
FUNDAMENTALS OF
CRYPTOLOGY
A Professional Reference
and Interactive Tutorial

by

Henk C.A. van Tilborg
Eindhoven University of Technology

The Netherlands

KLUWER ACADEMIC PUBLISHERS
Boston/Dordrecht/London

Contents
xiiiPreface

11 Introduction
11.1 Introduction and Terminology
21.2 Shannon's Description of a Conventional Cryptosystem
41.3 Statistical Description of a Plaintext Source
71.4 Problems

92 Classical Cryptosystems
92.1 Caesar, Simple Substitution, Vigenère
92.1.1 Caesar Cipher

102.1.2 Simple Substitution
10The System and its Main Weakness
11Cryptanalysis by The Method of a Probable Word
132.1.3 Vigenère Cryptosystem
162.2 The Incidence of Coincidences, Kasiski's Method
162.2.1 The Incidence of Coincidences
192.2.2 Kasiski's Method
202.3 Vernam, Playfair, Transpositions, Hagelin, Enigma
202.3.1 The One-Time Pad
202.3.2 The Playfair Cipher
212.3.3 Transposition Ciphers
222.3.4 Hagelin
242.3.5 Enigma
252.4 Problems

273 Shift Register Sequences
273.1 Pseudo-Random Sequences
313.2 Linear Feedback Shift Registers
313.2.1 (Linear) Feedback Shift Registers
353.2.2 PN-Sequences
383.2.3 Which Characteristic Polynomials give PN-Sequences?
443.2.4 An Alternative Description of �� f � for Irreducible f

463.2.5 Cryptographic Properties of PN Sequences
493.3 Non-Linear Algorithms
493.3.1 Minimal Characteristic Polynomial
523.3.2 The Berlekamp-Massey Algorithm
583.3.3 A Few Observations about Non-Linear Algorithms

603.4 Problems

634 Block Ciphers
634.1 Some General Principles
634.1.1 Some Block Cipher Modes
63Codebook Mode
64Cipher Block Chaining
65Cipher Feedback Mode
664.1.2 An Identity Verification Protocol
674.2 DES
67DES
69Triple DES
704.3 IDEA
724.4 Further Remarks
734.5 Problems

755 Shannon Theory
755.1 Entropy, Redundancy, and Unicity Distance
805.2 Mutual Information and Unconditionally Secure Systems
855.3 Problems

876 Data Compression Techniques
876.1 Basic Concepts of Source Coding for Stationary Sources
926.2 Huffman Codes
976.3 Universal Data Compression - The Lempel-Ziv Algorithms
98Initialization
99Encoding

101Decoding
1036.4 Problems

1057 Public-Key Cryptography
1057.1 The Theoretical Model
1057.1.1 Motivation and Set-up
1067.1.2 Confidentiality
1077.1.3 Digital Signature
1087.1.4 Confidentiality and Digital Signature
1097.2 Problems

1118 Discrete Logarithm Based Systems
1118.1 The Discrete Logarithm System
1118.1.1 The Discrete Logarithm Problem
1148.1.2 The Diffie-Hellman Key Exchange System
1168.2 Other Discrete Logarithm Based Systems
1168.2.1 ElGamal's Public-Key Cryptosystems

vi

116Setting It Up
116ElGamal's Secrecy System
117ElGamal's Signature Scheme
1198.2.2 Further Variations
119Digital Signature Standard
120Schnorr's Signature Scheme
120The Nyberg-Rueppel Signature Scheme
1208.3 How to Take Discrete Logarithms
1218.3.1 The Pohlig-Hellman Algorithm
121Special Case: q � 1 � 2n

123General Case: q � 1 has only small prime factors
124An Example of the Pohlig-Hellman Algorithm
1278.3.2 The Baby-Step Giant-Step Method
1308.3.3 The Pollard-� Method
1358.3.4 The Index-Calculus Method
135General Discussion
136 �p

 , i.e. the Multiplicative Group of GF�p�

141GF(2n)
1458.4 Problems

1479 RSA Based Systems
1479.1 The RSA System
1479.1.1 Some Mathematics
1489.1.2 Setting Up the System
148Step 1 Computing the Modulus nU

149Step 2 Computing the Exponents eU and dU

150Step 3 Making Public: eU and nU

1509.1.3 RSA for Privacy
1539.1.4 RSA for Signatures
1549.1.5 RSA for Privacy and Signing
1569.2 The Security of RSA: Some Factorization Algorithms
1569.2.1 What the Cryptanalist Can Do
1589.2.2 A Factorization Algorithm for a Special Class of Integers
158Pollard's p� 1 Method
1619.2.3 General Factorization Algorithms
161The Pollard-� Method
162Random Square Factoring Methods
167Quadratic Sieve
1699.3 Some Unsafe Modes for RSA
1699.3.1 A Small Public Exponent
169Sending the Same Message to More Receivers ...
171Sending Related Messages to a Receiver with Small Public Exponent

vii

1769.3.2 A Small Secret Exponent; Wiener's Attack
1809.3.3 Some Physical Attacks
180Timing Attack
180The "Microwave" Attack
1829.4 How to Generate Large Prime Numbers; Some Primality Tests
1829.4.1 Trying Random Numbers
1849.4.2 Probabilistic Primality Tests
184The Solovay and Strassen Primality Test
187Miller-Rabin Test
1909.4.3 A Deterministic Primality Test
1979.5 The Rabin Variant
1979.5.1 The Encryption Function
1999.5.2 Decryption
199Precomputation
200Finding a Square Root Modulo a Prime Number
204The Four Solutions
2069.5.3 How to Distinguish Between the Solutions
2089.5.4 The Equivalence of Breaking Rabin's Scheme and Factoring n
2099.6 Problems

21310 Elliptic Curves Based Systems
21310.1 Some Basic Facts of Elliptic Curves
21610.2 The Geometry of Elliptic Curves
219A Line Through Two Distinct Points
221A Tangent Line
22310.3 Addition of Points on Elliptic Curves
22910.4 Cryptosystems Defined over Elliptic Curves
22910.4.1 The Discrete Logarithm Problem over Elliptic Curves
23010.4.2 The Discrete Logarithm System over Elliptic Curves
23310.4.3 The Security of Discrete Logarithm Based EC Systems
23510.5 Problems

23611 Coding Theory Based Systems
23611.1 Introduction to Goppa codes
24011.2 The McEliece Cryptosystem
24111.2.1 The System
241Setting Up the System
241Encryption
241Decryption
24211.2.2 Discussion
242Summary and Proposed Parameters
242Heuristics of the Scheme

viii

243Not a Signature Scheme
24311.2.3 Security Aspects
243Guessing SB and PB

244Exhaustive Codewords Comparison
245Syndrome Decoding
247Guessing k Correct and Independent Coordinates
250Multiple Encryptions of the Same Message
25111.2.4 A Small Example of the McEliece System
25411.3 Another Technique to Decode Linear Codes
25911.4 The Niederreiter Scheme
26011.5 Problems

26212 Knapsack Based Systems
26212.1 The Knapsack System
26212.1.1 The Knapsack Problem
26412.1.2 The Knapsack System
264Setting Up the Knapsack System
265Encryption
266Decryption
267A Further Discussion
26912.2 The L3-Attack
26912.2.1 Introduction
27012.2.2 Lattices
27212.2.3 A Reduced Basis
27312.2.4 The L3-Attack
27612.2.5 The L3-Lattice Basis Reduction Algorithm
27712.3 The Chor-Rivest Variant
278Setting Up the System
281Encryption
282Decryption
28512.4 Problems

28613 Hash Codes & Authentication Techniques
28613.1 Introduction
28713.2 Hash Functions and MAC's
28913.3 Unconditionally Secure Authentication Codes
28913.3.1 Notions and Bounds
29413.3.2 The Projective Plane Construction
294A Finite Projective Plane
298A General Construction of a Projective Plane
302The Projective Plane Authentication Code
30413.3.3 A-Codes From Orthogonal Arrays

ix

30813.3.4 A-Codes From Error-Correcting Codes
31313.4 Problems

31414 Zero Knowledge Protocols
31414.1 The Fiat-Shamir Protocol
31614.2 Schnorr's Identification Protocol

31914.3 Problems

32015 Secret Sharing Systems
32015.1 Introduction
32215.2 Threshold Schemes
32515.3 Threshold Schemes with Liars
32715.4 Secret Sharing Schemes
33215.5 Visual Secret Sharing Schemes
34015.6 Problems

343A Elementary Number Theory
343A.1 Introduction
348A.2 Euclid's Algorithm
352A.3 Congruences, Fermat, Euler, Chinese Remainder Theorem
352A.3.1 Congruences
354A.3.2 Euler and Fermat
358A.3.3 Solving Linear Congruence Relations
361A.3.4 The Chinese Remainder Theorem
364A.4 Quadratic Residues
369A.5 Continued Fractions
378A.6 Möbius Inversion Formula, the Principle of Inclusion and Exclusion
378A.6.1 Möbius Inversion Formula
380A.6.2 The Principle of Inclusion and Exclusion
382A.7 Problems

383B Finite Fields
383B.1 Algebra
383B.1.1 Abstract Algebra
383Set operations
384Group
386Ring
386Ideal
387Field
387Equivalence Relations
389Cyclic Groups
391B.1.2 Linear Algebra
391Vector Spaces and Subspaces
392Linear Independence, Basis and Dimension

x

393Inner Product, Orthogonality
395B.2 Constructions
401B.3 The Number of Irreducible Polynomials over GF(q)
405B.4 The Structure of Finite Fields
405B.4.1 The Cyclic Structure of a Finite Field
409B.4.2 The Cardinality of a Finite Field
411B.4.3 Some Calculus Rules over Finite Fields; Conjugates
413B.4.4 Minimal Polynomials, Primitive Polynomials
418B.4.5 Further Properties
420B.4.6 Cyclotomic Polynomials
423B.5 Problems

425C Relevant Famous Mathematicians
425Euclid of Alexandria
426Leonhard Euler
428Pierre de Fermat
434Evariste Galois
439Johann Carl Friedrich Gauss
445Karl Gustav Jacob Jacobi
446Adrien-Marie Legendre
447August Ferdinand Möbius
451Joseph Henry Maclagen Wedderburn

453D New Functions

461References

469Symbols and Notations

471Index

xi

xii

Preface
The protection of sensitive information against unauthorized access or fraudulent changes has been of
prime concern throughout the centuries. Modern communication techniques, using computers connected
through networks, make all data even more vulnerable for these threats. Also, new issues have come up

that were not relevant before, e.g. how to add a (digital) signature to an electronic document in such a way
that the signer can not deny later on that the document was signed by him/her.

Cryptology addresses the above issues. It is at the foundation of all information security. The techniques

employed to this end have become increasingly mathematical of nature. This book serves as an
introduction to modern cryptographic methods. After a brief survey of classical cryptosystems, it
concentrates on three main areas. First of all, stream ciphers and block ciphers are discussed. These

systems have extremely fast implementations, but sender and receiver have to share a secret key. Public
key cryptosystems (the second main area) make it possible to protect data without a prearranged key. Their
security is based on intractable mathematical problems, like the factorization of large numbers. The
remaining chapters cover a variety of topics, such as zero-knowledge proofs, secret sharing schemes and

authentication codes. Two appendices explain all mathematical prerequisites in great detail. One is on
elementary number theory (Euclid's Algorithm, the Chinese Remainder Theorem, quadratic residues,
inversion formulas, and continued fractions). The other appendix gives a thorough introduction to finite

fields and their algebraic structure.

This book differs from its 1988 version in two ways. That a lot of new material has been added is to be

expected in a field that is developing so fast. Apart from a revision of the existing material, there are many
new or greatly expanded sections, an entirely new chapter on elliptic curves and also one on authentication
codes. The second difference is even more significant. The whole manuscript is electronically available as

an interactive Mathematica manuscript. So, there are hyperlinks to other places in the text, but more

importantly, it is now possible to work out non-trivial examples. Even a non-expert can easily alter the

parameters in the examples and try out new ones. It is our experience, based on teaching at the California
Institute of Technology and the Eindhoven University of Technology, that most students truly enjoy the
enormous possibilities of a computer algebra notebook. Throughout the book, it has been our intention to
make all Mathematica statements as transparent as possible, sometimes sacrificing elegant or smart

alternatives that are too dependent on this particular computer algebra package.

There are several people that have played a crucial role in the preparation of this manuscript. In
alphabetical order of first name, I would like to thank Fred Simons for showing me the full
potential of Mathematica for educational purposes and for enhancing many the Mathematica

commands, Gavin Horn for the many typo's that he has found as well as his compilation of
solutions, Lilian Porter for her feedback on my use of English, and Wil Kortsmit for his help in
getting the manuscript camera-ready and for solving many of my Mathematica questions. I also
owe great debt to the following people who helped me with their feedback on various chapters:

Berry Schoenmakers, Bram van Asch, Eric Verheul, Frans Willems, Mariska Sas, and Martin van
Dijk.

Henk van Tilborg
Dept. of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
the Netherlands
email: henkvt@win.tue.nl.

xiv

1 Introduction

1.1 Introduction and Terminology
Cryptology, the study of cryptosystems, can be subdivided into two disciplines. Cryptography
concerns itself with the design of cryptosystems, while cryptanalysis studies the breaking of
cryptosystems. These two aspects are closely related; when setting up a cryptosystem the analysis
of its security plays an important role. At this time we will not give a formal definition of a
cryptosystem, as that will come later in this chapter. We assume that the reader has the right
intuitive idea of what a cryptosystem is.

Why would anybody use a cryptosystem? There are several possibilities:

Confidentiality: When transmitting data, one does not want an eavesdropper to understand the
contents of the transmitted messages. The same is true for stored data that should be protected
against unauthorized access, for instance by hackers.

Authentication: This property is the equivalent of a signature. The receiver of a message wants
proof that a message comes from a certain party and not from somebody else (even if the original
party later wants to deny it).

Integrity: This means that the receiver of certain data has evidence that no changes have been
made by a third party.

Throughout the centuries (see [Kahn67]) cryptosystems have been used by the military and by the
diplomatic services. The nowadays widespread use of computer controlled communication
systems in industry or by civil services, often asks for special protection of the data by means of
cryptographic techniques.

Since the storage, and later recovery, of data can be viewed as transmission of this data in the time
domain, we shall always use the term transmission when discussing a situation when data is stored
and/or transmitted.

1.2 Shannon's Description of a Conventional Cryptosystem
Chapters 2, 3, and 4 discuss several so-called conventional cryptosystems. The formal definition
of a conventional cryptosystem as well as the mathematical foundation of the underlying theory is
due to C.E. Shannon [Shan49]. In Figure 1.1, the general outline of a conventional cryptosystem is
depicted.

In the next section we shall elaborate on concepts like language and text. This will provide a
cryptanalyst with useful models when describing the output of the sender in the scheme.

Alice Encryption Decryption Bob

Key Source

Eve

Secure Channel

m EkHmL=c

m=

DkHcL
k k

Figure 1.1

The conventional cryptosystem

Let  be a finite set, which we will call alphabet. With || we denote the cardinality of . We
shall often use q = 80, 1, …, q - 1< as alphabet, where we work with its elements modulo q (see
the beginning of Subsection A.3.1 and Section B.2. The alphabet 26 can be identified with the set8a, b, …, z< . In most modern applications q will often be 2 or a power of 2.

A concatenation of n letters from  will be called an n-gram and denoted by
a = Ha0, a1, …, an-1L . Special cases are bi-grams (n = 2) and tri-grams (n = 3). The set of all n-
grams from  will be denoted by n .

A text is an element from * = ‹n¥0 n . A language is a subset of * . In the case of
programming languages this subset is precisely defined by means of recursion rules. In the case of
spoken languages these rules are very loose.

Let  and  be two finite alphabets. Any one-to-one mapping E of * to * is called a
cryptographic transformation. In most practical situations || will be equal to ||. Also often the
cryptographic transformation E will map n-grams into n-grams (to avoid data expansion during
the encryption process).

2 FUNDAMENTALS OF CRYPTOLOGY

Let m be the message (a text from *) that Alice in Figure 1.1 wants to transmit in secrecy to
Bob. It is usually called the plaintext. Alice will first transform the plaintext into c = EHmL , the so-
called ciphertext. It will be the ciphertext that she will transmit to Bob.

Definition 1.1
A symmetric (or conventional) cryptosystem  is a set of cryptographic transformations 
= 8Ek » k œ < .
The index set  is called the key space, and its elements k keys.

Since Ek is a one-to-one mapping, its inverse must exist. We shall denote it with Dk . Of course,
the E stands for encryption (or enciphering) and the D for decryption (or deciphering). One has

Dk HEk HmLL = m , for all plaintexts m œ * and keys k œ  .

If Alice wants to send the plaintext m to Bob by means of the cryptographic transformation Ek ,
both Alice and Bob must know the particular choice of the key k . They will have agreed on the
value of k by means of a so-called secure channel. This channel could be a courier, but it could
also be that Alice and Bob have, beforehand, agreed on the choice of k .

Bob can decipher c by computing

Dk HcL = Dk HEk HmLL = m .

Normally, the same cryptosystem  will be used for a long time and by many people, so it is
reasonable to assume that this set of cryptographic transformations  is also known to the
cryptanalyst. It is the frequent changing of the key that has to provide the security of the data. This
principle was already clearly stated by the Dutchman Auguste Kerckhoff (see [Kahn67]) in the 19-
th century.

The cryptanalyst (Eve) who is connected to the transmission line can be:

ä passive (eavesdropping): The cryptanalyst tries to find m (or even better k) from c (and
whatever further knowledge he has). By determining k more ciphertexts may be broken.

ä active (tampering): The cryptanalyst tries to actively manipulate the data that are being
transmitted. For instance, he transmits his own ciphertext, retransmits old ciphertext, substitutes
his own texts for transmitted ciphertexts, etc..

In general, one discerns three levels of cryptanalysis:

ä Ciphertext only attack: Only a piece of ciphertext is known to the cryptanalyst (and often the
context of the message).

ä Known plaintext attack: A piece of ciphertext with corresponding plaintext is known. If a system
is secure against this kind of attack the legitimate receiver does not have to destroy deciphered
messages.

Introduction 3

ä Chosen plaintext attack: The cryptanalyst can choose any piece of plaintext and generate the
corresponding ciphertext. The public-key cryptosystems that we shall discuss in Chapters 7-12
have to be secure against this kind of attack.

This concludes our general description of the conventional cryptosystem as depicted in Figure 1.1.

1.3 Statistical Description of a Plaintext Source
In cryptology, especially when one wants to break a particular cryptosystem, a probabilistic
approach to describe a language is often already a powerful tool, as we shall see in Section 2.2.

The person Alice in Figure 1.1 stands for a finite or infinite plaintext source  of text, that was
called plaintext, from an alphabet , e.g. q . It can be described as a finite resp. infinite sequence
of random variables Mi , so by sequences

M0, M1, … , Mn-1 for some fixed value of n ,

resp.

M0, M1, M2, … ,

each described by probabilities that events occur. So, for each letter combination (r-gram)Hm0, m1, … , mr-1L over  and each starting point j the probability

PrplainHM j = m0, M j+1 = m1, … , M j+r-1 = mr-1L
is well defined. In the case that j = 0, we shall simply write PrplainHm0, m1, … , mr-1L . Of course,
the probabilities that describe the plaintext source  should satisfy the standard statistical
properties, that we shall mention below but on which we shall not elaborate.

i) PrplainHm0, m1, … , mr-1L ¥ 0 for all texts Hm0, m1, … , mr-1L .

ii) ⁄Hm0, m1,… , mr-1L PrplainHm0, m1, … , mr-1L = 1.

iii) ⁄Hmr, mr+1,… , ml-1L PrplainHm0, m1, … , ml-1L = PrplainHm0, m1, …, mr-1L , for all l > r .

The third property is called Kolmogorov's consistency condition.

Example 1.1

The plaintext source  (Alice in Figure 1.1) generates individual letters (1-grams) from 8a, b, …, z< with
an independent but identical distribution, say pHaL, pHbL, …, pHzL . So,

PrplainHm0, m1 , …, mn-1L = pHm0L pHm1L ∫ pHmn-1L , n ¥ 1.

The distribution of the letters of the alphabet in normal English texts is given in Table 1.1 (see
Table 12-1 in [MeyM82]). In this model one has that

PrplainHrunL = pHrL pHuL pHnL = 0.0612 µ 0.0271 µ 0.0709 º 1.18 10-4 .

4 FUNDAMENTALS OF CRYPTOLOGY

Note that in this model also PrplainHnruL = pHnL pHrL pHuL , etc., so, unlike in a regular English texts,
all permutations of the three letters r , u, and n are equally likely in .

Table 1.1

a 0.0804 h 0.0549 o 0.0760 v 0.0099
b 0.0154 i 0.0726 p 0.0200 w 0.0192
c 0.0306 j 0.0016 q 0.0011 x 0.0019
d 0.0399 k 0.0067 r 0.0612 y 0.0173
e 0.1251 l 0.0414 s 0.0654 z 0.0009
f 0.0230 m 0.0253 t 0.0925
g 0.0196 n 0.0709 u 0.0271

Probability distributions of 1-grams in English.

Example 1.2

 generates 2-grams over the alphabet 8a, b, , …, z< with an independent but identical distribution, say
pHs, tL , with s, t œ 8a, b, …, z< . So, for n ¥ 1

PrplainHm0, m1, …, m2 n-1L = pHm0 m1L pHm2, m3L ∫ pHm2 n-2 m2 n-1L .

The distribution of 2-grams in English texts can be found in the literature (see Table 2.3.4 in
[Konh81]).

Of course, one can continue like this with tables of the distribution of 3-grams or more. A different
and more appealing approach is given in the following example.

ed@"a"D = 0.0723; ed@"j"D = 0.0006; ed@"s"D = 0.0715;
ed@"b"D = 0.0060; ed@"k"D = 0.0064; ed@"t"D = 0.0773;
ed@"c"D = 0.0282; ed@"l"D = 0.0396; ed@"u"D = 0.0272;
ed@"d"D = 0.0483; ed@"m"D = 0.0236; ed@"v"D = 0.0117;
ed@"e"D = 0.1566; ed@"n"D = 0.0814; ed@"w"D = 0.0078;
ed@"f"D = 0.0167; ed@"o"D = 0.0716; ed@"x"D = 0.0030;
ed@"g"D = 0.0216; ed@"p"D = 0.0161; ed@"y"D = 0.0168;
ed@"h"D = 0.0402; ed@"q"D = 0.0007; ed@"z"D = 0.0010;
ed@"i"D = 0.0787; ed@"r"D = 0.0751;

Table 1.2

Equilibrium distribution in English.

Introduction 5

a b c d e f g h i j k l m
a 0.0011 0.0193 0.0388 0.0469 0.002 0.01 0.0233 0.002 0.048 0.002 0.0103 0.1052 0.0281
b 0.0931 0.0057 0.0016 0.0008 0.3219 0 0 0 0.0605 0.0057 0 0.1242 0.0049
c 0.1202 0 0.0196 0.0004 0.1707 0 0 0.1277 0.0761 0 0.0324 0.0369 0.0015
d 0.1044 0.002 0.0026 0.0218 0.3778 0.0007 0.0132 0.0007 0.1803 0.0033 0 0.0125 0.0178
e 0.066 0.0036 0.0433 0.1194 0.0438 0.0142 0.0125 0.0021 0.0158 0.0005 0.0036 0.0456 0.034
f 0.0838 0 0 0 0.1283 0.0924 0 0 0.1608 0 0 0.0299 0.0009
g 0.1078 0 0 0.0018 0.2394 0 0.0177 0.1281 0.0839 0 0 0.0203 0.0027
h 0.1769 0.0005 0.0014 0.0008 0.5623 0 0 0.0005 0.1167 0 0 0.0016 0.0016
i 0.038 0.0082 0.0767 0.0459 0.0437 0.0129 0.028 0.0002 0.0016 0 0.005 0.0567 0.0297
j 0.1259 0 0 0 0.1818 0 0 0 0.035 0 0 0 0
k 0.0395 0.0028 0 0.0028 0.5282 0.0028 0 0.0198 0.1582 0 0.0113 0.0198 0.0028
l 0.1342 0.0019 0.0022 0.0736 0.1918 0.0105 0.0108 0 0.1521 0 0.0079 0.1413 0.0082
m 0.1822 0.0337 0.0026 0 0.2975 0.001 0 0 0.1345 0 0 0.001 0.0654
n 0.055 0.0004 0.0621 0.1681 0.1212 0.0102 0.1391 0.0013 0.0665 0.0009 0.0066 0.0073 0.0104
o 0.0085 0.0101 0.0162 0.0231 0.0037 0.1299 0.0082 0.0025 0.0092 0.0014 0.0078 0.0416 0.0706
p 0.1359 0 0.0006 0 0.1747 0 0 0.0237 0.0423 0 0 0.0812 0.0073
q 0 0 0 0 0 0 0 0 0 0 0 0 0
r 0.1026 0.0033 0.0172 0.0282 0.2795 0.0031 0.0175 0.0017 0.1181 0 0.0205 0.0164 0.0303
s 0.0604 0.0012 0.0284 0.0027 0.1795 0.0024 0 0.0561 0.1177 0 0.0091 0.0145 0.0112
t 0.0619 0.0003 0.0036 0.0002 0.1417 0.0007 0.0002 0.3512 0.1406 0 0 0.0101 0.0044
u 0.0344 0.0415 0.0491 0.0243 0.0434 0.0052 0.0382 0.001 0.0258 0 0.0014 0.1097 0.0329
v 0.0749 0 0 0.0023 0.6014 0 0 0 0.2569 0 0 0 0.0012
w 0.2291 0.0008 0 0.0032 0.1942 0 0 0.1422 0.2104 0 0 0.0041 0
x 0.0672 0 0.1119 0 0.1269 0 0 0.0075 0.1119 0 0 0 0.0075
y 0.0586 0.0034 0.0103 0.0069 0.2897 0 0 0 0.069 0 0.0034 0.0172 0.0379
z 0.2278 0 0 0 0.4557 0 0 0 0.2152 0 0 0.0127 0

n o p q r s t u v w x y z
a 0.1878 0.0008 0.0222 0 0.118 0.1001 0.1574 0.0137 0.0212 0.0057 0.0026 0.0312 0.0023
b 0 0.0964 0 0 0.0662 0.0229 0.0049 0.0727 0.0016 0 0 0.1168 0
c 0.0011 0.2283 0 0.0004 0.0426 0.0087 0.0893 0.0347 0 0 0 0.0094 0
d 0.0053 0.0733 0 0.0007 0.0324 0.0495 0.0013 0.0601 0.0099 0.004 0 0.0264 0
e 0.1381 0.004 0.0192 0.0034 0.1927 0.1231 0.0404 0.0048 0.0215 0.0205 0.0152 0.0121 0.0004
f 0.0009 0.2789 0 0 0.1215 0.0026 0.0496 0.0462 0 0 0 0.0043 0
g 0.0451 0.114 0 0 0.1325 0.0256 0.0247 0.0512 0 0 0 0.0053 0
h 0.0038 0.0786 0 0 0.0153 0.0027 0.0233 0.0085 0 0.0011 0 0.0041 0
i 0.2498 0.0893 0.01 0.0008 0.0342 0.1194 0.1135 0.0011 0.025 0 0.0023 0.0002 0.0079
j 0 0.3147 0 0 0.007 0 0 0.3357 0 0 0 0 0
k 0.0565 0.0198 0 0 0.0085 0.1102 0.0028 0.0028 0 0 0 0.0113 0
l 0.0004 0.0778 0.0041 0 0.0034 0.0389 0.0254 0.0269 0.0056 0.0011 0 0.0819 0
m 0.0042 0.1246 0.0722 0 0.0026 0.0244 0.0005 0.0337 0.0005 0 0 0.0192 0
n 0.0194 0.0528 0.0004 0.0007 0.0011 0.0751 0.1641 0.0124 0.0068 0.0018 0.0002 0.0157 0.0004
o 0.219 0.0222 0.0292 0 0.153 0.0357 0.0396 0.0947 0.0334 0.0345 0.0012 0.0041 0.0004
p 0.0006 0.1511 0.0581 0 0.2306 0.018 0.0287 0.0457 0 0 0 0.0017 0
q 0 0 0 0 0 0 0 1 0 0 0 0 0
r 0.0325 0.1114 0.0055 0 0.0212 0.0655 0.0596 0.0192 0.0142 0.0017 0.0002 0.0306 0
s 0.0021 0.0706 0.0386 0.0009 0.0027 0.0836 0.2483 0.0579 0 0.0039 0 0.0081 0
t 0.0015 0.1229 0.0003 0 0.0479 0.0418 0.0213 0.0195 0.0005 0.0088 0 0.0203 0.0005
u 0.1517 0.0019 0.0386 0 0.146 0.1221 0.1255 0.0029 0.0014 0 0.001 0.0014 0.0005
v 0 0.053 0 0 0 0.0023 0 0.0012 0.0012 0 0 0.0058 0
w 0.0357 0.1292 0 0 0.0106 0.0366 0.0016 0 0 0 0 0.0024 0
x 0 0.0075 0.3507 0 0 0 0.1716 0 0 0 0.0373 0 0
y 0.0172 0.2207 0.031 0 0.031 0.1517 0.0172 0.0138 0 0.0103 0 0.0069 0.0034
z 0 0.0506 0 0 0 0 0 0.0127 0 0 0 0 0.0253

Table 1.3

Transition probabilities pHt » sL , row s , column t , in English.

Example 1.3

In this model, the plaintext source  generates 1-grams by means of a Markov process. This process can be
described by a transition matrix P = HpHt » sLLs,t which gives the probability that a letter s in the text is
followed by the letter t . It follows from the theory of Markov processes that P has 1 as an eigenvalue. Let
p = HpHaL, pHbL, …, pHzLL , be the corresponding eigenvector (it is called the equilibrium distribution of the
process).

Assuming that the process is already in its equilibrium state at the beginning, one has

6 FUNDAMENTALS OF CRYPTOLOGY

PrplainHm0, m1, …, mn-1L = pHm0L pHm1 » m0L pHm2 » m1L ∫ pHmn-1 » mn-2L .

Let p and P be given by Table 1.2 and Table 1.3 from [Konh81] (here they are denoted by "ed"
resp. "TrPr"). Then, one obtains the following, more realistic probabilities of occurrence:

PrplainHrunL = pHrL pHu » rL pHn » uL = 0.0751× 0.0192 × 0.1517 º 2.19 10-4 ,

PrplainHurnL = pHuL pHr » uL pHn » rL = 0.0272× 0.1460 × 0.0325 º 1.29 10-4 ,

PrplainHnruL = pHnL pHr » nL pHu » rL = 0.0814× 0.0011 × 0.0192 º 1.72 10-6 ,

By means of the Mathematica functions StringTake, ToCharacterCode, and
StringLength, these probabilities can be computed in the following way (first enter the input
Table 1.2 and Table 1.3, by executing all initialization cells)

sourcetext = "run";
ed@StringTake@sourcetext, 81<DD ∗

‰
i=1

StringLength@sourcetextD−1

TrPr@@

ToCharacterCode@
StringTake@sourcetext, 8i<DD − 96,

ToCharacterCode@StringTake@sourcetext, 8i + 1<DD − 96DD

880.000218448<<
Better approximations of a language can be made, by considering transition probabilities that
depend on more than one letter in the past.

Note, that in the three examples above, the models are all stationary, which means that
PrplainHM j = m0, M j+1 = m1, …, M j+n-1 = mn-1L is independent of the value of j . In the middle of
a regular text one may expect this property to hold, but in other situations this is not the case.
Think for instance of the date at the beginning of a letter.

1.4 Problems

Problem 1.1
What is the probability that the text "apple'' occurs, when the plaintext source generates independent,
identically distributed 1-grams, as described in Example 1.1.
Answer the same question when the Markov model of Example 1.3 is used?

Problem 1.2 M

Use the Mathematica function Permutations and the input formula at the end of Section 1.3 to
determine for each of the 24 orderings of the four letters e, h, l, p the probability that it occurs in a
language generated by the Markov model of Example 1.3.

Introduction 7

8 FUNDAMENTALS OF CRYPTOLOGY

2 Classical Cryptosystems

2.1 Caesar, Simple Substitution, Vigenère
In this chapter we shall discuss a number of classical cryptosystems. For further reading we refer
the interested reader to ([BekP82], [Denn82], [Kahn67], [Konh81], or [MeyM82]).

2.1.1 Caesar Cipher

One of the oldest cryptosystems is due to Julius Caesar. It shifts each letter in the text cyclicly
over k places. So, with k = 7 one gets the following encryption of the word cleopatra (note that
the letter z is mapped to a):

cleopatra ö
+1

 dmfpqbusb ö
+1

 engqrcvtc ö
+1

 fohrsdwud ö
+1

 gpistexve ö
+1

 hqjtufywf ö
+1

irkuvgzxg ö
+1

 jslvwhayh

By using the Mathematica functions ToCharacterCode and FromCharacterCode, which
convert symbols to their ASCI code and back (letter a has value 97, letter b has value 98, etc.), the
Caesar cipher can be executed by the following function:

CaesarCipher@plaintext_, key_D :=

FromCharacterCode@
Mod@ ToCharacterCode@plaintextD − 97 + key, 26D + 97D

An example is given below.

plaintext = "typehereyourplaintextinsmallletters";
key = 24;
CaesarCipher@plaintext, keyD

rwncfcpcwmspnjyglrcvrglqkyjjjcrrcpq

In the terminology of Section 1.2, the Caesar cipher is defined over the alphabet 80, 1, …, 25< by:

Ek HmL = HHm + kL mod 26L, 0 ≤ m < 26,

and

Classical Cryptosystems 9

 = 8Ek » 0 ≤ k < 26<,
where Hi mod nL denotes the unique integer j satisfying j ª i Hmod nL and 0 § j < n . In this case,
the key space  is the set 80, 1, …, 25< and Dk = Eq-1-k .

