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how are hash functions used?

• integrity protection
– strong checksum 

– for file system integrity (Bit-torrent) or software downloads

• one-way ‘encryption’
– for password protection

• asymmetric digital signature

• MAC – message authentication code
– Efficient symmetric ‘digital signature’

• key derivation

• pseudo-random number generation

• …



2

what is a hash function?

• h : {0,1}* 
 {0,1}n

(general: h : S {0,1}n for some set S)

• input: bit string m of arbitrary length

– length may be 0

– in practice a very large bound on the length 

is imposed, such as 264 (≈ 2.1 million TB) 

– input often called the message

• output: bit string h(m) of fixed length n

– e.g. n = 128, 160, 224, 256, 384, 512

– compression

– output often called hash value, message 

digest, fingerprint

• h(m) is easy to compute from m

• no secret information, no key
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hash collision

• m1, m2 are a collision for h if 

h(m1) = h(m2) while  m1 ≠ m2

I owe you € 100

identical hash

=

collision

I owe you € 5000

different

documents

• there exist a lot of 

collisions

– pigeonhole principle 

(a.k.a. Schubladensatz)

http://members.chello.nl/~a.vankan/collision.jpg
http://members.chello.nl/~a.vankan/collision.jpg
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preimage

• given h0, then m is a preimage of h0 if

h(m) = h0

X

Note:

h0 might have many 

preimages!
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second preimage

• given m0, then m is a second preimage of m0 if

h(m) = h(m0 ) while  m ≠ m0

X

?
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cryptographic hash function requirements 

• collision resistance: it should be computationally 

infeasible to find a collision m1, m2 for h
– i.e. h(m1) = h(m2) 

• preimage resistance: given h0 it should be 

computationally infeasible to find a preimage m for h0

under h
– i.e. h(m) = h0

• second preimage resistance: given m0 it should be 

computationally infeasible to find a second preimage

m for m0 under h
– i.e. h(m) = h(m0) 
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other terminology

• one-way function = preimage resistant

– sometimes preimage + second preimage resistant

• weak collision resistant = second preimage resistant

• strong collison resistant = collision resistant

• OWHF – one-way hash function

– preimage and second preimage resistant

• CRHF – collision resistant hash function

– second preimage resistant and collision resistant



Formal treatment

• Efficient Algorithm 

– Runs in polynomial time, 

i.e. for input of length n, tA ≤ nk = poly(n) for some constant k

• Probabilistic Polynomial Time (PPT) Algorithm:

– Randomized Algorithm

– Runs in polynomial time

– Outputs the right solution with some probability

• Negligible: 

We call 𝛆 𝐧 negligible if

∃𝒏𝒄 > 𝟎 ∀𝒏 > 𝒏𝒄 : 𝛆 𝐧 <
𝟏

𝒑𝒐𝒍𝒚(𝒏)
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Formal treatment

For security parameter n, key space K, message space M

and range R, a family of hash functions Fn=(I,H) is a pair 

of efficient algorithms:

• I(1n): The key generation algorithm that outputs a 

(public) function key 𝒌 ∈ 𝑲

• H(k,m): Takes a key 𝒌 ∈ 𝑲 and a message 𝐦 ∈ 𝑴 and 

outputs outputs the hash value 𝑯(𝒌,𝒎) ∈ 𝑹

9
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Formal security properties: CR

Collision resistance: For any PPT adversary 

A, the following probability is negligible in n:

𝑷𝒓[𝒌 ← 𝑰 𝟏𝒏 , 𝒎𝟏,𝒎𝟐 ← 𝑨 𝟏𝒏, 𝒌 :

𝑯 𝒌,𝒎𝟏 = 𝑯 𝒌,𝒎𝟐 ∧ 𝒎𝟏 ≠ 𝒎𝟐 ]
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Formal security properties: CR

C

𝒌 ← 𝑰 𝟏𝒏

𝒌

𝒎𝟏,𝒎𝟐

𝑯 𝒌,𝒎𝟏 = 𝑯 𝒌,𝒎𝟐

∧ 𝒎𝟏 ≠ 𝒎𝟐 ?
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Formal security properties: PRE 

