
2WC12 Cryptography I – Fall 2014

October 16, 2014

Reminder about finite fields

For Fq, a ∈ Fq we have
|Fq| = q, |F∗q | = |Fq \ {0}| = q − 1.

Fq is cyclic in respect to +: a · |Fq| = a · q = 0, a · (q − 1) = −a, a · (q + 1) = a.
F∗q is cyclic in respect to ·: a|F

∗
q | = aq−1 = 1 aq−2 = a−1, aq = a.

Diffie-Hellman key exchange

Alice and Bob want to secretly exchange a shared key.
First they agree on a finite field Fq (e.g., Fpn represented as Fp[x]/f(x)Fp[x] with an irreducible
polynomial f of degree n) and a generator g of that field with F∗q = 〈g〉. These parameters are
public. (Actually any cyclic group works for DH.)
Now, the Diffie-Hellman key exchange works as follows:

1. Alice picks a random a ∈ F∗q and sends a′ = ga ∈ Fq to Bob.

2. Bob picks a random b ∈ F∗q and sends b′ = gb ∈ Fq to Alice.

3. Alice computes b′a = gb
a
= gab ∈ Fq.

4. Bob computes a′b = ga
b
= gab ∈ Fq.

Now Alice and Bob share the secret value gab ∈ Fq which they can use to compute a secret key
for private communication, e.g., using AES.
An attacker only sees ga and gb on the wire and has to compute the discrete logarithm in Fq.
This is believed to be difficult (for large q, a, and b).
Problem: authentication, man in the middle, . . .

ElGamal encryption

Alice choses a finite field Fq, a generator g, and a random a ∈ F∗q and computes h = ga. The
public key of Alice is (Fq, g, h); her secret private key is a.

Encryption: Bob wants to send a message m ∈ Fq to Alice:

• Bob picks a random b ∈ {1, . . . , q − 1} and computes c1 = gb.

• Bob computes the shared secret s = hb = ga
b
= gab.

• Bob computes c2 = m · s.
• Bob sends the ciphertext (c1, c2) = (gb,m · gab) to Alice.

Observe that it is easy to compute gab when m is known! Thus, a new b is used for each message.

1

Decryption: Alice decrypts a ciphertext c1, c2 with her private key a.

• Alice computes the shared secret s = ca1 = gb
a
= gab.

• Alice computes c2 · s−1 = m · gab · (gab)−1 = m.

Observe that s−1 can be computed directly as s−1 = cq−a−11 = gb
q−a−1

= gb(q−a−1) because

s · s−1 = gab · gb(q−a−1) = gab+b(q−a−1) = gb(a+q−a−1) = gb(q−1) =
(
gq−1

)b
= 1b = 1.

ElGamal signatures

Use a hash function H : {0, 1}∗ 7−→ Z.
Chose Fq, a generator g, and a private a ∈ {1, . . . , q − 1} and compute the public key h = ga.

Sign: Pick a random nonce k. Compute r = gk and s ≡ k−1 (H(m)− ar) mod (q − 1).
The signature is the pair (r, s),

Verify: Check if gH(m) = hr · rs:

hr · rs = (ga)r · (gk)s = gar · gk·k−1(H(m)−ar) = gH(m)

Pitfalls with Signatures

If for some message m with signature (r, s) the random value k becomes known, one can compute

a ≡ H(m)− k · s
r

mod (q − 1)

and get the secret key.
If the same k is used for more than one message, i.e., si ≡ k−1(H(mi)− ar) take

s1 − s2 ≡ k−1(H(m1)− ra−H(m2) + ra) mod (q − 1)

to compute k ≡ H(m1)−H(m2)
s1−s2 mod (q − 1) and then retrieve a as above.