An easy way to break the system is to try out all possible keys. This method is called exhaustive
key search. In Table 2.1 one can find the cryptanalysis of the ciphertext "xyuysuyifvyxi".

Table 2.1

x y u y s u y i f v y x i
w x t x r t x h e u x w h
v w s w q s w g d t w v g
u v r v p r v f c s v u f
t u q u o q u e b r u t e

Cryptanalysis of the Caesar cipher

To decrypt the ciphertext yhaklwpnw., one can easily check all keys with the caesar function
defined above.

ciphertext = "yhaklwpnw";
Table@CaesarCipher@ciphertext, −keyD, 8key, 1, 26<D

8xgzjkvomv, wfyijunlu, vexhitmkt, udwghsljs, tcvfgrkir, sbuefqjhq,
ratdepigp, qzscdohfo, pyrbcngen, oxqabmfdm, nwpzalecl,
mvoyzkdbk, lunxyjcaj, ktmwxibzi, jslvwhayh, irkuvgzxg,
hqjtufywf, gpistexve, fohrsdwud, engqrcvtc, dmfpqbusb,
cleopatra, bkdnozsqz, ajcmnyrpy, ziblmxqox, yhaklwpnw<

2.1.2 Simple Substitution

É The System and its Main Weakness

With the method of a simple substitution one chooses a fixed permutation p of the alphabet8a, b, …, z< and applies that to all letters in the plaintext.

Example 2.1

In the following example we only give that part of the substitution p that is relevant for the given plaintext.
We use the Mathematica function StringReplace.

10 FUNDAMENTALS OF CRYPTOLOGY

StringReplace@"plaintext",
8"a" −> "k", "e" −> "z", "i" −> "b", "l" −> "r",

"n" −> "a", "p" −> "v", "t" −> "q", "x" −> "d"<D

vrkbaqzdq

A more formal description of the simple substitution system is as follows: the key space  is the
set Sq of all permutations of 80, 1, …, q - 1< and the cryptosystem  is given by

 = 8Eπ » π ∈ Sq<,
where

Eπ HmL = π HmL, 0 ≤ m < q.

The decryption function Dp is given by Dp = Ep-1 , as follows from

Dπ HEπ HmLL = D Hπ HmLL = Eπ−1 Hπ HmLL = π−1 Hπ HmLL = m, 0 ≤ m < q.

Unlike Caesar's cipher, this system does not have the drawback of a small key space. Indeed,» » = » S26 » = 26! º4.03 1026 . This system however does demonstrate very well that a large
key space should not fool one into believing that a system is secure! On the contrary, by simply
counting the letter frequencies in the ciphertexts and comparing these with the letter frequencies in
Table 1.1, one very quickly finds the images under p of the most frequent letters in the plaintext.
Indeed, the most frequent letter in the ciphertext will very likely be the image under p of the letter
e . The next one is the image of the letter n , etc. After having found the encryptions of the most
frequent letters in the plaintext, it is not difficult to fill in the rest. Of course, the longer the cipher
text, the easier the cryptanalysis becomes. In Chapter 5, we come back to the cryptanalysis of the
system, in particular how long the same key can be used safely.

É Cryptanalysis by The Method of a Probable Word

In the following example we have knowledge of a very long ciphertext. This is not necessary at all
for the cryptanalysis of the ciphertext, but it takes that long to know the full key. Indeed, as long
as two letters are missing in the plaintext, one does not know the full key, but the system is of
course broken much earlier than that.

Apart from the ciphertext, given in Table 2.2, we shall assume in this example that the plaintext
discusses the concept of ''bidirectional communication theory''. Cryptanalysis will turn out to be
very easy.

Classical Cryptosystems 11

Table 2.2

zhjeo ndize hicle osiol digic lmhzq zolyi zehdp zhjeo ndize
hycdh hlpvs uczyc dhzhj eondi zehge moylk zhjpm lhylg gidiz
gizyd ppsdo lylzr losye nnmhz ydize hicle osceu lrloq lgyoz
vlgic lneol flhlo dpydg lzhuc zyciu eeone olzhj eondi zehge
moylg zhjpm lhyll dycei clogi dizgi zydpp siclq zolyi zehej
iczgz hjpml hylzg lkaol gglqv sqzol yilqi odhgj eondi zehxm
dhizi zlguc zycyd hehps vlqlo zrlqz jiclp duejy dmgdp ziszg
evglo rlqqz gizhf mzgcz hficl ldopz loydm gljoe niclp dilol
jjlyi zhvze pefsd hqgey zepef syenn mhzyd izehi cleos gllng
iecdr luzql daapz ydize hgqml ieicl jdyii cdipz rzhfv lzhfg
dolvs iclzo dyize hggem oylge jzhje ondiz ehucz yczhj pmlhy
lldyc eiclo zhdpp aeggz vplqz olyiz ehgic laolg lhiad aloql
gyzvl gicly dglej vzqzo lyize hdpye nnmhz ydize hicle osdaa
pzlqi eiclg eyzdp vlcdr zemoe jneht lsg…

Ciphertext obtained with a simple substitution

Assuming that the word "communication'' will occur in the plaintext, we look for strings of 13
consecutive letters, in which letter 1 = letter 8, letter 2 = letter 12, letter 3 = letter 4, letter 6 =
letter 13 and letter 7 = letter 11.

Indeed, we find the string "yennmhzydizeh'' three times in the ciphertext. This gives the following
information about p.

c o m u n i a t
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
y e n m h z d i

Assuming that the word "direction'' does also occur in the plaintext, we need to look for strings of
the form "*z**yizeh'' in the ciphertext, because of the information that we already have on p. It
turns out that "qzolyizeh'' appears four times, giving:

d r e
∞ ∞ ∞
q o l

If we substitute all this information in the ciphertext one easily obtains p completely. For instance,
the text begins like

in*ormationt*eor*treat*t*eunid…,

which obviously comes from

information theory treats the unid(irectional) …,

This gives the p-image of the letters f , h, y and s .

Continuing like this, one readily obtains p completely.

12 FUNDAMENTALS OF CRYPTOLOGY

a b c d e f g h i j k l m n o p q r s t u v w x y z
↓ ↓
d v y q l j f c z w t p n h e a x o g i m r u k s b

Example 2.2

Mathematica makes is quite easy to find a substring with a certain pattern.For instance, to test where in a
text one can find a substring of length 6 with letters 1 and 4 equal and also letters 2 and 5 (as in the Latin
word "quoque"), one can use the Mathematica functions If, StringTake, StringLength, Do,
Print and the following:

ciphertext = "xyuysuyifvyxi";
Do@
If@StringTake@ciphertext, 8i + 1<D == StringTake@ciphertext,

8i + 4<D fl StringTake@ciphertext, 8i + 2<D ==

StringTake@ciphertext, 8i + 5<D,
Print@i + 1, " ", StringTake@ciphertext, 8i + 1, i + 6<DDD,
8i, 0, StringLength@ciphertextD − 6<D

3 uysuyi

This example was taken from Table 2.1.

2.1.3 Vigenère Cryptosystem

The Vigenère cryptosystem (named after the Frenchman B. de Vigenère who in 1586 wrote his
Traicté des Chiffres, describing a more difficult version of this system) consists of r Caesar
ciphers applied periodically. In the example below, the key is a word of length r = 7. The i-th
letter in the key defines the particular Caesar cipher that is used for the encryption of the letters
i, i + r, i + 2 r, … in the plaintext.

Example 2.3

We identify 80, 1, …, 25< with 8a, b, …, z< . The so-called Vigenère Table (see Table 2.3) is a very helpful
tool when encrypting or decrypting. With the key "michael'' one gets the following encipherment:

plaintext a c r y p t o s y s t e m o f t e n i s a c
key m i c h a e l m i c h a e l m i c h a e l m

ciphertext m k t f p x z e g u a e q z r b g u i w l o

Classical Cryptosystems 13

Table 2.3

0 a b c d e f g h i j k l m n o p q r s t u v w x y z
1 b c d e f g h i j k l m n o p q r s t u v w x y z a
2 c d e f g h i j k l m n o p q r s t u v w x y z a b
3 d e f g h i j k l m n o p q r s t u v w x y z a b c
4 e f g h i j k l m n o p q r s t u v w x y z a b c d
5 f g h i j k l m n o p q r s t u v w x y z a b c d e
6 g h i j k l m n o p q r s t u v w x y z a b c d e f
7 h i j k l m n o p q r s t u v w x y z a b c d e f g
8 i j k l m n o p q r s t u v w x y z a b c d e f g h
9 j k l m n o p q r s t u v w x y z a b c d e f g h i
10 k l m n o p q r s t u v w x y z a b c d e f g h i j
11 l m n o p q r s t u v w x y z a b c d e f g h i j k
12 m n o p q r s t u v w x y z a b c d e f g h i j k l
13 n o p q r s t u v w x y z a b c d e f g h i j k l m
14 o p q r s t u v w x y z a b c d e f g h i j k l m n
15 p q r s t u v w x y z a b c d e f g h i j k l m n o
16 q r s t u v w x y z a b c d e f g h i j k l m n o p
17 r s t u v w x y z a b c d e f g h i j k l m n o p q
18 s t u v w x y z a b c d e f g h i j k l m n o p q r
19 t u v w x y z a b c d e f g h i j k l m n o p q r s
20 u v w x y z a b c d e f g h i j k l m n o p q r s t
21 v w x y z a b c d e f g h i j k l m n o p q r s t u
22 w x y z a b c d e f g h i j k l m n o p q r s t u v
23 x y z a b c d e f g h i j k l m n o p q r s t u v w
24 y z a b c d e f g h i j k l m n o p q r s t u v w x
25 z a b c d e f g h i j k l m n o p q r s t u v w x y

The Vigenère Table.

Because of the redundancy in the English language one reduces the effective size of the key space
tremendously by choosing an existing word as the key. Taking the name of a relative, as we have
done above, reduces the security of the encryption more or less to zero.

In Mathematica, addition of two letters as defined by the Vigenère Table can be realized in a
similar way, as our earlier implementation of the Caesar cipher:

AddTwoLetters@a_, b_D :=

FromCharacterCode@Mod@HToCharacterCode@aD − 97L +

HToCharacterCode@bD − 97L, 26D + 97D

By means of the Mathematica functions StringTake and StringLength , and the function
AddTwoLetters, defined above, encryption with the Vigenère cryptosystem can be realized as
follows:

14 FUNDAMENTALS OF CRYPTOLOGY

plaintext = "typehereyourplaintextinsmallletters";
key = "keyword";
ciphertext = "";
Do@ciphertext = ciphertext <>

AddTwoLetters@StringTake@plaintext, 8i<D,

StringTake@
key, 8Mod@i − 1, StringLength@keyDD + 1<DD,

8i, 1, StringLength@plaintextD<D;
ciphertext

dcnavvuocmqfgokmlpsowsrqiocovirpsiv

A more formal description of the Vigenère cryptosystem is as follows

 = 8EHk0,k1,…,kr−1L » Hk0, k1, …, kr−1L ∈  = 26
r <

and

EHk0,k1,…,kr-1LHm0, m1, m2, ……L = Hc0, c1, c2, ……L
with

(2.1) ci = HHmi + kHi mod rLL mod 26L.
Instead of using r Caesar ciphers periodically in the Vigenère cryptosystem, one can of course
also use r simple substitutions. Such a system is an example of a so-called polyalphabetic
substitution. For centuries, no one had an effective way of breaking this system, mainly because
one did not have a technique of determining the key length r . Once one knows r , one can find the
r simple substitutions by grouping together the letters i, i + r, i + 2 r, …, for each i, 0 § i < r, and
break each of these r simple substitutions individually. In 1863, the Prussian army officer, F.W.
Kasiski, solved the problem of finding the key length r by statistical means. In the next section,
we shall discuss this method.

Classical Cryptosystems 15

2.2 The Incidence of Coincidences, Kasiski's Method

2.2.1 The Incidence of Coincidences

Consider a ciphertext c = c0, c1, …, cn-1 which is the result of a Vigenère encryption of an English
plaintext m = m0, m1, …, mn-1 under the key k = k0, k1, …, kr-1 (see also (2.1)). As explained at
the end of the previous section, the key to breaking the Vigenère system is to determine the key
length r .

In our analysis we are going to assume the very simple model of a plaintext source outputting
independent, individual letters, each with probability distribution given by Table 1.1 (see Example
1.1). We further assume that the letters ki in the key are chosen with independent and uniform
distribution from 8a, b, …, z< (so, with probability 1/26).

Let cleft
HiL and cright

HiL the substrings of c consisting of the i left most resp. right most symbols of c, so:

cleft
HiL = c0, c1, …, ci-1 and cright

HiL = cn-i, cn-i+1, …, cn-1 .

Let us now count the number of agreements between cleft
HiL and cright

HiL , i.e. the number of coordinates
j where Hcleft

HiL L j = Hcright
HiL L j . We shall show in Lemma 2.1 that the expected value of this number

divided by the string length i will be 0.06875 or 1 ê 26 º 0.03846, depending on whether the
(unknown) key length r divides n - i or does not divide n - i .

Let us show by example how this difference in expected values can be used to determine the
unknown key length r .

Example 2.4

In this example we consider the ciphertext

"glrtnhklttbrxbxwnnhshjwkcjmsmrwnxqmvehuimnfxbzcwixbrnhxqhhclgcipcgimglrtnhklttbrshvil
gwcmwyejqbxbmlywimbkhhjwkcjmsmrwnxqmplceiwkcjmehtpslmmlxowmylxbxflxeebrahjwkcjms
mrwnxqm".

By means of the Mathematica functions StringTake, StringLength, Characters, and
Table, we can easily compute the number of agreements between cleft

HiL and cright
HiL in any range of

values of i:

16 FUNDAMENTALS OF CRYPTOLOGY

ciphertext =

"ubsyvkmhvyrrtsbbcrdsndwrtshxmbufrmxgabnvmircewerucamlyzg

brvfwivvmlyzwapspyogsslechbgcubsvyczqrcwrmhvcxgooyvcyg

dspomtqfpyqkgbcmerucadlcaflrsuqjrbhceqesfcehuoqmdstorg

cdoymeqqwaglgovggsmdabbigztbbqyfwbxwmgfpowgztyeilosrkg

gfahuovqfogswruqnvpwfvrnmpqqgsslatgrmqubsvyczqrswcjdeg

owqqroihqdspdibffnxwgztbbqyfwbxus";
L = StringLength@ciphertextD;
Table@ N@ Count@ Characters@ StringTake@ ciphertext, iDD −

Characters@ StringTake@ ciphertext, −iDD, 0Dêi,
1D, 8i, L − 20, L − 1< D

80.03, 0.04, 0.08, 0.02, 0.05, 0.04, 0.04, 0.03, 0.06, 0.07,
0.06, 0.04, 0.02, 0.05, 0.08, 0.04, 0.05, 0.02, 0.01, 0.05<

The (relative) higher values in this listing at places -6 and -18 indicate that the key length r is 6.
Indeed, the key that has been used to generate this example is the word "monkey'', which has 6
letters.

This can be checked with the following analogue of the Vigenère encryption of Example 2.3.

SubTwoLetters@a_, b_D :=

FromCharacterCode@
Mod@HToCharacterCode@aD − 97L − HToCharacterCode@bD − 97L,
26D + 97D

Classical Cryptosystems 17

ciphertext =

"ubsyvkmhvyrrtsbbcrdsndwrtshxmbufrmxgabnvmircewerucamlyzg

brvfwivvmlyzwapspyogsslechbgcubsvyczqrcwrmhvcxgooyvcyg

dspomtqfpyqkgbcmerucadlcaflrsuqjrbhceqesfcehuoqmdstorg

cdoymeqqwaglgovggsmdabbigztbbqyfwbxwmgfpowgztyeilosrkg

gfahuovqfogswruqnvpwfvrnmpqqgsslatgrmqubsvyczqrswcjdeg

owqqroihqdspdibffnxwgztbbqyfwbxus";
key = "monkey";
plaintext = "";
Do@plaintext = plaintext <>

SubTwoLetters@StringTake@ciphertext, 8i<D,

StringTake@
key, 8Mod@i − 1, StringLength@keyDD + 1<DD,
8i, 1, StringLength@ciphertextD<D

plaintext

informationtheorytreatstheunidirectionalikformationchannelbywhichaninfo
rmationsourceinfluencesstatisticallyareceivercommunpcationtheoryhowe
verdescribesthemoregeneralcaseinwhichtwoormoreinformationsourcesinfl
uenceeachotherstatisticallythedirectionofthisinfluenceisexpressedbyd
srectedtransinformationqu

Lemma 2.1
Let c be a ciphertext which is the result of a Vigenère encryption of a plaintext m of
length n with key k of length r .
Suppose that m is generated by the plaintext source of Example 1.1. So, all the letters in
m are generated independently of each other, all with the frequency distribution pHmL
given by Table 1.1. Suppose further that the letters ki in the key are chosen with
independent and uniform distribution from 8a, b, …, z< (so, with probability 1/26).
Then, for each 1 § i < j § n ,

Pr@ci = c jD = 9 ⁄m pHmL2 º 0.06875,
1 ê26 º 0.03846,

if r divides j - i,
if r does not divide j - i.

Proof:

If j - i is divisible by r , then ci = c j if and only if mi = m j . This follows directly from formula
(2.1), since H j mod rL equals Hi mod rL . So,

Pr@ci = c jD = Pr@mi = m jD = ⁄m Pr@mi = m j = mD =⁄m Pr@mi = mD Pr@m j = mD = ⁄m pHmL2 º 0.06875.

18 FUNDAMENTALS OF CRYPTOLOGY

If j - i is not divisible by r , then by (2.1) ci = c j if and only if mi + kHi mod rL = m j + kH j mod rL . SinceH j mod rL ∫ Hi mod rL , it follows that kH j mod rL takes on the value mi + kHi mod rL - m j with probability
1/26. We conclude that

Pr@ci = c jD = 1 ê26 º 0.03846.

Ñ

It may be clear that with increasing length of the ciphertext, it is easier to determine the key length
from the relative number of agreements between cleft

HiL and cright
HiL .

2.2.2 Kasiski's Method

Kasiski based his cryptanalysis of the Vigenère cryptosystem on the fact that when a certain
combination of letters (a frequent plaintext fragment) is encrypted more than once with the same
segment of the key (because they occur at a multiple of the key length r), one will see a repetition
of the corresponding ciphertext at those places.

We quote an example from [Baue97]:

Example 2.5

Consider the following plaintext and ciphertext pair (where the key "comet" has been used):

plaintext t h e r e i s a n o t h e r f a m o u s p i a n o p l a y .
key c o m e t c o m e t c o m e t c o m e t c o m e t c o m e .

ciphertext v v q v x k g m r h v v q v y c a a y l r w m r h r z m c .

In the ciphertext one can find the substring "vvqv" (of length 4) repeated twice, namely starting at
positions 1 and 11. This indicates that r divides 10. The substring "mrh" (of length 3) also occurs
twice: at positions 8 and 23. So, it seems likely that r also divides 15. Combining these results, we
conclude that r = 5, which is indeed the case.

See [Baue97] for a further analysis of the Vigenère cryptosystem.

Classical Cryptosystems 19

2.3 Vernam, Playfair, Transpositions, Hagelin, Enigma
In this section, we shall briefly discuss a few more cryptosystems, without going deep into their
structure.

2.3.1 The One-Time Pad

The one-time pad, also called the Vernam cipher (after the American A.T. & T. employee G.S.
Vernam, who introduced the system in 1917), is a Vigenère cipher with key length equal to the
length of the plaintext. Also, the key must be chosen in a completely random way and can only be
used once. In this way the system is unconditionally secure, as is intuitively clear and will be
proved in Chapter 5. The ''hot line'' between Washington and Moscow uses this system. The
major drawback of this system is the length of the key, which makes this system impractical for
most applications.

2.3.2 The Playfair Cipher

The Playfair cipher (1854, named after the Englishman L. Playfair) was used by the British in
World War I. It operates on 2-grams. First of all, one has to identify the letters i and j . The
remaining 25 letters of the alphabet are put rowwise in a 5 µ 5 matrix K , as follows. Put the first
letter of a keyword in the top-left position. Continue rowwise from left to right. If a letter occurs
more than once in the keyword, use it only once. The remaining letters of the alphabet are put into
K in their natural order. For instance, the keyword "hieronymus'' gives rise toi

k
jjjjjjjjjjjjjjjj
h i e r o
n y m u s
a b c d f
g k l p q
t v w x z

y
{
zzzzzzzzzzzzzzzz

The 2-gram Hx, yL = HKi, j, Km,nL with x ∫ y will be encrypted intoHKi,n, Km,jL, if i ≠ m and j ≠ n,HKi,j+1, Ki,n+1L, if i = m and j ≠ n,HKi+1,j, Km+1,jL, if i ≠ m and j = n,

where the indices are taken modulo 5. If the symbols x and y in the 2-gram Hx, yL are the same,
one first inserts the letter q and enciphers the text … x q y … .

20 FUNDAMENTALS OF CRYPTOLOGY

2.3.3 Transposition Ciphers

A completely different way of enciphering is called transposition. This system breaks the text up
into blocks of fixed length, say n , and applies a fixed permutation s to the coordinates. For
instance, with n = 5 and s = (1, 4, 5, 2, 3), one gets the following encryption:

crypt ograp hical … |
σ
 ytrcp rpgoa cliha …

Often the permutation is of a geometrical nature, as is the case with the so-called column
transposition. The plaintext is written rowwise in a matrix of given size, but will be read out
columnwise in a specific order depending on a keyword. For instance, after having identified
letters a, b, …, z with the numbers 1, 2, …, 26 the keyword "right'' will dictate you to read out
column 3 first (being the alphabetically first of the 5 letters in "right''), followed by columns 4, 2, 1
and 5. So, the plaintext

computing science has had very little influence on computing
practice

when encrypted with a 5 µ 5 matrix and keyword ''right'' will first be filled in rowwise as depicted
below

4 3 1 2 5
c o m p u
t i n g s
c i e n c
e h a s h
a d v e r

4 3 1 2 5
y l i t t
l e i n f
l u e n c
e o n c o
m p u t i

4 3 1 2 5
n g p r a
c t i c e
. . .

and then read out (columnwise in the indicated order) to give the ciphertext:

mneav pgnse oiihd ctcea uschr iienu tnnct leuop yllem tfcoi … .

Since transpositions do not change letter frequencies, but destroy dependencies between
consecutive letters in the plaintext, while Vigenère etc. do the opposite, one often combines such
systems. Such a combined system is called a product cipher. Shannon used the words confusion
and diffusion in this context.

Ciphersystems that encrypt the plaintext symbol for symbol in a way that depends on previous
input symbols are often called stream ciphers (they will discussed in Chapter 3). Cryptosystems
that encrypt blocks of symbols (of a fixed length) simultaneously but independent of previous
encryptions, they are called block ciphers (see Chapter 4).

During World War II both sides used so called rotor machines for their encryption. Several
variations of the machines described in the next two subsections were in use at that time. We shall
give a rough idea of each one.

Classical Cryptosystems 21

2.3.4 Hagelin

Figure 2.1

The Hagelin

The Hagelin, invented by the Swede B. Hagelin and used by the U.S. Army, has 6 rotors with 26,
resp. 25, 23, 21, 19 and 17 pins. Each of these pins can be put into an active or passive position by
letting it stick out to the left or right of the rotor. After encryption of a letter (depending on the
setting of these pins and a rotating cylinder), the 6 rotors all turn one position. So, after 26
encryptions the first rotor is back in its original position. For the sixth rotor this takes only 17
encryptions.

22 FUNDAMENTALS OF CRYPTOLOGY

ª
y
z
a
ª

ª

x
y
a
ª

ª

r
s
a
ª

ª

p
q
a
ª

ª

v
w
a
ª

ª

t
u
a
ª

26 25 23 21 19 17

Figure 2.2

The six rotors in the Hagelin machine,
each with its own number of positions.

Since the number of pins on the rotors are coprime, the Hagelin can be viewed as a mechanical
Vigenère cryptosystem with period 26 µ 25 µ 23 µ 21 µ 19 µ 17 = 101,405,850. We refer the reader
who is interested in the cryptanalysis of the Hagelin to Section 2.3 in [BekP82].

Classical Cryptosystems 23

2.3.5 Enigma

Figure 2.3

The Enigma

Keyboard

Indicator Light

Three Rotors

{ Reflector

Figure 2.4

A Schematic Description of the Enigma

24 FUNDAMENTALS OF CRYPTOLOGY

The electro-mechanical Enigma, used by Germany and Japan, was invented by A. Scherbius in
1923. It consists of three rotors and a reflector. See Figure 2.4. When punching in a letter, an
electronic current will enter the first rotor at the place corresponding with that letter, but will leave
it somewhere else depending on the internal wiring of that rotor. The second and third rotors do
the same, but have a different wiring. The reflector returns the current at a different place and the
current will go through rotors 1, 2 and 3 again but in reverse order. The current will light up a
letter, which gives the encryption of the original letter.

Simultaneously, the first rotor will turn position. After 26 rotations of the first rotor the second
will turn one position. When the second rotor has made a full cycle, the third rotor will rotate over
one position.

The key of the Enigma consists of

i) the choice and order of the rotors,
ii) their initial position and
iii) a fixed initial permutation of the alphabet.

For an idea about the cryptanalysis of the Enigma the reader is referred to Chapter 5 in [Konh81].

2.4 Problems

Problem 2.1
The following ciphertext about president Kennedy has been made with a simple substitution. What is the
corresponding
plaintext?

"rgjjg mvkto tzpgt stbgp catjw pgocm gjs"

Problem 2.2
Decrypt the following ciphertext, which is made with the Playfair cipher and the key ''hieronymus'' (as in
Subsection 2.3.2).

"erohh mfimf ienfa bsesn pdwar gbhah ro"

Problem 2.3
Encrypt the following plaintext using the Vigenère system with the key ''vigenere''.

"who is afraid of virginia woolf"

Problem 2.4M
Consider a ciphertext obtained through a Caesar encryption. Write a Mathematica program to find all
substrings of length 5 in the ciphertext that could have been obtained from the word "Brute".
Test this program on the text "xyuysuyifvyxi" from Table 2.1. (See also the input in Example 2.2)

Classical Cryptosystems 25

26 FUNDAMENTALS OF CRYPTOLOGY

3 Shift Register Sequences

3.1 Pseudo-Random Sequences
During and after World War II, the introduction of logical circuits made completely electronic
cryptosystems possible. These turned out to be very practical in the sense of being easy to
implement and very fast. The analysis of their security is not so easy! Working with logical
circuits often leads to the alphabet 80, 1< . There are only two possible permutations (substitutions)
of the set 80, 1< . One action interchanges the two symbols. This can also be described by adding 1
(modulo 2) to the two elements. The other permutation leaves the two symbols invariant, which is
the same as adding 0 (modulo 2) to these two elements.

Since the Vernam cipher is unconditionally secure but not very practical, it is only natural that
people came up with the following scheme.

Algorithm Same
Algorithm

Key Same
Key

ciphertext

plaintext

⊕ ⊕

si si

mi mi

ci ci

Figure 3.1

A binary cryptosystem with pseudo-random 8si<i¥0 -sequence.

Of course one would like the sequence 8si<i¥0 to be random, but with a finite state machine and a
deterministic algorithm one can not generate a random sequence. Indeed, one will always generate
a sequence, which is ultimately periodic. This observation shows that (apart from a beginning
segment) the scheme is a special case of the Vigenère cryptosystem. On the other hand, one can
try to generate sequences that appear to be random, have long periods and have the right
cryptographic properties. Good reference books for this theory are [Bek82], [Gol67], and
[Ruep86].

Shift Register Sequences 27

In [Gol67], S.W. Golomb formulated three postulates that a binary, periodic sequence 8si<i¥0

should satisfy to be called pseudo-random. Before we can give these, we have to introduce some
terminology.

Definition 3.1
A sequence 8si<i¥0 is called periodic with period p , if p is the smallest positive integer
for which

si+p = si for all i ¥ 0.

A run of length k is a subsequence of 8si<i¥0 consisting of k identical symbols, bordered by
different symbols. If the run starts at moment t , one has in formula:

st-1 ∫ st = st+1 = … = st+k-1 ∫ st+k .

One makes the following distinction:

a block of length k : 0 11 …1
ô öøøøø

k

 0

a gap of length k : 1 00 …0
ô öøøøø

k

 1

The autocorrelation ACHkL of a periodic sequence 8si<i¥0 with period p is defined by:

(3.1) ACHkL =
AHkL - DHkL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

p
,

where AHkL and DHkL denote the number of agreements resp. disagreements over a full period
between 8si<i¥0 and 8si+k<i¥0 , which is 8si<i¥0 shifted over k positions to the left. So

AHkL = » 8 0 § i < p » si = si+k < » ,
DHkL = » 8 0 § i < p » si ∫ si+k < » .

Note that one can also write ACHkL = H2. AHkL - pL ê p .

Example 3.1

Consider a sequence that is periodic with period p given by its first p elements.

With the Mathematica functions Count, Length, Mod, RotateLeft, and Table one easily computes
all values of the autocorrelation function ACHkL , 0 § k § p - 1.

segment = 81, 1, 0, 1, 0, 0, 0, 0<;
p = Length@segmentD;
Table@
H2∗Count@Mod@segment − RotateLeft@segment, kD, 2D, 0D − pLê p,
8k, 0, p − 1<D

91, 0, 0, 0, −
1
cccc
2
, 0, 0, 0=

28 FUNDAMENTALS OF CRYPTOLOGY

If k is a multiple of p one has that AHkL = p , DHkL = 0, so AC = 1. One speaks of the in-phase
autocorrelation.

If p does not divide k , one speaks of the out-of-phase autocorrelation.The value of AC now lies
between -1 and +1.

Definition 3.2 Golombs Randomness Postulates
G1: The number of zeros and the number of ones are as equal as possible per period, i.e.
both are p ê2 if p is even and they are Hp ≤ 1L ê2 if p is odd.
G2: Half of the runs in a cycle have length 1, one quarter of the runs have length 2, one
eight of the runs have length 3, and so forth. Moreover half of the runs of a certain length
are gaps, the other half are blocks.
G3: The out-of-phase autocorrelation AC(k) has the same value for all values of k .

G1 states that zeros and ones occur with roughly the same probability. One can count these
occurrences quite easily with the Mathematica function Count.

segment = 81, 1, 0, 1, 0, 0, 0, 0<;
Count@segment, 0D
Count@segment, 1D

5

3

G2 implies that after 011 the symbol 0 (leading to a block of length 2) has the same probability as
the symbol 1 (leading to a block of length ¥3), etc. So, G2 says that certain n-grams occur with
the right frequencies. These frequencies can be computed by means of the Mathematica functions
Count, Length, RotateLeft, Table, and Take.

segment = 80, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1<;
p = Length@segmentD;
ngram = 81, 0, 1<; k = Length@ngramD;
Count@
Table@Take@RotateLeft@segment, iD, kD == ngram, 8i, p<D, TrueD

3

The interpretation of G3 is more difficult. It does say that counting the number of agreements
between a sequence and a shifted version of that sequence does not give any information about the
period of that sequence, unless one shifts over a multiple of the period. A related situation is
described in Lemma 2.1, where such a comparison made it possible to determine the length of the

Shift Register Sequences 29

key used in the Vigenère cipher. In cryptographic applications p will be too large for such an
approach.

Lemma 3.1
Let 8si<i¥0 be a binary sequence with period p , p > 2, which satisfies Golomb's
randomness postulates.
Then p is odd and ACHkL has the value -1 ê p when k is not divisible by p .

Proof: Consider a p µ p cyclic matrix with top row s0, s1, …, sp-1 . We shall count in two
different ways the sum of all the agreements minus the disagreements between the top row and all
the other rows. Counting rowwise we get by G3 for each row i , 2 § i § p , the same contribution
p.ACHkL . This gives a total value of pHp - 1L.ACHkL .

We shall now evaluate the above sum, by counting columnwise, the number of agreements minus
the number of disagreements between all lower entries with the top entries.

Case: p even.

By G1, the contribution of each column will be Hp ê2 - 1L - p ê 2 = -1, since each column counts
exactly p ê2 - 1 agreements of a lower entry with the top entry and exactly p ê 2 disagreements.
Summing this value over all columns gives - p for the total sum. Equating the two values yieldsHp - 1L ACHkL = -1. However, Equation (3.1) implies that p.ACHkL is an integer. This is not
possible when ACHkL = -1 ê Hp - 1L , unless p = 2.

Case: p odd.

One gets for Hp + 1L ê 2 columns the contribution Hp - 1L ê 2 - Hp - 1L ê 2, which is 0, and forHp - 1L ê2 columns the contribution Hp - 3L ê 2 - Hp + 1L ê2, which is -2. Hence one obtains the
value -Hp - 1L for the summation. Putting this equal to pHp - 1L.AC HkL yields the value
ACHkL = -1 ê p .

Ñ

The well known c2 -test and the spectral test, [CovM67], yields ways to test the pseudo-
randomness properties of a given sequence. We shall not discuss these methods here. The
interested reader is referred to [Golo67], Chapter IV, [Knut81], Chapter 3, or Maurer's universal
statistical test [Maur92].

There are also properties of a cryptographic nature which the sequence 8si<i¥0 in Figure 3.1 should
satisfy.

C1: The period p of 8si<i¥0 has to be taken very large (about the order of magnitude of 1050).

C2: The sequence 8si<i¥0 should be easy to generate.

C3: Knowledge of part of the plaintext with corresponding ciphertext should not enable a
cryptanalyst to generate the whole 8si<i¥0 -sequence (known plaintext attack).

30 FUNDAMENTALS OF CRYPTOLOGY

3.2 Linear Feedback Shift Registers

3.2.1 (Linear) Feedback Shift Registers

Feedback shift registers are very fast implementations to generate binary sequences. Their general
form is depicted in Figure 3.2.

s0 s1 sn−2 sn−1

fHs0,s1,∫,sn−2,sn−1L
Output

Figure 3.2

General Form of a Feedback Shift Register

A feedback shift register (FSR) of length n contains n memory cells, which together form the
(beginning) state Hs0, s1, …, sn-1L of the shift register. The function f is a mapping of 80, 1<n in80, 1< and is called the feedback function of the register. Since f can be represented as a Boolean
function, it can easily be made with elementary logical functions.

