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hash function design - iterated compression
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Merkle-Damgård construction

• assume that message m can be split up into blocks          
m1, …, ms of equal block length r
– most popular block length is r = 512

• compression function: CF : {0,1}n x {0,1}r
 {0,1}n

• intermediate hash values (length n) as CF input and output

• message blocks as second input of CF

• start with fixed initial IHV0 (a.k.a. IV = initialization vector)

• iterate CF : IHV1 = CF(IHV0,m1), IHV2 = CF(IHV1,m2), …, 
IHVs = CF(IHVs-1,ms), 

• take h(m) = IHVs as hash value 

• advantages:
– this design makes streaming possible

– hash function analysis becomes compression function analysis

– analysis easier because domain of CF is finite
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padding

• padding: add dummy bits to satisfy block length 

requirement

• non-ambiguous padding: add one 1-bit and as many 

0-bits as necessary to fill the final block

– when original message length is a multiple of the block length, 

apply padding anyway, adding an extra dummy block

– any other non-ambiguous padding will work as well
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Merkle-Damgård strengthening

• let padding leave final 64 bits open

• encode in those 64 bits the original message length

– that’s why messages of length ≥ 264 are not supported

• reasons:

– needed in the proof of the Merkle-Damgård theorem

– prevents some attacks such as 

• trivial collisions for random IV

– now h(IHV0,m1||m2) = h(IHV1,m2)

• see next slide for more



5

continued

• fixpoint attack

fixpoint: IHV, m such that CF(IHV,m) = IHV

• long message attack
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compression function collisions

• collision for a compression function: m1, m2, IHV such that 

CF(IHV,m1) = CF(IHV,m2)

• pseudo-collision for a compression function: m1, m2, IHV1, IHV2

such that CF(IHV1,m1) = CF(IHV2,m2)

• Theorem (Merkle-Damgård): If the compression function CF is 

pseudo-collision resistant, then a hash function h derived by 

Merkle-Damgård iterated compression is collision resistant.

– Proof: Suppose 𝒉 𝒎𝟏 = 𝒉(𝒎𝟐), then

• If 𝒎𝟏 and 𝒎𝟐 same size: locate the iteration where the collision occurs

• Else a pseudo collision for CF appears in the last blocks (cont. length)

• Note: 

– a method to find pseudo-collisions does not lead to a method to find 

collisions for the hash function 

– a method to find collisions for the compression function is almost a method 

to find collisions for the hash function, we ‘only’ have a wrong IHV
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the MD4 family of hash functions

MD4

(Rivest 1990)

RIPEMD

(RIPE 1992)

RIPEMD-128 

RIPEMD-160 

RIPEMD-256 

RIPEMD-320

(Dobbertin, Bosselaers, 

Preneel 1992)

MD5

(Rivest 1992)

HAVAL

(Zheng, Pieprzyk, 

Seberry 1993)

SHA-0

(NIST 1993)

SHA-1

(NIST 1995)

SHA-224 

SHA-256 

SHA-384 

SHA-512

(NIST 2004)
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design of MD4 family compression functions

message block 

split into words

message expansion

input words for 

each step

IHV  initial state

each step updates 

state with an 

input word

final state ‘added’  

to IHV 

(feed-forward) 
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design details

• MD4, MD5, SHA-0, SHA-1 details:

– 512-bit message block split into 16 32-bit words

– state consists of 4 (MD4, MD5) or 5 (SHA-0, SHA-1) 32-bit words

– MD4: 3 rounds of 16 steps each, so 48 steps, 48 input words 

– MD5: 4 rounds of 16 steps each, so 64 steps, 64 input words 

– SHA-0, SHA-1: 4 rounds of 20 steps each, so 80 steps, 80 input 

words

– message expansion and step operations use only very easy to 

implement operations:

• bitwise Boolean operations

• bit shifts and bit rotations

• addition modulo 232

– proper mixing believed to be cryptographically strong
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message expansion

• MD4, MD5 use roundwise permutation, for MD5:

– W0 = M0, W1 = M1, …, W15 = M15,

– W16 = M1, W17 = M6, …, W31 = M12, (jump 5 mod 16)

– W32 = M5, W33 = M8, …, W47 = M2, (jump 3 mod 16)

– W48 = M0, W49 = M7, …, W63 = M9 (jump 7 mod 16)

• SHA-0, SHA-1 use recursivity

– W0 = M0, W1 = M1, …, W15 = M15,

– SHA-0: Wi = Wi-3 XOR Wi-8 XOR Wi-14 XOR Wi-16 for i = 16, …, 79

– problem: kth bit influenced only by kth bits of preceding words, 

so not much diffusion

– SHA-1: Wi = (Wi-3 XOR Wi-8 XOR Wi-14 XOR Wi-16 )<<<1

(additional rotation by 1 bit,

this is the only difference between SHA-0 and SHA-1)
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Example: step operations in MD5

• in each step only one state word is updated

• the other state words are rotated by 1

• state update:

A’ = B + ((A + fi(B,C,D) + Wi + Ki) <<< si )

