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Finite Fields

Definition (field). A set K is a field with respect to o and ¢, denoted (K, o,), if
i) (K, o) is an abelian group,
ii) (K*, ¢)is and abelian group, where K* = K \ {e.}, and
iii) the distributive law holds in K, i.e.,
ao(boc)=aoboaocforall abce K
In other words, a field is a commutative ring with unity in which each nonzero element is invert-
ible. In particular there are no zero divisors, i.e., there are no a,b # e, such that a ¢ b = e,.

Example (field).
e (Q,+,) inverse w.r.t. multiplication of ¢ is g for a # 0,

e (C,+,)

e R,+,),

e (Z,+,) is NOT a field but a commutative ring with unity, the only invertible elements
are +1 and —1,

o (Qi)={a+bi|abeQ} +,-)is afield with + and - defined as in C.

Is there an example for a finite field?

)

+10 1 <10 1
010 1 0]0 O
171 0 110 1

— XOR and AND...

Definition (subfield). If (K, o,¢) and (L, 0,¢) are fields and K C L then K is a subfield of L.
= We can add elements of L to and multiply them with elements of K.
= L is a vectorspace over K (other properties work because of the distributive laws).

Definition (extension degree). Let L be a field and let K be a subfield of L. The extension
degree [L : K] is defined as dimg L, the dimension of L as a K vectorspace.

Definition (characteristic). Let K be a field. The characteristic of K, denoted char(K), is the
smallest positive integer m such that e, o e, 0 - -+ 0 e, = eo; if no such integer exists, char(K) = 0.
N—————

m copies of e,
denoted as [m]eo

Lemma. The characteristic of a field is 0 or prime.

Proof. Let char(K) =n =a-bwith 1 < a,b <n. Then e, = [able, = [a]es ¢ [b]es. Since a filed
has no zero divisors it must be that [a]e, = e, or [ble, = 5. 4 to minimality. O

Lemma. A finite field K has characteristic p for some prime p.

Proof. Since K is finite, there must be 7,5 € N with [i]e, = [jles. Let ¢ > 0, then [i — jles = €
and so char(K)|(i — 7). O



Let K be a finite field. We will now explore its structure.
We know already: char(K) = p for a prime p, and there
exists eo,e, € K with e, # e,. Since K is closed under
o we do also find [2]es, [3]es, ... [p — 1]es, [ples = eo,
[p+ lle, = €o, ... a cyclic subgroup of order p of (K, o).
Multiplying two such elements [i]e, ¢ [jle. = [ij]es again
gives us an element of the set {[ile, | 0 < i < p}. The
scalars are considered modulo p because [ple, = e,. Since
p is prime, ¢ - j % 0 mod p for 0 < 7,5 < p. This means
that {[iles | 0 < i < p} forms a subgroup of K* (the mul-
tiplicative group in K; K* = K \ {eo}). If two structures
(groups, rings, fields, ...) behave exactly the same way so that one can give a one-to-one map
between them, mathematicians call these two structures isomorphic. Out considerations have
found a subfield of K which is isomorphic to Z/pz with map [ile; — i + pZ.

Definition (prime field). Let K be a field. The smallest subfield contained in K is called the
prime field of K.

Lemma. Let K be a finite field of characteristic p. The prime field of K is isomorphic to Z/pz,.

Above we found that an extension field can be considered as a vectorspace over its subfield. From
now on we identify the prime field of a finite field with Z/ pz and write 0 for e, and 1 for e,. Let
(K :Z/pz] = n, i.e., the dimension of K as a vectorspace over Z/pz is n. This means that there
exists a basis of n linearly independent “vectors” ay, ag, ..., a, (vectors: elements of L; linearly
independent: using coefficients from Z/,z only); this being a basis means that every element
in K can be written in a unique way as Z?:l ciog with ¢; € Z/pz; the p™ different choices for
(c1,¢2,...,¢n) € (Z/pz)" mean that K has p" elements.

Lemma. Let K be a finite field. There exists a prime p and an integer n € Nsqg such that
|K| = p™ and char(K) = p. The notation of a field of characteristic p and dimension n is Fyn
or GF(p") (for “Galois field”).

This implies that every finite field has a prime power as its cardinality, so in particular there are
no fields of size 6, 10, 14, 15 etc.
In this representation it is very easy to add elements:

(Z CZ‘OCZ) + (Z diai> = Z(Cz +d;i)o;
=1 =1

i=1

but for multiplying them we need to know «; - o5 for 1 <,5 < n.
From now on we write + for the first operation o and - for the second operation ¢ since we see
K as an extension of Z/pz.