After the first time unit, the shift register will output s0 and go to state Hs1, s2, …, snL , where sn =
f Hs0, s1, …, sn-1L .

Continuing in this way, the shift register will generate an infinite sequence 8si<i¥0 .

Example 3.2

Consider the case that n = 3 and that f is given by f Hs0, s1, s2L = s0 s1 + s2 . Starting with an initial stateHs0, s1, s2L , one can quite easily determine the successive states with the Mathematica functions Mod, Do,
and Print as follows:

Shift Register Sequences 31

Clear@fD;
f@x_, y_, z_D := Mod@x∗y + z, 2D;
8s0, s1, s2< = 80, 1, 1<;
Do@ 8s0, s1, s2< = 8s1, s2, f@s0, s1, s2D<;

Print@8s0, s1, s2<D, 8i, 1, 6<D81, 1, 1<81, 1, 0<81, 0, 1<80, 1, 1<81, 1, 1<81, 1, 0<
In this section, we shall study the special case that f is a linear function, say:

f Hs0, s1, …, sn-1L = c0 s0 + c1 s1 + … + cn-1 sn-1 ,

where all the ci 's are binary and all the additions are taken modulo 2.

The general picture of a linear feedback shift register, which we shall shorten to LFSR, is depicted
in the figure below.

s0 s1 sn−2 sn−1

c0 c1 cn−2 cn−1

⊕ ⊕ ⊕

Output

Figure 3.3

General linear feedback shift register (LFSR)

The output sequence 8si<i¥0 of such a LFSR can be described by the starting state Hs0, s1, …, sn-1L
and the linear recurrence relation:

(3.2) sk+n = ⁄i=0
n-1 ci sk+i , k ¥ 0.

or, equivalently

(3.3) ⁄i=0
n ci sk+i = 0, k ¥ 0.

32 FUNDAMENTALS OF CRYPTOLOGY

where cn = 1 by definition. Let sHiL denote the state at time i , i.e. sHiL = Hsi, si+1, …, si+n-1L . Then,
similarly to (3.2) one has the following recurrence relation for the successive states of the LFSR:

(3.4) sHk+nL = ⁄i=0
n-1 ci sHk+iL , k ¥ 0.

The coefficients ci in (3.2) and Figure 3.3 are called the feedback coefficients of the LFSR. If
ci = 0 then the corresponding switch in Figure 3.3 is open, while if ci = 1 this switch is closed.
We shall always assume that c0 = 1, because otherwise the output sequence 8si<i¥0 is just a
delayed version of a sequence, generated by a LFSR with its c0 equal to 1.

As a consequence, any state of the LFSR not only has a unique successor state, as is natural, but
also has a unique predecessor. Indeed, for any k ¥ 0 the value of sk is uniquely determined by
sk+1, …, sk+n by means of (3.2). Later on (in Thm. 3.22) we shall prove this property in a more
general situation.

Example 3.3

With n = 4, c0 = c1 = 1, c2 = c3 = 0, we get the following LFSR:

s0 s1 s2 s3

⊕

Output

Figure 3.4

Example of LFSR with n = 4.

With starting state (1,0,0,0) one gets the subsequent list of successive states:

8s0, s1, s2, s3< = 81, 0, 0, 0<
Do@8s0, s1, s2, s3< = 8s1, s2, s3, Mod@s0 + s1, 2D<;

Print@i, " ", 8s0, s1, s2, s3<D, 8i, 15<D

81, 0, 0, 0<
1 80, 0, 0, 1<
2 80, 0, 1, 0<
3 80, 1, 0, 0<
4 81, 0, 0, 1<

Shift Register Sequences 33

5 80, 0, 1, 1<
6 80, 1, 1, 0<
7 81, 1, 0, 1<
8 81, 0, 1, 0<
9 80, 1, 0, 1<
10 81, 0, 1, 1<
11 80, 1, 1, 1<
12 81, 1, 1, 1<
13 81, 1, 1, 0<
14 81, 1, 0, 0<
15 81, 0, 0, 0<

Note that the state at t = 15 is identical to the state at t = 0, so the output sequence 8si<i¥0 has
period 15.

One can easily determine the output sequence of a LFSR with the Mathematica Functions Table,
Mod, and Do as follows:

Clear@sD; 8s@0D, s@1D, s@2D, s@3D< = 81, 0, 0, 0<;
s@j_D := Mod@ s@j − 4D + s@j − 3D, 2D
Table@s@jD, 8j, 0, 15<D

81, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1<
Since there are precisely 2n - 1 different states in a LFSR of length n and the all-zero state always
goes over into itself, one can conclude that the period of 8si<i¥0 will never exceed 2n - 1.

3.2.2 PN-Sequences

Definition 3.3
A PN-sequence or pseudo-noise sequence is an output sequence of an n-stage LFSR with
period 2n - 1.

If an n-stage LFSR does not run cyclically through all 2n - 1 non-zero states, it certainly does not
generate a PN-sequence. As a consequence we have the following theorem.

34 FUNDAMENTALS OF CRYPTOLOGY

Lemma 3.2
An n-stage LFSR that generates a PN-sequence 8si<i¥0 runs cyclically through all 2n - 1
non-zero states.
Any non-zero output sequence of this LFSR is a shift of 8si<i¥0 .

We want to classify all LFSR's which generate PN-sequences. To this end, we associate with an
LFSR with feedback coefficients c0, c1, …, cn-1 its characteristic polynomial f HxL , which is
defined as follows:

(3.5) f HxL = c0 + c1 x + … + cn-1 xn-1 + xn = ⁄i=0
n ci xi ,

where cn = 1 by definition and c0 = 1 by assumption.

Definition 3.4
Let f = ⁄i=0

n ci xi . Then

WHf L = 8 8si<i¥0 » 8si<i¥0 satisfies H3.2L <.
In words, WH f L is the set of all output sequences of the LFSR with characteristic polynomial f HxL .

Lemma 3.3
Let f be the characteristic polynomial of an n-stage LFSR. Then WH f L is a binary vector
space of dimension n .

Proof: Since (3.2) is a linear recurrence relation, WH f L obviously is a linear vectorspace. Also,
each 8si<i¥0 in WH f L is uniquely determined by its first n entries s0, s1, …, sn-1 (the beginning
state), so the dimension of WH f L is at most n . On the other hand, the n different sequences starting
with

00 …0
õúúúúúúúù ûúúúúúi

 1 00 ……00
õúúúúúúúúúúúù ûúúúúúúúúún-i-1

,

0 § i § n - 1, are clearly independent. So, the dimension of WH f L is at least n .

Ñ

Let f be a polynomial of degree n , say f HxL = ⁄i=0
n ci xi with cn ∫ 0. Then, the reciprocal

polynomial of f HxL is defined by

(3.6) f *HxL = xn f H1 ê xL = c0 xn + c1 xn-1 + … + cn-1 x + cn = ⁄i=0
n cn-i xi ,

With a sequence 8si<i¥0 we associate the power series (also called generating function)

(3.7) SHxL = ⁄i=0
¶ si xi .

Instead of writing 8si<i¥0 œWH f L , we shall also use the notation SHxL œWH f L . We know that SHxL is
uniquely determined by the beginning state Hs0, s1, …, sn-1L and the characteristic polynomial
f HxL . In the following theorem and corollary, we shall now make this dependency more explicit.

Shift Register Sequences 35

Theorem 3.4
Let 8si<i¥0 œWH f L , with f given by (3.5). Further, let SHxL be the generating function of8si<i¥0 . Then, SHxL f *HxL is a polynomial of degree less than n .

Proof:

SHxL f *HxL =
H3.6L& H3.7L H⁄k=0

¶ sk xkL.H⁄l=0
n cn-l xlL = ‚

j=0

¶ I⁄l=0
min 8 j,n< cn-l s j-lM x j =‚

j=0

n-1 I⁄l=0
j cn-l s j-lM x j +⁄ j=n

¶ H⁄l=0
n cn-l s j-lL x j =‚

j=0

n-1 I⁄l=0
j cn-l s j-lM x j +‚

j=n

¶
 H⁄i=0

n ci sH j-nL+iL x j =
H3.3L

‚
j=0

n-1 I⁄l=0
j cn-l s j-lM x j .

Ñ

Remark:

Note that the proof above implies that SHxL = uHxLÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxL with uHxL = ‚
j=0

n-1 H⁄l=0
j cn-l s j-lL x j . This

polynomial is of degree < n and has coefficients depending on the initial state and the
characteristic polynomial.

Note also that the mapping SHxLöSHxL f *HxL is one-to-one since f *HxL ∫ 0.

Example 3.4

Consider the LFSR with n=5, f HxL = 1 + x2 + x5 and take as beginning state (1,1,0,1,0). Then uHxL can be
computed with the Mathematica function PolynomialMod as follows:

8c@0D, c@1D, c@2D, c@3D, c@4D, c@5D< = 81, 0, 1, 0, 0, 1<;
8s@0D, s@1D, s@2D, s@3D, s@4D< = 81, 1, 0, 1, 0<;

u = PolynomialModA‚
j=0

4

‚
l=0

j

c@5 − lD s@j − lD xj, 2E

1 + x + x4

To check Theorem 3.4 up to some term xL , we use (3.2) to compute the si 's up to L (here we use
the Mathematica functions Mod, Print, and PolynomialMod):

36 FUNDAMENTALS OF CRYPTOLOGY

8c@0D, c@1D, c@2D, c@3D, c@4D, c@5D< = 81, 0, 1, 0, 0, 1<;
8s@0D, s@1D, s@2D, s@3D, s@4D< = 81, 1, 0, 1, 0<;

fstar = ‚
i=0

5

c@5 − iD xi;

L = 60;
s@i_D := s@iD = Mod@s@i − 5D + s@i − 3D, 2D;

S = ‚
i=0

L

s@iD xi; Print@SD;

PolynomialMod@S∗fstar, 8xL, 2<D

1 + x + x3 + x5 + x10 + x13 + x15 + x16 + x19 + x20 + x21 + x22 + x23 + x27 + x28 + x30 +

x31 + x32 + x34 + x36 + x41 + x44 + x46 + x47 + x50 + x51 + x52 + x53 + x54 + x58 + x59

1 + x + x4

Note that the output is indeed the same as above.

Corollary 3.5
WH f L = 9 uHxLÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxL … degreeHuHxLL < n = .

Remark: Writing SHxL = uHxL ê f *HxL means the same as SHxL f *HxL = uHxL .

Proof: From Theorem 3.4 and the remark below it we know that each member of WH f L can be
written as uHxL ê f *HxL with degreeHuHxLL < n and we know that this uHxL is unique. This proves the
Õ-inclusion.

On the other hand, WH f L has cardinality 2n by Lemma 3.3 and there are also exactly 2n binary
polynomials uHxL of degree < n .

Ñ

It is now easy to prove the following lemma.

Lemma 3.6
Let f and g be two (characteristic) polynomials and let 8si<i¥0 œ WH f Land 8ti<i¥0 œ WHgL .
Let lcm@ f , gD denote the least common multiple of f and g . Then8si + ti<i¥0 œ WHlcm@ f , gDL .

Proof: Write h = lcm@ f , gD and h = a. f and h = b.g . Let SHxL and THxL be the generating
functions of 8si<i¥0 , resp. 8ti<i¥0 .

Corollary 3.5 implies that SHxL = uHxL ê f *HxL and THxL = vHxL ê g*HxL , where
degreeHuHxLL <degreeH f HxLL and degreeHvHxLL <degreeHgHxLL . Since

Shift Register Sequences 37

SHxL + THxL = uHxLÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxL + vHxLÅÅÅÅÅÅÅÅÅÅÅÅÅg*HxL = a*HxL uHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa*HxL f *HxL + b*HxL vHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅb*HxL g*HxL = a*HxL uHxL+b*HxL vHxLÅÅÅh*HxL ,

and both a*HxL uHxL as well as b*HxL vHxL have degree less than degreeHhHxLL , it follows that
SHxL + THxL œWHhL .

Ñ

3.2.3 Which Characteristic Polynomials give PN-Sequences?

The period of a polynomial f with f H0L ∫0, is the smallest positive m such that f HxL divides
xm - 1, i.e. the smallest positive m such that xm ª 1 Hmod H f HxLL . It is well defined, since the
sequence of successive powers of x , reduced modulo f HxL , has to be periodic. Indeed, if
xi ª x j Hmod f HxLL and 0 < i < j then also xi-1 ª x j-1 Hmod f HxLL , because gcdHx, f HxLL = 1. (The
term x has a multiplicative inverse by Corollary B.14, so we can indeed divide by x .) We can
repeat this process until we get 1 ª x j-i Hmod f HxLL .

Example 3.5

Let f HxL = 1 + x4 + x5 . Its period can be computed with the Mathematica functions While and
PolynomialMod in the way described above. So, starting with x (trying m = 1), we compute the
successive powers of x by multiplying the previous power by x (this amounts to a cyclic shift), and then
reducing the answer modulo f HxL , until we arrive at the outcome 1.

f = 1 + x4 + x5; m = 1; u = x;
While@u =!= 1, u = PolynomialMod@ x∗u, 8 f, 2<D ; m = m + 1D
m

21

It follows from Theorem B.35 that a binary, irreducible polynomial of degree n divides x2n-1 - 1,
so it also follows that the period m of such a polynomial will divide 2n - 1.

(This observation can be used to determine the period of a polynomial more efficiently, however
we shall not discuss that technique at this moment. See the end of Example 8.2)

Lemma 3.7
Let 8si<i¥0 œ WH f L , where f is a polynomial of degree n and period m . Then 8si<i¥0 has a
period dividing m .

Proof: Write xm - 1 = f HxL gHxL . Taking the reciprocal on both sides gives xm - 1 = f *HxL g*HxL .
By Corollary 3.5, there exists a polynomial uHxL of degree < n such that

SHxL = uHxLÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxL = uHxL g*HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxL g*HxL = uHxL g*HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1-xmL = uHxL g*HxL H1 + xm + x2 m + …L

38 FUNDAMENTALS OF CRYPTOLOGY

Since degreeHuHxL g*HxLL < degreeH f *HxL g*HxLL = degreeHxm - 1L = m , we see that SHxL must have
period m or a divisor of it.

Ñ

Lemma 3.8
Let 8si<i¥0 œ WH f L , where f is an irreducible polynomial of degree n and period m . Then8si<i¥0 also will have period m .

Proof: Let 8si<i¥0 have period p . By Lemma 3.7, p divides m . Let SHpLHxL=⁄i=0
p-1 si xi . It follows

that

 SHxL = SHpLHxL H1 + xp + x2 p + …L = SHpLHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1-xp ,

while on the other hand, SHxL = uHxL ê f *HxL by Corollary 3.5. Equating these two

expressions yields

SHpLHxL f *HxL = uHxL Hxp - 1L
and thus HSHpLHxLL* f HxL = u*HxL Hxp - 1L .

Since f HxL is irreducible of degree n and degreeHuHxLL < n , it follows that f HxL divides Hxp - 1L .
So, m , the period of f HxL , must divide p . We conclude that p = m .

Ñ

Example 3.6

Consider the irreducible polynomial f HxL = 1 + x + x2 + x3 + x4 , which has period 5, sinceHx5 - 1L = Hx - 1L f HxL . Output sequences in W H f L also have period 5, by the above lemma, as can easily be
checked.

8s0, s1, s2, s3< = 81, 1, 0, 0<
Do@8s0, s1, s2, s3< = 8s1, s2, s3, Mod@s0 + s1 + s2 + s3, 2D<;

Print@i, " ", 8s0, s1, s2, s3<D, 8i, 5<D

81, 1, 0, 0<
1 81, 0, 0, 0<
2 80, 0, 0, 1<
3 80, 0, 1, 1<
4 80, 1, 1, 0<
5 81, 1, 0, 0<

Shift Register Sequences 39

A roundabout way to find an irreducible polynomial of degree n is to factor x2n-1 - 1by means of
the Mathematica function Factor:

n = 5;
Factor@x2n−1 − 1, Modulus −> 2D

H1 + xL H1 + x2 + x5L H1 + x3 + x5L H1 + x + x2 + x3 + x5LH1 + x + x2 + x4 + x5L H1 + x + x3 + x4 + x5L H1 + x2 + x3 + x4 + x5L
In Mathematica one can find an irreducible polynomial over p , p
prime, with the function IrreduciblePolynomial for which the package
Algebra`FiniteFields` needs to be loaded first.

<< Algebra`FiniteFields`

p = 2; deg = 11;
IrreduciblePolynomial@x, p, degD
1 + x9 + x11

Lemma 3.9
Let 8si<i¥0 be a PN-sequence, generated by a LFSR with characteristic polynomial f .
Then f is irreducible.

Proof: Write f = f1 f2 with f1 irreducible, say of degree n1 > 0.

By Corollary 3.5, the sequence 1 ê f1*HxL œ WH f1L , so the period of 1 ê f1*HxL divides 2n1 - 1 by
Lemma 3.7 and Theorem B.35.

On the other hand, 1 ê f1* HxL = f2*HxL ê f *HxL œ WH f L , so by Lemma 3.2 1 ê f1*HxL is a cyclic shift of8si<i¥0 and thus its period is 2n - 1. This is only possible if n = n1 , i.e. if f HxL is equal to the
irreducible factor f1HxL .

Ñ

Example 3.7

Consider f HxL = H1 + x + x2L H1 + x + x3L = 1 + x4 + x5 . It is easy to check that 1 + x + x2 divides x3 - 1 and
that 1 + x + x3 divides x7 - 1. Since 3 and 7 are relatively prime, it follows that f HxL divides x21 - 1. We
conclude that each output sequence has a period dividing 21.

This can be checked for different beginning states as follows.

40 FUNDAMENTALS OF CRYPTOLOGY

8s0, s1, s2, s3, s4< = 81, 0, 0, 0, 0<
Do@8s0, s1, s2, s3, s4< = 8s1, s2, s3, s4, Mod@s0 + s4, 2D<;

Print@i, " ", 8s0, s1, s2, s3, s4<D, 8i, 21<D

81, 0, 0, 0, 0<
1 80, 0, 0, 0, 1<
2 80, 0, 0, 1, 1<
3 80, 0, 1, 1, 1<
4 80, 1, 1, 1, 1<
5 81, 1, 1, 1, 1<
6 81, 1, 1, 1, 0<
7 81, 1, 1, 0, 1<
8 81, 1, 0, 1, 0<
9 81, 0, 1, 0, 1<
10 80, 1, 0, 1, 0<
11 81, 0, 1, 0, 0<
12 80, 1, 0, 0, 1<
13 81, 0, 0, 1, 1<
14 80, 0, 1, 1, 0<
15 80, 1, 1, 0, 0<
16 81, 1, 0, 0, 0<
17 81, 0, 0, 0, 1<
18 80, 0, 0, 1, 0<
19 80, 0, 1, 0, 0<
20 80, 1, 0, 0, 0<
21 81, 0, 0, 0, 0<

The reader may want to try the beginning state H1, 1, 1, 0, 0L and see what the period of the output
sequence is. This output sequence could also have been generated with the LFSR with
characteristic polynomial 1 + x + x3 and beginning state H1, 1, 1L (see also Example 3.11).

Shift Register Sequences 41

We are now able to prove the main result of this subsection. We remind the reader of the definitio
of a primitive polynomial (of degree n), which is an irreducible polynomial with the property that
is a primitive element in GFH2L@xD ê H f HxLL . This translates directly into the equivalent property tha
f HxL has (full) period 2n - 1.

Theorem 3.10
A non-zero output sequence of a LFSR with characteristic polynomial f HxL is a PN-
sequence if and only if f HxL is a primitive polynomial.

Proof: Let f HxL have degree n .

ï Let 8si<i¥0 œ WH f L be a PN-sequence. It follows from Lemma 3.9 that f HxL must be irreducible.
Lemma 3.8 in turn implies that f HxL must have period 2n - 1, which makes it a primitive
polynomial.

ì If f HxL is primitive, it certainly is irreducible. By Lemma 3.8, 8si<i¥0 has the same period as
f HxL has, which is 2n - 1. It follows that 8si<i¥0 is a PN-sequence.

Ñ

Mathematica finds a primitive polynomial of degree m over p in the variable x by means of the
FieldIrreducible function.

m = 5; p = 2;
FieldIrreducible@GF@p, mD, xD

1 + x3 + x5

Let us check that this polynomial indeed defines a PN sequence.

8s0, s1, s2, s3, s4< = 81, 0, 0, 0, 0<
Do@8s0, s1, s2, s3, s4< = 8s1, s2, s3, s4, Mod@s0 + s3, 2D<;

Print@i, " ", 8s0, s1, s2, s3, s4<D, 8i, 31<D

81, 0, 0, 0, 0<
1 80, 0, 0, 0, 1<
2 80, 0, 0, 1, 0<
3 80, 0, 1, 0, 1<
4 80, 1, 0, 1, 0<
5 81, 0, 1, 0, 1<
6 80, 1, 0, 1, 1<

42 FUNDAMENTALS OF CRYPTOLOGY

7 81, 0, 1, 1, 1<
8 80, 1, 1, 1, 0<
9 81, 1, 1, 0, 1<
10 81, 1, 0, 1, 1<
11 81, 0, 1, 1, 0<
12 80, 1, 1, 0, 0<
13 81, 1, 0, 0, 0<
14 81, 0, 0, 0, 1<
15 80, 0, 0, 1, 1<
16 80, 0, 1, 1, 1<
17 80, 1, 1, 1, 1<
18 81, 1, 1, 1, 1<
19 81, 1, 1, 1, 0<
20 81, 1, 1, 0, 0<
21 81, 1, 0, 0, 1<
22 81, 0, 0, 1, 1<
23 80, 0, 1, 1, 0<
24 80, 1, 1, 0, 1<
25 81, 1, 0, 1, 0<
26 81, 0, 1, 0, 0<
27 80, 1, 0, 0, 1<
28 81, 0, 0, 1, 0<
29 80, 0, 1, 0, 0<
30 80, 1, 0, 0, 0<
31 81, 0, 0, 0, 0<

To find all primitive polynomials of degree n one can factor the cyclotomic polynomial QH2n-1LHx
(see Definition B.19). With the Mathematica functions Factor and Cyclotomic this goes a
follows.

p = 2; m = 6; n = pm − 1;
Factor@Cyclotomic@n, xD, Modulus −> 2D

Shift Register Sequences 43

H1 + x + x6L H1 + x + x3 + x4 + x6L H1 + x5 + x6LH1 + x + x2 + x5 + x6L H1 + x2 + x3 + x5 + x6L H1 + x + x4 + x5 + x6L
The next corollary now follows directly from Theorem 3.10 and Theorem B.40.

Corollary 3.11
There are jH2n - 1L ên different n-stage LFSR's generating PN-sequences.
Here j stands for Euler's totient function (Definition A.6).

The more or less exponential growth of jH2n - 1L ên as function of n , makes it for moderate value
of n already impossible for a cryptanalyst to guess the right primitive polynomial or to check them
all exhaustively.

With the Mathematica function EulerPhi one can easily verify this.

n = 100;
EulerPhi@2^n − 1Dê n

5707676340000000000000000000

3.2.4 An Alternative Description of WHf L for Irreducible f

We shall now solve recurrence relation (3.2) for the case that the corresponding characteristic
polynomial f = ⁄i=0

n ci xi is irreducible. This includes, of course, the case that f is primitive, for
which we know that the corresponding LFSR outputs PN-sequences.

We follow the standard mathematical method for solving linear recurrence relations.

Substituting s j = A.a j , for all j ¥ 0, in sk+n = ⁄i=0
n-1 ci sk+i leads to the equation

A.ak+n = ⁄i=0
n-1 ci.A.ak+i .

Here A and a are elements from an extension field of GF(2) that will be determined in a moment.
Dividing the above relation by A.ak , one arrives at an = ⁄i=0

n-1 ci ai , i.e.

f HaL = 0.

We shall study the case that f is irreducible in more detail. The Galois Field GFH2nL=
GFH2L@xD ê H f HxLL (see Theorem B.16) contains a zero of f as an element. Calling this zero a, we
note that

 GFH2nL = 8 ⁄i=0
n-1 ai ai » ai œ GFH2L, 0 § i < n < ,

with the normal coefficient-wise addition and with the regular product rule (see (B.3) and (B.4)),
but always reducing powers of a with an exponent ¥ n by means of the relation an = ⁄i=0

n-1 ci an

to an expression of degree < n (as shown in the Example B.5, where the letter x is used instead of
the symbol a.).

44 FUNDAMENTALS OF CRYPTOLOGY

Example 3.8

Consider f HxL = 1 + x + x4 and let a be a zero of f HxL , so a 4 = 1 + a .

Adding the elements 1 + a + a 3 and a + a 2 in GFH2L@xD ê H f HxLL gives 1 + a 2 + a 3 . Multiplication gives
a + a 3 + a 4 + a 5 which is Ha + 1L f Ha L + H1 + a + a 2 + a 3L , so the result is 1 + a + a 2 + a 3 .

This could also have been computed with the Mathematica function PolynomialMod, as follows:

f = 1 + a + a4;
PolynomialMod@H1 + a + a3L + Ha + a2L, 8f, 2<D
PolynomialMod@H1 + a + a3L∗Ha + a2L, 8f, 2<D

1 + a2 + a3

1 + a + a2 + a3

Lemma 3.12
Let f be a binary, irreducible polynomial of degree n and let a be a zero of f in GFH2nL .
Further, let L be a non-trivial, linear mapping from GFH2nL to GF(2). Then

WH f L = 8 8LHA.a jL< j¥0 » A œ GFH2nL <.
Proof: We need to check several things.

i) The sequence 8s j< j¥0 =8LHA.a jL< j¥0 clearly is a binary sequence, because L maps GFH2nL to GF(2)

ii) The sequence 8s j< j¥0 =8LHA.a jL< j¥0 satisfies (3.2). To see this, we check the equivalent conditio
(3.3). By the linearity of L and the relation f HaL = ⁄i=0

n ci ai = 0, it follows that⁄i=0
n ci sk+i = ⁄i=0

n ci LHA.ak+iL = LHA.akH⁄i=0
n ci aiLL = LH0L = 0.

iii) Each of the 2n choices of A œ GFH2nL leads to a different binary solution of (3.3), as we shall
now show. By Lemma 3.3, these must constitute all the elements in WH f L .

Suppose that the sequences 8LHA.a jL< j¥0 and 8LHB.a jL< j¥0 are identical. It follows from
LHA.a jL=LHB.a jL , j ¥ 0, and the linearity of L that in particular LHHA - BL.a jL = 0 for 0 § j < n .
However, the elements 1, a, …, an-1 form a basis of GFH2nL , because f is irreducible. It follows
from the linearity of L that LHHA - BL.wL = 0 for each field element w in GFH2nL . Since L was a
non-trivial mapping, we can conclude that A = B .

Ñ

A convenient non-trivial linear mapping L from GFH2nL to GF(2) to consider is the Trace function
Tr, introduced in Problem B.16.

An alternative, is the projection of an element ⁄i=0
n-1 ai ai to its constant term a0 .

Shift Register Sequences 45

Example 3.9

Take the irreducible polynomial f HxL = x4 + x + 1 of degree 4 (it even is primitive) and let a a zero of f HxL ,
so f Ha L = 0. The Trace function is given by TrHxL = x + x2 + x4 + x8 .

Any element A œ GFH24L = 8 ⁄i=0
3 ai a i » ai œ GFH2L, 0 § i § 3 < defines a unique binary sequence 8s j< j¥0 ,

defined by s j = TrHA.a jL . Below, we have taken A = 1 + a + a 2 .

The output sequence, corresponding with any value of A, can be evaluated with the Mathematica functions
PolynomialMod and Table, as follows:

n = 4; f = 1 + a + a4; A = 1 + a + a2;

Tr@x_D := ‚
i=0

n−1

x2
i
;

s@j_D := PolynomialMod@Tr@A ∗ajD, 8f, 2<D;
Table@s@jD, 8j, 0, 2n − 2<D

81, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0<
3.2.5 Cryptographic Properties of PN Sequences

We shall now investigate to which extent PN-sequences meet Golomb's randomness postulates G1-
G3. After that, we check the cryptographic requirements C1-C3. As always, we let n denote the
length of the LFSR.

Ad G1: By Lemma 3.2 each non-zero state occurs exactly once per period. The leftmost bit of
each state will be the next output bit. So, the number of ones per period is 2n-1 and the number of
zeros per period is 2n-1 - 1, as the all-zero state does not occur.

Ad G2: There are 2n-Hk+2L states whose leftmost k + 2 coordinates are of the form 0 11 …1
ô öøøøø

k

 0, resp.

1 00 …0
ô öøøøø

k

 1. Thus, gaps and blocks of the length k , k § n - 2, occur exactly 2n-Hk+2L times per
period.

The state 0 11 …1
ô öøøøø

n-1

 occurs exactly once. Its successor is the all-one state, which in turn is followed

46 FUNDAMENTALS OF CRYPTOLOGY

 by state 11 …1
ô öøøøø

n-1

 0. Therefore, there is no block of length n - 1and one block of length n .

Similarly, there is one gap of length n - 1and no gap of length n .

Ad G3: With 8si<i¥0 œ WH f L also 8si+k<i¥0 œ WH f L by Lemma 3.2. The linearity of WH f L implies tha
also 8si + si+k<i¥0 œ WH f L The number of agreements per period between 8si<i¥0 and 8si+k<i¥0 equal
the number of zeros in one period of 8si + si+k<i¥0 which is 2n-1 - 1 by Lemma 3.2 and G1
Similarly, the number of disagreements is 2n-1 . Thus, the out-of-phase autocorrelation ACHkL i
-1 ê H2n - 1L for all 1 § k < 2n - 1.

We conclude that PN-sequences meet Golomb's randomness postulates in a most satisfactory way
Let us now check C1-C3.

Ad C1: Since the period of a PN-sequence generated by an n-stage LFSR is 2n - 1, one can easily
get sufficient large periods. For instance, with n = 166 the period is already about 1050 .

Ad C2: LFSR's are extremely simple to implement.

Ad C3: PN-sequences are very unsafe! Indeed, knowledge of 2 n consecutive bits, say
sk, sk+1, …, sk+2 n-1 , enables the cryptanalyst to determine the feedback coefficients c0, c1, …, cn-

uniquely and thus the whole 8si<i¥0 -sequence. This follows from the matrix equation:

(3.8)

i
k
jjjjjjjjjjjjjjjjjjjj

sk sk+1 … … sk+n−1

sk+1 sk+2 … … sk+n

. . … … .

. . … … .

. . … … .
sk+n−1 sk+n … … sk+2 n−2

y
{
zzzzzzzzzzzzzzzzzzzz

i
k
jjjjjjjjjjjjjjjjjjjj

c0
c1
.
.
.

cn−1

y
{
zzzzzzzzzzzzzzzzzzzz =

i
k
jjjjjjjjjjjjjjjjjjjj

sk+n

sk+n+1

.

.

.
sk+2 n−1

y
{
zzzzzzzzzzzzzzzzzzzz .

The above system has a unique solution as we shall now show. If n consecutive states of the LFSR
exist that are linearly dependent, i.e. if n consecutive states span a § Hn - 1L dimensional subspace
then this remains so because of (3.4). This, however, contradicts the linear independence of statH0, 0, …, 0, 1L and its n - 1successor states. We conclude that any n consecutive states (and in
particular the n rows in the matrix above) are linearly independent. Therefore, the unknown
feedback coefficients c0, c1 …, cn-1 can easily be determined.

Example 3.10

Assume that we know the following substring of length 10: 1,1,0,1,1,1,0,1,0,1. Assuming that n = 5, we can
solve (3.9) by means of the Mathematica function LinearSolve as follows:

m =

i

k

jjjjjjjjjjjjjjjjj

1 1 0 1 1
1 0 1 1 1
0 1 1 1 0
1 1 1 0 1
1 1 0 1 0

y

{

zzzzzzzzzzzzzzzzz

; b =

i

k

jjjjjjjjjjjjjjjjj

1
0
1
0
1

y

{

zzzzzzzzzzzzzzzzz

;

LinearSolve@m, b, Modulus −> 2D

Shift Register Sequences 47

881<, 80<, 81<, 80<, 80<<
The feedback coefficients are: c0 = 1, c1 = 0, c2 = 1, c3 = 0, c4 = 0. One can check this quite
easily with the Mathematica Functions Table, Mod, and Do as follows:

n = 5;
8c@0D, c@1D, c@2D, c@3D, c@4D< = 81, 0, 1, 0, 0<;
8s@0D, s@1D, s@2D, s@3D, s@4D< = 81, 1, 0, 1, 1<;

DoAs@kD = ModA‚
i=0

n−1

c@iD∗s@k − n + iD, 2E, 8k, n, 2n<E;

Table@s@kD, 8k, 0, 2n − 2<D

81, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0<

Of course, one does not know in general what the length n is of the LFSR in use. We shall address
that problem in a more general setting in Subsection 3.3.1.

If only a string of 2 n - 1 consecutive bits of a PN-sequence is known, the feedback coefficients
are not necessarily unique, as follows from the example n = 4 and the subsequence 1101011. This
remains true even if we had used the additional information that c0 = 1. Below we have added
NullSpace to show the dependency in the linear relations.

m =
i

k

jjjjjjj

1 1 0 1
1 0 1 0
0 1 0 1

y

{

zzzzzzz; b =
i

k

jjjjjjj

0
1
1

y

{

zzzzzzz;

NullSpace@m, Modulus −> 2D
LinearSolve@m, b, Modulus −> 2D

880, 1, 0, 1<<
881<, 81<, 80<, 80<<

We have the solutions H1, 1, 0, 0L + lH0, 1, 0, 1L with l œ 80, 1< .

Since sequences generated by LFSR's fail to meet requirement C3, the next step will be to study
nonlinear shift registers. However, since so much is known about PN-sequences, it is quite natural
that one tries to combine LFSR's in a non-linear way in order to get pseudo-random sequences
with the right cryptographic properties.

