

Cryptographic Hash Functions Part I

Cryptography 1

Andreas Hülsing, TU/e Based on slides by Sebastiaan de Hoogh, TU/e

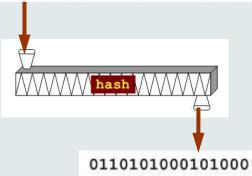
how are hash functions used?

integrity protection

- strong checksum
- for file system integrity (Bit-torrent) or software downloads
- one-way 'encryption'
 - for password protection
- asymmetric digital signature
- MAC message authentication code
 - Efficient symmetric 'digital signature'
- key derivation
- pseudo-random number generation
- ...

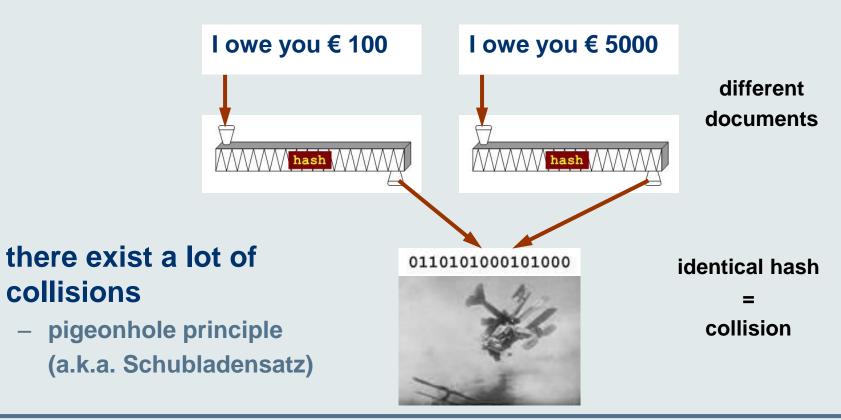
what is a hash function?

- $h: \{0,1\}^* \rightarrow \{0,1\}^n$
 - (general: $h: S \rightarrow \{0,1\}^n$ for some set S)
- input: bit string *m* of arbitrary length
 - length may be 0
 - in practice a very large bound on the length is imposed, such as 2⁶⁴ (≈ 2.1 million TB)
 - input often called the message
- output: bit string *h*(*m*) of fixed length *n*
 - e.g. *n* = 128, 160, 224, 256, 384, 512
 - compression
 - output often called hash value, message digest, fingerprint
- h(m) is easy to compute from m
- no secret information, no key



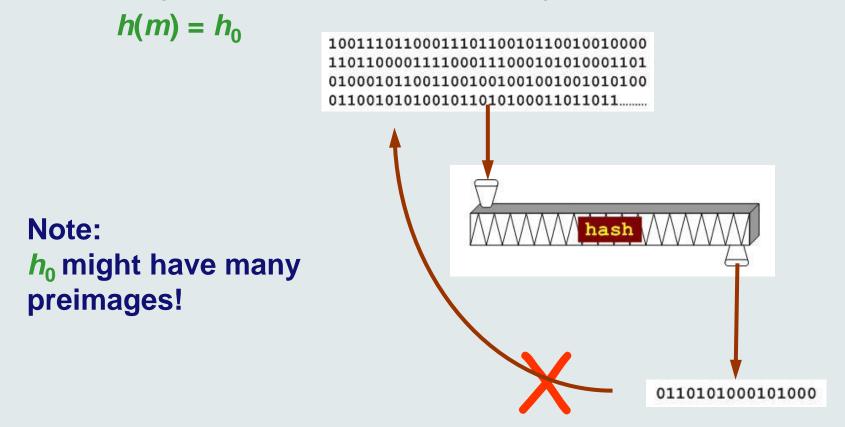
hash collision

- m_1, m_2 are a *collision* for *h* if
 - $h(m_1) = h(m_2)$ while $m_1 \neq m_2$



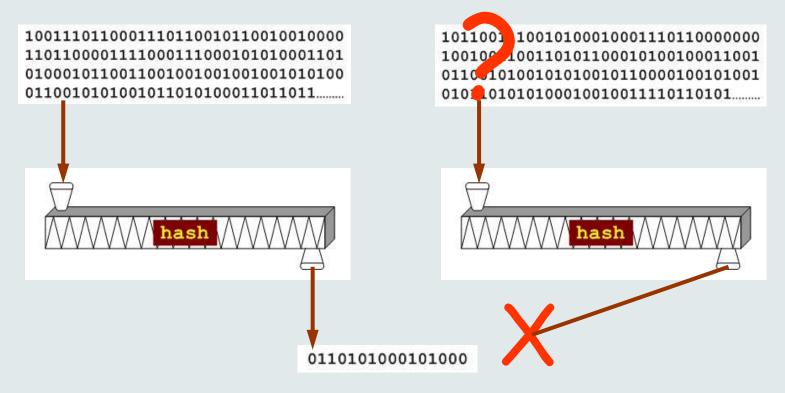
preimage

• given h_0 , then *m* is a *preimage* of h_0 if



• given m_0 , then m is a second preimage of m_0 if $h(m) = h(m_0)$ while $m \neq m_0$

siteit eindhoven



cryptographic hash function requirements

• collision resistance: it should be computationally infeasible to find a collision m_1 , m_2 for h

