M_i , search for $x_i = M_i$
- If x_i = M_j exists, return y_i
- Else sample new y from Domain, using uniform distribution
- Add (M_j, y) to table
- Return y

ROM security

- Take scheme that uses cryptographic hash
- For proof, replace hash by RO
 - Different flavors: Random function vs. Programmable RO
- Heuristic security argument
- Allows to verify construction
- >Worked for "Natural schemes" so far
- >However: Artificial counter examples exist!

Full Domain Hash Signature Scheme

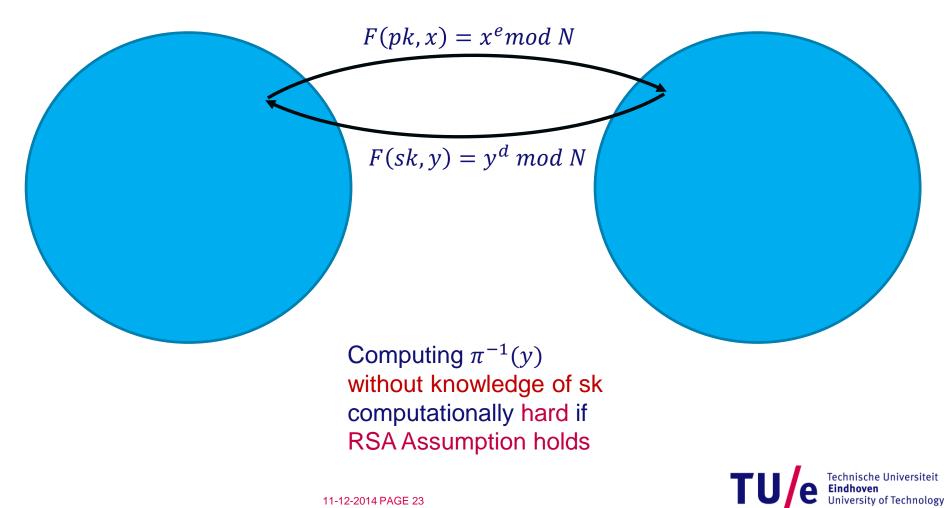
Trapdoor (One-way) Permutation



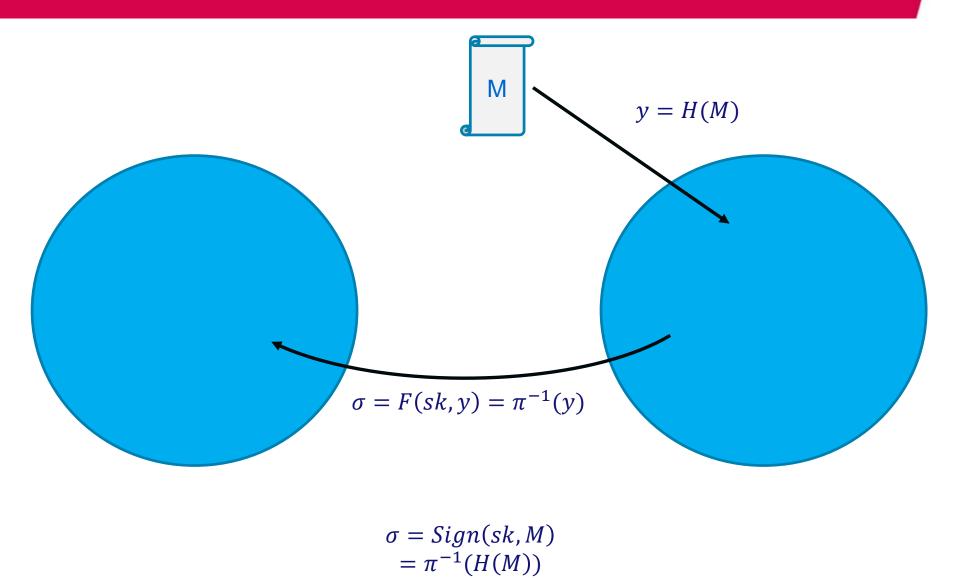
TU/e Technische Universiteit Eindhoven University of Technology

