
Cryptographic Hash Functions

Part II

Andreas Hülsing, TU/e

Most slides by Sebastiaan de Hoogh, TU/e

Cryptography 1

1

hash function design - iterated compression

2

Merkle-Damgård construction

• assume that message m can be split up into blocks
m1, …, ms of equal block length r
– most popular block length is r = 512

• compression function: CF : {0,1}n x {0,1}r
 {0,1}n

• intermediate hash values (length n) as CF input and output

• message blocks as second input of CF

• start with fixed initial IHV0 (a.k.a. IV = initialization vector)

• iterate CF : IHV1 = CF(IHV0,m1), IHV2 = CF(IHV1,m2), …,
IHVs = CF(IHVs-1,ms),

• take h(m) = IHVs as hash value

• advantages:
– this design makes streaming possible

– hash function analysis becomes compression function analysis

– analysis easier because domain of CF is finite

3

padding

• padding: add dummy bits to satisfy block length

requirement

• non-ambiguous padding: add one 1-bit and as many

0-bits as necessary to fill the final block

– when original message length is a multiple of the block length,

apply padding anyway, adding an extra dummy block

– any other non-ambiguous padding will work as well

4

Merkle-Damgård strengthening

• let padding leave final 64 bits open

• encode in those 64 bits the original message length

– that’s why messages of length ≥ 264 are not supported

• reasons:

– needed in the proof of the Merkle-Damgård theorem

– prevents some attacks such as

• trivial collisions for random IV

– now h(IHV0,m1||m2) = h(IHV1,m2)

• see next slide for more

5

continued

• fixpoint attack

fixpoint: IHV, m such that CF(IHV,m) = IHV

• long message attack

6

compression function collisions

• collision for a compression function: m1, m2, IHV such that

CF(IHV,m1) = CF(IHV,m2)

• pseudo-collision for a compression function: m1, m2, IHV1, IHV2

such that CF(IHV1,m1) = CF(IHV2,m2)

• Theorem (Merkle-Damgård): If the compression function CF is

pseudo-collision resistant, then a hash function h derived by

Merkle-Damgård iterated compression is collision resistant.

– Proof: Suppose 𝒉 𝒎𝟏 = 𝒉(𝒎𝟐), then

• If 𝒎𝟏 and 𝒎𝟐 same size: locate the iteration where the collision occurs

• Else a pseudo collision for CF appears in the last blocks (cont. length)

• Note:

– a method to find pseudo-collisions does not lead to a method to find

collisions for the hash function

– a method to find collisions for the compression function is almost a method

to find collisions for the hash function, we ‘only’ have a wrong IHV

7

the MD4 family of hash functions

MD4

(Rivest 1990)

RIPEMD

(RIPE 1992)

RIPEMD-128

RIPEMD-160

RIPEMD-256

RIPEMD-320

(Dobbertin, Bosselaers,

Preneel 1992)

MD5

(Rivest 1992)

HAVAL

(Zheng, Pieprzyk,

Seberry 1993)

SHA-0

(NIST 1993)

SHA-1

(NIST 1995)

SHA-224

SHA-256

SHA-384

SHA-512

(NIST 2004)

8

design of MD4 family compression functions

message block

split into words

message expansion

input words for

each step

IHV  initial state

each step updates

state with an

input word

final state ‘added’

to IHV

(feed-forward)

9

design details

• MD4, MD5, SHA-0, SHA-1 details:

– 512-bit message block split into 16 32-bit words

– state consists of 4 (MD4, MD5) or 5 (SHA-0, SHA-1) 32-bit words

– MD4: 3 rounds of 16 steps each, so 48 steps, 48 input words

– MD5: 4 rounds of 16 steps each, so 64 steps, 64 input words

– SHA-0, SHA-1: 4 rounds of 20 steps each, so 80 steps, 80 input

words

– message expansion and step operations use only very easy to

implement operations:

• bitwise Boolean operations

• bit shifts and bit rotations

• addition modulo 232

– proper mixing believed to be cryptographically strong

10

message expansion

• MD4, MD5 use roundwise permutation, for MD5:

– W0 = M0, W1 = M1, …, W15 = M15,

– W16 = M1, W17 = M6, …, W31 = M12, (jump 5 mod 16)

– W32 = M5, W33 = M8, …, W47 = M2, (jump 3 mod 16)

– W48 = M0, W49 = M7, …, W63 = M9 (jump 7 mod 16)

• SHA-0, SHA-1 use recursivity

– W0 = M0, W1 = M1, …, W15 = M15,

– SHA-0: Wi = Wi-3 XOR Wi-8 XOR Wi-14 XOR Wi-16 for i = 16, …, 79

– problem: kth bit influenced only by kth bits of preceding words,

so not much diffusion

– SHA-1: Wi = (Wi-3 XOR Wi-8 XOR Wi-14 XOR Wi-16)<<<1

(additional rotation by 1 bit,

this is the only difference between SHA-0 and SHA-1)

11

Example: step operations in MD5

• in each step only one state word is updated

• the other state words are rotated by 1

• state update:

A’ = B + ((A + fi(B,C,D) + Wi + Ki) <<< si)