Preimage resistance: For any PPT adversary A, 

the following probability is negligible in n:

𝑷𝒓[𝒌 ← 𝑰 𝟏𝒏 , 𝒉 ← 𝑹,𝒎 ← 𝑨 𝟏𝒏, 𝒌, 𝒉 :𝑯 𝒌,𝒎 = 𝒉]
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Formal security properties: PRE

C

𝒌 ← 𝑰 𝟏𝒏

𝒉 ← 𝑹 𝒌, 𝒉

𝒎

𝑯 𝒌,𝒎 = 𝒉?
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Formal security properties: SPR 

Second-preimage resistance: For any PPT 

adversary A, the following probability is 

negligible in n:

𝑷𝒓[𝒌 ← 𝑰 𝟏𝒏 ,𝒎 ← 𝑴,𝒎′ ← 𝑨 𝟏𝒏, 𝒌,𝒎 :
𝑯 𝒌,𝒎 = 𝑯 𝒌,𝒎′ ∧ 𝒎𝟏 ≠ 𝒎𝟐 ]
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Formal security properties: SPR

C

𝒌 ← 𝑰 𝟏𝒏

𝒎 ← 𝑴 𝒎,𝒌

𝒎′

𝑯 𝒌,𝒎 = 𝑯 𝒌,𝒎′
∧ 𝒎 ≠ 𝒎′ ?



Reductions

• Transform an algorithm for problem 1 into an 

algorithm for problem 2. 

• „Reduces problem 2 to problem 1“ 

• Allows to relate the hardness of problems:

If there exists an efficient reduction that reduces 

problem 2 to problem 1 then an efficient algorithm 

solving problem 1 can be used to efficiently solve 

problem 2. 
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Reductions II

Use in cryptography:

• Relate security properties

• „Provable Security“: Reduce an assumed to be hard 

problem to breaking the security of your scheme.

• Actually this does not proof security! Only shows that 

scheme is secure IF the problem is hard.
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Relations between hash 

function security properties
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Easy start: CR -> SPR

Theorem (informal): If F is collision resistant then it is 

second preimage resistant.

Proof: 

• By contradiction: Assume A breaks SPR of F then we 

can build an oracle machine MA that breaks CR. 

• Given key k, MA first samples random 𝒎 ← 𝑴

• MA runs 𝒎′ ← 𝑨 𝟏𝒏, 𝒌,𝒎 and outputs (m’,m)

• MA runs in approx. same time as A and has same 

success probability. -> Tight reduction
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Formal security properties: CR

C

𝒌 ← 𝑰 𝟏𝒏

𝒌

𝒎𝟏,𝒎𝟐

𝑯 𝒌,𝒎𝟏 = 𝑯 𝒌,𝒎𝟐

∧ 𝒎𝟏 ≠ 𝒎𝟐 ?

MA

𝒎𝟏, 𝒌

𝒎𝟐

𝒎𝟏 ← 𝑴



Easy start: CR -> SPR

Theorem (informal): If F is collision resistant then it is 

second preimage resistant.

Proof: 

• By contradiction: Assume A breaks SPR of F then we 

can build an oracle machine MA that breaks CR. 

• Given key k, MA first samples random 𝒎 ← 𝑴

• MA runs 𝒎′ ← 𝑨 𝟏𝒏, 𝒌,𝒎 and outputs (m’,m)

• MA runs in approx. same time as A and has same 

success probability. -> Tight reduction
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SPR -> PRE ?

Theorem (informal): If F is second-preimage resistant 

then it is also preimage resistant.

Proof: 

• By contradiction: Assume A breaks PRE of F then we 

can build an oracle machine MA that breaks SPR. 

• Given key k, m, MA runs 𝒎′ ← 𝑨 𝟏𝒏, 𝒌, 𝑯(𝒌,𝒎) and 

outputs (m’,m)

• MA runs in same time as A and has same success 

probability. 

Do you find the mistake?
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SPR -> PRE ?

Theorem (informal): If F is second-preimage resistant 

then it is also preimage resistant.