48 FUNDAMENTALS OF CRYPTOLOGY

3.3 Non-Linear Algorithms

3.3.1 Minimal Characteristic Polynomial

As already mentioned at the beginning of Section 3.1, any deterministic algorithm in a finite state
machine will generate a sequence 8si<i¥0 , which is ultimately periodic, say with period p . This
means that, except for a beginning part, 8si<i¥0 will be generated in a trivial way by the LFSR with
characteristic polynomial 1 + xp . Therefore, the sequence 8si<i¥0 which was possibly made in a
non-linear way, can also be made by a LFSR (except for a finite beginning part). If this beginning
part is non empty, not every state has a unique predecessor and the output sequence certainly will
not have maximal period. We shall address this problem in Theorem 3.22. Here, we shall assume
that the output sequence is periodic right from the start. The discussion above justifies the
following definition.

Definition 3.5
The linear complexity (or linear equivalence) of a periodic sequence 8si<i¥0 is the length
of the smallest LFSR that can generate 8si<i¥0 .

The following two lemmas are needed to prove explicit statements about the linear complexity of
periodic sequences.

Lemma 3.13
Let h and f be the characteristic polynomials of an m-stage, resp. n-stage LFSR. Then,

WHhL Õ WH f L ó h » f .

Proof:

ï Since 1 êh* œ WHhL Õ WH f L , it follows from Corollary 3.5 that a polynomial uHxL of degree < n
exists, such that one has 1 êh*HxL = uHxL ê f *HxL . We conclude that f *HxL = h*HxL uHxL and thus that
f HxL = hHxL u*HxL , which means that h » f .

ì Writing f HxL = aHxL hHxL with degreeHaHxLL = n - m , one has by the same Corollary 3.5 that

W(h) = 9 vHxLÅÅÅÅÅÅÅÅÅÅÅÅÅh*HxL … degreeHvHxLL < m = = 9 a*HxL vHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa*HxL h*HxL … degreeHvHxLL < m =
= 9 a*HxL vHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxL … degreeHa*HxL vHxLL < n = Õ WH f L .

Ñ

Shift Register Sequences 49

Example 3.11

The sequence 8si<i¥0 = 100101110 … is the output sequence of the LFSR with hHxL = 1 + x + x3 and
beginning state H1, 0, 0L , as can be checked by

n = 3;
8s@0D, s@1D, s@2D< = 81, 0, 0<;
8c@0D, c@1D, c@2D< = 81, 1, 0<;

DoAs@kD = ModA‚
i=0

n−1

c@iD∗s@k − n + iD, 2E, 8k, n, 2n<E;

Table@s@kD, 8k, 0, 2n<D

81, 0, 0, 1, 0, 1, 1, 1, 0<
However, since hHxL H1 + x + x2L = 1 + x4 + x5 , the same output sequence can also be obtained
from the LFSR with characteristic polynomial f HxL = 1 + x4 + x5 (see also Example 3.7). As
beginning state one now has to take the first five terms of 8si<i¥0 .

n = 5;
8s@0D, s@1D, s@2D, s@3D, s@4D< = 81, 0, 0, 1, 0<;
8c@0D, c@1D, c@2D, c@3D, c@4D< = 81, 0, 0, 0, 1<;

DoAs@kD = ModA‚
i=0

n−1

c@iD∗s@k − n + iD, 2E, 8k, n, 2n<E;

Table@s@kD, 8k, 0, 2n<D

81, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1,
0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0<

Let 8si<i¥0 œ WH f L for some f and suppose that one is looking for a polynomial h of smallest
degree such that 8si<i¥0 œ WHhL . Then, Lemma 3.13 suggests to check the divisors of f . That this is
sufficient will be proved later. The next lemma says when one does not need to check the divisors
of f .

Lemma 3.14
Let 8si<i¥0 œ WH f L and SHxL = uHxL ê f *HxL . Then,

$h» f , h∫ f @8si<i¥0 œ WHhLD ó gcdHuHxL, f *HxLL ∫ 1.

Proof: Let dHxL divide gcdHuHxL, f *HxLL with degreeHdHxLL > 1.

Then, SHxL = uHxLÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxL = uHxLêdHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxLêdHxL , so 8si<i¥0 œ WH f ê d*L . It follows that there exists a proper divisor h

50 FUNDAMENTALS OF CRYPTOLOGY

of f , namely f ê d* with 8si<i¥0 œ WHhL .

The proof in the reverse direction goes exactly the same.

Ñ

Theorem 3.15
Let 8si<i¥0 be a binary, periodic sequence, say with period p . Let the first p terms of8si<i¥0 be given by SHpLHxL = s0 + s1 x + … + sp-1 xp-1 .
Then there exists a unique polynomial mHxL with the following two properties:
i) 8si<i¥0 œ WHmL ,
ii) "h @ 8si<i¥0 œ WHhL ï m » hD .
The reciprocal m*HxL of mHxL is given by

m*HxL =
1-xp

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅgcdHSHpLHxL,1-xpL .

The polynomial mHxL is called the minimal characteristic polynomial of 8si<i¥0 .

Example 3.12

Let 8si<i¥0 have period 15 and let SH15LHxL = 1 + x4 + x7 + x8 + x10 + x12 + x13 + x14 . Then

gcdHx15 - 1, SH15LHxLL = H1 + xL H1 + x + x2L H1 + x + x2 + x3 + x4L H1 + x + x4L .

So, m*HxL = Hx15 - 1L ê gcdHx15 - 1, SH15LHxLL = 1 + x3 + x4 and thus mHxL = 1 + x + x4 . Indeed, this
SHxL is the output sequence of the LFSR in Figure 3.4.

The above calculations can be executed with the Mathematica functions PolynomialGCD,
PolynomialQuotient, and PolynomialMod.

p = 15;
S = 1 + x4 + x7 + x8 + x10 + x12 + x13 + x14;
g = PolynomialGCD@S, xp − 1, Modulus −> 2D;
MSTAR = PolynomialMod@PolynomialQuotient@xp − 1, g, xD, 2D

1 + x3 + x4

Proof of Theorem 3.15:

Let 8si<i¥0 œ WHmL . If 8si<i¥0 œ WHhL for some divisor h of m , replace m by h and continue with this
procedure until it can be assumed that 8si<i¥0 – WHhL for any divisor of m .

We shall show that such an m is unique and of the form given in Theorem 3.15.

Since the period of 8si<i¥0 is p , Corollary 3.5 implies that for some uHxL with
degreeHuHxLL <degreeHmHxLL ,

SHpLHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1-xp = SHpLHxL H1 + xp + x2 p + …L = SHxL = uHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅm*HxL .

Shift Register Sequences 51

By our assumption on m and by Lemma 3.14, gcdHm*HxL, uHxLL = 1, so

gcdIm*HxL, m*HxL SHpLHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1-xp M = 1.

It follows that

gcdHm*HxL H1 - xpL, m*HxL SHpLHxLL = 1 - xp .

i.e.

m*HxL.gcdH1 - xp, SHpLHxLL = 1 - xp .

Hence

m*HxL = 1-xp
ÅÅ
gcdH1-xp,SHpLHxLL .

Ñ

Corollary 3.16
The linear complexity of a binary, periodic sequence 8si<i¥0 with period p and initial
segment SHpLHxL = ⁄i=0

p-1 si xi is equal to

p - degreeHgcdHxp - 1, SHpLHxLLL .

3.3.2 The Berlekamp-Massey Algorithm

Corollary 3.16 may be of help to the designer of a non-linear system to determine how safe his
system is against the kind of attack described in the discussion "Ad C3" in Subsection 3.2.5.

A cryptanalyst, on the other hand, who knows a segment of the output sequence, say
s0, s1, …, sk-1 , can try the following strategy:

i) find the smallest LFSR that generates s0, s1, …, sk-1 ,

ii) determine the next output bit of this LFSR and hope that it correctly "predicts'' the next bit sk of
the sequence.

Definition 3.6
LkH8si<i¥0L is the length of the shortest LFSR that generates s0, s1, …, sk-1 .
When it is clear from the context which 8si<i¥0 is involved we shall simply write Lk . The
polynomial f HkLHxL will denote the characteristic polynomial of any Lk -stage LFSR that
generates the sequence s0, s1, …, sk-1 .

Clearly LkH8si<i¥0L § k for any sequence 8si<i¥0 , since any k -state LFSR will generate
s0, s1, …, sk-1 , simply by taking s0, s1, …, sk-1 as starting state.

52 FUNDAMENTALS OF CRYPTOLOGY

Lemma 3.17

Let 8ti<i¥0 be an output sequence starting with 00 …0
ô öøøøø

k-1

 1. Then,

LkH8ti<i¥0L = k .

Proof: Any LFSR of length n, n < k , that is filled with the first n symbols of 8ti<i¥0 (which are all
zero) will output the all-zero sequence, so tk-1 will not be 1.

Ñ

Lemma 3.18
Let 8si<i¥0 and 8ti<i¥0 be two output sequences. Then, for all k ¥ 0

LkH8si + ti<i¥0L § LkH8si<i¥0L + LkH8ti<i¥0L .

Proof: This is a direct consequence of Lemma 3.6. Indeed, let the LFSR's with characteristic
polynomial f HkLHxL and gHkLHxL generate the first k terms of 8si<i¥0 , resp. 8ti<i¥0 . Then by Lemma
3.6, the first k terms of 8si + ti<i¥0 will be generated by the LFSR with characteristic polynomial
lcm@ f HkLHxL, gHkLHxLD . This lcm has degree at most the sum of the degrees of f HkLHxL and gHkLHxL .

Ñ

It follows from Definition 3.6 that Lk+1 ¥ Lk for any sequence 8si<i¥0 . More can be said.

Lemma 3.19
Let 8si<i¥0 be an output sequence. Suppose that the LFSR with characteristic polynomial
f HkLHxL does not output sk correctly. Then

Lk+1 ¥ max 8Lk, k + 1 - Lk< .

Proof: We already know that Lk+1 ¥ Lk .

Let 8ti<i¥0 be a sequence starting with 00 …0
ô öøøøø

k

1 as beginning sequence. Since the LFSR with
characteristic polynomial f HkLHxL does generate s0, s1, …, sk-1 , but not s0, s1, …, sk , it follows
that this LFSR will generate 8si + ti<i=0

k . Since Lk+1 ¥ Lk , we can conclude that
Lk+1H8si + ti<i¥0L = LkH8si + ti<i¥0L = LkH8si<i¥0L(= Lk).

The statement now follows with Lemma 3.17 and Lemma 3.18 from

k + 1 = Lk+1H8ti<i¥0L § Lk+1H8si<i¥0L + Lk+1H8si + ti<i¥0L = Lk+1 + Lk .

Ñ

The following theorem shows that in fact equality holds in the above lemma. The proof follows
from the Berlekamp-Massey algorithm, that constructs f HkLHxL recursively, cf. [Mass69]. This

Shift Register Sequences 53

algorithm is well known in algebraic coding theory for the decoding of BCH codes and Reed-
Solomon codes (see [Berl68], Chapter 7).

Theorem 3.20
Let 8si<i¥0 be an output sequence. Suppose that the LFSR with characteristic polynomial
f HkLHxL does not output sk correctly. Then

Lk+1 = max 8Lk, k + 1 - Lk< .

Proof: In view of Lemma 3.19, it suffices to find a polynomial f HxL of degree equal to
max 8Lk, k + 1 - Lk< that does output the first k + 1 terms of 8si<i¥0 correctly. This is exactly what
the Berlekamp-Massey algorithm does in a very efficient way.

We shall prove the theorem by induction.

Getting the induction argument started.

Define L0 = 0 and f H0LHxL = 1.

The sequence 00 …0
ô öøøøø

k

 of length k can be generated by the (degenerate) LFSR with characteristic
polynomial f HkLHxL = 1 of degree Lk = 0.

The sequence 00 …0
ô öøøøø

k

 1 of length k + 1 can be generated by any Hk + 1L-stage LFSR, but not by a
shorter LFSR, as we already saw in Lemma 3.17. In this case,

Lk+1 = k + 1 = k + 1 - Lk = max 8Lk, k + 1 - Lk< .

This proves the first induction step.

The induction step: k ök + 1.

By putting k + n = j , ci = fi
HkL , and n = Lk in (3.2), the induction hypothesis for k can be

formulated as:

(3.9) ‚
i=0

Lk-1
fi
HkL s j-Lk+i = s j , Lk § j § k - 1.

If (3.9) also holds for j = k , then Lk+1 = Lk , f Hk+1LHxL = f HkLHxL and there remains nothing to prove.

If (3.9) does not hold, then

(3.10) ‚
i=0

Lk-1
fi
HkL s j-Lk+i = s j + 1, j = k .

Let m be the unique integer smaller than k defined by

i) Lm < Lk ,
ii) Lm+1 = Lk ,

so m is the index of the last increase of L .

Because we have already proved the start of the induction argument, this number is well defined.
It follows from the induction hypothesis and the above definition of m that:

54 FUNDAMENTALS OF CRYPTOLOGY

(3.11) ‚
i=0

Lm-1
fi
HmL s j-Lm+i = : s j,

sm + 1,
if Lm § j § m - 1,

j = m.

Notice that Lk = Lm+1 = max 8Lm, m + 1 - Lm< = m + 1 - Lm .

Define L = max 8Lk, k + 1 - Lk< . We claim that

(3.12)
f HxL = xL-Lk f HkLHxL + xL-Hk+1-Lk L f HmLHxL

= xL-Lk f HkLHxL + xL-k+m-Lm f HmLHxL
will be a suitable choice for f Hk+1LHxL .

Clearly, the first term in (3.12) has degree HL - LkL + Lk = L and the second term has degreeHL - k + m - LmL + Lm < L . So, f HxL has the right degree. But also, by (3.9), (3.10), (3.11),⁄i=0
L-1 fi s j-L+i

=
H3.12L ‚

i=L-Lk

L-1
fi-HL-LkLHkL s j-L+i + ‚

i=L-HL-k+m-LmLL-k+m
fi-HL-k+m-LmLHmL s j-L+i

=
subst. i ‚

i=0

Lk-1
fi
HkL s j-Lk+i +‚

i=0

Lm-1
fi
HmL s j-Lm-k+m+i +s j-k+m

= 9 s j + 0 = s j,Hsk + 1L + 1 = sk,

L § j § k - 1,

j = k.

This proves that the LFSR with characteristic polynomial f HxL indeed can generate s0, s1, …, sk .

Ñ

Theorem 3.20 only proves that the degree Lk of f HkLHxL is unique. In general, the polynomial
f HkLHxL itself will not be unique.

The algorithm, described in the proof above, can be executed and summarized as follows:

Shift Register Sequences 55

Algorithm 3.21 Berlekamp-Massey

input a binary sequence 8si<i¥0 , an index u
initialization f = 1, L = 0, j = 0
parameters used

fne, Lne : stand for the characteristic polynomial and length of the LFSR
 as desired by the present iteration;

fol , Lol : stand for the polynomial and length just before the last change
 in length;

diff : the difference between the present iteration number and
 the iteration number after the last change in length.

while Hs j = 0L Ï H j § uL do j = j + 1
if j = u + 1 then STOP
put fol = 1; Lol = 0

f = x j+1 ; L = degreeH f L
k = j + 1; diff = 0

while k < u do
begin

if ⁄i=0
L-1 fi sk-L+i ∫ sk then

begin
Lne = max 8L, k + 1 - L<
fne = xLne-L. f + xLne-Hdiff+1+LolL. fol

if Lne ∫ L then
begin
 fol = f ; Lol = L;

 L = Lne ; diff = 0;
 end

else
begin
 diff = diff + 1;

end
 f = fne

end
else

begin
diff = diff + 1;

end
k = k + 1;
end

output f the characteristic function of the shortest LFSR that can outputHs0, s1, …, suL .

Example 3.13

Consider the sequence8si<i=0
30 = 80, 0, 0, 0, 0, 1 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0< .

The Mathematica version of the Berlekamp-Massey algorithm that we give below makes use of
the functions Do, CoefficientList, Mod, Max, PolynomialMod, Length, and Print.

56 FUNDAMENTALS OF CRYPTOLOGY

Note that we have combined the two while statements in the algorithm above into a single Do
statement. All intermediate functions are also printed.

s = 80, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0<;

Lol = 0; fol = 1;
diff = 0; Clear@xD;
f = 1; L = 0; g = CoefficientList@f, 8x<D;

DoAIfAModA‚
i=1

L

gPiT sPj − 1 − L + iT, 2E == sPjT, diff = diff + 1,

Lne = Max@j − L, LD;
fne = PolynomialMod@xLne−L f + xLne−Lol−diff−1 fol, 2D;

If@Lne ≠ L, fol = f; Lol = L; L = Lne; diff = 0, diff = diff + 1D;
f = fne; g = CoefficientList@f, 8x<DE;
Print@"j=", j, ", L=", L, ", f=", fD, 8j, Length@sD<E

j=1, L=0, f=1

j=2, L=0, f=1

j=3, L=0, f=1

j=4, L=0, f=1

j=5, L=0, f=1

j=6, L=6, f=1 + x6

j=7, L=6, f=1 + x5 + x6

j=8, L=6, f=1 + x5 + x6

j=9, L=6, f=1 + x5 + x6

j=10, L=6, f=1 + x5 + x6

j=11, L=6, f=1 + x5 + x6

j=12, L=6, f=x5 + x6

j=13, L=6, f=x5 + x6

j=14, L=6, f=x5 + x6

j=15, L=6, f=x5 + x6

j=16, L=6, f=x5 + x6

j=17, L=6, f=x5 + x6

j=18, L=12, f=1 + x11 + x12

j=19, L=12, f=1 + x10 + x12

Shift Register Sequences 57

j=20, L=12, f=1 + x9 + x12

j=21, L=12, f=1 + x8 + x12

j=22, L=12, f=1 + x7 + x12

j=23, L=12, f=1 + x6 + x12

j=24, L=12, f=1 + x5 + x12

j=25, L=13, f=x + x5 + x13

j=26, L=13, f=1 + x + x12 + x13

j=27, L=14, f=1 + x + x2 + x5 + x12 + x13 + x14

j=28, L=14, f=x2 + x5 + x14

j=29, L=14, f=x2 + x5 + x14

j=30, L=16, f=1 + x + x4 + x7 + x12 + x13 + x16

j=31, L=16, f=1 + x + x4 + x7 + x12 + x13 + x16

3.3.3 A Few Observations about Non-Linear Algorithms

The problem with non-linear feedback shift registers, in general, is the difficulty of their analysis.
One has to answer questions like: how many different cycles of output sequences are there, what
is their length, what is their linear complexity, etc. The following theorem will make it clear that it
is possible to say at least a little bit about general non-linear feedback shift registers.

Clearly, the output sequence of a non-linear FSR does not have maximal period if there are two
different states with the same successor state. A state with more than one predecessor is called a
branch point.

Theorem 3.22
An n-stage feedback shift register with (non-linear) feedback fuction f Hs0,, s1, …, sn-1L
has no branch points if and only if a Boolean function gHs1,, s2, …, sn-1L exists such that
f Hs0,, s1, …, sn-1L = s0 + gHs1,, s2, …, sn-1L .

Proof: Since f is a Boolean function, one can write

f Hs0,, s1, …, sn-1L = gHs1,, s2, …, sn-1L + s0 hHs1,, s2, …, sn-1L .

ï If hHs1,, s2, …, sn-1L = 0 for some Hs1, s2, …, sn-1L , then both states H0, s1, s2, …, sn-1L andH1, s1, s2, …, sn-1L will have the same successor state. Thus a branch point would exist,
contradicting our assumption. We conclude that h ª 1.

58 FUNDAMENTALS OF CRYPTOLOGY

ì The state H0, s1, s2, …, sn-1L has successor Hs1, s2, …, sn-1, snL with sn = gHs1, s2, …, sn-1L ,
while state H1, s1, s2, …, sn-1L has successor Hs1, s2, …, sn-1, sn + 1L . Therefore, there are no
branch points.

Ñ

There are many ways to use LFSR's in a non-linear way. Below we depict two proposals that are
extensively discussed in [Ruep86]. Others ideas can be found in [MeOoV97], Chapter 6.

f

LFSR k

LFSR k−1

LFSR 2

LFSR 1

output

Figure 3.5

Combining several PN's with one non-linear function f .

Shift Register Sequences 59

s0 s1 sn−2 sn−1

NonLinear Function f

c0=1 c1 cn−2 cn−1

⊕ ⊕ ⊕

output

Figure 3.6

One LFSR with a non-linear output.

3.4 Problems

Problem 3.1
Let 8si<i¥0 be binary, periodic sequence of period 17, starting with the sequence 01101000110001011. To
which extent does 8si<i¥0 satisfy Golomb's Randomness Postulates?
(Note for the interested reader. The sequence above has its ones at the positions corresponding to the
quadratic residues modulo 17 (see also input line above Theorem A.21). The parameters that arise when
checking G3 can be predicted by Theorem A.22 and Corollary A.24)

Problem 3.2
Express the polynomial gcdHxm - 1, xn - 1L in terms of x and gcdHm, nL . (See also Problem A.3.)

Problem 3.3
Let 8ui<i¥0 and 8vi<i¥0 be the output sequences of binary LFSR's of length m resp. n , where m, n ¥2.
Assume that 8ui<i¥0 and 8vi<i¥0 are both PN sequences and that gcdHm, nL = 1. Hence, also
gcdH2m - 1, 2n - 1L = 1(see Problem A.3). Let the sequence 8wi<i¥0 be defined by wi = ui vi , i ¥ 0, and let p
be the period of 8wi<i¥0 .

a) Prove that p is a divisor of H2m - 1L H2n - 1L .
b) How many zeros and how many ones appear in a subsequence of length H2m - 1L H2n - 1L in the

sequence 8wi<i¥0 ?
c) Prove that H2m - 1L H2n - 1L ê p must divide the two numbers determined in ii).
d) Prove that p = H2m - 1L H2n - 1L .
e) How many gaps of length 1 does the 8wi<i¥0 -sequence have per period when m, n ¥ 4?

Problem 3.4
Let 8si<i¥0 be the binary sequence defined by

si = 9 1,
0,

if i = 2l - 1, l œ ,

otherwise.

60 FUNDAMENTALS OF CRYPTOLOGY

So, the 8si<i¥0 starts like 11010001000000010. Let Lk be the linear complexity of s0, s1, …, sk-1 .
Prove that

L2l = 2l-1, l ¥ 1.

Problem 3.5M

Let a binary sequence 8si<i¥0 have period 15 and start with 010110000101010.
What is the minimal characteristic polynomial of 8si<i¥0 and what is the linear complexity of this sequence?

Problem 3.6
Consider the binary, periodic sequence 8si<i¥0 determined by the period 212 - 1 and the values
s0 = s29-1 = 1 and si = 0 for 0 for 0 § i < 212 - 1, i ∫ 0, 29 - 1.
What is the minimal characteristic polynomial of 8si<i¥0 ? What is the linear complexity of this sequence?

Problem 3.7M

Consider the binary polynomials f HxL = 1 + x + x3 and gHxL = 1 + x2 + x5 . The corresponding LFSR's are
denoted by LFSR(f) resp. LFSR(g). Let 8si<i¥0 and 8ti<i¥0 denote the output sequences of LFSR(f) resp.
LFSR(g).
The sequence 8ui<i¥0 is defined by ui = si + ti, i ¥ 0.
The 28 different initial states Hs0, s1, s2, t0, t1, t2, t3, t4L generate different periodic sequences 8ui<i¥0 .
What are the cycle lengths (=periods) of these periodic sequences? Give an initial state of each cycle.

Problem 3.8
Consider the binary shift register depicted in the figure below.

sn−1
HiL

cn−1

⊕ sn−2
HiL

cn−2

⊕ s1
HiL

c2

⊕ s0
HiL

c1

⊕
Output

c0=1

Let sHiL = Hsn-1
HiL , sn-2

HiL , …, s1
HiL, s0

HiLL be the state of the shift register at time i, i ¥ 0.
a) Give the n µ n matrix T satisfying sHi+1L = TsHiL for all i ¥ 0.
b) Prove that the characteristic equation of T over  is given by

ln = cn-1 ln-1 + cn-2 ln-2 + … + c1 l + 1.

c) From matrix theory we may conclude that over

(3.13)Tn = cn-1 Tn-1 + cn-2 Tn-2 + … + c1 T + I,

Shift Register Sequences 61

where I is the n µ n identity matrix.
Since all elements in (3.13) are integer, equation (3.13) also holds modulo 2.
Derive a recurrence relation between sHi+nL , sHi+n-1L , … , sHi+1L , and sHiL .

d) Which LFSR of length n gives the same output sequence as the above shift register?
What does the initial state have to be in this LFSR to generate the same output sequence?

Problem 3.9
Let a œ GF H23L be a zero of f HxL = x3 + x + 1. So, by Theorem B.30,

f HxL = Hx - aL Hx - a2L Hx - a4L ,
f * HxL =Hx - a3L Hx - a5L Hx - a6L = H1 - axL H1 - a2 xL H1 - a4 xL .

Prove that W H f L consists of all sequences⁄i=0
¶ Ha.ai + a2.a2 i + a4.a4 iL xi , a œ GFH23L ,

(Hint: use Corollary 3.5 and use the partial fraction expansion over GFH23L .)
Note that the expression above can be written as ⁄i=o

¶ TrHa.aiL xi , where Tr stands for the Trace function, as
introduced in Problem B.16.

62 FUNDAMENTALS OF CRYPTOLOGY

4 Block Ciphers

4.1 Some General Principles

4.1.1 Some Block Cipher Modes

É Codebook Mode

Block ciphers are conventional cryptosystems that typically handle a fixed number of symbols at a
time (under a given key) and do this encryption/decryption independent of past input blocks (see
Figure 4.1). For the encryption process, the data (plaintext) enters the block cipher from the left
and leaves it on the right as ciphertext. For the decryption, it is exactly the other way around.

In the next section we shall describe a few widely used block ciphers. At this moment, the
particular layout of such a cipher is not so important. One should view it as an electronic device
that can convert n-tuples of bits to other n-tuples at very high speeds (under a key) in such a way
that the reverse process is only feasible if one knows the key.

Assuming that the plaintext is a long binary file, one breaks it up in segments Mi , i ¥ 0, each n
bits long. The result of the encryption of Mi is denoted by Ci and we write

Ci = BCkHMiL , i ¥ 0,

where k is the key. The decryption process will be denoted by BC≠ , so we have Mi = BCk
≠HCiL .

Since an n-tuple of symbols from an alphabet  can be viewed as one symbol from n , the
difference between an n-tuple from one alphabet or a single symbol from another alphabet is
theoretically of little importance but may be of great practical value.

Therefore, the key property of a block cipher is the lack of memory in the encryption device.

It is clear that as long as the key remains the same, the same plaintext will be encrypted to the
same ciphertext. For this reason, encryption in the mode shown in Figure 4.1 is called codebook
mode. It is as if one uses a codebook or dictionary for the encryption. It may be clear that
encrypting the same message twice under the same key is cryptographically insecure, hence, block
ciphers are normally not used in codebook mode.

Block Ciphers 63

Block
Cipher

plaintext ciphertext

key
k bits

n bits n bits

Figure 4.1

Block Cipher in Codebook Mode

É Cipher Block Chaining

There are several standard methods to circumvent the problems mentioned above. One technique
is called cipher block chaining. We assume again that one is encrypting a long file. Each
ciphertext, say Ci at time i , is not only transmitted to the receiver, but it is also added coordinate-
wise to the next block of plaintext Mi+1 .

To this end, the encryption algorithm has to make use of some kind of memory device, commonly
called a buffer. See Figure 4.2 below. Of course, the buffer has to be initialized before the
encryption process can be started.

Note that by introducing memory to this system it technically has become a stream cipher.

Block
Cipher

Buffer Ci

key

Mi + 1

Ci + 1=

BCHMi + 1⊕CiL
⊕

Figure 4.2

Cipher block chaining - Encryption

The decryption process reverses the above process. The buffer has to be initialized with the same
initial value as was used to start the encryption. It can be part of the secret key or a just a fixed

64 FUNDAMENTALS OF CRYPTOLOGY

constant.

The notation BC≠ in Figure 4.3 stands for the inverse of the block cipher used for encryption.

BC←

Buffer Ci

key

Ci+1

Mi+1

BC←HCi+1L
=Mi+1⊕Ci

⊕

Figure 4.3

Cipher block chaining - Decryption

Remark:

Note, that when Ci = C j , for some i < j , in Figure 4.2, one has that Mi ∆ Ci-1 = M j ∆ C j-1 , i.e.
Ci-1 ∆ C j-1 = Mi ∆ M j . This means that the modulo sum of the two previous ciphertexts is equal
to the sum of the ciphertexts Mi and M j . In many situations this means that some information
about the plaintext leaks away. For instance, as we can deduce from Example 5.2 , the modulo 26
addition of two English texts (with a Vigenère Table (Table 2.3) will still have sufficient structure
to enable a unique reversal of the addition process.

The above observation is reason to go to longer block lengths than the ones most commonly in use
today (being 64 bits).

É Cipher Feedback Mode

Another way to make sure that a block cipher under the same key encrypts the same plaintext at
different moments into different ciphertexts is called the cipher feedback mode.

This method is depicted in Figure 4.4 below, but in a more general setting. In many practical
situations, for instance in many internet protocols, one wants to transmit only a few bits at a time,
say r bits, where r is less than the block length of the block cipher.

Instead of padding the r bits with n - r zeros in order to get an n-tuple that can serve as input for a
block cipher, one adds the r-tuple coordinatewise modulo 2 to the r leftmost output bits of the
block cipher. The input of the block cipher is given by the contents of a shift register (without
feedback) that at each clock pulse shifts r positions to the left to accommodate the r bits of the
previous ciphertext.

Block Ciphers 65

Output

Block Cipher

Shift Register

{ r−bits shift

n bits

n bits

r bits

r bits

r bits Ci Ci

Ci

Mi

key

⊕

Figure 4.4

Cipher Feedback Mode

4.1.2 An Identity Verification Protocol

In this subsection, we want to give an idea how a block cipher can be used in an identity
verification protocol. Such a protocol is a discussion between two parties in which one of them
wants to convince the other that he is authentic. An application is, for instance, a smart card of a
person, say Alice, who wants to withdraw money from her account through a card reader of a bank.

While issuing the card to Alice, the bank stores two numbers on it:

- the identity number IdA of Alice,

- the secret key kA of Alice.

The key kA can not be accessed from the outside world; it does not even have to be known to
Alice. The identity number can be accessed by any card reader (it may even be printed or written
on the outside). They are related by

(4.1) kA = BCMKHIdAL ,

where BC stands for a block cipher and MK for the bank's master key. MK is stored in every card
reader of the bank. It would be impractical to store the secret keys of all customers in each card
reader.

The block cipher BC is also implemented on the card.

When the card is inserted into the card reader, it will be asked to present its identity number (IdA

in our case). A genuine card reader can now compute Alice's secret key kA from (4.1).

The card reader generates a random string r of n bits and presents it as a challenge to the card.
The card returns BCkAHrL as its response to the card reader. The card reader simply verifies this
calculation. If the card's answer to the challenge r is correct, the card reader "knows" that kA is

66 FUNDAMENTALS OF CRYPTOLOGY

stored on the card and it will conclude that the card is authentic. Otherwise, it will not accept the
card.

Figure 4.5

Card Reader

knows k, ID knows MK

|
ID

computes k = BCMK HIDL
generates random r
as challenge to card

{
r

computes c = BCk HrL
|

c

checks if c = BCk HrL
An identity verification protocol.

The card can use the same protocol to check that the card reader is genuine. It sends its challenge
to the card reader. The reply by the card reader can only be correct if the card reader is able to
compute the secret key kA , i.e. if the card reader knows the bank's master key MK.

Normally, a Personal Identification Code (PIN) is used to link the card to the card holder.

4.2 DES

É DES

In 1974 the National Bureau of Standards (NBS) solicited the American industry to develop a
cryptosystem that could be used as a standard in unclassified U.S. Government applications. IBM
developed a system called LUCIFER. After being modified and simplified, this system became the
Data Encryption Standard (DES for short) in 1977.

Right away, DES was made available on a fast chip. This made it very suitable for use in large
communication systems. The complete design of DES has been made public at the time of its
introduction. This has never been done before, although in each textbook one can find the remark
that the security of a cryptosystem should not depend on the secrecy of the system.

We shall not give a complete description of DES. The reader is referred to [Konh81], [MeyM82],
[MeOoV97], or [Schn96].

DES is a block cipher operating on 64 bits simultaneously (see Figure 4.6).

The key consists of eight groups of 8 bits. One bit in each of these groups is a parity check bit that

Block Ciphers 67

makes the overall parity in each block odd. So, although the keysize appears to be 64, the effective
keysize is 56 bits.

DES
plaintext ciphertext

key

64H56L bits

64 bits 64 bits

Figure 4.6

The Data Encryption Standard

DES consists of 16 identical rounds. The 64 input bits are divided into two halves: the 32 leftmost
bits form L0 and the 32 rightmost bits form R0 .

In each round, a new L and R are defined by

(4.2) Li = Ri-1 , 1 § i § 16,
Ri = Li-1 ∆ f HRi-1, KiL , 1 § i § 16.

Here, Ki stands for a well-defined subsequence of bits from the key K .

Further, f is function of the previous right-half and this subkey Ki . This function is defined by
means of a collection of fixed tables, called substitution tables. The outcome is added
coordinatewise modulo 2 to Li-1 . Note that Li is simply the previous right-half. (See Figure 4.7
below.).

The final output of DES is formed from L16 and R16 .

f

Ri − 1Li − 1

RiLi

subkey

⊕

3232

Figure 4.7

A Typical Round of DES

68 FUNDAMENTALS OF CRYPTOLOGY

In Figure 4.7 one can see that the inverse algorithm of DES can be computed from the same
scheme by simply going from the bottom to the top. Indeed, it follows from (4.2) that for all
1 § i § 16

Ri-1 = Li
Li-1 =Ri ∆ f HRi-1, KiL = Ri ∆ f HLi, KiL .