RSA Trapdoor (One-way) Permutation

 $(N, e, d) \leftarrow \text{GenRSA}(1^k); \quad pk = (N, e); \qquad sk = d$



Generic FDH: Sign

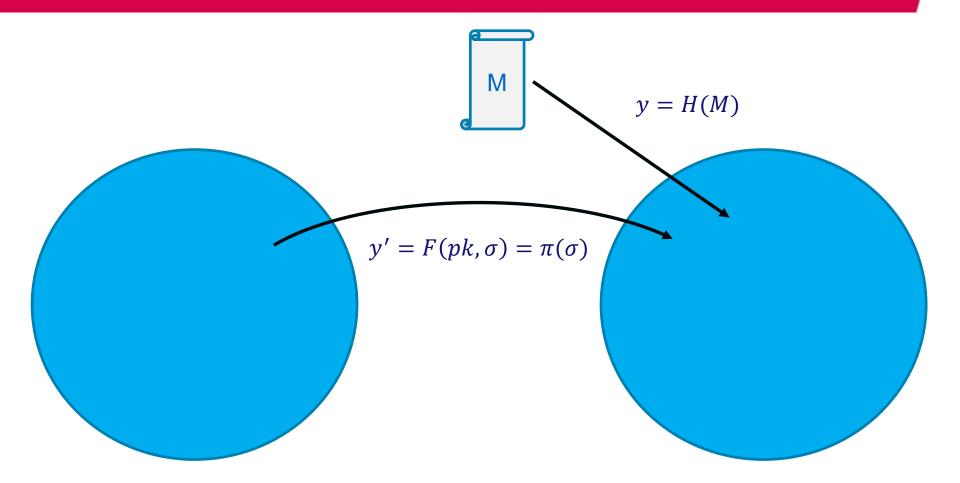


= F(sk, H(M))

Technische Universiteit **Eindhoven** University of Technology

TU

Generic FDH: Verify



Verify (pk, M, σ) : check $y = H(M) == \pi(\sigma) = F(pk, \sigma) = y'$

RSA-PFDH

- Randomized FDH
- Simplified RSA-PSS
 - Standardized in PKCS #1 v2
 (alightly different rendemized)
 - (slightly different randomization)
- Tight Reduction from RSA Assumption in ROM

Assume Hashfunction $H: \{0, 1\}^* \to \mathbb{Z}_N^*$ KeyGen (1^k) : Run $(N, e, d) \leftarrow \text{GenRSA}(1^k)$. Return (pk, sk) with pk = (N, e), sk = d.

Sign(*sk*, *M*): Sample $r \stackrel{\$}{\leftarrow} U_{\kappa}$; Compute y = H(r||M)Return $\sigma = (r, y^d \mod N)$

Verify(pk, M, σ): Return 1 iff $\sigma^e \mod N == H(r||M)$

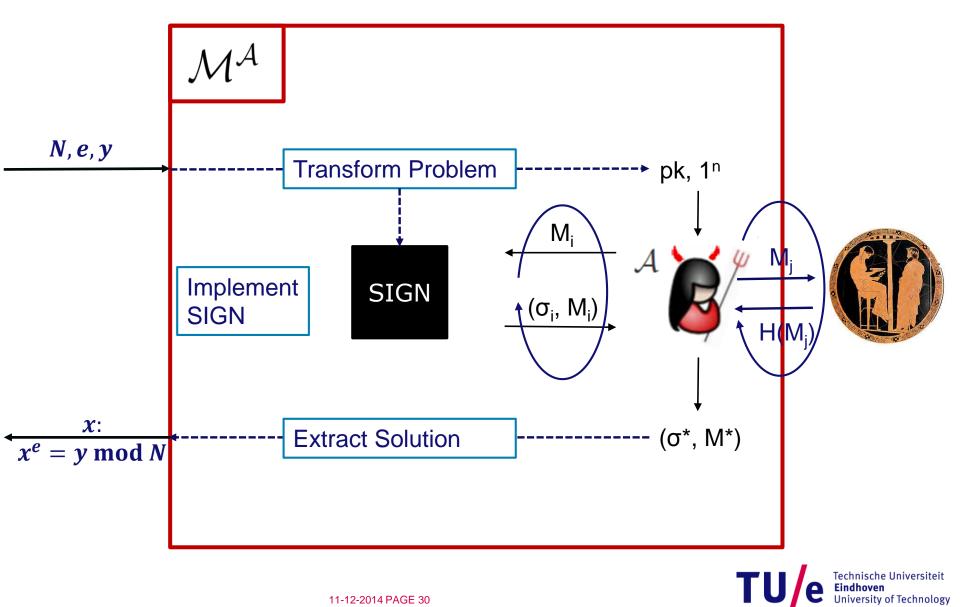
If the RSA Assumption holds, RSA-PFDH is existentially unforgeable under adaptive chosen message attacks.