- i.e. $h(m_1) = h(m_2)$

 preimage resistance: given h₀ it should be computationally infeasible to find a preimage m for h₀ under h

- i.e. $h(m) = h_0$

 second preimage resistance: given m₀ it should be computationally infeasible to find a second preimage m for m₀ under h

- i.e. $h(m) = h(m_0)$

other terminology

- one-way function = preimage resistant
 - sometimes preimage + second preimage resistant
- *weak collision resistant* = second preimage resistant
- strong collison resistant = collision resistant
- **OWHF** one-way hash function
 - preimage and second preimage resistant
- CRHF collision resistant hash function
 - second preimage resistant and collision resistant

Formal treatment

Efficient Algorithm

Runs in polynomial time,
 i.e. for input of length n, t_A ≤ n^k = poly(n) for some constant k

• Probabilistic Polynomial Time (PPT) Algorithm:

- Randomized Algorithm
- Runs in polynomial time
- Outputs the right solution with some probability
- Negligible:

We call $\boldsymbol{\epsilon}(n)$ negligible if

$$(\exists n_c > 0)(\forall n > n_c): \varepsilon(n) < \frac{1}{poly(n)}$$

Formal treatment

For security parameter *n*, key space *K*, message space *M* and range *R*, a family of hash functions $F_n = (I,H)$ is a pair of efficient algorithms:

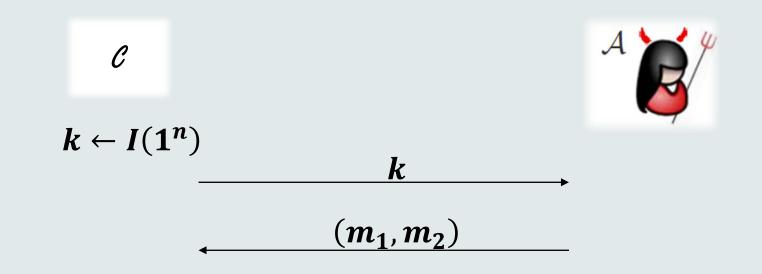
- *I*(1ⁿ): The key generation algorithm that outputs a (public) function key k ∈ K
- H(k,m): Takes a key $k \in K$ and a message $m \in M$ and outputs outputs the hash value $H(k,m) \in R$

Formal security properties: CR

Collision resistance: For any PPT adversary *A*, the following probability is negligible in *n*:

 $Pr[k \leftarrow I(1^{n}), (m_{1}, m_{2}) \leftarrow A(1^{n}, k):$ $H(k, m_{1}) = H(k, m_{2}) \land (m_{1} \neq m_{2})]$

Formal security properties: CR



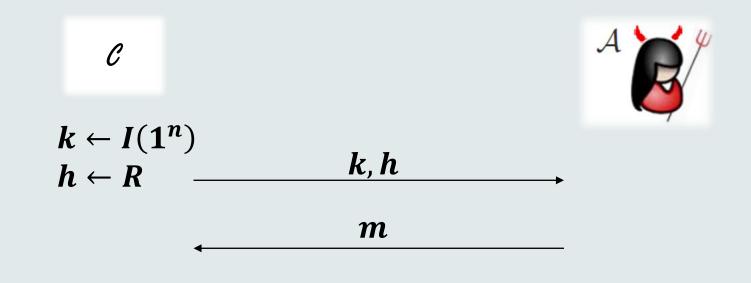
 $H(k, m_1) = H(k, m_2)$ $\wedge (m_1 \neq m_2)?$

Formal security properties: PRE

Preimage resistance: For any PPT adversary *A*, the following probability is negligible in *n*:

 $Pr[k \leftarrow I(1^n), h \leftarrow R, m \leftarrow A(1^n, k, h): H(k, m) = h]$

Formal security properties: PRE



H(k,m) = h?