Do not reuse k!

k is often called a nonce, a “number used only once”. → PS3 hack
Other solution: make k deterministically depend on m and a. ⇒ RFC 6979
Are there other ways to break the signature scheme?
Signature depends only on H(m), not on m itself, so take a signature (r, s) on m and find m′ 6= m
with H(m′) = H(m). Then (r, s) is also a signature on m′.
Cryptographic hash functions are expected to be resistant against finding second preimages (and
also against finding preimages in general).
A more active attacker could generate 2 messages m 6= m′ with H(m) = H(m′) one of which
he asks Alice to sign. The signature is valid for both m and m′. Requiring the hash function
to avoid this is a stronger requirement, called collision resistance (the attacker can vary both
messages).
Cryptographic hash functions are expected to be collision resistant.
Other attacks?
Find a, given h = ga, i.e., solve the DLP.

Example. F∗7 = 〈3〉, find a = log3 5, i.e., the integer 1 ≤ a ≤ 6 with 3a = 5.
For this problem size, we can simply try 32 = 2, 33 = 6, 34 = 4, 35 = 5 ⇒ a = 5.

2

Example. F∗37 = 〈2〉, find a = log2 17.
|F∗37| = 36 = 22 · 32; thus F∗37 has subgroups of order 2 ({20, 218} = {1, 36}), 3 ({20, 212, 224} =
{1, 26, 10}), 4, 6, 9, 12, and 18. Solving the DLP in the subgroup of order 2 (i.e., mod 2) has 2
choices and gives the LSB of a.
Write a = a0 + 2a1, then 2a = 17 gives

(2a)18 = 2a0·18+a1·2·36= 2a0·18 = 1718= 36

⇒ a0 = 1; a1 = ?

Try the same modulo 3, write a = b0 + 3b1:

(2a)12 = 2b0·12+b1·36 = 2b0·12 = 1712 = 26

⇒ b0 6= 0, test for b0 = 1 or b0 = 2; 212 = 26 ⇒ b0 = 1

To get more information on a, consider a = 1 + 2a1 again. This implies

17 = 21 · 22a1 | · 2−1 ⇒ 27 = 22a1

Write a1 = c0 + 2c1

22a1·9 = 218c0+36c1 = 218c0 = 279 = 36 ⇒ c0 = 1

a = a0 + 2(c0 + 2c1) ⇒ a ≡ 1 + 2 · 1 mod 4

Same for b0 + 3b1 = b0 + 3(d0 + 3d1) = b0 + 3d0 + 9d1 = 1 + 3d0 + 9d1:

2a·4 · 2−1 = 212d0+36d1 = 274 = 10,

since 224 = 10 we get d0 = 2 and a ≡ 1 + 2 · 3 mod 9.
In total we have

a ≡ 3 mod 4

a ≡ 7 mod 9

Solve this system of linear congruences by CRT to get

a ≡ 7 mod 36, thus 27 = 17.

This example shows that to solve the DLP in F∗q it suffices to solve it in every subgroup of prime
order (potentially multiple times to deal with prime powers) and then to combine the results
from the small DLP computations using CRT. This method is known as Pohlig-Hellman attack:

Pohlig-Hellman attack

Let G = 〈g〉 and let ord(G) = pl11 · · · · · plnn with pi 6= pj and li ≥ 1 for 1 ≤ i, j ≤ n and i 6= j.
Determine logg h = a by computing a mod plii as follows for all i and then using CRT to combine
the results:
Write a = ai0 + ai1pi + ai2p

2
i + · · ·+ aalip

li
i .

Compute gi := gord(G)/pi .
Compute ai0 := loggi h

ord(G)/pi (this is a DL computation in group of size pi)
Set hi := h
For j := 1 to li − 1

compute hi := hi/g
aij−1

pj−1
i

3

compute aij := loggi h
ord(G)/pji
i

Return a mod plii

To protect against the Pohlig-Hellman attack choose groups having a large prime order subgroup
— so clearly not F∗2n+1 (provided 2n+1 is a prime power). Some protocols work in a large prime
order subgroup, which can give speed advantages over working in the full group.

Example. DSA, the Digital Signature Algorithm.
Let 〈g〉 ⊆ F∗q with ord(〈g〉) = l, some prime. Public key h = ga, secret key a.
The signature on message m is (r, s), computed as follows:

• pick random nonce k, compute (in F∗q) r′ = gk, embed r′ into Z and compute r ≡ r′ mod l,

• compute s ≡ k−1(H(m) + ar) mod l.