Idea:

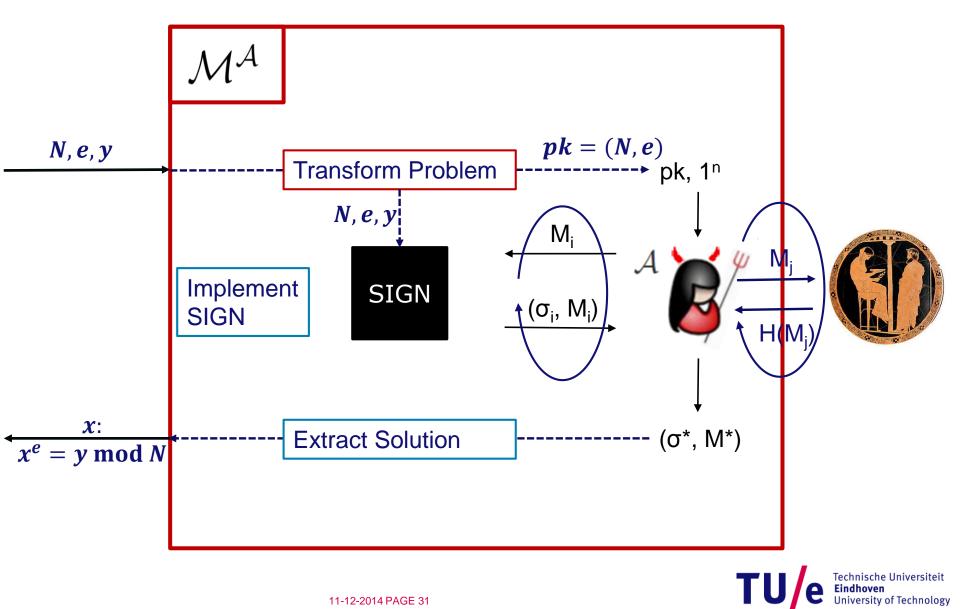
Show that any forger A against RSA-PFDH can be used to break the RSA Assumption with ~ the same time and success probability.

"Given a forger A against RSA-PFDH with success probability ε , we construct an oracle Machine M^A that succeeds with probability $\varepsilon/4$."

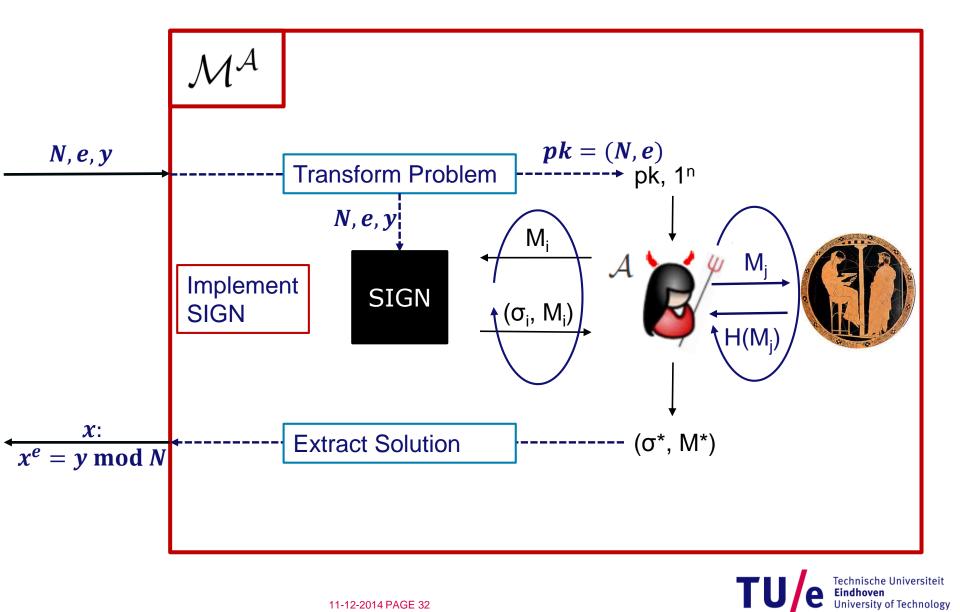
Reduction



Reduction: Transform Problem



Reduction: Implement SIGN



Implement SIGN – Implement RO

- Keep table of tripples (. , . , .)
- When A asks for H(r||M):
 - 1. If there is an entry (r||M, x, z) in table, return z
 - 2. If list L_M already exists, go to 3. Otherwise, choose q_s values $r_{M,1}, \ldots, r_{M,q_s} \leftarrow \{0,1\}^{\kappa}$ and store them in a list L_M .
 - 3. If $r \in L_M$ then let *i* be such that $r = r_{M,i}$. Choose random $x_{M,i} \in \mathbb{Z}_N^*$ and return the answer $z = x_{M,i}^e \mod N$. Store $(r||M, x_{M,i}, z)$ in the table.
 - 4. If $r \notin L_M$, choose random $x \in \mathbb{Z}_N^*$ and return the answer $z = yx^e \mod N$. Store (r||M, x, z) in the table.