Ki, si step dependent constants,

+ is addition mod 232,

fi round dependend boolean functions:

fi(x,y,z) = xy OR (¬x)z for i = 1, …, 16,

fi(x,y,z) = xz OR y(¬z) for i = 17, …, 32,

fi(x,y,z) = x XOR y XOR z for i = 33, …, 48,

fi(x,y,z) = y XOR (y OR (¬z)) for i = 49, …, 64,

these functions are nonlinear, balanced, and

have an avalanche effect

step operations in MD5

12

13

provable hash functions

• people don’t like that one can’t prove much about

hash functions

• reduction to established ‘hard problem’ such as

factoring is seen as an advantage

• Example: VSH – Very Smooth Hash

– Contini-Lenstra-Steinfeld 2006

– collision resistance provable under assumption that a problem

directly related to factoring is hard

– but still far from ideal

• bad performance compared to SHA-256

• all kinds of multiplicative relations between hash values

exist

14

SHA-3 competition

• NIST started in 2007 an open competition for a new hash

function to replace SHA-256 as standard

• more than 50 candidates in 1st round

• Winner 2012: Keccak

– Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche

– “Family of Sponge Functions”

15

Collisions for MD5

16

Example Hash-then-Sign in Browser

17

18

Wang’s attack on MD5

• two-block collision

– for any input IHV, identical for the two messages

i.e. IHV0 = IHV0’, ΔIHV0 = 0

– near-collision after first block:

IHV1 = CF(IHV0,m1), IHV1’ = CF(IHV0,m1’),

with ΔIHV1 having only a few carefully chosen ±1s

– full collision after second block:

IHV2 = CF(IHV1,m2), = CF(IHV1’,m2’),

i.e. IHV2 = IHV2’, ΔIHV2 = 0

• with IHV0 the standard IV for MD5, and a third block

for padding and MD-strengthening, this gives a

collision for the full MD5

19

chosen-prefix collisions

• latest development on MD5

• Marc Stevens (TU/e MSc student) 2006

– paper by Marc Stevens, Arjen Lenstra and Benne de Weger,

EuroCrypt 2007

• Marc Stevens (CWI PhD student) 2009

– paper by Marc Stevens, Alex Sotirov, Jacob Appelbaum,

David Molnar, Dag Arne Osvik, Arjen Lenstra and Benne de

Weger, Crypto 2007

– rogue CA attack

20

MD5: identical IV attacks

• all attacks following

Wang’s method, up to

recently

• MD5 collision attacks

work for any starting IHV

data before and after the

collision can be chosen at

will

• but starting IHVs must

be identical

data before and after the

collision must be identical

• called random collision

21

MD5: different IV attacks

• new attack
– Marc Stevens, TU/e

– Oct. 2006

• MD5 collisions for any

starting pair {IHV1, IHV2}
data before the collision needs

not to be identical

data before the collision can

still be chosen at will, for

each of the two documents

data after the collision still

must be identical

• called chosen-prefix

collision

22

indeed that was not the end

in 2008 the ethical hackers came by

observation: commercial certification authorities still use MD5

idea: proof of concept of realistic attack as wake up call

 attack a real, commercial certification authority

purchase a web certificate for a valid web domain

but with a “little spy” built in

prepare a rogue CA certificate with identical MD5 hash

the commercial CA’s signature also holds for the rogue CA

certificate

Outline of the RogueCA Attack

23

24

Subject = End Entity

Subject = CA

25

problems to be solved

predict the serial number

predict the time interval of validity

at the same time

a few days before

more complicated certificate structure

“Subject Type” after the public key

small space for the collision blocks

is possible but much more computations needed

not much time to do computations

to keep probability of prediction success reasonable

26

how difficult is predicting?
time interval:

CA uses automated certification procedure

certificate issued exactly 6 seconds after click

serial number :

Nov 3 07:44:08 2008 GMT 643006

Nov 3 07:45:02 2008 GMT 643007

Nov 3 07:46:02 2008 GMT 643008

Nov 3 07:47:03 2008 GMT 643009

Nov 3 07:48:02 2008 GMT 643010

Nov 3 07:49:02 2008 GMT 643011

Nov 3 07:50:02 2008 GMT 643012

Nov 3 07:51:12 2008 GMT 643013

Nov 3 07:51:29 2008 GMT 643014

Nov 3 07:52:02 2008 GMT have a guess…

27

the attack at work

estimated: 800-1000 certificates issued in a weekend

procedure:
1. buy certificate on Friday, serial number S-1000

2. predict serial number S for time T Sunday evening

3. make collision for serial number S and time T: 2 days time

4. short before T buy additional certificates until S-1

5. buy certificate on time T-6
hope that nobody comes in between and steals our serial
number S

28

to let it work

cluster of >200

PlayStation3

game consoles

(1 PS3 = 40 PC’s)

complexity: 250

memory: 30 GB

 collision in 1 day

29

result

success after 4th attempt (4th weekend)

purchased a few hundred certificates

(promotion action: 20 for one price)

total cost: < US$ 1000

30

conclusion on collisions

• at this moment, ‘meaningful’ hash collisions are

– easy to make

– but also easy to detect

– still hard to abuse realistically

• with chosen-prefix collisions we come close to

realistic attacks

• to do real harm, second pre-image attack needed

– real harm is e.g. forging digital signatures

– this is not possible yet, not even with MD5

• More information: http://www.win.tue.nl/hashclash/

Questions?

31

32

proof of birthday paradox

• probability that all k elements are distinct is

and this is < ½ when k(k-1) > (2 log 2)t

(≈ k2) (≈ 1.4 t)

t

kk
t

i
k

i

t

ik

i

k

i

eee
t

i

t

it
k

i 2

)1(1

0

1

0

1

0

1

01

