Are there actually any fields beyond Z/,z? We know

4 0 1 a a+1 that they must have p" elements for some p and n — so
0 0 1 a a+1 what about a field with 22 = 4 elements? This should

1 1 0 a1 a have a basis of size 2, use @1 = 1 and as = a then
a a a+1 0 1 Fy, = {0,1,a,a + 1} and we can simply write out the
a+1|la+1 a 1 0 addition table using the vectorspace structure. To write
the multiplication table — if possible — we need to

know what a? is in terms of 1, a, and a + 1. A table of a group has each element exactly once
per row and column. So defining a? = a conflict with having already entry a in the first entry
of this row. Using a? = 1 means that a- (a + 1) = a® + a = 1 + a — but then the third column
has already a + 1 in the first entry. Try a> =a+1thena-(a+1)=a*>+a=(a+1)+a=1
and (a+1)-(a+1)=d*+a+a+1=a’>+1=(a+1)+1=a.



. 1 a a—+1 1 a a-+1 1 a a+1
1 1 a a+1 1 1 a a+1 1 1 a a+1

a a a a a 1 a+1 a a a+1 1
a+1|a+1 a+1|a+1 a+1|a+1 1 a

The tables show all group properties except for associativity. We could prove this by checking
all combinations but that is very cumbersome.
Let’s try another field Fg with 8 elements, thus a basis oy = 1, ao = a, a3 = b. If we use a® =1,
we run into the same problems as before; choosing a? = a + 1 constructs the same field as before
— no connection with b. So let’s try a® = b; then a - (a + 1) = a®> + a = b + a. Again several
options for a - b. Obviously one can not choose a-b = a, b, or b+ a. Choosing a -b = 1 gives
(a+1)(b+a+1)=a-b+a*+a+b+a+1=1+b+b+1=0— which is not possible in a field.
Similarly a-b = a+b+1 is excluded by (a+1)-(b+1) =a-b+a+b+1=a+b+1+a+b+1=0.
Trya-b=a+1:

a-b+1l)=a-bt+a=a+1l+a=1;
~a-(b+a)=a-b+a’>=(a+1)+b

a-(b+a+1l)=---=a+1+b+a=>b+1;

~(a+1)?=a?+1=0b+1,
~(a+b=a-b+b=(a+1)+b;
~(a+1D)0b+1)=a-b+a+b+1=(a+1)4+a+b+1=0
~(a+1)(b+a)=a-b+a’+b+a=(a+1)+b+b+a=1;
- =a>b=a-(a-b)=a-(a+1)=a*+a=b+a
~(b+1)(b+a)=b+ba+b+a=(b+a)+(a+1)+b+ta=a+1
. 1 a a+1 b b+1 b+a b+a+1
1 1 a a+1 b b+1 b+a b+a+1
a a b b+a a+1 1 b+a+1 b+1
a+1 a+1 b+a b+1 a+b+1 b 1 a
b b a+1 a+b+1 b+a a b+1 1
b+1 b+1 1 b a b+a+1 a+1 b+a
b+a b+a b+a+1 1 b+1 a+1 a b
b+a+1|b+a+1 b+1 a 1 b+a b a+1

Figure 1: Table for Fg.

How can we get this “automatically”™?
How do we compute a - b = ¢ without a lookup table?

Polynomial ring over field K

Klz] = {Zaixi | neNa; € K} feK[x], f :Zfﬂi-
=1

Let n be the largest integer with f,, # 0 then deg(f) = n, leading coefficient LC(f) = f,, leading

term LT(f) = fna™.

Definition (irreducible). A polynomial f € K|z is called irreducible if deg(f) > 1 and it cannot
be written as a product of polynomials of lower degree over the same field, i.e., if u(z)/f(x) then
u(z) € K or u(z) = f(x).

Otherwise f is reducible. Note that this depends on the field K.



Example.
e 72— 1= (x+1)(z — 1) is reducible in R[z].
e 74+ 27+ 1= (224 1)? in R[] has no roots but is reducible.
e 12 + 1 is irreducible in R[z] but reducible in C[z] by (x —i)(x +19).
e 23 + 622 + 4 is irreducible in Z/7Z.

The main choice we made in constructing Fg was how to write a-b in terms of the other elements;
b = a? and so the question was how to represent a - b = a® in terms of 1, a, and a?. We chose
a® = a + 1 and then all operations followed by using this equality. This polynomial, a3 4+ a + 1
does not factor over Fy; other choices we considered, e.g., a® + 1 do factor and it was exactly
by considering these factors, e.g., (a + 1) and (a? + a + 1) that we derived contradictions, e.g.,
(a+1)-(a*+a+1) =a®+1=0 (using a® = 1). In the end we worked in Fo[a]/(gs a4 1)Fya] —
the polynomial ring over Fy modulo the irreducible polynomial a® + a + 1.

Example. Compute a-(a?+a) and (a+1)-(a?+a) in Fs using the irred. polynomial a® +a+ 1:

a-(a*+a) = a® + a? (a+1)-(a*+a)=a’+a
(a*+a?)/(a®>+a+1)=1 (a*+a)/(a®>+a+1)=1
—(a®4+a+1) —(a®>+a+1)
a?+a+1 1

In general, this construction gives a finite field.