Many people have criticized the decision to make DES a standard. The two main objections were:

i) The effective keysize (56 bits) is too small for an organization with sufficient resources. An
exhaustive keysearch is, at least in principle, possible.

ii) The design criteria of the tables used in the f -function are not known. Statistical tests however
show that these tables are not completely random. Maybe there is a hidden trapdoor in their
structure.

During the first twenty years after the publication of the DES-algorithm no effective way of
breaking it was published. However, in 1998, for the first time, a DES challenge has been broken
by a more or less brute-force attack.

É Triple DES

When it became clear that DES could no longer be used to protect sensitive data, a modification
was introduced, called Triple DES. It consists of three DES implementations in a row, except that
the middle one is orientated the other way around. Thus, one has DES, DES≠ , and then again
DES. See Figure 4.8 below.

DES DES← DES

key 1 key 2 key 1

Figure 4.8

Triple DES

There are two interesting things to note about this design. First of all, the third key is the same as
the first key. The effective key search is 2 µ 56 = 112 in this way. This is considered to remain
secure for many years to come.

The second observation is that the cipher in the middle is DES≠ instead of DES.

These two features make it possible to keep systems in which Triple DES is implemented
compatible with single DES systems. Indeed, by taking the keys 1 and 2 the same, the above
system reduces to a single DES scheme.

Block Ciphers 69

4.3 IDEA
There are quite a few alternatives to DES. One reason for looking for them may have been the
export restrictions by the American government, another, the costs and patent rights. Contrary to
DES, which uses well chosen tables in each round, some of the alternatives make use of several
mathematical primitives that are algebraically uncorrelated.

IDEA [Lai92] is such a system. The name stands for International Data Encryption Algorithm.
IDEA also handles 64 bits at a time (see the remark in Subsection 4.1.1 about this size), but has a
key of 128 bits. It consists of 8 identical rounds, which are depicted in Figure 4.9. The 64 bits are
equally divided over four blocks of 16 bits each. These blocks are called Xi , 1 § i § 4, at the input
side of a typical round and Yi , 1 § i § 4, on the output side. The entries Ki , 1 § i § 6, denote
substrings of the key. Their composition depends on the particular round that has taken place.

The mathematical primitives in IDEA operate on these 16 bits. They are the following operations.

è Coordinatewise XOR (addition modulo 2).

In Figure 4.9, this is depicted by ∆.

In Mathematica the XOR can be performed with the Mod function (here shown on 4-tuples).

Mod@81, 1, 0, 0< + 81, 0, 1, 0<, 2D

80, 1, 1, 0<
è Addition modulo 216 .

In Figure 4.9, this is depicted by a square with a plus sign in it á+ .

Interpret the two inputs as the binary representation of two integers. Add these integers modulo
216 and output the binary representation of the sum.

In Mathematica this can be performed with the FromDigits and IntegerDigits functions
(here shown on 4-tuples).

a = FromDigits@81, 0, 1, 1<, 2D
b = FromDigits@81, 1, 1, 0<, 2D
su = Mod@a + b, 16D
IntegerDigits@su, 2D

11

70 FUNDAMENTALS OF CRYPTOLOGY

14

9

81, 0, 0, 1<
è Multiplication modulo 216 + 1.

In Figure 4.9, this is depicted by ≈.

Interpret the two inputs (binary 16-tuples) as the binary representation of two integers modulo the
prime number 216 + 1 = 65537. Make an exception for the all-zero word which will be identified
with the integer 216 . In this way we have a 1-1 correspondence between binary 16-tuples and the
elements of 65537

* (see Example B.3).

Multiply these two integers modulo 216 + 1, and output the binary representation of the product

(but map 1 0 …0
õúúúúúúù ûúúúú16

 to 0 …0
õúúúúúúù ûúúúú16

).

Since, 216 + 1 is prime, the multiplication a µ b (as defined above) is a one-to-one mapping for
fixed a or b . Below we demonstrate this again for 4-tuples. Note that 24 + 1 is also a prime
number.

a = FromDigits@81, 0, 1, 0<, 2D;
b = FromDigits@80, 1, 1, 0<, 2D;
a = If@a == 0, 16, aD;
b = If@b == 0, 16, bD;
pr = Mod@a∗ b, 17D
pr = If@pr == 16, 0, prD;
IntegerDigits@pr, 2, 4D

9

81, 0, 0, 1<
The reader is invited to multiply the sequences 81, 0, 0, 0< and 80, 0, 1, 0< .

Block Ciphers 71

X1 X2 X3 X4

Y1 Y2 Y3 Y4

K1 K2 K3 K4

K5
K6

⊗ ⊗

⊗
⊗

f f

f
f

⊕
⊕

⊕ ⊕
⊕ ⊕

Figure 4.9

One Round in the International Data Encryption Algorithm
(IDEA)

As with DES, IDEA can be inverted by simply going through it from the bottom to the top.

4.4 Further Remarks
RC5 is a scheme that is a little bit similar to IDEA. Its algebraic primitives are again the exclusive
or and addition modulo 2w , where w is the word length, but instead of the multiplication modulo
2w + 1, which only works if 2w + 1 is prime, RC5 makes use of cyclic shifts.

The word length of RC5 is 2 w , where the user can select w from 16, 32, or 64. An additional
advantage of RC5 is the freedom to choose the number of rounds in the scheme. Depending on the
required speed and security, the user may opt for many or just a few rounds.

In 1993 two attacks on block ciphers were published, that turned out to be surprisingly strong.
These methods are called linear and differential cryptanalysis (see [MatsY93], resp. [BihS93])
and are in fact known plaintext attacks. Several proposed block ciphers were not strong enough
against these attacks, however the DES algorithm could withstand it. Later it became clear that the
inventors of DES were already aware of these attacks. For further reading we like to mention
[Knud94].

At the time of this writing, a collection of proposals are being studied by the (American) National
Institute of Standards and Technology (NIST for short) for a new industrial standard. The names
of these proposals are CAST-256, CRYPTON, DFC, DEAL, E2, FROG, HPC, LOKI97,
MAGENTA, MARS, RC6, RIJNDAAEL, SAFER+, SERPENT and TWOFISH (see the web page
'Advanced Encryption Standard' http://csrc.nist.gov/encryption/aes/aes_home.htm). The outcome
of this study is not yet clear.

72 FUNDAMENTALS OF CRYPTOLOGY

4.5 Problems

Problem 4.1
Describe the decryption process for a block cipher used in of cipher feedback mode.

Problem 4.2
Consider a block cipher that is used in cipher block chaining mode. Suppose that during transmission, Ci ,
the i-th ciphertext block, is corrupted. How many plaintext blocks will be affected?
Answer the same question for the case of cipher feedback mode.

Problem 4.3 M

What is the next sensible block length of IDEA, if the same scheme and the same primitives are being used,
but only the length of the registers is increased? (This length is 16 in IDEA.)
What is wrong with the intermediate values?

Block Ciphers 73

74 FUNDAMENTALS OF CRYPTOLOGY

5 Shannon Theory

5.1 Entropy, Redundancy, and Unicity Distance
In Chapter 2, we have seen that the cryptanalysis of a cryptosystem often depends on the structure
that is present in most texts. For instance in Table 2.1 we could find the key 22 (or -4L , because
"tu quoque Brute" was the only possible plaintext that made sense.

This structure in the plaintext remains present in the ciphertext (although in hidden form). If the
extra information arising from this structure exceeds our uncertainty about the key, one may be
able to determine the plaintext from the ciphertext!

We shall first need to quantify the concept of information. Let X be a random variable defined on
a set  = 8x1, x2, …, xn< by the probabilities

 PrHX = xiL = pi , 1 § i § n .

So, ⁄i=1
n pi = 1 and pi ¥ 0 for all 1 § i § n .

We shall show that

(5.1) J HpiL = -log2 pi

is a good measure for the amount of information given by the occurrence of the event xi ,
1 § i § n . The base 2 in (5.1) can be replaced by other choices, but reflects our intuitive notions
about information, as we shall see. With 2 as choice for the base in the logarithm the unit of
information is a called a bit.

Let  = 8x< above (so n = 1L . Then p1 = 1. Now the occurrence of an event x that occurs with
probability 1 (like the sun will rise again tomorrow) gives no information whatsoever. This
corresponds nicely with JH1L = 0 in (5.1).

Now consider an event that occurs with probability 1 ê2, like the specific sex of a newborn baby.
So, now  = 8b, g< . Assuming that both sexes have the same probability 1 ê 2 of occurring, such
an outcome gives precisely one bit of information. For instance, a 1 can denote a boy and a 0 can
denote a girl. This one bit of information is again in agreement with JH1 ê 2L = 1 in (5.1).

If an event occurs with probability 1 ê 4, then its occurrence gives two bits of information. This is
clear in the case that there are four possible outcomes, each with probability 1 ê4. Each outcome
can be represented by a different sequence of two bits.

On the other hand, the amount of information that an event gives, when it has a probability of 1/4

Shannon Theory 75

to occur, should be independent of the probabilities of the other possible outcomes. Thus, the
value J H1 ê4L = 2 (see (5.1)) agrees again with our intuition. Continuing in this way one gets

(5.2) J H1 ê2kL = k , k ¥ 0.

The expected value of stochastic variable JHPrHX LL , defined over  , is called the entropy of X
and will be denoted by either HHX L or by H HpL , where p = Hp1, p2, …, pnL . Hence,
HHX L = ExpHJHPrHX LLL = ⁄i=1

n pi JHpiL = -⁄i=1
n pi log2 pi :

(5.3) HHpL = -⁄i=1
n pi log2 pi .

When n = 2, one often writes p1 = p , p2 = 1 - p , and hHpL instead of HHpL:

(5.4) hHpL = - p.log2 p - H1 - pL.log2H1 - pL , 0 § p § 1.

Since x.log2 x tends to 0 for x Ø 0, there are no real problems with the definition and the
continuity of the entropy function H HpL when some of the probabilities are 0 (or 1).

The function hHpL is depicted below (with the Mathematica function Plot).

p =.;
Entropy@p_D = −p∗Log@2, pD − H1 − pL Log@2, 1 − pD;

Plot@Entropy@xD, 8x, 0, 1<D;

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

The entropy function HHpL can be evaluated as follows.

MultiEntropy@p_ListD := − ‚
i=1

Length@pD
p@@iDD ∗Log@2, p@@iDDD

p = 81ê4, 1ê4, 1 ê4, 1 ê4<;
MultiEntropy@pD

76 FUNDAMENTALS OF CRYPTOLOGY

2

One can give the following interpretations to the entropy HHX L of a random variable X :

- the expected amount of information that a realization of X gives,
- our uncertainty about X ,
- the expected number of bits needed to describe an outcome of X .

With these interpretations in mind one expects the entropy function HHX L to have the following
properties:

P1: HHp1, p2, …, pnL = HHp1, p2, …, pn, 0L
P2: HHp1, p2, …, pnL = HHpsH1L, psH2L, …, psHnLL ,

for any permutation s of the index set 81, 2, …, n<.
P3: 0 § HHp1, p2, …, pnL § HH1 ên, 1 ên, …, 1 ênL .

P4: HHp1, p2, …, pnL = HHp1, p2, …, pn-2, pn-1 + pnL + Hpn-1 + pnL HI pn-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅpn-1+pn
, pnÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅpn-1+pn

M .

The interpretations of these properties are straightforward.

P1 says that adding another event to  but one with probability 0 of occurring does not affect the
uncertainty about X .

P2 states that renumbering the different events in  leaves the entropy the same.

P3 says that the uncertainty about X is maximal if all events have the same probability of
occurring.

Finally, P4 states that the expected number of bits necessary to describe an outcome from  is
equal to the number of bits necessary when combining events xn-1 and xn into a single event, say
x̀n-1 , plus the number bits to necessary to distinguish between events xn-1 and xn conditional to
the fact that event x̀n-1 did occur.

For instance, if n = 4, then HH 1ÅÅÅÅ4 , 1ÅÅÅÅ4 , 1ÅÅÅÅ4 , 1ÅÅÅÅ4 L = 2 and also

HI 1ÅÅÅÅ4 , 1ÅÅÅÅ4 , 1ÅÅÅÅ2 M + 1ÅÅÅÅ2 .HI 1ÅÅÅÅ2 , 1ÅÅÅÅ2 M = I 1ÅÅÅÅ4 .2 + 1ÅÅÅÅ4 .2 + 1ÅÅÅÅ2 .1M + 1ÅÅÅÅ2 .1 = 2.

Although we shall not prove it here, it can be shown [Khin57] that (5.1) is the only continuous
function satisfying (5.2) yielding an entropy function ⁄i=1

n pi JHpiL satisfying the above
mentioned properties P1-P4.

Example 5.1

Consider the flipping of a coin. Let PrHheadL = p and PrHtailL = 1 - p, 0 § p § 1. The entropy is given by
(5.4).

That hH1 ê2L = 1 is of course confirmed by the fact that one needs one bit to represent the outcome of the
tossing of a fair coin. For instance, 0 ¨ heads and 1¨ tails.

Since hH1 ê4L º 0.8113 one expects that on the average only 0.8113 bits are needed to represent
the outcome of the tossing of an unfair coin with PrHheadL = 1 ê4. This statement is true in the

Shannon Theory 77

sense that one can approach the number 0.8113 arbitrarily close. In Chapter 6 we shall show how
this is done. The trick will be to represent the outcome of many tossings together by one single
string of bits. For instance with two tossings one can represent the outcomes as follows:

two tossings probablity representation

hh 1 ê16 111
ht 3 ê16 110
th 3 ê16 10
tt 9 ê16 0

The expected length of this representation is
1ÅÅÅÅÅÅÅ16 .3 + 3ÅÅÅÅÅÅÅ16 .3 + 3ÅÅÅÅÅÅÅ16 .2 + 9ÅÅÅÅÅÅÅ16 .1 = 27ÅÅÅÅÅÅÅ16 .

But each representation describes two outcomes, so this scheme needs 27 ê32 º 0.843 bits per
tossing. Taking three, four, … tossings at a time leads to increasingly better approximations of
hH1 ê4L .

There is however a problem to address, namely that the receiver of a long string of zeros and ones
should be able to determine the outcomes of the tossings in a unique way. One can easily verify
that any sequence made up from the subsequences 111, 110, 10 and 0 can only be broken up into
these subsequences in just one way . We shall address this problem extensively in Chapter 6.

Example 5.2 (Part 1)

The 26 letters in the English alphabet can be represented with log2 26 º 4.70 bits per letter, by coding
sufficiently long strings of letters into binary strings. Indeed, for k letters one needs `log2 26kp bits and
thus one needs `log2 26kp êk bits per letter, which converges to log2 26 .

On the other hand, the entropy of 1-grams can easily be computed with the probabilities given in
Table 1.1. One obtains 4.15 bits per letter.

Also for bi-grams and tri-grams these computations have been made (see [MeyM82], App.F. One
gets the following values:

 H(1-grams) º 4.15 bits/letter,
 H(2-grams)/2 º 3.62 bits/letter,
 H(3-grams)/3 º 3.22 bits/letter.

According to some tests the asymptotic value for n Ø ¶ is less than 1.5 bits/letter!

78 FUNDAMENTALS OF CRYPTOLOGY

Definition 5.1
Let HX0, X1, …, Xn-1L , n ¥ 1, denote the plaintext generated by a plaintext source  over
the alphabet 2 .
Then the redundancy Dn of HX0, X1, …, Xn-1L is defined by

Dn = n - HHX0, X1, …, Xn-1L .

The quantity d = Dn ên stands for the average redundancy per letter.

If the alphabet size is q and each symbol is represented by log2 q bits, the redundancy is given by
Dn = n.log2 q - HHX0, X1, …, Xn-1L . If a different representation of the alphabet symbols is used,
say with an expected representation length of l bits per symbol, we have
Dn = n.l - HHX0, X1, …, Xn-1L .

The redundancy measures to which extent the length of the plaintext exceeds the length that is
strictly necessary to carry the information of the text (all measured in bits).

Let us now turn our attention to a cryptosystem  consisting of cryptographic transformation Ek

indexed by keys k from a key space  . Assume that the unknown plaintext is a regular English
text. In the context of this chapter we assume that the cryptanalyst has unlimited computing
power. So, given a ciphertext a cryptanalyst can try out all keys to check for possible plaintexts.
As soon as the ciphertext is just a few letters long, some keys can be ruled out because they lead to
impossible or improbable letter combinations in the plaintext. The longer the ciphertext, the more
keys can be ruled out. They violate the structure or interpretation of English texts. More formally,
they violate the redundancy in the plaintext. Sooner or later, only the key that was used for the
encryption remains as only candidate.

Let us return to the general setting. Let n be the length of the plaintext (in bits). There are 2n

possible binary sequences, but only 2HHX0,X1,…,Xn-1L represent meaningful messages. The
probability that a decryption with the wrong key hits a legitimate message is 2HHX0,X1,…,Xn-1L ê2n . If
all keys are tried out and all are equally likely, one expects to find » » 2HHX0,X1,…,Xn-1L ê2n

meaningful plaintexts. Let K denote the uniform distribution over the key space  . Then» » = 2HHKL and one can write that 2HHKL 2HHX0,X1,…,Xn-1L ê 2n meaningful messages are expected. If
this number is less than 1, very likely it will be just the key used for the encryption that will
survive this analysis. The above happens if

HHKL + HHX0, X1, …, Xn-1L - n § 0,

 i.e. if the redundancy satisfies

Dn ¥ HHKL .

If K does not have a uniform distribution, we can still use the interpretation that HHKL denotes
the uncertainty about the key to repeat the above reasoning.

Shannon Theory 79

Definition 5.2
Consider a ciphertext-only attack on a cryptosystem  with key-space  and plaintext
source . Then the unicity distance of this cryptosystem is defined by

inf 8n œ + » Dn ¥ HHKL< ,

where HHKL is the entropy of the key and Dn the redundancy in the plaintext.

As soon as the redundancy in the plaintext exceeds the uncertainty about the key, the cryptanalyst
with sufficient resources may be able to determine that plaintext from the ciphertext. Thus, the
unicity distance indicates the user of a cryptosystem when to change the key in order to keep the
system sufficiently secure.

Example 5.2 (Part 2)

We continue with Example 5.2. Assume that a simple substitution has been applied to an English
text (see Subsection 2.1.2). Assuming that all 26! possible substitutions are equally likely, one has

HHKL = -‚
i=1

26! 1ÅÅÅÅÅÅÅÅÅ26!
log2 1ÅÅÅÅÅÅÅÅÅ26!

= log2 26 ! º 88.382 bits.

If one approximates the redundancy Dn in a text of n letters by H4.70 - 1.50L n = 3.20 n bits, one
obtains a unicity distance of 88.4 ê3.2 º 28 characters.

According to Friedman [Frie73]: ''practically every example of 25 or more characters
representing the mono-alphabetic substitution of a "sensible" message in English can be readily
solved.'' These two numbers are in remarkable agreement.

5.2 Mutual Information and Unconditionally Secure Systems
Quite often random variables contain information about each other. In cryptosystems, the plaintext
and the ciphertext are related through the key. In this section we shall give a formal definition (in
the information theoretic sense of the word) of an unconditionally secure cryptosystem

Let X and Y be two random variables, defined on  resp. . The joint distribution
Pr,HX = x, Y = yL of X and Y is often shortened to just

p,Hx, yL .

Similarly, the conditional probability Pr»HX = x » Y = yL that X = x , given that Y = y , is
denoted by

p»Hx » yL .

It satisfies the relation

(5.5) p,Hx, yL = p»Hx » yL.pHyL
The uncertainty about X given Y = y is defined analogous to the entropy function by

80 FUNDAMENTALS OF CRYPTOLOGY

(5.6) HHX » Y = yL = -⁄i=1
n p»Hx » yL.log2 p»Hx » yL .

It can be interpreted as the expected amount of information that a realization of X gives, when the
occurrence of Y = y is already known.

The equivocation HHX » Y L or conditional entropy of X given Y is the expected value of
HHX » Y = yL over all y . In formula,

(5.7)

HHX » Y L = ⁄yœ pHyL.HHX » Y = yL

=
H5.6L

-⁄yœ pHyL.⁄xœ p»Hx » yL.log2 p»Hx » yL
=

H5.5L
-⁄xœ ⁄yœ pHyL.p»Hx » yL.log2 p»Hx » yL

= -⁄xœ ⁄yœ p,Hx, yL.log2 p»Hx » yL .

Let HHX , Y L be defined analogously to the entropy function H for one variable.

Theorem 5.1 Chain Rule

HHX , Y L = HHX L + HHY » X L = HHY L + HHX » Y L
Proof: We use (5.5) and (5.7).

HHX , Y L =

= -⁄xœ ⁄yœ p,Hx, yL.log2 p,Hx, yL
= -⁄xœ ⁄yœ p,Hx, yL.log2 pHyL - ⁄xœ ⁄yœ p,Hx, yL.log2 p»Hx » yL
= -⁄yœ pHyL.log2 pHyL + HHX » Y L = HHY L + HHX » Y L .

The second equality follows by a symmetry argument.

Ñ

In words, the above theorem states that the uncertainty about a joint realization of X and Y equals
the uncertainty about X plus the uncertainty about Y given X .

Corollary 5.2
Let X and Y are independent random variables. Then

i) HHX , Y L = HHX L + HHY L ,
ii) HHX » Y L = HHX L ,
iii) HHY » X L = HHY L .

Proof: To prove i) we repeat the proof of Theorem 5.1 with p,Hx, yL = pHxL.pHyL .

HHX , Y L = -⁄xœ ⁄yœ p,Hx, yL.log2 p,Hx, yL

Shannon Theory 81

= -⁄xœ ⁄yœ p,HxL.log2 pHxL - ⁄xœ ⁄yœ p,Hx, yL.log2 pHyL
= -⁄xœ pHxL.log2 pHxL - ⁄yœ pHyL.log2 pHyL

= HHX L + HHY L .

Statements ii) and iii) follow directly from i) and the chain rule.

Ñ

The amount of information (see (5.1) that a realization Y = y gives about a possible realization
X = x can be quantified as the amount of information that the occurrence of X = x gives minus
the amount of information that X = x will give when Y = y is already know. We denote this by
I;Hx, yL . It follows that

I,Hx; yL = H-log2 pHxLL - H-log2 p»Hx » yLL
= -log2 pHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp»Hx»yL =

H5.5L
- log2

pHxL.pHyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp,Hx,yL = I;Hy; xL .

Note the symmetry in I,Hx; yL = I;Hy; xL .

The mutual information IHX ; Y L of X and Y is defined as the expected value of I,Hx; yL , i.e.

(5.8)

IHx; yL = -⁄xœ ⁄yœ p,Hx, yL.I;Hx; yL
= -⁄xœ ⁄yœ p,Hx, yL. log2

pHxL.pHyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp,Hx,yL

= -⁄xœ ⁄yœ p,Hx, yL. log2 pHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp»Hx»yL = IHY ; X L .

Theorem 5.3
IHX ; Y L = HHX L + HHY L - HHX , Y L = HHX L - HHX » Y L = HHY L - HHY » X L.

Proof: From (5.8) it follows that

IHX ; Y L =

= -‚
xœ ‚

yœ
p,Hx, yL.log2 pHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp»Hx»yL

= -⁄xœ ⁄yœ p,Hx, yL.log2 pHxL +⁄xœ ⁄yœ p,Hx, yL.log2 p»Hx » yL
= -⁄xœ pHxL.log2 pHxL -HHX » Y L = HHX L - HHX » Y L .

The other statements follow from Theorem 5.1.

Ñ

IHX ; Y L can be interpreted as the expected amount of information that Y gives about X (or X
about Y).

82 FUNDAMENTALS OF CRYPTOLOGY

Example 5.3

The binary symmetric channel can be described as follows. A source sends X = 0 or X = 1, each with
probability 1 ê2. The receiver gets Y = X with probability 1 - p and Y = 1 - X with probability p. It
follows that  =  = 80, 1< and that

p H0L = p » H0 » 0L p H0L + p » H0 » 1L p H1L = H1 - pL. 1ÅÅÅÅ2 + p. 1ÅÅÅÅ2 = 1ÅÅÅÅ2 .

Similarly, p H1L = 1 ê2. Also p , H0, 0L = p , H1, 1L = H1 - pL ê2 and
p , H0, 1L = p , H1, 0L = p ê2. So, for the binary symmetric channel we have by (5.8)

IHX ; Y L = -2 9 1- pÅÅÅÅÅÅÅÅÅÅÅ2 log2 1ê2ÅÅÅÅÅÅÅÅÅÅÅ1- p + pÅÅÅÅÅ2 log2 1ê2ÅÅÅÅÅÅÅÅÅp = =

= 1 + p.log2 p + H1 - pL.log2H1 - pL = 1 - HHpL .

We conclude that the receiver gets 1 - HHpL bits of information about X per received symbol Y .
How to approach this quantity 1 - HHpL is the fundamental problem in algebraic coding theory
[MacWS77], Section 1.6.

For p = 1 ê2 the receiver gets no information (since HH1 ê2L = 1) about the transmitted symbols,
as is to be expected.

Let us now return to the conventional cryptosystem as explained in Chapter 1. Assume that a
probability distribution Pr HK = kL is defined on the keyspace  and let the sequence of random
variables

M HuL = HM0, M1, …, Mu-1L
denote the plaintext, and let

CHvL = HC0, C1, …, Cv-1L
denote the ciphertext. So, CHvL = EkHM HuLL . In most applications v will be equal to u . Since Ek is a
one-to-one mapping, the plaintext is uniquely determined by the key and the ciphertext, therefore,
one has

(5.9) HHM HuL » K, CHvLL = 0.

Of course the user of the cryptosystem is interested to know how much information CHvL leaks
about M HuL .

Theorem 5.4

IHM HuL; CHvLL ¥ HHM HuLL - HHKL
In words: the uncertainty about the key together with the information that the ciphertext gives
about the plaintext is greater than or equal to the uncertainty about the plaintext. Again, this
reflects our intuition.

Shannon Theory 83

Proof of Theorem 5.4:

 By (5.9) and the chain rule (Thm. 5.1, which also applies to conditional entropies) one has that

HHK » CHvLL = HHK » CHvLL + HHM HuL » K, CHvLL = HHM HuL, K » CHvLL
= HHM HuL » CHvLL + HHK » M HuL, CHvLL ¥ HHM HuL » CHvLL .

In words: given the ciphertext the uncertainty about the key is at least as great as the uncertainty
about the plaintext. This reflects the property that knowing the ciphertext, one can reconstruct the
plaintext from the key, but not necessarily the other way around.

It follows that

HHM HuL » CHvLL § HHK » CHvL L § HHKL
and by Theorem 5.3 that

IHM HuL; CHvLL = HHM HuLL - HHM HuL » CHvLL ¥ HHM HuLL - HHKL .

Ñ

Definition 5.3
A cryptosystem is called unconditionally secure or is said to have perfect secrecy if

IHM HuL; CHvLL = 0.

Corollary 5.5
A necessary condition for a cryptosystem to be unconditionally secure is given by

HHM HuLL § HHKL .

In cryptosystem where all keys and all plaintexts are equally likely, Corollary 5.5 states that you
need to have at least as many keys as plaintexts.

Example 5.4

Suppose that we have 2k keys, all with probability 1 ê2k . Then

HHKL = -‚
i=1

2k
1ÅÅÅÅÅÅÅ

2k .log2 1ÅÅÅÅÅÅÅ
2k = k bits.

If the messages are the outcome of u tossings with a fair coin, one has in a similar way that
HHM HuLL , so, for perfect secrecy one needs k ¥ n.

This can be realized the encryption cHuL = mHuL ∆ kHuL , where kHuL stands for the first u bits of the
key k and where ∆ stands for a coordinatewise modulo 2 addition. With this encryption, with each
ciphertext cHuL each possible plaintext is still equally likely.

84 FUNDAMENTALS OF CRYPTOLOGY

5.3 Problems

Problem 5.1
Show that function -⁄i=1

n pi.log2 pi satisfies properties P1-P4 in Section 5.1.

Problem 5.2
Let a § 1 ê2.

a) Prove that
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n + 1

nn

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kk Hn - kLn-k § Jn

k
N §

nn
ÅÅ
kk Hn - kLn-k.

b) Show that these inequalities imply that

limxØ¶ 1ÅÅÅÅn log „
i=0

dant
 Jn

i
N = hHaL ,

where hHxL is the entropy function defined in (5.4).

Problem 5.3
Assume that the English language has an information rate of 1.5 bits per letter. What is the unicity distance
of the Caesar cipher, when applied to an English text?
Answer the same question for the Vigenère cryptosystem with key length r .

Problem 5.4
Consider a memoryless message source that generates an output letter X that is uniformly distributed over
the alphabet 80, 1, 2< .
After transmission over a channel the symbol Y , that is received, will be equal to X with probability 1 - p ,
0 § p § 1, and it will be equal to any of the other two letters in the alphabet with probability p ê2.
Compute the mutual information IHX , Y L between X and Y .

Problem 5.5
Let  be a plaintext source that generates independent, identical distributed letters X from 8a, b, c, d< . The
probability distribution is given by PrHX = aL = 1 ê2, PrHX = bL = 1 ê4, and PrHX = cL = Pr Hx = dL = 1 ê8.
Consider the two coding schemes:

a | 00
b | 01
c | 10
d | 11

scheme A

a | 0
b | 10
c | 110
d | 111

scheme B

The output sequence of the plaintext X is first converted into a 80, 1<-sequence by means of one of the
above coding schemes and subsequently encrypted with the DES algorithm.
What is the unicity distance for both coding schemes?

Problem 5.6
Prove that the one-time pad is an unconditionally secure cryptosystem.

Shannon Theory 85

86 FUNDAMENTALS OF CRYPTOLOGY

6 Data Compression Techniques
It is clear from Chapter 5 (see Definitions 5.1 and 5.2) that the security of a cryptosystem can be
significantly increased by reducing the redundancy in the plaintext. In Example 5.1 such a
reduction has been demonstrated.

In this chapter we shall describe two general methods to reduce the redundancy. The process of
removing redundancy from plaintexts is called data compression or source coding.

6.1 Basic Concepts of Source Coding for Stationary Sources
Let a plaintext source  output independently chosen symbols from the alphabet 8m1, m2, …, mn<
with respective probabilities p1, p2 …, pn . Symbol mi will be encoded into a binary string ci of
length li , 1 § i § n .

The set 8c1, c2, …, cn< is called a code C for source . The idea of data compression is to use such
a code that the expected value of the length of the encoded plaintext is minimal. Since the symbols
generated by the plaintext source are independent of each other, it suffices to minimize the
expected length of an encoded symbol

(6.1) L = ⁄i=1
n pi li .

The minimization has to take place over all possible codes C for source . There is however an
additional constraint. A receiver (decoder) has to be able to retrieve the individual messages from
the concatenation of the successive codewords. Not every code has this property. Indeed let
C = 80, 01, 10< . The sequence 010 can be made in two ways: 0 followed by 10 and 01 followed by
0. This ambiguity has to be avoided.

Definition 6.1
A code C is called uniquely decodable (shortened to U.D.) if every concatenation of
codewords from C can only in one way be split up into individual codewords.

Example 6.1

Let n = 4 and C = 80, 01, 011, 111< (this is the code of Example 5.1 in reversed order). This code C is
U.D., as we shall now demonstrate.

Consider a concatenation of codewords. If the left most bit is a 1, the left most codeword is 111. If on the

other hand the left most bit is a 0, the concatenation either looks like 0 11 …1
õúúúúúúúù ûúúúúúk

, for some k ¥ 0, or it starts

with the subsequence 011 …1
õúúúúúúúù ûúúúúúk

0 for some positive integer k .

Depending on whether k = 3 l, 3 l + 1, or k = 3 l + 2, the left most codeword is 0, 01 resp. 011. One

Data Compression Techniques 87

can now remove this codeword and apply the same decoding rule to the remaining, shorter concatenation
of codewords.

Theorem 6.1 McMillan Inequality [McMi56]
A necessary and sufficient condition for the existence of a uniquely decodable code C of
cardinality n with codewords of length li , 1 § i § n , is

(6.2) ‚
i=1

n 1
ÅÅÅÅÅÅÅÅÅ
2li

§ 1.

Proof: We shall only prove that the inequality above is a necessary condition for the existence of a
U.D. code with codeword ci of length li , 1 § i § n . That it also is a sufficient condition will be
proved later in this chapter.

Let L = ‚
i=1

n 1ÅÅÅÅÅÅÅ
2li

 and let us assume (without loss of generality) that l1 § l2 § … § ln . Then

LN = I‚
i=1

n 1ÅÅÅÅÅÅÅÅ
2li

MN
= ‚

j=N.l1

N .ln A jÅÅÅÅÅÅÅÅ2 j ,

where A j is the number of ways to write j as li1 + li2 + … + liN , or, alternatively, A j is the number
of ways to make a concatenation of N codewords of total length j .

Because C is U.D., no two different choices of N -tuples of codewords will give rise (when
concatenated) to the same string of length j . So, A j § 2 j .

Substitution of this inequality in (6.2) implies that for all N ¥ 1

LN § ⁄ j=N.l1
N.ln 1 = NHln - l1L + 1.

Since the left-hand side grows exponentially in N , while the right hand side is a linear function of
N , we conclude that L § 1.

Ñ

As can be seen in Example 6.1, one may have to look for a much longer prefix of the received
sequence than the length of the longest codeword to be able to decode it. This is not very practical.

Definition 6.2
A code C is called a prefix code or instantaneous if no codeword is a prefix of another
codeword.

The code in Example 6.1 is not a prefix code, since the codeword 0 is a prefix of the codeword 01.
The code in Example 5.1 clearly is prefix code. For the decoding of a prefix code one simply
looks for a prefix of the received sequence that is a codeword. Because the code is a prefix code
this codeword is unique. Remove it and proceed in the same way.

