TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptography 1, Tuesday 28 January 2014

Name

TU/e student number :

Exercise	1	2	3	4	5	total
points						

:

Notes: Please hand in this sheet at the end of the exam. You may keep the sheet with the exercises.

This exam consists of 5 exercises. You have from 14:00 - 17:00 to solve them. You can reach 50 points.

Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.

All answers must be submitted on TU/e letterhead; should you require more sheets ask the proctor. State your name on every sheet.

Do not write in red or with a pencil.

You are allowed to use any books and notes, e.g. your homework. You are not allowed to use the textbooks of your colleagues.

You are allowed to use a calculator without networking abilities. Usage of laptops and cell phones is forbidden.

- 1. This problem is about RSA encryption.
 - (a) Alice's public key is (n, e) = (13589, 5). Encrypt the message m = 2801 to Alice using schoolbook RSA (no padding). 1 point
 - (b) Let p = 653 and q = 701. Compute the public key using e = 3 and the corresponding private key.
 - (c) Decrypt the message c = 4839 which was encrypted to your key under (b). Feel free to use p and q.
- 2. This exercise is about computing discrete logarithms in some groups. The order of 2 in \mathbb{F}_{211}^* is 210. Alice uses the group generated by g = 2 for cryptography. Her public key is $g_c = 107$. Your task is to compute $0 \le k < 210$ with $2^k \equiv 107 \mod 211$ in the following two steps:

2 points

3 points

3 points

5 points

- (a) Compute k modulo 2 and modulo 3.
- (b) Use the baby-step-giant-step algorithm to determine k. Note, you can make use of the result obtained under (a). 6 points
- 3. This exercise is about factoring n = 2014. Obviously, 2 is a factor, so the rest of the exercise is about factoring the remaining factor m = 2014/2 = 1007.
 - (a) Use Pollard's rho method of factorization to find a factor of 1007. Use starting point $x_0 = 1$, iteration function $x_{i+1} = x_i^2 + 1$ and Floyd's cycle finding method, i.e. compute $gcd(x_{2i}-x_i, 1007)$ until a non-trivial gcd is found.
 - (b) Perform one round of the Fermat test with base a = 2 to test whether 19 is prime. What is the answer of the Fermat test? 2 points
 - (c) Use Pollard's p-1 factorization method to factor the number n = 1007 with base u = 2 and exponent $2^3 \cdot 3^2$. 3 points

4. (a) Find all affine points on the Edwards curve $x^2 + y^2 = 1 - 5x^2y^2$ over \mathbb{F}_{13} .

(b) Verify that P = (6,3) is on the curve. Compute the order of P.

4 points

4 points

(c) Translate the curve and P to Montgomery form

$$Bv^2 = u^3 + Au^2 + u.$$

2 points

- 5. The curve $y^2 = x^3$ is not an elliptic curve over \mathbb{F}_{71} but the set of points $\{(x, y) | x, y \in \mathbb{F}_{71}^*, y^2 = x^3\} \cup \{P_\infty\}$ forms a group under the addition and doubling laws on (short) Weierstrass curves.
 - (a) The point (1, 1) is on the curve. Compute 2P, 3P, 4P, and 8P.
 - (b) Compute the fractions x/y for 2P, 3P, 4P, and 8P.
 - (c) Compute the discrete logarithm of (6, 43) with base (1, 1). Make sure to justify your approach.

6 points 2 points

$i n_i$	ainte
i p	oints