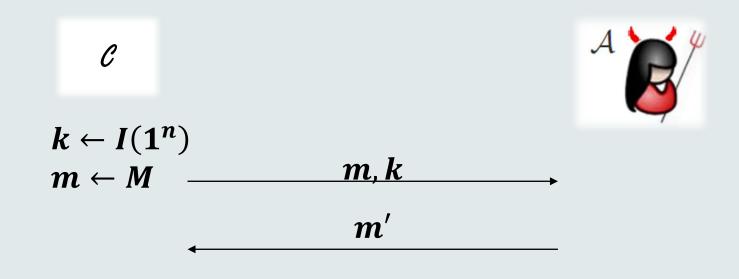
Formal security properties: SPR

Second-preimage resistance: For any PPT adversary *A*, the following probability is negligible in *n*:

$$Pr[k \leftarrow I(1^n), m \leftarrow M, m' \leftarrow A(1^n, k, m):$$

$$H(k, m) = H(k, m') \land (m_1 \neq m_2)]$$

Formal security properties: SPR



H(k,m) = H(k,m') $\wedge (m \neq m')?$

Reductions

- Transform an algorithm for problem 1 into an algorithm for problem 2.
- "Reduces problem 2 to problem 1"
- Allows to relate the hardness of problems:

If there exists an efficient reduction that reduces problem 2 to problem 1 then an efficient algorithm solving problem 1 can be used to efficiently solve problem 2.

Reductions II

Use in cryptography:

- Relate security properties
- "Provable Security": Reduce an assumed to be hard problem to breaking the security of your scheme.
- Actually this does not proof security! Only shows that scheme is secure IF the problem is hard.

Relations between hash function security properties

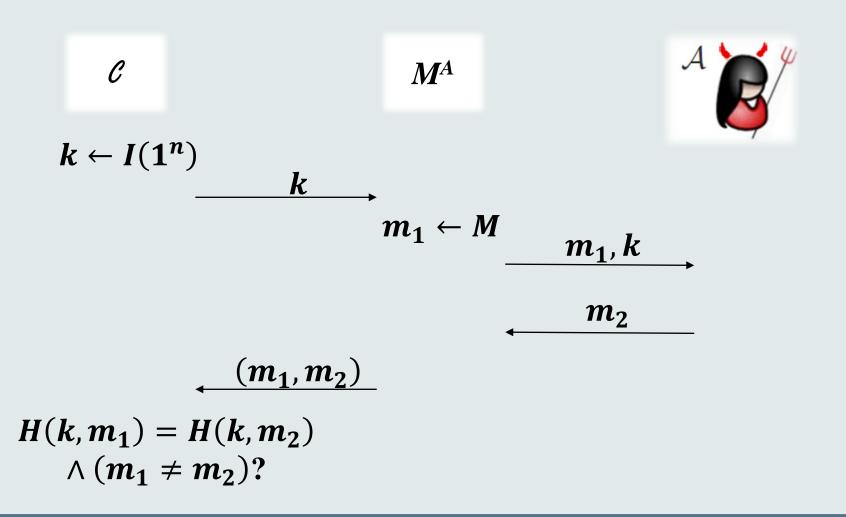
Easy start: CR -> SPR

Theorem (informal): If *F* is collision resistant then it is second preimage resistant.

Proof:

- By contradiction: Assume *A* breaks SPR of *F* then we can build an oracle machine *M*^A that breaks CR.
- Given key k, M^A first samples random $m \leftarrow M$
- M^A runs $m' \leftarrow A(1^n, k, m)$ and outputs (m', m)
- *M^A* runs in approx. same time as *A* and has same success probability. -> Tight reduction

Formal security properties: CR



Easy start: CR -> SPR

Theorem (informal): If *F* is collision resistant then it is second preimage resistant.

Proof:

- By contradiction: Assume *A* breaks SPR of *F* then we can build an oracle machine *M*^A that breaks CR.
- Given key k, M^A first samples random $m \leftarrow M$
- M^A runs $m' \leftarrow A(1^n, k, m)$ and outputs (m', m)
- *M^A* runs in approx. same time as *A* and has same success probability. -> Tight reduction

Theorem (informal): If *F* is second-preimage resistant then it is also preimage resistant.

Proof:

- By contradiction: Assume A breaks PRE of F then we can build an oracle machine M^A that breaks SPR.
- Given key k, m, M^A runs $m' \leftarrow A(1^n, k, H(k, m))$ and outputs (m', m)
- *M^A* runs in same time as *A* and has same success probability.

Do you find the mistake?

Theorem (informal): If *F* is second-preimage resistant then it is also preimage resistant.

Counter example:

 the *identity function id*: {0,1}ⁿ → {0,1}ⁿ is secondpreimage resistant but not preimage resistant

Theorem (informal): If *F* is second-preimage resistant then it is also preimage resistant.