Note that when a prefix code is used, one only needs to examine at most ln bits of the received
sequence to determine the first codeword in the received sequence.

The above observation proves the next theorem.

88 FUNDAMENTALS OF CRYPTOLOGY

Lemma 6.2
A prefix code is uniquely decodable.

Theorem 6.3 Kraft Inequality [Kraf49]
A necessary and sufficient condition for the existence of a prefix code with codeword
lengths li , 1 § i § n , is

(6.3) ‚
i=1

n 1
ÅÅÅÅÅÅÅÅÅ
2li

§ 1 .

Proof: A prefix code is U.D. by Lemma 6.2. So, it follows from the McMillan inequality (Thm.
6.1) that (6.3) is a necessary condition for a code to be a prefix code.

We shall now prove that (6.3) implies the existence of a prefix code with codewords ci of lengths
li , 1 § i § n , and a fortiori of a U.D. code with these lengths.

Without loss of generality l1 § l2 § … § ln . Because of this ordering and since ‚
i=1

n-1 1ÅÅÅÅÅÅÅ
2li

< 1 we
can define vectors ci = Hci,1, ci,2, …, ci,liL , 1 § i § n , by the binary expansion of ⁄ j=1

i-1 1 ê2l j :‚
j=1

i-1 1ÅÅÅÅÅÅÅÅ
2l j

=
ci,1ÅÅÅÅÅÅÅÅÅ2 +

ci,2ÅÅÅÅÅÅÅÅÅ22 + … +
ci,liÅÅÅÅÅÅÅÅÅÅ
2li

.

For instance, c1 = H0, 0, …, 0L of length l1 , c2 = H0, …, 0, 1, 0, …, 0L of length l2 with a one on
coordinate l1 etc. By definition, ci has length li .

It remains to show that no cu can be the prefix of a codeword cv , u ∫ v . Suppose the contrary.
Clearly lu ∫ lv , otherwise the two words would be identical. So, lu < lv and thus u < v . It also
follows that‚

j=1

v-1 1ÅÅÅÅÅÅÅÅ
2l j

- ‚
j=1

u-1 1ÅÅÅÅÅÅÅÅ
2l j

=
def. ‚

j=1

l

v

cv, jÅÅÅÅÅÅÅÅÅÅ
2l j

- ‚
j=1

l

u

cu, jÅÅÅÅÅÅÅÅÅÅ
2l j

=
prefix

‚
j=lu+1

l

v

cv, jÅÅÅÅÅÅÅÅÅÅ
2l j

§ ‚
j=lu+1

l

v

1ÅÅÅÅÅÅÅÅ
2l j

< ‚
j=lu+1

¶ 1ÅÅÅÅÅÅÅ2 j = 1ÅÅÅÅÅÅÅÅÅ
2lu ,

while on the other hand‚
j=1

v-1 1ÅÅÅÅÅÅÅÅ
2l j

- ‚
j=1

u-1 1ÅÅÅÅÅÅÅÅ
2l j

= ‚
j=u

v-1 1ÅÅÅÅÅÅÅÅ
2l j

¥ 1ÅÅÅÅÅÅÅÅÅ
2lu .

These two inequalities contradict each other.

Ñ

Data Compression Techniques 89

Example 6.2

Consider l1 = 1, l2 = 2, l3 = 3, and l4 = l5 = 4.

Since 1ÅÅÅÅÅÅÅ21 + 1ÅÅÅÅÅÅÅ22 + 1ÅÅÅÅÅÅÅ23 + 1ÅÅÅÅÅÅÅ
24 + 1ÅÅÅÅÅÅÅ24 = 1, the Kraft inequality is satisfied.

The proof above gives the following codewords (we have used the Mathematica functions Length, Do,
Table, IntegerDigits, and Print):

l = 81, 2, 3, 4, 4<;
L = Length@lD; c =.;
c@1D = Table@0, 8l@@1DD<D;

DoAc@iD = IntegerDigitsA
i

k
jjjjjj‚
j=1

i−1 1
cccccccccccccccc
2l@@jDD

y

{
zzzzzz 2l@@iDD, 2E, 8i, 2, L<E;

Do@Print@c@iDD, 8i, 1, L<D80<81, 0<81, 1, 0<81, 1, 1, 0<81, 1, 1, 1<
This code is a prefix code, as one can easily verify.

It is quite remarkable that the McMillan and the Kraft conditions ((6.2) and (6.3) are the same. It
follows that the smallest average value of the length of a U.D. code is equal to the smallest
average value of the length of a prefix code!

The next two theorems give bounds on the average value of the length of a prefix code (or a U.D.
code).

Theorem 6.4
Consider a plaintext source  that outputs messages mi with probability pi , 1 § i § n .
Let C be a U.D. code which maps message mi into codeword ci of length li , 1 § i § n .
Then the expected value L = ⁄i=1

n pi li of the length of an encoding satisfies

L ¥ HHpL .

Proof: It follows from the well-known inequality ln x § 1 - x , x > 0, and from (6.2) that

HHpL - L = -⁄i=1
n pi.log2 pi - ⁄i=1

n pi li = 1ÅÅÅÅÅÅÅÅÅln 2 ‚
i=1

n
pi.ln 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

pi .2li
§

1ÅÅÅÅÅÅÅÅÅln 2 ‚
i=1

n
piJ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

pi .2li
- 1N = 1ÅÅÅÅÅÅÅÅÅln 2 II‚

i=1

n 1ÅÅÅÅÅÅÅÅ
2li

M - 1M § 0.

Ñ

90 FUNDAMENTALS OF CRYPTOLOGY

Theorem 6.5
Consider a plaintext  that outputs messages mi with probability pi , 1 § i § n .
Then a prefix code C exists for this source with an expected word length L , satisfying

 L < HHpL + 1.

Proof: Define li by li = `log2 1 ê pip , 1 § i § n . Then 2li ¥ 1 ê pi and thus⁄i=1
n 1 ê2li § ⁄i=1

n pi = 1.

For these values of li , 1 § i § n , construct the code C as described in the proof of Theorem 6.3. It
is a prefix code and the expected value L of its length satisfies

L = ⁄i=1
n pi.li = ⁄i=1

n pi.`log2 1 ê pip < ⁄i=1
n pi.Hlog2 1 ê pi + 1L = HHpL + 1.

Ñ

Corollary 6.6
The minimal expected length of all prefix (or U.D.) codes for a plaintext source  with
probability distribution p has a value L satisfying

HHpL § L < HHpL + 1.

We shall now apply the above corollary to N -tuples of source symbols. Since the entropy of N
independent symbols equals N times the entropy of one symbol, one gets an expected length LHNL
for an N -gram that satisfies

N .HHpL § LHNL < N .HHpL + 1.

It follows that

(6.4) HHpL § LHNL
ÅÅÅÅÅÅÅÅÅÅÅÅN < HHpL + 1ÅÅÅÅÅÅN .

So, limNØ¶
LHNL
ÅÅÅÅÅÅÅÅÅÅÅN = HHpL . This confirms the last of the three interpretation of the entropy function

H , that were given at the beginning of Chapter 5.

We shall now derive some properties that a prefix code with minimal expected L will satisfy.

Data Compression Techniques 91

Theorem 6.7
Consider the source  which outputs independent symbols mi , 1 § i § n , with
probabilities p1 ¥ p2 ¥ … ¥ pn .
Among all U.D. codes for this source, let C be one which minimizes the expected value
L of the length of an encoding. Let this code C have codewords ci of length li , 1 § i § n .
Then, after a suitable reindexing of codewords associated with the messages of the same
probability,

P1) l1 § l2 § … § ln .
P2) C can be assumed to be a prefix code.
P3) ‚

i=1

n 1ÅÅÅÅÅÅÅÅ
2li

= 1.
P4) ln-1 = ln .
P5) Two of the codewords of length ln differ only in their last coordinate.

Proof:

P1) Suppose that pu > pv and lu > lv . Make a new code C* from C by interchanging cu and cv .
Then C* is also an U.D. code. The expected length L* of C* satisfies

L* = L + puHlv - luL + pvHlu - lvL = L + Hpu - pvL Hlv - luL < L .

This contradicts our assumption on the minimality of L.

If pu = pv , u < v , one can obtain lu § lv by a simple renumbering of the indices.

P2) If a U.D. code exists with expected length L , then a prefix code with the same expected
length L also exists because the necessary and sufficient conditions in Theorems 6.1 and 6.2. are
the same.

P3) If ‚
i=1

n 1ÅÅÅÅÅÅÅ
2li

< 1 one can decrease ln by 1 and still satisfy the Kraft inequality (6.3). By
Theorem 6.2 a prefix code with smaller expected length would exist. This contradicts our
assumption on C .

P4) If ln > ln-1 then P1 implies that ln is strictly greater than any of the other codeword
lengths. It follows that the left hand side in P3) will be a rational number with denominator 2ln .
For this reason it can not be equal to 1.

P5) Delete the last coordinate of cn and call the resulting vector cn
* . Let C* be the code8c1, c2, …, cn-1, cn

< . It follows from P3) that C does not satisfy the Kraft inequality (6.3). So C*

is not a prefix code, while C was. This is only possible if cn
* is a proper prefix of some codeword

ci , 1 § i § n - 1. This means that this ci must have length ln too and also that ci and cn
* differ in

just their last coordinate.

Ñ

Property P5 gives a clue how to construct a U.D. code with minimal expected codeword length.
The method will be described in the next section.

92 FUNDAMENTALS OF CRYPTOLOGY

6.2 Huffman Codes
The Huffman algorithm [Huff52] constructs for every stationary plaintext source a prefix code that
has an average codeword length that is minimal among all U.D. codes for this source. The
algorithm has a recursive character.

If the plaintext source has only two possible output symbols, both with a non-zero probability of
occurring, the best one can do is to assign the symbols 0 and 1 to them. Clearly, L = 1 < HHpL + 1
in this case.

Each recursion step consists of two parts: a reduction process and a splitting process.

The reduction process.

Let  be a plaintext source which outputs independent symbols mi , 1 § i § n , with probabilities
p1 ¥ p2 ¥ … ¥ pn . Replace the two symbols mn-1 and mn by one new symbol mn-1

* with
probability pn-1

* = pn-1 + pn . In this way, a new source * is obtained with one output symbol
less than .

The splitting process.

Let C* = 8c1, c2, …, cn-2, cn-1
* < be a prefix code of minimal expected length L* for the output

symbols 8m1, m2, …, mn-2, mn-1
* < of * (to find this code in the recursion process, one may want

to reindex these symbols in order of non-increasing probabilities).

The code C is given by

ci = ci
* for 1 § i § n - 2,

cn-1 = Hcn-1
* , 0L ,

cn = Hcn-1
* , 1L

In words, when the symbol mn-1
* is split up in the two symbols mn-1 and mn , the codeword cn-1

*

will be extended with a 0 resp. 1 (or the other way around) to distinguish them.

Example 6.3

Let n = 6 and let the plaintext source  output independent symbols described by the table:

m1 m2 m3 m4 m5 m6
0.3 0.2 0.2 0.1 0.1 0.1

To keep track of the reduction process, we use the notation Hmn-1 + mnL for mn-1
* . After applying

one reduction and a reordering of the probabilities in non-increasing order we get

m1 m2 m3 Hm5 + m6L m4
0.3 0.2 0.2 0.2 0.1

Repeating this process, one gets

Data Compression Techniques 93

m1 Hm4 + Hm5 + m6LL m2 m3
0.3 0.3 0.2 0.2

and Hm2 + m3L m1 Hm4 + Hm5 + m6LL
0.4 0.3 0.3

and finallyHm1 + Hm4 + Hm5 + m6LLL Hm2 + m3L
0.6 0.4

For the splitting process we traverse the above process in opposite direction. We start with the
code 80, 1< and at each splitting of a message into two messages, we append a zero resp. a one.

Note, how mi is replaced by ci at each step. We getHc1 + Hc4 + Hc5 + c6LLL Hc2 + c3LH0L H1L
and Hc2 + c3L c1 Hc4 + Hc5 + c6LLH1L H0, 0L H0, 1L
and

c1 Hc4 + Hc5 + c6LL c2 c3H0, 0L H0, 1L H1, 0L H1, 1L
and

c1 c2 c3 Hc5 + c6L c4H0, 0L H1, 0L H1, 1L H0, 1, 0L H0, 1, 1L
and as code for the source :

c1 c2 c3 c4 c5 c6H0, 0L H1, 0L H1, 1L H0, 1, 1L H0, 1, 0, 0L H0, 1, 0, 1L
We see that l1 = l2 = l3 = 2, l4 = 3, and l5 = l6 = 4. One can easily check that ⁄i=1

6 1 ê2li = 1 and
that HHpL § L < HHpL + 1. We use the MultiEntropy function defined in Section 5.1 and further
the Mathematica function Length.

MultiEntropy@p_ListD := − ‚
i=1

Length@pD
p@@iDD ∗Log@2, p@@iDDD

94 FUNDAMENTALS OF CRYPTOLOGY

p = 80.3, 0.2, 0.2, 0.1, 0.1, 0.1<;
MultiEntropy@pD
l = 82, 2, 2, 3, 4, 4<; len = Length@lD;

‚
i=1

len 1
cccccccccccccccc
2l@@iDD

== 1

‚
i=1

len

p@@iDD∗l@@iDD

2.44644

True

2.5

To demonstrate this Huffman code, we apply it to a text made up by the first 6 letters of the
alphabet. We first simulate the source with the Mathematica functions Which, Random and Do
(note that <> joins two strings).

SeedRandom@12321D; randomchar@x_D :=

Which@x < 0.3, "a", x < 0.5, "b", x < 0.7, "c",
x < 0.8, "d", x < 0.9, "e", x < 1, "f"D;

sourcetext = ""; n = 10;
Do@sourcetext =

sourcetext <> randomchar@Random@Real, 80, 1<DD, 8j, 1, n<D;
sourcetext

eedcbccaec

To encode we use the Huffman coding determined above and the function StringReplace.

code = StringReplace@sourcetext, 8"a" → "00", "b" → "10",
"c" → "11", "d" → "011", "e" → "0100", "f" → "0101"<D

010001000111110111100010011

To compare the length of this particular coding with the entropy we use the function MultiEntropy
defined above and the Mathematica function StringLength.

Data Compression Techniques 95

StringLength@codeDê n − MultiEntropy@pD

0.253561

In Mathematica, the decoding can be implemented with the function StringReplace, because this
function works from left to right, as follows.

st = StringReplace@code, 8"0101" −> "f",
"0100" −> "e", "011" −> "d", "11" −> "c", "10" −> "b",

"00" −> "a"<D
sourcetext == st

eedcbccaec

True

In fact, the following figure gives a better way to describe the decoding process. Read the received
string bitwise from left to right. Depending on the input symbol follow the tree from its root to the
right: a 1 lets you go up and a 0 down. As soon as a leaf (end point) of the tree has been reached,
write down the corresponding alphabet symbol and start again at the root with the next.

For instance, the first two symbols in "00010000010000101000010011" are "00" and lead to
symbol "a". The next four symbols are "0100" and lead to "e", etc.

root

0

1

0

1

a

0

1

0

1

d

0

1

b

c

Figure 6.1

Decoding Tree for Huffman Code

96 FUNDAMENTALS OF CRYPTOLOGY

Lemma 6.8
Let  be a plaintext source with independent output symbols mi , 1 § i § n , with
probabilities p1 ¥ p2 ¥ … ¥ pn . Let * be the reduced plaintext source with
independent output symbols mi

* , 1 § i § n - 1, with probabilities pi
* = pi , 1 § i § n - 2,

and pn-1
* = pn-1 + pn .

Assume that C* is a prefix code for source * that minimizes the expected value of the
length of any prefix encoding for * . Let the words in C* be denoted by ci

* ,
1 § i § n - 1. Define code C for  by ci = ci

* for 1 § i § n - 2,
cn-1 = HHcn-1

* L1, …, Hcn-1
* Ln-1, 0L , and cn = HHcn-1

* L1, …, Hcn-1
* Ln-1, 1L .

Then C is a prefix code for source  that minimizes the expected value of the length of
any prefix encoding for .

Proof: That C is a prefix code is straightforward. Let li and li* denote the length of ci resp. ci
* .

These numbers are related by li = li* , 1 § i § n - 2, and ln-1 = ln = ln-1
* + 1. The expected lengths

L and L* of C resp. C* are related by:

L = ⁄i=1
n pi li = ⁄i=1

n-2 pi li + pn-1 ln-1 + pn ln = ⁄i=1
n-2 pi

* li* + pn-1Hln-1
* + 1L + pnHln-1

* + 1L =⁄i=1
n-2 pi

* li* + Hpn-1 + pnL ln-1
* + Hpn-1 + pnL = ⁄i=1

n-2 pi
* li* + pn-1

* ln-1
* + Hpn-1 + pnL = L* + Hpn-1 + pnL .

From Theorem 6.7 and a reasoning like the above, we know that any prefix code C
`

 for source 
that minimizes the expected value of the length of an encoding for  can be reduced to a code for
source * that has an expected encoding length equal to L

`
- Hpn-1 + pnL . Since L* was minimal

for * , we have L
`

- Hpn-1 + pnL ¥ L* = L - Hpn-1 + pnL , i.e. L
`

¥ L . Since L
`

 was minimal for , we
conclude that L

`
= L , i.e. C realizes the minimal expected length for an encoding of .

Ñ

Theorem 6.9
Let  be a plaintext source  with independent output symbols mi , 1 § i § n , with
probabilities p1 ¥ p2 ¥ … ¥ pn .
Then the Huffman code for this source will have an expected encoding length L that is
minimal among all U.D. codes for this source.

Proof: For n = 2 the statement is obvious because the Huffman code will be equal to 8H0L, H1L<
with L = 1. The induction argument is a direct consequence of Lemma 6.8.

Ñ

6.3 Universal Data Compression - The Lempel-Ziv Algorithms
If one wants to compress data from a source with unknown statistics, the Huffman algorithm can
not be applied. For such a situation, one needs so-called universal data compression techniques.
Examples are the Lempel-Ziv algorithms (there are two of them) and a technique called arithmetic
coding (see [ZivL77], [ZivL78], resp. [RisL79]).

Data Compression Techniques 97

In [ZivL77], the authors introduce a window of a fixed length that slides over the sequence of
source symbols, say from left to right. The sliding window consists of two parts: a larger part on
the left, called the search buffer, and a smaller part on the right, called the look-ahead buffer. The
source symbols in the search buffer have already been encoded. The encoder encodes as many
new source symbols in the look-ahead buffer as possible by looking in the search buffer for the
largest match of already encoded symbols. Suppose that the first j unencoded source symbols
match with the j symbols in the search buffer that start at position i , but that these j symbols
followed by the next source symbol, say a , could not be matched. Then the encoder outputs the
triple Hi, j, aL and the sliding window will move j + 1 characters to the right.

For example, suppose that the search buffer has length 10 and the look-ahead buffer has length 5.
Let the sliding window be given by

.. b b c

1 2 3 4 5 6 7 8 9 10

a b a c b c a a c a
´¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈̈ ¨¨¨¨¨¨̈ ¨̈¨≠ Æ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈̈ ¨¨¨¨¨¨̈ ¨̈

search buffer

1 2 3 4 5

a c b a c
´¨¨¨¨¨¨¨¨̈ ¨¨¨̈¨≠ Æ¨¨¨¨¨¨¨¨̈ ¨̈ ¨̈
look ahead buffer

b a ..

The largest match that can be found, are the first three letters in the look-ahead buffer with the
three letters starting at position 3 in the search buffer. The encoder will send the triple H2, 3, aL ,
where a is the first symbol that could not be matched. The sliding window will move four
positions to the right. At the beginning, when the search buffer is empty, the first encoding will
start with H0, 0, xL , where x is the first symbol of the source.

We shall now discuss a particular variant of the Lempel-Ziv codes. We follow [Well99], where
also an analysis of the performance can be found. The basic idea is that both sides (sender and
receiver) make a dictionary that represents in a smart way substrings that have been transmitted
before. If the new string of characters that is to be compressed is already in the dictionary, one
encode this string by the index of the corresponding entry in the dictionary. In general, this index
will be a lot shorter than the string. If the new string is not in the dictionary, more work has to be
done.

The dictionary that sender and receiver are making simultaneously will be (a lot) larger than the
alphabet  of the source . However, this dictionary will be stored in a very efficient way by
means of a so-called linked list.

The reader has to realize that the use of the Lempel-Ziv algorithm involves some overhead.
However, for files of moderate length (say, one page of text) it already makes sense to use them.

É Initialization

As already remarked before, the dictionary will be stored by means of a linked list. Each entry in
the list has its own address u . The corresponding entry consists of an ordered pair Hv, aL , where v
should be interpreted as a pointer to another entry in the dictionary (so v is again an address) and
where a is a letter in the alphabet . Let A denote the size of  .

To initialize the algorithm we start with a dictionary consisting of the following A + 1 entries:

98 FUNDAMENTALS OF CRYPTOLOGY

address pointer letter

0 0 ∅
1 0 a1
2 0 a2
ª ª ª
A 0 aA

Note that all these entries point to the list element with address 0. The symbol « is not an element
of . It is an additional symbol, serving as a punctuation mark.

To be ready for the encoding, we set the pointer value v to 0 and the address pointer u to A + 1 (u
is the address of the next empty location in the linked list) .

É Encoding

Algorithm 6.10 Encoding for Lempel-Ziv
do begin read the next source symbol a

if Hv, aL is already an entry in the dictionary then give v the value of the address
of Hv, aL

else begin
1) transmit v ,
2) make a new dictionary entry Hv, aL with address u ,
3) u = u + 1 (raise pointer u by 1),
4) give v the value of the address of H0, aL

end
until source stops.

The interpretation of the above is the following. If Hv, aL is already an entry in the dictionary then
the encoder is processing a string of symbols that has occurred at least once before. By assigning
to v the value of the address of Hv, aL , one will be able later on to reconstruct this list.

If Hv, aL is not an entry in the dictionary, the encoder is faced with a new string that has not been
processed before. It will transmit v to let the receiver know the address of the last source symbol
in the preceding string. Further, the encoder makes a new dictionary entry Hv, aL with address u .
The symbol a will serve as root of a new string. Pointer v is given the value of the address of entryH0, aL . The 0 in this entry points at dictionary entry H0, «L which indicates the beginning of a new
string.

Note that the output symbols of the coding process are dictionary indices, more precisely,
addresses of the linked list. Their length grows logarithmically in the length of the dictionary.
Note also, that each new source symbol will increasingly often not give rise to a new output
symbol, because the current string will already have been encoded before.

Data Compression Techniques 99

Example 6.4 (Part 1)

Consider a binary string 8si<i=1
n that we want to compress. So,  = 80, 1< and A = 2.

We initialize the coding process by putting

Dict = 880, −1<, 80, 0<, 80, 1<<
u = 3; v = 0; output = 8<;

880, −1<, 80, 0<, 80, 1<<
Note that we have used the negative number -1 instead of the null symbol «.

To demonstrate the coding process, we output for each new source symbol si the new dictionary
(represented as linked list), the new values of u and v and the complete output sequence.

We use the Mathematica function Position that finds the place of an element in a list. Because
our list contains lists as elements we add [[1]] twice. Note that we subtract 1 from the address,
because our numbering starts with 0 instead of 1.

Pos@s_List, el_ListD := Position@s, elD@@1DD@@1DD − 1

For instance

l = 883<, 85<, 87<, 82<, 81<<;
el = 87<;
pos@l, elD

2

Now we are ready for the coding process. We use the Mathematica functions Do, If, MemberQ,
Append, and Print.

s = 81, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1<;
Do@If@MemberQ@Dict, 8v, s@@iDD<D,

v = Pos@Dict, 8v, s@@iDD<D,
output = Append@output, vD;
Dict = Append@Dict, 8v, s@@iDD<D;
v = Pos@Dict, 80, s@@iDD<DD;
Print@Dict, ", v=", v, ", total output is ", outputD,
8i, 1, Length@sD<D880, −1<, 80, 0<, 80, 1<<, v=2, total output is 8<

100 FUNDAMENTALS OF CRYPTOLOGY

880, −1<, 80, 0<, 80, 1<, 82, 1<<, v=2, total output is 82<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<<
, v=1, total output is 82, 2<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<<
, v=1, total output is 82, 2, 1<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<<
, v=5, total output is 82, 2, 1<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, 1<<
, v=2, total output is 82, 2, 1, 5<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, 1<<
, v=4, total output is 82, 2, 1, 5<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, 1<, 84, 1<<
, v=2, total output is 82, 2, 1, 5, 4<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, 1<, 84, 1<<
, v=3, total output is 82, 2, 1, 5, 4<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, 1<,84, 1<, 83, 0<<, v=1, total output is 82, 2, 1, 5, 4, 3<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, 1<,84, 1<, 83, 0<<, v=5, total output is 82, 2, 1, 5, 4, 3<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, 1<,84, 1<, 83, 0<<, v=6, total output is 82, 2, 1, 5, 4, 3<

f Decoding

For a proper decoding, the receiver must be able to reconstruct the same dictionary as was made
by the transmitter. He can only act whenever a new output symbol arrives. Let v be this new
symbol.

By the encoding algorithm (Alg. 6.10) the arrival of v implies that a new element (say the u-th)
has to be added to the dictionary. The pointer of this new entry is given by v .

The source symbol for this entry is not known since it is the root symbol of the next string (which
has not been encoded yet by the transmitter). So, only the pair Hv, ? L can be added to the
dictionary.

The receiver is however able to fill in the missing symbol in the previous dictionary entry (at
address u - 1).

Further, the receiver can decode the complete source symbol string associated with the received
symbol.

We shall demonstrate the above process for the received sequence of Example 6.4.

Data Compression Techniques 101

Example 6.4 (Part 2)

The receiver initializes just as the receiver did. So, u = 3, v = 0, and the dictionary is given by880, « <, 80, 0<, 80, 1<< .

He receives the following list of symbols: 82, 2, 1, 5, 4, 3< .

The first received symbol is v = 2.

So, the new dictionary entry will be 82, ? < and will have address u = 3. The question mark can not
be filled in yet.

Pointer 2 in 82, ? < points at the entry with address 2 in the dictionary, which is 80, 1< . This entry
tells us that the last symbol of the previous string was a 1 and that for the preceding part we need
to go to the dictionary entry with address 0. This entry is 80, « < , so we are done.

The new dictionary is given by 880, « <, 80, 0<, 80, 1<, 82, ? }}.

The second received symbol is v = 2.

To fill in the question mark in the current dictionary, we look at the entry in the dictionary with
address v = 2. This entry is 80, 1< . Its source symbol gives the value of the question mark.
Therefore, we get the following dictionary 880, « <, 80, 0<, 80, 1<, 82, 1<< .

Also, a new dictionary entry has to be added, namely 8v, ? }={2,?} at address u = 4.

Pointer 2 in this new entry 82, ? < points at the entry with address 2 in the dictionary, which is80, 1< . This entry tells us that the last symbol of the previous string was a 1 and that for the
preceding part we need to go to the dictionary entry with address 0. This entry is 80, « < , so we
are done. The decoded string is just "1".

The new dictionary is given by 880, « <, 80, 0<, 80, 1<, 82, 1<, 82, ? }}.

The third received symbol is v = 1.

To fill in the question mark in the current dictionary, we look at the entry in the dictionary with
address v = 1. This entry is 80, 0< . Its source symbol gives the value of the question mark. So, we
get the following dictionary 880, « <, 80, 0<, 80, 1<, 82, 1<, 82, 0<< .

Also, a new dictionary entry has to be added, namely 8v, ? }={1,?} at address u = 5.

Pointer 2 in this new entry 81, ? < points at the entry with address 1 in the dictionary, which is80, 0< . This entry tells us that the last symbol of the previous string was a 0 and that for the
preceding part we need to go to the dictionary entry with address 0. This entry is 80, « < , so we
are done. The decoded string is just "1".

The new dictionary is given by 880, « <, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, ? }}.

The fourth received symbol is v = 5.

To fill in the question mark in the current dictionary, we look at the entry in the dictionary with
address v = 5. This entry is 81, ? < . The pointer 1 in this entry refers to another entry in the
dictionary, namely with address 1, so to entry 80, 0< . Pointer 0 in this entry means that we are at

102 FUNDAMENTALS OF CRYPTOLOGY

the root of a string. The source symbol of entry 80, 0< tells us that ? =0. So, we get the following
dictionary 880, « <, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<< .

Also, a new dictionary entry has to be added, namely 8v, ? }={5,?} at address u = 6.

Pointer 5 in this new entry 85, ? < points at the entry with address 5 in the dictionary, which is81, 0< . This entry tells us that the last symbol of the previous string was a 0 and that for the
preceding part we need to go to the dictionary entry with address 1. This entry is 80, 0< , so the
preceding source symbol is 0 and we are pointed to 80, « < . This means that we are done and that
the decoded string is just "00".

The new dictionary is given by 880, « <, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, ? }}.

The reader is invited to continue this process.

6.4 Problems

Problem 6.1
Decode the string 01100111111111100011, which has been made with the code in Example 6.1.

Problem 6.2
Apply the Huffman algorithm to the plaintext source  that generates the symbols a, b, c, d, e, f , g , and
h independently with probabilities 1/2, resp. 1/4, 1/8, 1/16 1/32, 1/64, 1/128 and 1/128.
What is the expected number of bits needed for the encoding of one letter? Compare this with the entropy
of the source.

Problem 6.3 M

Duplicate Example 6.3 for the plaintext source  that generates the symbols a, b, c, d, e, f , g , and h
independently with probabilities 1 ê3, resp. 1 ê4, 1 ê6, 1 ê12, 1 ê15, 1 ê20, 1 ê30, and 1 ê60.

Problem 6.4
Apply the Welch variant of the Lempel-Ziv encoding procedure to the binary sequence
0000000000000000.
Demonstrate the first 5 steps of the decoding process.

Data Compression Techniques 103

104 FUNDAMENTALS OF CRYPTOLOGY

7 Public-Key Cryptography

7.1 The Theoretical Model

7.1.1 Motivation and Set-up

In modern day communication systems, conventional cryptosystems turned out to have two
essential disadvantages.

i) The problem of key management and distribution.

A communication system with n users, who all use a conventional cryptosystem to communicate

with each other, implies the need of Jn
2
N keys and Jn

2
N secure channels.

Whenever a user wants to change his keys or a new user wants to participate in the system n - 1
(resp. n) new keys have to be generated and distributed over as many secure channels.

ii) The authentication problem.

In computer controlled communication systems the electronic equivalent of a signature is needed.
Conventional cryptosystems do no provide this feature in a natural way, especially when there is a
conflict between sender and receiver, it is impossible to decide who is right. Any message made
by one of them could also have been made by the other.

These disadvantages prompted researchers to look for a different kind of cryptosystem.

In [DifH76], W. Diffie and M.E. Hellman published their pioneering work on public-key
cryptosystems. See Figure 7.1, where their system is depicted.

Ann Encryption Decryption Bob

Key Source Eve

m PBHmL=c SBHcL=m

PB

Figure 7.1

A public-key cryptosystem for encryption.

Public Key Cryptography 105

Every user U of the cryptosystem makes a pair of matching algorithms PU and SU (or gets them
from a trustworthy authority). These algorithms operate on elements of later to be defined sets.

Algorithm PU has to be made public by U , while algorithm SU has to be kept secret by U .
Depending on the application, these algorithms must satisfy some of following properties:

PK1 PU and SU are efficient algorithms, i.e. they do not need much computing time or
memory space.

PK2 SU HPU HmLL = m , for every user U and for each possible message m .

PK3: It is infeasible to find an algorithm SU
* from PU that satisfies SU

* HPU HmLL = m for all m .

PK4 PU HSU HmLL = m , for every user U and for each possible message m .

PK5: It is infeasible to find an algorithm SU
* from PU that satisfies PU

* HSU HmLL = m for all m .

Properties PK3 and PK5 are not precisely formulated. Their precise meaning depends too much on
the application and may vary in time.

7.1.2 Confidentiality

We assume that properties PK1, PK2, and PK3 hold.

If Alice wants to send an encrypted message m to Bob, she first looks up the public (encryption)
algorithm PB of Bob. She encrypts m by applying algorithm PB to m . So, she sends to Bob:

c = PBHmL .

Bob recovers m from the received ciphertext c by applying his (secret) algorithm SB to c . Indeed,

SBHcL = SBHPBHmLL =
PK2 m .

To make the system practical to use, property PK1 must hold. It is for the security of the system
that property PK3 has to be required.

PK3 makes it possible to publish the (encryption) algorithms PU without endangering the privacy
of the transmitted messages.

We summarize the encryption scheme in the following table.
Public PU of all users U
Secret SU to all users, except U

Properties PK1, PK2, PK3

Encryption of m by Ann PB HmL = c
Decryption of c by Bob SB HcL = m

Table 7.1

A public-key cryptosystem used for privacy.

106 FUNDAMENTALS OF CRYPTOLOGY

If a user U wants to change his personal key, he simply generates a new set of matching
algorithms PU and SU satisfying PK1, PK2 and PK3 and makes PU public. The same has to be
done when a new user wants to participate in the communication system.

In [DifH76], the authors suggest to use trapdoor, one-way function for the encryption. A one-way
function is a function f : A Ø B with the following properties:

F1) f HaL is easy to evaluate for any a œ A ,
F2) it is computationally infeasible to compute f ≠HbL for almost all b œ B .

A trapdoor, one-way function is a one-way function f satisfying the further property that

F3) f ≠HbL , b œ B , is easy to compute given certain additional information.

Property F1 makes such a function practical to use, while property F2 makes f safe to use for
encryption purposes. Property F3 makes decryption by the receiver possible.

In daily life a telephone book can be used as a one-way function; given a name one can easily find
the corresponding telephone number but not the other way around. Looking up a telephone
number of a person amounts to finding the name of that person. This takes log2 L operations, if L
is the number of names in the telephone guide. Finding the name if the telephone number is given
means going through the whole book, name after name. The complexity is L . Property F2 is based
on the exponential relation between log2 L and L .