Ki, si step dependent constants,

+ is addition mod 232,

fi round dependend boolean functions:

fi(x,y,z) = xy OR (¬x)z for i = 1, …, 16, 

fi(x,y,z) = xz OR y(¬z) for i = 17, …, 32, 

fi(x,y,z) = x XOR y XOR z for i = 33, …, 48,

fi(x,y,z) = y XOR (y OR (¬z)) for i = 49, …, 64,

these functions are nonlinear, balanced, and 

have an avalanche effect



step operations in MD5

12



13

provable hash functions

• people don’t like that one can’t prove much about 

hash functions

• reduction to established ‘hard problem’ such as 

factoring is seen as an advantage

• Example: VSH – Very Smooth Hash

– Contini-Lenstra-Steinfeld 2006

– collision resistance provable under assumption that a problem 

directly related to factoring is hard

– but still far from ideal

• bad performance compared to SHA-256

• all kinds of multiplicative relations between hash values 

exist
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SHA-3 competition

• NIST started in 2007 an open competition for a new hash 

function to replace SHA-256 as standard

• more than 50 candidates in 1st round

• Winner 2012: Keccak

– Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche

– “Family of Sponge Functions”
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Collisions for MD5
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Example Hash-then-Sign in Browser
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Wang’s attack on MD5

• two-block collision

– for any input IHV, identical for the two messages

i.e. IHV0 = IHV0’, ΔIHV0 = 0

– near-collision after first block:

IHV1 = CF(IHV0,m1), IHV1’ = CF(IHV0,m1’), 

with ΔIHV1 having only a few carefully chosen ±1s

– full collision after second block:

IHV2 = CF(IHV1,m2), = CF(IHV1’,m2’), 

i.e. IHV2 = IHV2’, ΔIHV2 = 0

• with IHV0 the standard IV for MD5, and a third block 

for padding and MD-strengthening, this gives a 

collision for the full MD5
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chosen-prefix collisions

• latest development on MD5

• Marc Stevens (TU/e MSc student) 2006

– paper by Marc Stevens, Arjen Lenstra and Benne de Weger, 

EuroCrypt 2007

• Marc Stevens (CWI PhD student) 2009

– paper by Marc Stevens, Alex Sotirov, Jacob Appelbaum, 

David Molnar, Dag Arne Osvik, Arjen Lenstra and Benne de 

Weger, Crypto 2007

– rogue CA attack
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MD5: identical IV attacks

• all attacks following 

Wang’s method, up to 

recently

• MD5 collision attacks 

work for any starting IHV

data before and after the 

collision can be chosen at 

will

• but starting IHVs must 

be identical

data before and after the 

collision must be identical

• called random collision
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MD5: different IV attacks

• new attack
– Marc Stevens, TU/e

– Oct. 2006

• MD5 collisions for any 

starting pair {IHV1, IHV2}
data before the collision needs 

not to be identical

data before the collision can 

still be chosen at will, for 

each of the two documents

data after the collision still 

must be identical

• called chosen-prefix 

collision
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indeed that was not the end

in 2008 the ethical hackers came by

observation: commercial certification authorities still use MD5

idea: proof of concept of realistic attack as wake up call

 attack a real, commercial certification authority

purchase a web certificate for a valid web domain

but with a “little spy” built in

prepare a rogue CA certificate with identical MD5 hash

the commercial CA’s signature also holds for the rogue CA 

certificate



Outline of the RogueCA Attack
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Subject = End Entity

Subject = CA
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problems to be solved

predict the serial number

predict the time interval of validity

at the same time

a few days before

more complicated certificate structure

“Subject Type” after the public key

small space for the collision blocks

is possible but much more computations needed

not much time to do computations

to keep probability of prediction success reasonable
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how difficult is predicting?
time interval: 

CA uses automated certification procedure

certificate issued exactly 6 seconds after click

serial number :

Nov  3 07:44:08 2008 GMT   643006

Nov  3 07:45:02 2008 GMT   643007

Nov  3 07:46:02 2008 GMT   643008

Nov  3 07:47:03 2008 GMT   643009

Nov  3 07:48:02 2008 GMT   643010

Nov  3 07:49:02 2008 GMT   643011

Nov  3 07:50:02 2008 GMT   643012

Nov  3 07:51:12 2008 GMT   643013

Nov  3 07:51:29 2008 GMT   643014

Nov  3 07:52:02 2008 GMT   have a guess…
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the attack at work

estimated: 800-1000 certificates issued in a weekend

procedure:
1. buy certificate on Friday, serial number S-1000

2. predict serial number S for time T Sunday evening

3. make collision for serial number S and time T: 2 days time

4. short before T buy additional certificates until S-1

5. buy certificate on time T-6
hope that nobody comes in between and steals our serial 
number S
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to let it work

cluster of >200 

PlayStation3 

game consoles

(1 PS3 = 40 PC’s)

complexity: 250

memory: 30 GB

 collision in 1 day
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result

success after 4th attempt (4th weekend)

purchased a few hundred certificates

(promotion action: 20 for one price)

total cost: < US$ 1000
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conclusion on collisions

• at this moment, ‘meaningful’ hash collisions are 

– easy to make

– but also easy to detect

– still hard to abuse realistically

• with chosen-prefix collisions we come close to 

realistic attacks

• to do real harm, second pre-image attack needed

– real harm is e.g. forging digital signatures

– this is not possible yet, not even with MD5

• More information: http://www.win.tue.nl/hashclash/



Questions?
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proof of birthday paradox

• probability that all k elements are distinct is

and this is < ½ when k(k-1) > (2 log 2)t

(≈ k2)       (≈ 1.4 t)
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