Counter example: 

• the identity function id : {0,1}n
 {0,1}n is second-

preimage resistant but not preimage resistant
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SPR -> PRE ?

Theorem (informal): If F is second-preimage resistant 

then it is also preimage resistant.

Proof: 

• By contradiction: Assume A breaks PRE of F then we 

can build an oracle machine MA that breaks SPR. 

• Given key k, m, MA runs 𝒎′ ← 𝑨 𝟏𝒏, 𝒌, 𝑯(𝒌,𝒎) and 

outputs (m’,m)

• MA runs in same time as A and has same success 

probability. 

Do you find the mistake?
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We are not guaranteed 

that 𝒎 ≠ 𝒎′ ! 



SPR -> PRE ?

Theorem (informal, corrected): If F is second-preimage

resistant, |𝑴| ≥ 𝟐|𝑹|, and 𝑯(𝒌,𝒎) is regular for every k, 

then it is also preimage resistant.

Proof: 

• By contradiction: Assume A breaks PRE of F then we 

can build an oracle machine MA that breaks SPR. 

• Given key k, m, MA runs 𝒎′ ← 𝑨 𝟏𝒏, 𝒌, 𝑯(𝒌,𝒎) and 

outputs (m’,m)

• MA runs in same time as A and has at least half the 

success probability. 

Same corrections have to be applied for CR -> PRE

25



26

generic (brute force) attacks

• assume: hash function behaves like random function

• preimages and second preimages can be 

found by random guessing search

– search space: ≈ n bits, ≈ 2n hash function calls

• collisions can be found by birthdaying

– search space: ≈ ½n bits, 

≈ 2½n hash function calls

• this is a big difference

– MD5 is a 128 bit hash function

– (second) preimage random search: 

≈ 2128 ≈ 3x1038 MD5 calls

– collision birthday search: only 

≈ 264 ≈ 2x1019 MD5 calls
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birthday paradox

• birthday paradox

given a set of t (≥ 10) elements

take a sample of size k (drawn with repetition)

in order to get a probability ≥ ½ on a collision

(i.e. an element drawn at least twice)

k has to be > 1.2 √t

• consequence

if F : A  B is a surjective random function

and |A| >> |B|

then one can expect a collision after about √(|B|) 

random function calls 
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meaningful birthdaying

• random birthdaying

– do exhaustive search on ½n bits

– messages will be ‘random’

– messages will not be ‘meaningful’

• Yuval (1979)

– start with two meaningful messages m1, m2 for which you want 

to find a collision

– identify ½n independent positions where the messages can be 

changed at bitlevel without changing the meaning

• e.g. tab  space, space  newline, etc.

– do random search on those positions
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implementing birthdaying

• naïve

– store 2½n possible messages for m1 and 2½n possible 

messages for m2 and check all 2n pairs

• less naïve

– store 2½n possible messages for m1 and for each possible m2

check whether its hash is in the list

• smart: Pollard-ρ with Floyd’s cycle finding algorithm

– computational complexity still O(2½n)

– but only constant small storage required
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Pollard-ρ and Floyd cycle finding

• Pollard-ρ

– iterate the hash function: 

a0, a1 = h(a0), a2 = h(a1), a3 = h(a2), …

– this is ultimately periodic: 

• there are minimal t, p such that 

at+p = at

• theory of random functions: 

both t, p are of size 2½n

• Floyd’s cycle finding algorithm

– Floyd: start with (a1,a2) and compute 

(a2,a4), (a3,a6), (a4,a8), …, (aq,a2q) 

until a2q = aq; 

this happens for some q < t + p
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security parameter

• security parameter n: resistant against (brute force / 
random guessing) attack with search space of size 2n

– complexity of an n-bit exhaustive search
– n-bit security level

• nowadays 280 computations deemed impractical
– security parameter 80 seen as sufficient in most cases

• but 264 computations should be about possible
– though a.f.a.i.k. nobody has done it yet

– security parameter 64 now seen as insufficient in most cases

• in the near future: security parameter 128 will be 
required 

• for collision resistance hash length should be 2n to 
reach security with parameter n