Implement SIGN

- When A requests some message *M* to be signed for the *i* th time:
 - let $r_{M,i}$ be the *i* th value in L_M and
 - compute $z = H(r_{M,i}||M)$ using RO.
 - Let $(r||M, x_{M,i}, z)$ be the corresponding entry in the RO table.
 - Output signature $(r_{M,i}, x_{M,i})$.

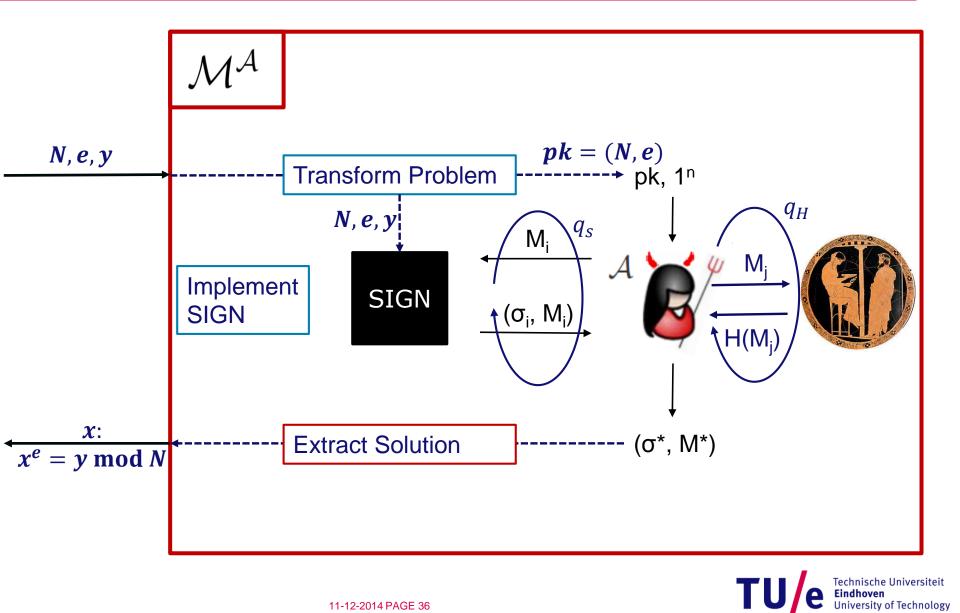
Observation

- All SIGN queries can be answered!
- SIGN queries are answered using hash $H(r_{M,i}||M) = z = x_{M,i}^{e} \mod N$

> Signature $(r_{M,i}, x_{M,i})$ known by programming RO

- All other hash queries are answered with $H(r||M) = z = yx^e \mod N$
 - Signature not known!
 - **>** BUT: Allows to extract solution from forgery!

Reduction: Extract Solution



Reduction: Extract Solution

- If A outputs a forgery $(M^*, (r^*, \sigma^*))$:
 - If $r^* \in L_{M^*}$ abort.
 - Else, let $(r^*||M^*, x, z)$ be the corresponding entry of the table.
 - Output $\frac{\sigma^*}{x} \mod N$.
- Note:

$$\left(\frac{\sigma^*}{x}\right)^e = \frac{\sigma^{*e}}{x^e} = \frac{H(r^*||M^*)}{x^e} = \frac{yx^e}{x^e} = y \mod N$$
$$\implies \frac{\sigma^*}{x} = \sqrt[e]{y} \mod N$$

Analysis

- Transform Problem:
 - Succeeds always
 - Generates exactly matching distribution
- Implement SIGN / RO:
 - Succeeds always (we choose r)
 - Generates exactly matching distribution:
 - RO: Outputs are uniform in \mathbb{Z}_N^*
 - SIGN: Follows from RO
- Extract Solution:
 - Succeeds iff A succeeds AND
 - $r^* \notin L_{M^*} \Rightarrow p = \Pr[r^* \notin L_{M^*}] = (1 2^{-\kappa})^{q_s}$ Setting $\kappa = \log_2 q_s$: $p \ge \frac{1}{4}$ assuming $q_s \ge 2$

• We can turn any forger A against RSA-PFDH with success probability ε into an algorithm M^A that solves the RSA problem with probability $\varepsilon/4$.

In reverse:

If there exists no algorithm to solve the RSA problem with probability $\geq \varepsilon$ then there exists no forger against RSA-PFDH that succeeds with probability $\geq 4\varepsilon$.

As proof is in ROM we have to add
 "... As long as the used hash function behaves like a RO."

Conclusion

- Ad Hoc constructions problematic
 - Blinding / Index Calculus
- Proofs (even in ROM) allow to check construction
- There is one standardized RSA Sig with proof
- Similar situation for DSA (ROM proof)

Thank you! Questions?