One-way functions f are also used to check the authenticity of a person that wants to get access to
something. Each user U has his own PIN code xU , but in a central computer only the name of U
is stored together with the value yU = f HxU L .

When U wants to get access he needs to give his name and xU . The value f HxU L will be evaluated
and sent to the computer. If this values matches yU , user U can get access, otherwise not. The
advantage of this system is that the PIN codes xU do not need to be stored in the computer. So,
anybody who can read out the memory of the computer can still not determine the PIN codes.

In Chapters 8, 9, and 12 we shall discuss various proposals for trapdoor one-way functions that
can be used to turn into a public-key cryptosystem. In the next chapter we shall meet a one-way
function, which does not have a trapdoor.

7.1.3 Digital Signature

We assume that properties PK1, PK4, and PK5 hold.

If Alice wants to sign a message m that she wants to send to Bob, she applies her own (secret)
algorithm SA to m , so she sends

c = SAHmL .

Bob recovers m from c by applying the publicly known algorithm PA to c . Indeed,

Public Key Cryptography 107

PAHcL = PAHSAHmLL =
PK4 m .

The value c can be used by Bob as signature for m , because, by PK5, Alice is the only person who
can compute c from m , i.e. only she can make a c from a given message m such that PAHcL = m .

The converse however is possible: everybody is able to find a pair Hm, cL such that c carries m 's
signature, i.e. such that PAHcL = m: simply take any c and compute m = PAHcL .

So, Alice has to make sure that a randomly selected c has a negligible probability of leading to a
useful message PAHcL = m . This can quite easily be achieved by assuming some structure in each
message m , e.g. start with the time and date.

We summarize this signature system explained above in the following table.
Public PU of all users U
Secret SU to all users, except U

Properties PK1, PK4, PK5

Signing of m by Ann SA HmL = c
Verification of c by Bob PA HcL = m

Table 7.2

A public-key cryptosystem used
for signing a message.

Note that anybody else can also verify Alice's signature by computing PAHcL , so there is no
secrecy.

7.1.4 Confidentiality and Digital Signature

We assume that properties PK1, PK2, PK3, PK4, and PK5 hold.

If Alice wants to send message m in encrypted form with her own signature to Bob, she combines
the techniques of Subsections 7.1.2 and 7.1.3. Thus, she uses her own secret algorithm SA and the
public algorithm PB of Bob to send

c = PBHSAHmL .

Bob recovers m from c by applying PA SB to c . Indeed,

PAHSBHcLL = PAHSBHPBHSAHmLLLL =
PK2 PAHSAHmLL =

PK4 m .

Although everybody can look up the public PB , it is only Bob who can recover m from c , because
only Bob knows SB .

Bob keeps the pair SBHcL , which is SBHPBHSAHmLLL , i.e. SAHmL , as Alice's signature on m , just like in
Subsection 7.1.3.

We summarize this in the following table.

108 FUNDAMENTALS OF CRYPTOLOGY

Public PU of all users U
Secret SU to all users, except U

Properties PK1, PK2, PK3, PK4, PK5

Ann sends PB HSA HmLL = c
Bob computes
Bob saves

PA HSB HcLL = m
SB HcL = SA HmL

Table 7.3

A public-key cryptosystem used
for encryption and signing.

7.2 Problems

Problem 7.1
In a communication network every user U has its own public encryption algorithm PU and secret
decryption algorithm SU . A message m from user A (for Alice) to user B (for Bob) will always be sent in
the format Hc, AL , with c = PBHmL .
The name of the sender in this message tells Bob from whom the message originates.
Bob will retrieve m from Hc, AL , by computing SBHcL = SBHPBHmLL = m (see PK2), but Bob will also
automatically send HPAHmL, BL back to Alice (note that HPAHmL, BL has the same format as HPBHmL, AL). In
this way, Alice knows that her message has been properly received by Bob.

a) Show how a third user E (for Eve) of the network can retrieve message m that was sent by Alice to Bob.
You may assume that Eve can intercept all messages that are communicated over the network, and that Eve
can also transmit her own texts, as long as they have the right format.

b) Show that communication over this network is still not safe if the protocol is such that Alice sends
PBHHPBHmL, ALL to Bob and that Bob automatically sends PAHHPAHmL, BLL back to Alice.

Public Key Cryptography 109

110 FUNDAMENTALS OF CRYPTOLOGY

8 Discrete Logarithm Based Systems

8.1 The Discrete Logarithm System

8.1.1 The Discrete Logarithm Problem

In [DifH76], Diffie and Hellman propose a public-key distribution system which is based on the
apparent difficulty of computing logarithms over the finite field GFHpL , p prime, which is also
often denoted by p or p . The reader, who is not familiar with the theory of finite fields is
referred to Appendix B.

Let a be a primitive element (or generator) of GFHpL . So, each nonzero element c in GFHpL can be
written as

(8.1)c = am

where m is unique modulo p - 1.

Example 8.1

In GF(7) the element a = 3 is a primitive element, as can be checked from 32 ª 2 Hmod 7L , 33 ª 6 Hmod 7L ,
34 ª 4 Hmod 7L , 35 ª 5 Hmod 7L , and 36 ª 1 Hmod 7L .

This can be done at once with

Mod@3^81, 2, 3, 4, 5, 6<, 7D

83, 2, 6, 4, 5, 1<
Example 8.2

In GFH197L, the element a = 2 is primitive. Such an element can be found with the Mathematica function
PowerList (for which the package Algebra`FiniteFields first has to be initialized). This function
finds a primitive element in p and generates all its powers (starting with the 0-th). The second element in
this list is the primitive element itself.

<< Algebra`FiniteFields`

Discrete Logarithm Based Systems 111

p = 197;
PowerList@GF@p, 1DD@@2DD

82<
To check that 2 is a primitive element modulo 197 is a lot easier. The multiplicative group 197

*

has order 196, so each element has an order dividing 196 (see Theorem B.5).

With the function FactorInteger one can find the different prime factors of 196.

FactorInteger@196D

882, 2<, 87, 2<<
It now follows from

PowerMod@2, 196ê7, 197D == 1
PowerMod@2, 196ê2, 197D == 1

False

False

that the order of 2 modulo 197 does not divide 196 ê2 or 196 ê7, so the order must be 196.

If m is given, c can be computed from (8.1) with 2. `log2 pp multiplications (see [Knut81], pp.
441-466). One can realize this by creating the table a, a2, a22, a23, …, a2`log2 pp-1 (each is the
square of the previous one) and multiplying elements from this table, whose exponents add up to
m . To this end the binary representation of m can be used.

Example 8.3

Take m=171. Its binary expansion is 10101011, as follows from the Mathematica function
IntegerDigits.

IntegerDigits@171, 2D

81, 0, 1, 0, 1, 0, 1, 1<
So, now one has a 171 = a 128.a 32. a 8.a 2.a .

This calculation can also be done on the fly. The leftmost 1 in the binary representation of m

112 FUNDAMENTALS OF CRYPTOLOGY

stands for a. Each subsequent symbol (from the left) in the binary representation implies a
squaring of the previous result, but if this symbol is a 1 also an additional multiplication by a has
to be performed.

Clear@aD;
i
k
jjjjj
i
k
jjjjJJIHHaL2L

2
 aM2N

2
 aN

2y
{
zzzz
2

 a
y
{
zzzzz
2

 a

a171

If one has to perform the same modular exponentiation many times, for instance on a smart card
implementation, there are ways to do this with fewer multiplications.

Definition 8.1
An addition chain for an integer m is a sequence of integers
a1 = 1 < a2 < … < al-1 < al = m , with the property that each ak , 2 § k § l , is the sum of
two (not necessarily different) preceding ai 's.
The index l is called the length of the chain.

The way that addition chains are used for (modular) exponentiation, is clear. If ak = ai + a j , then
aak = aai .aa j . Hence, am = aal can now be computed recursively.

It is, in general, not obvious how the shortest addition chain of an integer m can be found. See
[Knut81], Section 4.6.3 and [Bos92], Chapter 4.

Example 8.4

An addition chain for m = 15 is the sequence 1,2,3,6,12,15.

Note that the calculation of a 15 involves 5 multiplications with this addition chain and 6 multiplications
with the binary method explained before.

In Mathematica the PowerMod function is a fast way to compute modular exponentiations.

a = 2; m = 171111111; p = 197888888;
PowerMod@a, m, pD

55895160

The opposite problem of finding m satisfying (8.1) from c , is not so easy. It is called the discrete
logarithm problem, because in p the exponent m can be written like m = loga c .

In [Knut73], pp.9, 575-576, one can find an algorithm that solves the logarithm problem. It
involves roughly c1

è!!!!p operations and c2
è!!!!p bits of memory space (where c1 and c2 are some

constants). In Theorem 8.1 a more precise analysis of this algorithm will be given. Writing

Discrete Logarithm Based Systems 113

t = log2 p (and forgetting about the constants), one gets the following exponential relation
between exponentiation and taking logarithms.

Table 8.1

exponentiation t
taking logarithms 2tê2

The computational discrepancy between
exponentiation and taking logarithms

8.1.2 The Diffie-Hellman Key Exchange System

We shall now describe how the discrepancy in computing time between exponentiation and taking
logarithms, as depicted in Table 8.1, can be used to execute a key exchange protocol of a "public-
key cryptography"-type. Such a protocol is a method for two parties who do not share a common
secret key to agree on a common key in a secure manner.

Setting up the system:

1) All participants share as system parameters a prime number p and a primitive element
(generator) a in GF HpL .

2) Each participant P chooses an integer mP , 1 < mp § p - 2, at random, computes cP = amP and
puts cP in the public key book. Participant P keeps mP secret.

Using the system:

Let us now assume that Alice (A for short) and Bob (B) want to communicate with each other
using a conventional cryptosystem, but that they have no secure channel to exchange a key. With
the public key book, they can agree on the common secret key

kA,B = amA mB .

Alice can compute kA,B by raising the publicly known cB of Bob to the power mA , which only she
knows herself. Indeed,HcBLmA = HamBLmA = amA mB = kA,B .

Similarly, Bob finds kA,B by computing HcALmB .

If somebody else (Eve) is able to compute mA from cA (or mB from cB), she can compute the key
kA,B just like Alice or Bob did. By taking p sufficiently large, the computation time of solving this
logarithm problem will be prohibitively large. Diffie and Hellman suggest to take p about 100 bits
long. A different way of finding kA,B from cA and cB does not seem to exist.

There is no obvious reason to restrict the size of the finite field to a prime number. So, from now
on the size of the field can be any prime power q = pe (see Theorem B.16 or Theorem B.20).

114 FUNDAMENTALS OF CRYPTOLOGY

In [Lune87], Chapter XIII, efficient algorithms to find primitive elements in finite fields are
described. See also Problem B.6 and Problem B.10.

We summarize the key distribution system in Table 8.2.

Table 8.2

system
parameters

field size q
primitive element α

secret key of P mP
public key of P cP = αmP

common key of A and B kA,B = αmA mB

Ann computes HcBLmA
Bob computes HcALmB

The Diffie-Hellman Key Exchange System

Example 8.5 (Part 1)

Let p = 197 and a = 2.

Alice chooses as a random secret exponent mA = 56 and Bob as a random secret exponent mB = 111. They
compute their public key with the PowerMod function.

cA = PowerMod@2, 56, 197D
cB = PowerMod@2, 111, 197D

178

82

Alice can compute the common key with Bob by raising the publicly known cB to the power mA ,
which she only knows. She gets:

PowerMod@82, 56, 197D

114

 Bob gets the same common key by raising cA to the power mB . Indeed, he gets:

PowerMod@178, 111, 197D

114

Discrete Logarithm Based Systems 115

8.2 Other Discrete Logarithm Based Systems

8.2.1 ElGamal's Public-Key Cryptosystems

In [ElGa88], two public-key systems are described that are based on the discrete logarithm
problem. One can be used for encryption purposes, the other as a signature scheme.

In both systems the transmitted text is longer than the plaintext.

É Setting It Up

As system parameters, all participants share a prime number p and a generator (primitive element)
a of the multiplicative group p

* . The generalization to finite fields is straightforward and will be
omitted.

A variation that one sees quite often is to consider q
* with q prime and an element a œ q

* of
large prime order, say p , instead of taking a primitive element. Note that by Theorem B.5, p must
divide q - 1.

Each participant P chooses an integer mP , 1 § mp § p - 1, at random, computes cP = amP Hmod pL
and makes cP public. Participant P keeps mP secret.

As a variation, each participant can also choose his own finite field and primitive element a,
instead of having them as system parameters, but there seems to be little reason to do so.

É ElGamal's Secrecy System

Encryption of a message for Bob.

Suppose that Alice wants to send a private message u to Bob. The message is represented by an
integer u in 80, 1, …, p - 1< .

Alice selects a random integer r and computes R = ar .

Next, Alice computes S = u.cB
r .

Alice sends to Bob, the pair HR, SL .

Decryption by Bob.

Bob receives the pair HR, SL and can quite easily retrieve the message u with his own secret mB

with the following calculation:

S ê RmB = u.cB
r ê ar.mB = u.ar.mB ê ar.mB = u .

116 FUNDAMENTALS OF CRYPTOLOGY

Example 8.5 (Part 2)

We continue with Example 8.5. We have p = 197 , a = 2 and cB = 82 as public parameters.

The number mB = 111 is only known to Bob.

Suppose that Alice wants to encrypt message u=123 for Bob.

Let r = 191 be the random integer chosen by Alice (it is coprime with p - 1).

Alice sends the pair (R, S) computed by

p = 197; a = 2; cB = 82;
r = Random@Integer, 80, p − 2<D
u = 123;
R = PowerMod@a, r, 197D
S = Mod@PowerMod@cB, r, 197D∗u, pD

60

90

20

To decrypt, Bob computes S ê RmB mod p with his own secret mB = 111 by means of the
Mathematica functions Mod and PowerMod. Note that PowerMod@a, -1, pD computes the
multiplicative inverse of a modulo p (see Subsection A.3.3).

mB = 111;
Mod@S∗PowerMod@PowerMod@R, mB, pD, −1, pD, pD

123

An eavesdropper can not determine r from R , since we assume that taking logarithms is
intractable. For that reason, this eavesdropper is not able to divide out HcBLr from S (to obtain the
secret u).

É ElGamal's Signature Scheme

Signing of a message by Alice.

Suppose that Alice wants to send a signed message u to Bob. The message is again represented by
an integer u in 80, 1, …, p - 2< .

Discrete Logarithm Based Systems 117

Alice selects a random integer r that is relatively prime to p - 1 and computes R = ar .

Next, Alice uses her secret exponent mA to compute S satisfying

(8.2) u ª mA R + r.S Hmod p - 1L .

Alice can use the extended version of Euclid's Algorithm to find S efficiently.

Alice sends to Bob the triple Hu, R, SL , where the pair HR, SL serves as signature on the message u .

Verification of the signature by Bob.

Bob receives the signature HR, SL together with the message u .

Bob checks this signature by verifying that

au ª HcALR RS Hmod pL .

This relation has to hold because by (8.2)

 au ª amA R.ar.S ª HamALR.HarLS ª HcALR.RS Hmod pL .

Example 8.5 (Part 3)

Continuing with Example 8.5, where we have p = 197 , a = 2 and cA = 178 as public parameters.

The number mA = 56 is only known to Alice.

Suppose that Alice wants to sign message u=123 for Bob.

Let r = 97 be the random integer chosen by Alice (it is coprime with p - 1).

Alice computes

p = 197; a = 2; mA = 56;
r = 97; u = 123; S =.;
R = PowerMod@a, r, 197D
S ê. Solve@8r S == u − mA ∗R, Modulus == p − 1<, SD@@1DD

98

171

to find the signature HR, SL = H98, 171L that she adds to her message u.

Bob checks this signature by verifying a u ª HcALR RS Hmod pL:

cA = 178; R = 98; S = 171;
PowerMod@a, u, pD ==

Mod@ PowerMod@cA, R, pD∗PowerMod@R, S, pD, pD

118 FUNDAMENTALS OF CRYPTOLOGY

True

8.2.2 Further Variations

In the ElGamal scheme, the signature on a message u consists of two parts: R , being ar with r
random, and S , being a solution of u ª mA R + r.S Hmod p - 1L (see (8.2)). Of course one can vary
this so-called signature equation.

The next three variations do exactly this. The reader that wants to know more about them than is
presented below is referred to [MeOoV96] and [Schne96].

É Digital Signature Standard

In the Digital Signature Standard (see [FIPS94]) the signature equation is given by:

r.S ª u + mA .R Hmod p - 1L.
The system is designed by the National Security Agency (NSA) and adopted as standard by the
National Institute of Standards and Technology (NIST).

DSS adds two sequences of 160 bits each to the end of a document as guarantee of its authenticity
and integrity. To this end, it first compresses the document to a sequence of 160 bits by means of a
cryptographically secure hash function (see Section 13.2), called the Secure Hash Algorithm (see
[MeOoV96], $9.53 and [Schne96]).

To set up the system the following joint parameters are chosen:

i) A prime number q whose binary representation has a word length that is divisible by
64 and lies between 512 and 1024.

ii) A prime factor p of q - 1 that is 160 bits long.

iii) A value g = HhHq-1Lêp mod qL , where h is less than q - 1, such that g is greater than 1.

Since gp ª hq-1 ª 1 Hmod qL by Fermat's Theorem (A.15), it follows that the multiplicative order
of g divides p . On the other p is prime, therefore, g has multiplicative order p itself (see also
Theorem B.5).

Each user U chooses a secret exponent mU , computes cU ª gmU Hmod qL and makes cU public.

When Alice wants to sign a file M , she first computes its 160 digits long hash value hHM L with the
Secure Hash Algorithm.

Next, she chooses a random number r < p and adds as signature to M the numbers R and S , both
of length 160, defined by:

R = HHgr mod qL mod pL ,
S.r = HhHM L + mA R Hmod pL .

Discrete Logarithm Based Systems 119

A receiver can check the authenticity and integrity of the received message M by evaluating:

w ª S-1 Hmod pL ,
x ª hHM L.w Hmod pL ,
y ª R.w Hmod pL ,
U = HHgx.HcALy mod qL mod pL .

If R = U the document will be accepted as genuine and coming from Alice. By a simple
substitution one can verify that the relation u = U indeed should hold.

The function of the random number r above is to hide the secret key of Alice.

É Schnorr's Signature Scheme

In Schnorr's signature scheme [Schno90] the signature equation (see (8.2) is given by:

S ª mA R + r Hmod p - 1L.
É The Nyberg-Rueppel Signature Scheme

The Nyberg-Rueppel signature scheme [NybR93] is slightly different from the others. Here, R is
defined by

R = u.ar with r random.

The signature equation (see (8.2) is given by:

S ª mA R - r Hmod p - 1L.
In the Nyberg-Rueppel scheme, the message u can be retrieved directly from R and S , since

u ª R.a-r ª R.aS-mA R ª R.aS ê HamALR ª R.aS ê cA
R Hmod pL.

If u is not the hash value of a much longer other file, this feature is an advantage, because only R
and S have to be sent.

8.3 How to Take Discrete Logarithms
When one has to take a logarithm in GFHqL , the most obvious way to reduce the workload is to
factor q - 1 in prime power factors, compute the logarithm for each of these factors, and then
combine the results with the Chinese Remainder Theorem (Thm. A.19). In Subsection 8.3.1, this
method will be demonstrated for a particular technique.

As we have said before, discrete logarithm based systems are often set up in a multiplicative
subgroup of GFHqL . This generalization does not affect the methods that will be discussed in this
section.

120 FUNDAMENTALS OF CRYPTOLOGY

8.3.1 The Pohlig-Hellman Algorithm

In [PohH78], Pohlig and Hellman demonstrate that discrete logarithms can be taken much faster
than in è!!!q operations, if q - 1 has only small prime divisors. We shall first demonstrate this
method for two special cases.

É Special Case: q - 1 = 2n

Examples of prime numbers that are a power of 2 plus one are given by q = 17, q = 257, and
q = 216 + 1.

n = 16; PrimeQ@2n + 1D

True

So, let a be a primitive element in a finite field GFHqL . The problem is to find m , 0 § m § q - 2,
satisfying (8.1) for given value of c .

Let m0, m1, …, mn-1 be the binary representation of the unknown m , i.e.

m = m0 + m1 2 + … + mn-1 2n-1 , mi œ 80, 1<, 0 § i § n - 1.

Of course, it suffices to compute the unknown mi 's. Since a is a primitive element of GFHqL we
know (see also Theorem B.21) that aq-1 = 1 and ai ∫ 1 for 0 < i < q - 1.

It also follows that aHq-1Lê2 = -1, because the square of aHq-1Lê2 is 1, while aHq-1Lê2 ∫ 1. (We also
use here that by Theorem B.15 the quadratic equation x2 = 1 has ≤1 as only roots.) Hence

cHq-1Lê2 = HamLHq-1Lê2 = amHq-1Lê2 = aIm0+m1 2+…+mn-1 2n-1M Hq-1Lê2
=

a prim.
am0Hq-1Lê2 = 9 +1,

-1,
if m0 = 0,
if m0 = 1.

Therefore, the evaluation of cHq-1Lê2 in GFHqL , which takes at most 2. `log2 qp multiplications, as
we have seen in Subsection 8.1.1), yields m0 .

Compute c1 = c.a-m0 . Now m1 can be determined in the same way as above from

c1
Hq-1Lê4 = aIm1 2+m2 22+…+mn-1 2n-1M Hq-1Lê4

= am1Hq-1Lê2 = 9 1,
-1,

if m1 = 0,
if m1 = 1.

Compute c2 = c1.a-2 m1 = c.a-Hm0+m1 2L and determine m2 from Hc2LHq-1Lê8 . Repeat this process until
also mn-1 (and thus m) has been determined.

The above algorithm finds m from c in at most

Discrete Logarithm Based Systems 121

n.H2. `log2 qp + 2L º 2. Hlog2 qL2 º 2 n2,

operations, where the term +2 comes from the evaluation of the ci 's (in the i-th step a-2i-1 has to
be squared and the outcome may or may not have to be multiplied to ci-1).

Comparing with Table 8.1, we observe that in the current case (i.e. q = 2n + 1), the discrepancy
between the computational complexity of using the Diffie-Hellman scheme (one exponentiation
involving 2 n multiplications) and breaking it (º 2 n2 multiplications) is quadratic, which is not
significant enough to make the system secure.

Remark:

Note that when q - 1 = s .2t , s odd, the t least significant bits of m can be found in exactly the
same way.

Example 8.6

Consider the equation 3m ª 7 mod 17. So, q = 17, a = 3, and c = 7. Note that a -1 = 6.

Writing m = m0 + 2 m1 + 4 m2 + 8 m3 , we find m0 by evaluating cHq-1Lê2 mod q.

PowerMod@7, 8, 17D

16

Since this is -1 we know that m0 = 1. Compute c1 ª c ê3 ª 6. c ª 8 mod 17. Then m1 can be
found from c1

Hq-1Lê4 mod q

PowerMod@8, 4, 17D

16

Again this is -1, so m1 = 1. Compute c2 ª c1 ê32 ª 62.c1 ª 16 mod 17. Then m2 can be found
from c2

Hq-1Lê8 mod q

PowerMod@16, 2, 17D

1

Since the outcome is 1, we have m2 = 0. So, c3 = c2 and m3 can be found from c3
Hq-1Lê16 mod q

PowerMod@16, 1, 17D

122 FUNDAMENTALS OF CRYPTOLOGY

16

We now also have m3 = 1 and thus m = 1.20 + 1.21 + 0.22 + 1.23 = 11. We can check this with:

PowerMod@3, 11, 17D

É General Case: q - 1 has only small prime factors

Let q - 1 = ¤i=1
k pi

ni , where the pi 's are different primes and the exponents ni are strictly positive
(see the Fundamental Theorem in Number Theory, Thm. A.6). We assume that all pi 's are small.
Later we shall say precisely what we mean by that.

Instead of solving m from (8.1) directly, we shall determine

(8.3) mHiL ª m Hmod pi
niL , 1 § i § k .

With the Chinese Remainder Theorem (Thm. A.19) one can compute m efficiently from these
mHiL 's.

To determine mH1L (the others mHiL 's can be found in the same way) we write it in its p1 -ary
representation. For the sake of convenience we drop all the sub- and superscripts referring to the
i = 1 case.

mH1L = m0 + m1 p + … + mn-1 pn-1 , ml œ 80, 1, …, p - 1<, 0 § l § n - 1.

Similarly to the Special Case (k = 1, p = 2), we will find the coefficients mi by single
exponentiations.

Coefficient m0 can be found by evaluating cHq-1Lêp . From Theorem B.21 it follows thatHcHq-1LêpLp = 1, which implies that cHq-1Lêp is a p-th root of unity.

Define the primitive p-th root of unity w by w = aHq-1Lêp and make a table of 1, w, w2, …, wp-1 .
Then, because m ª mH1L mod pn and mH1L ª m0 mod p , we have

cHq-1Lêp = HamLHq-1Lêp = amHq-1Lêp = amH1LHq-1Lêp = am0Hq-1Lêp = wm0 .

So, a simple table lookup of cHq-1Lêp will yield m0 .

To determine m1 , we first compute c1 = c.a-m0 and then evaluate c1
Hq-1Lêp2 , etc., until mH1L has

been determined. Similar calculations have to be made to determine the other mHiL 's.

For this algorithm, we have to make tables of the powers of the primitive p-th roots of unity for all
the prime factors of q - 1.

The values of these factors have to be small enough to be able to store them.

Each time that we want to take a logarithm the algorithm will have to take ⁄i=1
k ni exponentiations,

therefore, the algorithm involves⁄i=1
k 2. `log2 qp.ni º 2. log2 q.H⁄i=1

k niL § 2 Hlog2 qL2

Discrete Logarithm Based Systems 123

operations, if we forget about the lower order terms. Again we have a quadratic relation between
using the Diffie-Hellman key-exchange system and breaking it.

É An Example of the Pohlig-Hellman Algorithm

Example 8.7

Consider Equation (8.1) with q = 8101, primitive element a=6.

Note that q is a prime number, so GFHqL = 8101 .

Preliminary Calculations.

First of all we factor q - 1 and compute the multiplicative inverse of 6 modulo 8101 with the
Mathematica functions FactorInteger and PowerMod.

q = 8101; a = 6;
FactorInteger@q − 1D
x = PowerMod@a, −1, qD

882, 2<, 83, 4<, 85, 2<<
6751

So, q - 1 = 22 .34 .52 and a -1 = 6751.

Next we use the PowerMod function again to calculate the primitive 2-nd, 3-rd and 5-th roots of
unity: w1 = 6H8101-1Lê2 = 64050 , w2 = 6H8101-1Lê3 = 65883 , and w3 = 6H8101-1Lê5 = 61620 :

q = 8101; a = 6;
Om1 = PowerMod@a, Hq − 1Lê 2, qD
Om2 = PowerMod@a, Hq − 1Lê 3, qD
Om3 = PowerMod@a, Hq − 1Lê 5, qD

8100

5883

3547

So, w1 = 8100, w2 = 5883, and w3 = 3547. With the Table function we make the following three
tables:

124 FUNDAMENTALS OF CRYPTOLOGY

q = 8101; a = 6;
Om1 = PowerMod@a, Hq − 1Lê 2, qD;
Om2 = PowerMod@a, Hq − 1Lê 3, qD;
Om3 = PowerMod@a, Hq − 1Lê 5, qD;
Table@PowerMod@Om1, i, qD, 8i, 0, 1<D
Table@PowerMod@Om2, i, qD, 8i, 0, 2<D
Table@PowerMod@Om3, i, qD, 8i, 0, 4<D

81, 8100<
81, 5883, 2217<
81, 3547, 356, 7077, 5221<

Hence, we have tables

p1 = 2 i 0 1Hω1Li 1 8100

p2 = 3 i 0 1 2Hω2Li 1 5883 2217

p3 = 5 i 0 1 2 3 4Hω3Li 1 3547 356 7077 5221

The preliminary work for the Chinese Remainder Theorem consists of solving the following three
systems of linear congruence relations:looomnooo u ≡ 1 Hmod 4L

u ≡ 0 Hmod 81L
u ≡ 0 Hmod 25Llooomnooo v ≡ 0 Hmod 4L
v ≡ 1 Hmod 81L
v ≡ 0 Hmod 25Llooomnooo w ≡ 0 Hmod 4L
w ≡ 0 Hmod 81L
w ≡ 1 Hmod 25L

These three systems can be solved with the Mathematica function
ChineseRemainderTheorem for which we first have to load the package
NumberTheory`NumberTheoryFunctions`

<<NumberTheory`NumberTheoryFunctions`

Discrete Logarithm Based Systems 125

u = ChineseRemainderTheorem@81, 0, 0<, 84, 81, 25<D
v = ChineseRemainderTheorem@80, 1, 0<, 84, 81, 25<D
w = ChineseRemainderTheorem@80, 0, 1<, 84, 81, 25<D

2025

6400

7776

So, u ª 2025 Hmod 8100L , v ª 6400 Hmod 8100L , w ª 7776 Hmod 8100L .

This concludes the preliminary work.

Solving Equation (8.1) for: c = 7531, q = 8101.

We first determine mHiL = m mod pi
ni , 1 § i § 3, as defined in (8.2), with the method explained

above. Of course, the tables that we just made have to be consulted at each step.

First prime factor: p1 = 2, n1 = 2.

c = = 7531, cH8101−1Lê2 = 8100, m0 = 1,

c1 = c.α−1 = 8006, c1H8101−1Lê22 = 1 , m1 = 0.

Hence mH1L = 1 + 0.21 = 1.

Second prime factor: p2 = 3, n2 = 4.

c = = 7531, cH8101−1Lê3 = 2217, m0 = 2,

c1 = c.α−2 = 6735, c1H8101−1Lê32 = 1 , m1 = 0,

c2 = c1 = 6735, c2H8101−1Lê33 = 2217, m2 = 2,

c3 = c2.α−2.32 = 6992, c3H8101−1Lê34 = 5883, m3 = 1.

Hence mH2L = 2 + 0.31 + 2.32 + 1.33 = 47.

Third prime factor: p3 = 5, n3 = 2.

c = = 7531, cH8101−1Lê5 = 5221, m0 = 4,

c1 = c.α−4 = 7613, c1H8101−1Lê52 = 356 , m1 = 2.

Hence mH3L = 4 + 2.51 = 14.

The final solution m is given by:

m ª u.mH1L + v.mH2L + w.mH3L ª

Mod@2025∗1 + 6400∗47 + 7776∗14, 8100D

126 FUNDAMENTALS OF CRYPTOLOGY

6689

This can easily be checked.

PowerMod@6, 6689, 8101D

7531

In Mathematica, the precalculation of a, b, and c is not really necessary, because m can be
computed directly from mH1L, mH2L , and mH3L with the ChineseRemainderTheorem function:

ChineseRemainderTheorem@81, 47, 14<, 84, 81, 25<D

6689

If q - 1 has large prime factors, the dominant term in the workload of the Pohlig-Hellman
algorithm will be the ⁄i=1

k pi exponentiations necessary for the generation of the tables81, wi, …, wi
pi-1< , 1 § i § k , and the number ⁄i=1

k ni of exponentiations, necessary to determine
the mHiL 's.

In the next subsection, we shall explain a method to take logarithms if one (or more) of the prime
power factors of q - 1 is too large to store the tables in the Pohlig-Hellman method.

8.3.2 The Baby-Step Giant-Step Method

If one (or more) of the prime power factors of q - 1 is too large for the Pohlig-Hellman method,
the method below can be used. It gives the user full freedom to balance the length of the table that
he wants to store and the remaining workfactor.

We start with an example.

Example 8.8

Consider the equation 29m ª 30 Hmod 97L and assume that we can only store a table with 10 field elements.

We make a table of 29i mod 97 for i = 0, 1, …, 9 and we compute 29-1 mod 97 with the Mathematica
functions Table,PowerMod,GridBox, and Transpose.

Discrete Logarithm Based Systems 127

q = 97; a = 29;
powers = Table@8PowerMod@29, i, qD, i<, 8i, 0, 9<D;
GridBox@Transpose@powersD, RowLines −> True,
ColumnLines −> TrueD êê DisplayForm

x = PowerMod@a, −1, qD

1 29 65 42 54 14 18 37 6 77
0 1 2 3 4 5 6 7 8 9

87

We also find that 29-1 ª 87 Hmod 97L .

Writing m = 10 j + i , 0 § i § 9, we see that 29m ª 30 Hmod 97L can be rewritten as
29i ª 30.29-10. j Hmod 97L or as 29i ª 30.8710. j Hmod 97L . Since 8710 ª 49 Hmod 97L , we have the
equivalent problem of solving 29i ª 30.49 j Hmod 97L , 0 § i § 9.

We do this by trying j = 0, 1, … and each time checking if 30.49 j mod 97 occurs in the list of
powers 81, 29, 292, …, 299< Hmod 97L. Note that m < 97, so j § d97 ê10t = 9.

To facilitate the table lookup, we sort the elements in the table of powers with the function Sort.

sortedpowers = Sort@powersD;
GridBox@Transpose@sortedpowersD,
RowLines −> True, ColumnLines −> TrueD êê DisplayForm

1 6 14 18 29 37 42 54 65 77
0 8 5 6 1 7 3 4 2 9

Next, we try 30.49 j mod 97 until we see the answer appear in the table above. We use the
Mathematica functions, While, MemberQ, and Mod. We also print the corresponding column of
the table of sorted powers (j has to be decreased by 1, because we started the numbering of j with
0).

128 FUNDAMENTALS OF CRYPTOLOGY

j = 0;
While@MemberQ@sortedpowers, 8Mod@30∗49j, 97D, _<D == False,
j = j + 1D;

j
Mod@30∗49j, 97D

4

14

We conclude that j = 4 and that 30.49 j mod 97 occurs in table as 14, which is 295 mod 97 (hence
i = 5). Indeed

Mod@30∗494, 97D == Mod@295, 97D

True

It follows that m = 10 j + i = 10.4 + 5 = 45. Indeed, 2945 ª 30 mod 97, as can be easily checked
with:

PowerMod@29, 45, 97D

30

The above method will now be stated in full generality.