To verify this signature compute w ≡ s−1 mod l, u1 ≡ H(m) ·w mod l, u2 ≡ r ·w mod l, and
v′ = gu1 · hu2 . Check whether the embedding of v′ into Z satisfies v ≡ r mod l.
A properly formed signature passes this test because

v′ = gu1 · hu2 = gH(m)·w · ga(rw) = gw(H(m)+ar) = gk = r′.

(Note that the order of 〈g〉 is l, so the computations mod l make sense in the exponent.)

Now, how hard is it to solve DLPs anyway?
One can find out in at most ord(〈g〉) trials (or rather in c · l, for some c and l the largest prime
factor of ord(〈g〉)) but this is not the fastest possibility. With 50% probability, the DLP is solved
after half the trials.

Let logg h = a and write a = a0 + a1b
√
lc with 0 ≤ a0 < b

√
lc and 0 ≤ a1 ≤ d

√
le (where b. . . c

denotes rounding down and d. . . e denotes rounding up).
Thus ga = ga0+a1b

√
lc = ga0 · ga1b

√
lc = h, and h · g−a1b

√
lc = ga0 .

Then computing
bi := gi

for 0 ≤ i ≤ b
√
lc takes b

√
lc multiplications, computing

cj := h · g−b
√
lc·j

for 0 ≤ j ≤ d
√
le takes another d

√
le operations. Now, find i, j such that bi = cj , i.e., gi =

h · g−b
√
lc·j . This procedure will find a0 and a1 in at most 2

√
l multiplications and one inversion

— this is much faster than l multiplications.

This algorithm is called the Baby-Step Giant-Step (BSGS) algorithm.

Example. Find a for 3a = 37 in F101, i.e., g = 3 and h = 37.
l = 100, thus b

√
lc = 10.

Compute bi := gi = 3i for 0 ≤ i ≤ 10:
baby step i 0 1 2 3 4 5 6 7 8 9 10

3i 1 3 9 27 81 41 22 66 97 89 65

Now, compute cj := h · g−b
√
lc·j = 37 · 3−10·j for 0 ≤ j ≤ 10:

giant step j 0 1 2 3 4 5 6 7 8 9 10
37 · 3−10·j 37 13 81 . . .

Thus a0 = 4 and a1 = 2, ⇒ a = a0 + 10a2 = 4 + 10 · 2 = 24.

4

To solve the DLP in a group of size l it takes O(
√
l) operations; to make use of smaller size

subgroups, combine this algorithm with the Pohlig-Hellman attack. BSGS is good in speed but
quickly grows problematic in storage size — the bi have to be stored and sorted, that is

√
l

elements.

Pollard’s rho method drastically reduces the storage, at the expense of randomizing the algorithm.
In order to find a such that ga = h, the basic idea is to find integers b, c, b′, c′ such that

gbhc = gb
′
hc
′ ⇒ gb−b

′
= hc

′−c = (ga)c
′−c = ga(c

′−c) ⇒ b− b′ ≡ a(c′ − c) mod l.

→ Slides.
Define the pseudo-random walk iteratively, e.g., as follows:
G0 = g, b0 = 1, c0 = 0,

Gi+1 =

Gi · g
Gi · h
G2
i

, bi+1 =

bi + 1
bi
2bi

, ci+1 =

ci if Gi ≡ 0 mod3
ci + 1 if Gi ≡ 1 mod3
2ci if Gi ≡ 2 mod3

.

This results in a loop after approximately
√

π
2 l steps.

Improve the algorithm by using Floyd’s cycle-finding algorithm, i.e., maintain to values G′(∼= Gi)
and G′′(∼= G2i) and step twice on G′′ for each step on G′; halt when G′ = G′′.

The attacks presented so far do not make use of any special properties of the group. Such
algorithms are called “generic algorithms”, they work for any group. For groups without special
properties these algorithms are the best to attack the DLP. Given that BSGS and Pollard’s rho
method both take O(

√
l) steps in a group of size l and that Pollard’s rho method takes O(1)

storage, all attacks use Pollard’s rho method in practice, sometimes with some small speedups
depending on the group.

5