Proof:

- By contradiction: Assume *A* breaks PRE of *F* then we can build an oracle machine *M*^A that breaks SPR.
- Given key k, m, Moutputs (m',m) We are not guaranteed that $m \neq m'$!
- *M^A* runs in same time as *A* and has same success probability.

Do you find the mistake?

Theorem (informal, corrected): If *F* is second-preimage resistant, $|M| \ge 2|R|$, and H(k,m) is regular for every *k*, then it is also preimage resistant.

Proof:

- By contradiction: Assume A breaks PRE of F then we can build an oracle machine M^A that breaks SPR.
- Given key k, m, M^A runs $m' \leftarrow A(1^n, k, H(k, m))$ and outputs (m', m)
- *M^A* runs in same time as *A* and has at least half the success probability.

Same corrections have to be applied for CR -> PRE

generic (brute force) attacks

- assume: hash function behaves like random function
- preimages and second preimages can be found by random guessing search
 - search space: $\approx n$ bits, $\approx 2^n$ hash function calls
- collisions can be found by birthdaying
 - search space: $\approx \frac{1}{2}n$ bits,
 - ≈ 2^½*n*</sup> hash function calls
- this is a big difference
 - MD5 is a 128 bit hash function
 - (second) preimage random search:
 ≈ 2¹²⁸ ≈ 3x10³⁸ MD5 calls
 - collision birthday search: only
 ≈ 2⁶⁴ ≈ 2x10¹⁹ MD5 calls

birthday paradox

• birthday paradox

given a set of $t (\geq 10)$ elements take a sample of size k (drawn with repetition) in order to get a probability $\geq \frac{1}{2}$ on a collision

(i.e. an element drawn at least twice) *k* has to be > 1.2 \sqrt{t}

consequence

if $F : A \rightarrow B$ is a surjective random function and |A| >> |B|

then one can expect a collision after about $\sqrt{|B|}$ random function calls

meaningful birthdaying

random birthdaying

- do exhaustive search on ¹/₂ n bits
- messages will be 'random'
- messages will not be 'meaningful'

- Yuval (1979)
 - start with two meaningful messages m_1 , m_2 for which you want to find a collision
 - identify ½n independent positions where the messages can be changed at bitlevel without changing the meaning
 - e.g. tab $\leftarrow \rightarrow$ space, space $\leftarrow \rightarrow$ newline, etc.
 - do random search on those positions

implementing birthdaying

• naïve

- store $2^{\frac{1}{2}n}$ possible messages for m_1 and $2^{\frac{1}{2}n}$ possible messages for m_2 and check all 2^n pairs

less naïve

- store $2^{\frac{1}{2}n}$ possible messages for m_1 and for each possible m_2 check whether its hash is in the list

• smart: Pollard-p with Floyd's cycle finding algorithm

- computational complexity still O(2^{1/2}n)
- but only constant small storage required

Pollard-p and Floyd cycle finding

- Pollard-p
 - iterate the hash function:

 $a_0, a_1 = h(a_0), a_2 = h(a_1), a_3 = h(a_2), \dots$

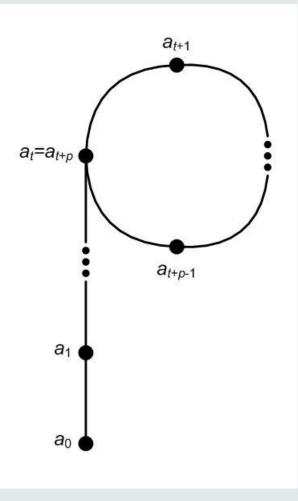
- this is ultimately periodic:
 - there are minimal t, p such that

 $a_{t+p} = a_t$

theory of random functions:
 both *t*, *p* are of size 2^{½n}

Floyd's cycle finding algorithm

- Floyd: start with (a_1,a_2) and compute (a_2,a_4) , (a_3,a_6) , (a_4,a_8) , ..., (a_q,a_{2q}) until $a_{2q} = a_q$; this happens for some q < t + p



security parameter

- security parameter n: resistant against (brute force / random guessing) attack with search space of size 2ⁿ
 - complexity of an *n*-bit exhaustive search
 - n-bit security level
- nowadays 2⁸⁰ computations deemed impractical
 - security parameter 80 seen as sufficient in most cases
- but 2⁶⁴ computations should be about possible
 - though a.f.a.i.k. nobody has done it yet
 - security parameter 64 now seen as insufficient in most cases
- in the near future: security parameter 128 will be required
- for collision resistance hash length should be 2n to reach security with parameter n