Theorem 8.1 Baby-Step Giant-Step Method
Let a be a primitive element of GFHqL . Let p be a divisor of q - 1 (not necessarily
prime) and define w = aHq-1Lêp . So, w is a primitive p-th root of unity.
Let c be any p-th root of unity. Then, for every (trade-off value) t , 0 § t § 1, one can
find the exponent m , 0 § m § p - 1, satisfying

c = bm

with an algorithm that uses
p1-tH1 + log2 ptL operations,
pt.log2 q bits of memory space,

and an initial calculation involving
pt.H1 + log2 ptLoperations.

Proof: Let u = `ptp . We make a table of the successive powers wi , 0 § i § u - 1. This requires
u º pt multiplications.

Next, we sort this table in pt log2 pt operations, see [Knut73], pp.184. Together this explains the

Discrete Logarithm Based Systems 129

number of operations in the precalculation.

Each of the u º pt field elements in the table needs log2 q bits of memory space. This explains the
memory requirement above.

Define i and j by

m = j.u + i , 0 § i < u º pt .

Observe that

0 § j § mÅÅÅÅÅÅu § pÅÅÅÅÅu º p1-t .

Of course solving c = wm is equivalent to finding i and j , 0 § i < u , satisfying

wi = c.w- j.u .

To solve this equation, we simply compute c.w-l.u , for l = 0, 1, … and check if the outcome
appears in the table. This will happen when l = j , so before l = `p1-t p .
For each value of l we have to perform 1 multiplication and a table look-up, which costs another
log2 pt operations.

Ñ

For t = 1 ê2 this algorithm reduces to the è!!!q (both for memory and time complexity) algorithm
that was mentioned at the end of Subsection 8.1.1.

The two extreme cases of the algorithm are:

t = 0: no table at all; all powers 1, b, b2, … need to be tried.

t = 1; complete table of 1, b, b2, …, bq-1 is present; only a single table look-up is needed.

Note that the product of computing time and bits of memory space in the above algorithm is more
or less constant.

8.3.3 The Pollard-r Method

The time complexity of the Pollard-r Method [Poll78] is the same as that of the Baby-Step Giant-
Step method explained in the previous section. The advantage lies in the minimal memory
requirements.

We shall explain the Pollard-r Method for the special case of a multiplicative subgroup G of
GFHqL of prime order. So, we want to solve m , 0 § m < p , from the equation c = am (see (8.1)),
where a œ GFHqL has order p , p prime, and where c œ GFHqL is some given p-th root of unity.
Note that p divides q - 1 by Theorem B.5..

Example 8.9 (Part 1)

To avoid calculations in a finite field, we take for q the prime number 4679. Note that q - 1 = 2 µ 2339.

130 FUNDAMENTALS OF CRYPTOLOGY

Further we observe that 11 is a primitive element of GFH4679L and thus that a = 11Hq-1Lê2339 = 112 = 121
is the generator of a multiplicative subgroup of order 2339. All these calculations can be easily checked
with the Mathematica functions PrimeQ, FactorInteger, PowerMod and the function
MultiplicativeOrder

MultiplicativeOrder@a_, n_D := If@GCD@a, nD == 1,
Divisors@ EulerPhi@nD D êê.

8x_, y___< −> If@PowerMod@a, x, nD == 1, x, 8y<D D;

that was introduced in Subsection B.4.1, but which is a standard function in Mathematica 4.

q = 4679;
PrimeQ@qD
FactorInteger@q − 1D
MultiplicativeOrder@11, qD
PowerMod@11, 2, qD
MultiplicativeOrder@121, qD

True

882, 1<, 82339, 1<<
4678

121

2339

Further on, we shall continue with this example, when we want to solve the equation

121m ª 3435 Hmod 4679L .

Note that this equation must have a solution, since 3435 is indeed a 2339-th root of unity in
GFH4679L . Indeed, all 2339-th roots of unity are a zero of x2339 - 1 and by Theorem B.15 there
are no other zeros of this polynomial.

PowerMod@3435, 2339, 4679D

1

Discrete Logarithm Based Systems 131

In order to solve c = am , we partition the multiplicative subgroup G of GFHqL of order p , in three
subsets Gi , i = 0, 1, 2, as follows:

x œ Gi ó x ª i Hmod 3L .

We define a sequence 8xi<i¥0 in GFHqL recursively by x0 = 1 and

(8.4) xi+1 = f HxiL =
loooomnoooo Hxi

2 mod qL,Hc.xi mod qL,Ha.xi mod qL, if xi œ G0,
if xi œ G1,
if xi œ G2.

With the sequence 8xi<i¥0 we associate two other sequences 8ai<i¥0 and 8bi<i¥0 in such a way that
for all i ¥ 0

xi = aai cbi .

To this end, take a0 = b0 = 0 and use the recursions

ai+1 =
looomnooo H2 ai mod pL,

ai,Hai + 1 mod p,

if xi œ G0,
if xi œ G1,
if xi œ G2.

bi+1 =
looomnooo H2 bi mod pL,Hbi + 1 mod pL,

bi,

if xi œ G0,
if xi œ G1,
if xi œ G2.

Note that by induction

xi+1 = xi
2 = Haai cbiL2 = a2 ai c2 bi = aai+1 cbi+1 , if xi œ G0 ,

xi+1 = c.xi = c.aai cbi = aai+1 cbi = aai+1 cbi+1 , if xi œ G1 ,
xi+1 = a.xi = a.aai cbi = aai cbi+1 = aai+1 cbi+1 , if xi œ G2 .

As soon as we have two distinct indices i and j with xi = x j we are done, because this would
imply that aai cbi = aa j cb j and thus that aai-a j = cb j-bi . Provided that bi ∫ b j , we have found the
solution m ª Ha j - aiL ê Hbi - b jL Hmod pL .

If bi = b j , which happens with negligible probability, we put c ' = c.a and solve c ' = am' , where
m ' = m + 1.

To find indices i and j with xi = x j , we follow Floyd's cycle-finding algorithm: find an index i
such that xi = x2 i (so, take j = 2 i).

To this end, we start with the pair Hx1, x2L , calculate Hx2, x4L , then Hx3, x6L , and so on, each time
calculating Hxi+1, x2 i+2L from the previously calculated Hxi, x2 iL by the defining rules xi+1 = f HxiL
and x2 i+2 = f 2Hx2 iL In this way, huge storage requirements can be avoided.

Example 8.9 (Part 2)

We continue with Example 8.9. Hence, we have q = 4679, a = 121, an element of (prime) order
p = 2339, and c = 3435. I.e. we have the equation:

121m ª 3435 Hmod 4679L .

132 FUNDAMENTALS OF CRYPTOLOGY

The recurrence relation for the 8xi<i¥0 sequence can be evaluated by means of the Which and
Mod functions.

RecX@x_, alp_, c_, q_D := Which@ Mod@x, 3D == 0, Mod@x2, qD,
Mod@x, 3D == 1, Mod@c∗x, qD, Mod@x, 3D == 2, Mod@alp∗x, qD D

The smallest index i, i ¥ 1, satisfying xi = x2 i can quite easily be found with the help of the
While function.

alp = 121; c = 3435; q = 4679;
x1 = RecX@1, alp, c, qD;
x2 = RecX@x1, alp, c, qD; i = 1;
While@x1 != x2, x1 = RecX@x1, alp, c, qD;
x2 = RecX@RecX@x2, alp, c, qD, alp, c, qD; i = i + 1D;
i

76

So, x76 = x152 and m ª Ha152 - a76L ê Hb76 - b152L Hmod 2339L . However, above we did not update
the values of the sequences ai and bi . We will do that now.

RecurrDef@8x_, a_, b_<D := Which@
Mod@x, 3D == 0, 8Mod@x2, qD, Mod@2 a, pD, Mod@2 b, pD<,
Mod@x, 3D == 1, 8Mod@c∗x, qD , a, Mod@b + 1, pD<,
Mod@x, 3D == 2, 8Mod@alp∗x, qD, Mod@a + 1, pD, b<D

Discrete Logarithm Based Systems 133

alp = 121; c = 3435; q = 4679; p = 2339;
x1 = 1; a1 = 0; b1 = 0;
x2 = 1; a2 = 0; b2 = 0;
8x1, a1, b1< = RecurrDef@8x1, a1, b1<D; i = 1;
8x2, a2, b2< = RecurrDef@RecurrDef@8x2, a2, b2<DD;
While@x1 != x2, 8x1, a1, b1< = RecurrDef@8x1, a1, b1<D;

8x2, a2, b2< = RecurrDef@RecurrDef@8x2, a2, b2<DD;
i = i + 1D;

Print@"i=", iD
Print@"xi=", x1, ", ai=", a1, ", bi=", b1D;
Print@"x2. i=", x2, ", a2. i=", a2, ", b2. i=", b2D;

i=76

xi=492, ai=84, bi=2191

x2. i=492, a2. i=286, b2. i=915

Indeed, the relation a ai cbi gives the same value for i = 76 and i = 2 µ 76:

Mod@PowerMod@alp, a1, qD∗PowerMod@c, b1, qD, qD
Mod@PowerMod@alp, a2, qD∗PowerMod@c, b2, qD, qD

492

492

The solution m of 121m ª 3435 Hmod 4679L can now be determined from
m ª H286 - 84L ê H2191 - 915L Hmod 2339L .

m = Mod@Ha2 − a1L∗ PowerMod@b1 − b2, −1, pD, pD

1111

That m = 1111 is indeed the solution can be checked with

PowerMod@alp, 1111, qD == c

True

134 FUNDAMENTALS OF CRYPTOLOGY

The r in the name of this algorithm reflects the shape of the 8xi<i¥0 -sequence: after a while it starts
cycling around. The memory requirements of Floyd's cycle finding algorithm are indeed minimal.
The expected running time is è!!!!p . For further details, the reader is referred to [Poll78].

8.3.4 The Index-Calculus Method

É General Discussion

To describe the index-calculus method in general we consider a cyclic group G of order N
generated by an element g . So, G = 8e, g, g2, …, gN-1< and gN = e .

In this setting we want to solve m from gm = h (see (8.1)) for a given h œ G .

The basic idea of the index-calculus method consists of the following steps:

1) Select an appropriate subset S of G with the property that a large proportion of the elements
of G can be expressed as a product of elements of S in an efficient way. This set S is called the
factor base. An element g œ G that can be expressed as a product of elements of S is called
smooth with respect to S . Let k be the size of S . In the next two steps each element in S will be
written as a power of g .

2) Find a sufficiently large collection I of exponents i with the property that each gi , i œ I , can be
expressed efficiently as a product of elements of S , say gi = s1

u
i,1 s2

u
i,2 … sk

u
i,k . Taking the logg of

both hands, we get a set of linear congruence relations

i ª ui,1 logg s1 + ui,2 logg s2 + … + ui,k logg sk Hmod NL , i œ I .

3) Treating the numbers logg s j , 1 § j § k , as unknowns, solve the above system of linear
congruence relations (for this, the system of linear congruence relations has to have rank k and the
set I will have to be sufficiently large).

4) Pick a random exponent r and try to express gr h as a product of elements of S . As soon as this
has happened, say gr.h = s1

v
1 s2

v
2 …sk

v
k , we again take the logg of both hands and get

r + m ª v1 logg s1 + v2 logg s2 + … + vk logg sk Hmod NL .

Since the values of each logg si has already been determined in Step 3 and r was chosen, m can be
determined from this congruence relation.

Note that Steps 2 and 3 aim to solve the logarithm problem for all the elements in the factor base.
Step 4 tries to reduce the current logarithm problem to the factor base elements.

It may be clear that the optimal size of the factor base S is a compromise between manageable
storage requirements and the probability that a random element in G (namely gr h) can be
expressed as a product of elements of S .

Discrete Logarithm Based Systems 135

In general, there are two (related) unresolved problems in the above approach.

è How can one determine a good factor base?

è How does one express an element in G as product of elements of S?

In the next subsubsections we demonstrate the above method for two special cases where more
can be said about the above two questions.

Complexity

There are many variations of the index-calculus method. Typically, their complexity grows
subexponential in log2 N , while the methods described in Subsections 8.3.1, 8.3.2, and 8.3.3 are
all exponential in log2 N .

É p
* , i.e. the Multiplicative Group of GFHpL

In this case, G = 81, 2, …, p - 1< . Let g be a generator of this group.

Choice of the factor base S : the first k prime numbers, p1, p2, …, pk .

If k is sufficiently big, a large proportion of the elements in G can be expressed as product of
powers of these k primes, i.e. they will be smooth with respect to S .

Technique to express an element in G as product of elements of S : divide the element by the pi 's.

Complexity

Adleman in [Adle79] analyzes this technique in detail and arrives at a complexity of

expC
è!!!!!!!!!!!!!!!!!!!!!!ln p lnln p

for some constant C .

Example 8.10

Consider 541
* with primitive element g = 2. That 541 is prime and that 2 is a primitive element can be

checked with the Mathematica functions PrimeQ, FactorInteger, and PowerMod. Indeed, the order
of 2 divides » 541

* » = 540 by Theorem B.5, therefore, we only have to check that 2Hp-1Lêd T 1 Hmod 541L for
the divisors of p = 541.

p = 541;
PrimeQ@pD
FactorInteger@p − 1D

True

882, 2<, 83, 3<, 85, 1<<

136 FUNDAMENTALS OF CRYPTOLOGY

PowerMod@2, H541 − 1Lê 2, pD
PowerMod@2, H541 − 1Lê 3, pD
PowerMod@2, H541 − 1Lê 5, pD

540

129

48

As factor base S we take the set of the first five prime numbers, which can be generated with the
Mathematica functions Prime and Table.

Table@Prime@iD, 8i, 1, 5<D

82, 3, 5, 7, 11<
We want to write each of the elements in this factor base as a power of g = 2, i.e. we want to solve
the logarithm problem for the elements in the factor base. To this end, we try to find powers of
g = 2 in 541

* that can be expressed as product of elements in 82, 3, 5, 7, 11< . For this, we can
use the Mathematica function FactorInteger and PowerMod. When trying

p = 541;
try = PowerMod@2, 102, pD
FactorInteger@tryD

136

882, 3<, 817, 1<<
we see that we have no complete factorization in 82, 3, 5, 7, 11< .

After some trial and error we did find the elements 214 , 281 , 2207 , 2214 , and 2300 achieving our
goal.

Discrete Logarithm Based Systems 137

p = 541;
FactorInteger@PowerMod@2, 14, pDD
FactorInteger@PowerMod@2, 81, pDD
FactorInteger@PowerMod@2, 207, pDD
FactorInteger@PowerMod@2, 214, pDD
FactorInteger@PowerMod@2, 300, pDD

882, 1<, 87, 1<, 811, 1<<
882, 1<, 83, 1<, 87, 2<<
885, 2<, 811, 1<<
885, 1<, 87, 1<<
882, 5<, 811, 1<<

Writing m1 = log2 2, m2 = log2 3, m3 = log2 5, m4 = log2 7, m5 = log2 11 and taking the
logarithms on both sides gives five linear congruence relations in m1, m2, …, m5 .

For example, 2207 ª 52 .111 mod 541 can be rewritten as

2207 ª 22. log2 5 21. log2 11 ª 22 m3 2m5 mod 541.

Taking log2 on both sides gives the congruence relation

207 ª 2 m3 + m5 mod 540.

So, we have:

14 ª m1 + m4 + m5 Hmod 540L ,
81 ª m1 + m2 + 2 m4 Hmod 540L ,
207 ª 2 m3 + m5 Hmod 540L ,
214 ª m3 + m4 Hmod 540L ,
300 ª 5 m1 + m5 Hmod 540L ,

The above system of linear congruence relations can be solved with the Solve function:

m1 =.; m2 =.; m3 =.; m4 =.; m5 =.;
Solve@8m1 + m4 + m5 == 14 , m1 + m2 + 2∗ m4 == 81,
2∗ m3 + m5 == 207, m3 + m4 == 214, 5 m1 + m5 == 300,
Modulus == 540<, 8m1, m2, m3, m4, m5<D

138 FUNDAMENTALS OF CRYPTOLOGY

88Modulus → 540, m2 → 104, m3 → 496, m1 → 1, m4 → 258, m5 → 295<<
So, we know that

m1 = log2 2 = 1, m2 = log2 3 = 104, m3 = log2 5 = 496, m4 = log2 7 = 258,
m5 = log2 11 = 295

or, equivalently

21 ª 2 mod 541, 2104 ª 3 mod 541, 2496 ª 5 mod 541, 2258 ª 7 mod 541,
2295 ª 11 mod 541.

If the above linear congruence relations are not linearly independent one has to replace some
equations by others until they are linearly independent.

Let us now find a solution of 2m ª 345 Hmod 541L .

From

FactorInteger@345D
FactorInteger@Mod@22 345, 541DD
FactorInteger@Mod@2100 345, 541DD
FactorInteger@Mod@213 345, 541DD

883, 1<, 85, 1<, 823, 1<<
882, 1<, 8149, 1<<
883, 2<, 841, 1<<
882, 3<, 87, 1<<

we see that 345 can not be expressed as product of elements of S , nor can 22 µ 345 and
2100 µ 345, but 213 ä 345 = 23 71 in GFH541L .

We conclude that

13 + m ª 3. m1 + 1. m4 ª 3 µ 1 + 258 ª 261 Hmod 540L ,

therefore, the solution of 2m ª 345 Hmod 541L is given by

m ª 248 Hmod 540L .

This can easily be checked with

PowerMod@2, 248, 541D

Discrete Logarithm Based Systems 139

345

Because of the small parameters, we can find out explicitly how many elements in 81, 2, …, 540<
can be expressed as product of elements of S . We use the Mathematica functions Select,
Flatten, Table, Sort, and Length and make use of the fact that the exponent of 2 is at mostdlog2 541t = 9, the exponent of 3 is at most dlog3 541t = 5, etc., in any number less than 541.

BaseProd = Select@
Flatten@ Table@ 2i1 3i2 5i3 7i4 11i5,

8i1, 0, Log@2, 541D<,
8i2, 0, Log@3, 541D<,
8i3, 0, Log@5, 541D<,
8i4, 0, Log@7, 541D<,
8i5, 0, Log@11, 541D<D D ,

< 541 &D êê Sort
Length@BaseProdD

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22,
24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50,
54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90,
96, 98, 99, 100, 105, 108, 110, 112, 120, 121, 125, 126, 128,
132, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 175, 176,
180, 189, 192, 196, 198, 200, 210, 216, 220, 224, 225, 231, 240,
242, 243, 245, 250, 252, 256, 264, 270, 275, 280, 288, 294, 297,
300, 308, 315, 320, 324, 330, 336, 343, 350, 352, 360, 363, 375,
378, 384, 385, 392, 396, 400, 405, 420, 432, 440, 441, 448, 450,
462, 480, 484, 486, 490, 495, 500, 504, 512, 525, 528, 539, 540<
142

Therefore, about a quarter of all elements in G can be expressed as product of elements of S . That
means that on the average it takes four trials (choices of r) before gr h can expressed as a product
of elements of 82, 3, 5, 7, 11< .

140 FUNDAMENTALS OF CRYPTOLOGY

É GFH2nL
All elements in GFH2nL can be represented by means of binary polynomials of degree < n in x
modulo an irreducible polynomial f HxL (see Theorem B.16). One writes GFH2nL = GFH2L@xD ê H f HxLL .

Let the polynomial a = aHxL denote a primitive element of GFH2nL . Then GFH2nL can also be
represented by binary polynomials of degree < n modulo the minimal polynomial pHxL of a . It
follows that a is a primitive element in GFH2L@aD ê HpHaLL , i.e. x is a primitive element in
GFH2L@xD ê HpHxLL .

See Example B.6, where f HxL = x4 + x3 + x2 + x + 1 defines GFH24L and where aHxL = 1 + x is a
primitive element of GFH24L = GFH2L@xD ê Hx4 + x3 + x2 + x + 1L . This element a is a zero of the
primitive polynomial pHxL = x4 + x3 + 1. In GFH2L@xD ê Hx4 + x3 + 1L the element x is a primitive
element

Equation (8.1), that we want so solve, can be reformulated as:

for every polynomial cHxL of degree < n , find the exponent m , 0 § m § 2n - 2, such that
xm ª cHxL Hmod pHxLL .

As choice of the factor base S we take all binary, irreducible polynomials of degree §s, say
p1HxL, p2HxL, …, pkHxL . (The number of such polynomials is given by Theorem B.17).

As a technique to express an element in GFH2nL as a product of elements of S , we simply divide
the element by the polynomials piHxL .

A polynomial uHxL that can be expressed as a product of elements of S is called smooth with
respect to S .

Complexity

Coppersmith [Copp84] analyzes this algorithm and finds as asymptotic running time

expC "################################Hln nL Hln ln nL23

Later, further improvements have been found with names like number field sieve and function field
sieve (see [AdDM93], [Adle94], and [HelR83]).

For an excellent survey on the discrete logarithm problem we refer the reader to [Odly85].

Example 8.11

We want to take a logarithm in GFH210L . To represent GFH210L properly and to find a primitive element in
it, we look for a primitive polynomial of degree 10. We do this with the Mathematica function
FieldIrreducible for which the package Algebra`FiniteFields` has to be read first.

<< Algebra`FiniteFields`

Discrete Logarithm Based Systems 141

fld = GF@2, 10D;
FieldIrreducible@fld, xD

1 + x7 + x10

So, we take GFH210L = GFH2L@xD ê Hx10 + x7 + 1L which has x as primitive element. Equation (8.1)
now reads like:

find m such that xm ª cHxL Hmod x10 + x7 + 1L .

As factor base S we shall take the set of all irreducible polynomials of degree §4.

The reader may remember that all binary, irreducible polynomials of degree d appear in the
factorization of x2d - x (see Theorem B.35).

Clear@xD;
FactorAx23 − x, Modulus −> 2E
FactorAx24 − x, Modulus −> 2E

x H1 + xL H1 + x + x3L H1 + x2 + x3L
x H1 + xL H1 + x + x2L H1 + x + x4L H1 + x3 + x4L H1 + x + x2 + x3 + x4L

Hence, as factor base S we have:

p1HxL = x, p2HxL = 1 + x,
p3HxL = 1 + x + x2 , p4HxL = 1 + x + x3 ,
p5HxL = 1 + x2 + x3 , p6HxL = 1 + x + x2 + x3 + x4 ,
p7HxL = 1 + x + x4 , p8HxL = 1 + x3 + x4 .

We want to write each of the elements in this factor base as a power of x, i.e. we want to solve the
logarithm problem for the elements in the factor base. To this end, we try to find powers of x in
GFH2L@xD ê Hx10 + x7 + 1L that can be expressed as a product of the polynomials p jHxL , 1 § j § 8.
We use the Mathematica function Factor and PolynomialMod.

attempt = PolynomialMod@x85, 8x10 + x7 + 1, 2<D
Factor@attempt, Modulus −> 2D

1 + x + x2 + x3 + x4 + x5 + x6 + x9

H1 + xL2 H1 + x + x2L H1 + x2 + x3 + x4 + x5L

142 FUNDAMENTALS OF CRYPTOLOGY

We conclude that x85 is not smooth with respect to our factor base S . After some trial and error
we find the following list of smooth powers of x:

Factor@PolynomialMod@x, 8x10 + x7 + 1, 2<D, Modulus −> 2D
Factor@PolynomialMod@x86, 8x10 + x7 + 1, 2<D, Modulus −> 2D
Factor@PolynomialMod@x140, 8x10 + x7 + 1, 2<D, Modulus −> 2D
Factor@PolynomialMod@x211, 8x10 + x7 + 1, 2<D, Modulus −> 2D
Factor@PolynomialMod@x319, 8x10 + x7 + 1, 2<D, Modulus −> 2D
Factor@PolynomialMod@x457, 8x10 + x7 + 1, 2<D, Modulus −> 2D
Factor@PolynomialMod@x605, 8x10 + x7 + 1, 2<D, Modulus −> 2D
Factor@PolynomialMod@x787, 8x10 + x7 + 1, 2<D, Modulus −> 2D

x

H1 + x + x3L H1 + x2 + x3L
x2 H1 + x + x2L2
H1 + xL5 H1 + x + x2 + x3 + x4L
H1 + xL H1 + x3 + x4L H1 + x + x2 + x3 + x4L
H1 + x + x2L H1 + x + x3L H1 + x + x4L
H1 + xL H1 + x2 + x3L H1 + x + x4L
H1 + x + x3L H1 + x2 + x3L2

Writing piHxL ª xmi Hmod x10 + x7 + 1L , these relations give rise to eight linear congruence
relations. For instance, the last equation gives

x787 ª H1 + x + x3L H1 + x2 + x3L2 ª Hxm4L Hxm5L2 ª xm4+2 m5 Hmod x10 + x7 + 1L .

Taking the logarithm on both sides gives the linear congruence relations

787 ª m4 + 2 m5 Hmod 1023L ,

since 1023 is the multiplicative order of the primitive element x. In this way, the eight relations
above can be rewritten as

1 ª m1 Hmod 1023L ,
86 ª m4 + m5 Hmod 1023L ,

Discrete Logarithm Based Systems 143

140 ª 2 m1 + 2 m3 Hmod 1023L ,
211 ª 5 m2 + m6 Hmod 1023L ,
319 ª m2 + m6 + m8 Hmod 1023L ,
457 ª m3 + m4 + m7 Hmod 1023L ,
605 ª m2 + m5 + m7 Hmod 1023L ,
787 ª m4 + 2 m5 Hmod 1023L .

This forms a system of congruence relations that can be solved with the Mathematica function
Solve.

Clear@m1, m2, m3, m4, m5, m6, m7, m8D;
Solve@8m1 == 1 , m4 + m5 == 86, 2 m1 + 2 m3 == 140,
5 m2 + m6 == 211, m2 + m6 + m8 == 319, m3 + m4 + m7 == 457,
m2 + m5 + m7 == 605, m4 + 2 m5 == 787, Modulus == 1023<,

8m1, m2, m3, m4, m5, m6, m7, m8<D

88Modulus → 1023, m8 → 827, m1 → 1, m3 → 69,
m6 → 591, m7 → 1003, m2 → 947, m4 → 408, m5 → 701<<

So, we know that m1 = 1, m2 = 947, m3 = 69, m4 = 408, m5 = 701, m6 = 591, m7 = 1003, and
m8 = 827.

If the linear congruence relations are not linearly independent one has to replace some equations
by others until they are linearly independent.

Let us now find a solution of xm ª 1 + x + x6 + x9 Hmod x10 + x7 + 1L .

From

Factor@
PolynomialMod@1 + x + x6 + x9, 8x10 + x7 + 1, 2<D, Modulus −> 2D

Factor@PolynomialMod@x50 H1 + x + x6 + x9L, 8x10 + x7 + 1, 2<D,
Modulus −> 2D

H1 + xL2 H1 + x + x2 + x3 + x4 + x5 + x7L
H1 + x + x2L2 H1 + x + x4L

we see that 1 + x + x6 + x9 can not be written as product of polynomials in S , but
x50H1 + x + x6 + x9L can.

We conclude that 50 + m ª 2 m3 + m7 ª 2 µ 69 + 1003 ª 118 Hmod 1023L , so the solution of
xm ª 1 + x + x6 + x9 Hmod x10 + x7 + 1L is given by

m ª 68 Hmod 1023L .

144 FUNDAMENTALS OF CRYPTOLOGY

This can be checked by

PolynomialMod@x68, 8x10 + x7 + 1, 2<D

1 + x + x6 + x9

8.4 Problems

Problem 8.1M

Users A and B want to use the Diffie-Hellman system to fix a common key over a public channel. They use
GFHpL , with p = 541 and primitive element a=2.
User B makes cB = 123 public. If mA = 432, what will be the common key kA,B that A and B use for their
communication?

Problem 8.2
Users A and B want to use the Diffie-Hellman system to fix a common key over a public channel. They use
2@xD ê Hx10 + x3 + 1L as representation of GFH210L . User B makes cB =0100010100 public, which stands for
the field element x + x5 + x7 . If mA = 2, what will be the common key that A and B use for their
communication?

Problem 8.3
Demonstrate the Special Case version of the Pohlig-Helmann algorithm, that computes logarithms in finite
fields of size q = 2n + 1, by evaluating log3H142L in GF(257).

Problem 8.4M

Check that 953 is a prime number and that 3 is a generator of 953
* . Find the three least significant bits of

the solution m of the congruence relation 3m ª 726 mod 953.
(See the remark in the discussion of the special case q - 1 = 2n in Subsection 8.3.1.)

Problem 8.5
Compute log3H135L in GF(353) with the Pohlig-Hellman algorithm.

Problem 8.6M

Find a solution of log44 55 in GF(197) by means of the Baby-Step Giant-Step method, when only 15 field
elements can be stored.

Problem 8.7M

Check that a = 662 is a primitive 2003-th root of unity in GFH4007L (note that 4007 is a prime number).
Let G be the multiplicative subgroup G of order 2003 in GF(4007) generated by a. Check that 2124 is an
element of G .
Determine log662 2124 by the Pollard-r method.

Problem 8.8M

Check that g = 996 is a generator of the multiplicative group 4007
* . Set up the index-calculus method with

a factor base of size 6 and determine log996 1111.

Discrete Logarithm Based Systems 145

Problem 8.9M

Solve the equation xm ª 1 + x3 + x9 Hmod x10 + x3 + 1L in the setting of Example 8.11.

Problem 8.10M

What is the probability that a random element xm Hmod x10 + x3 + 1L is smooth with respect to the set of
irreducible, binary polynomials of degree § 10 (see Example 8.11).

146 FUNDAMENTALS OF CRYPTOLOGY

9 RSA Based Systems

9.1 The RSA System
In 1978 R.L. Rivest, A. Shamir and L. Adleman [RivSA78] proposed a public key cryptosystem
that has become known as the RSA system. It makes use of the following three facts:

1) Exponentiation modulo a composite number n , i.e. computing c from c ª me Hmod nL for given
m and e , is a relatively simple operation (see Subsection 8.1.1).

2) The opposite problem of taking roots modulo a large, composite number n , i.e. computing m
from c ª me Hmod nL (which can be written as m ª

è!!!ce Hmod nL) for given c and e , is, in general,
believed to be intractable.

3) If the prime factorization of n is known, the problem of taking roots modulo n is feasible.

9.1.1 Some Mathematics

From Appendix A we quote Theorem A.14 and the definition of Euler's Totient function (Def.
A.6):

Theorem 9.1 Euler
Let a and n be integers. Then

(9.1) gcdHa, nL = 1 ï ajHnL ª 1 Hmod nL ,

where Euler's Totient Function jHnL counts the number of integers in between 1 and n
that are coprime with n . The function jHnL can be computed from the relation:

(9.2) jHnL = n ‰
p»n, p prime

I1 - 1ÅÅÅÅÅp M .

The reader can check the above in any example with the Mathematica functions GCD and
EulerPhi.

RSA Based Systems 147

n = 1999; a = 1234;
GCD@a, nD
ph = EulerPhi@nD
PowerMod@a, ph, nD

1

1998

1

9.1.2 Setting Up the System

É Step 1 Computing the Modulus nU

Each user U of the system chooses two different large prime numbers, say pU and qU . In the
original proposal the suggested length was about 100 digits.

Let nU = pU qU . It follows from (9.2) that

(9.3) jHnU L = nU I1 - 1ÅÅÅÅÅÅÅÅÅpU
M I1 - 1ÅÅÅÅÅÅÅÅÅqU

M = HpU - 1L HqU - 1L .

This can also be seen directly. The n integers in between 1 and nU = pU qU are all coprime with
nU except for the qU multiples of pU (namely pU , 2. pU , 3. pU , …, qU .pU) and the pU multiples
of qU (namely qU , 2. qU , 3 qU , …, pU .qU) In this counting, one should realize that the number
pU qU has been subtracted once too often.

Example 9.1 (Part 1)

To keep this example manageable participant Bob will keep his primes reasonably small. He makes use of
the Mathematica functions Prime and EulerPhi.

pB = Prime@1200D
qB = Prime@1250D
nB = pB∗qB
phiB = EulerPhi@nBD

9733

148 FUNDAMENTALS OF CRYPTOLOGY

10177

99052741

99032832

É Step 2 Computing the Exponents eU and dU

User U chooses an integer eU , 1 < eU < jHnU L , with gcdHeU , jHnU LL = 1. User U computes the
unique integer dU , satisfying

(9.4) eU dU ª 1 Hmod jHnU LL , 1 < dU < jHnU L .

For instance, U can use Euclid's Algorithm (see Section A.2) to find dU in less than log f jHnU L
operations (Theorem A.9) with f = I1 +

è!!!5 M ë2.

Example 9.1 (Part 2)

The random choice of eB and the computation of dB can be made with the Mathematica functions
Random, While, and ExtendedGCD.

eB = Random@Integer, 81, nB<D;
While@GCD@eB, phiBD != 1,

eB = Random@Integer, 81, nB<DD;
eB
ExtendedGCD@eB, phiBD

81119923

81, 817089915, −13998717<<
So, Bob has eB = 81119923 and dB = 17089915. This can be checked by the Mod calculation:

dB = 17089915;
Mod@eB∗dB, phiBD

1

RSA Based Systems 149

É Step 3 Making Public: eU and nU

Each user U makes eU and nU public, but keeps dU secret. The primes numbers pU and qU no
longer play a role. User U may use them to reduce the complexity of his calculations as we shall
see later on. They may not be made public by U .

9.1.3 RSA for Privacy

If user A , say Alice, wants to send a secret message to Bob (user B) she represents her message in
any standardized way by a number m , 0 < m < nB . Next, Alice looks up the public exponent eB of
Bob. She will send the ciphertext c computed from

c ª meB Hmod nBL .

Bob can recover m from c by raising it to the power dB which he only knows. Indeed, for some
integer l one has

(9.5) cdB ª HmeBLdB ª meB dB ª
H9.4L

m1+l.jHnBL ª m.HmjHnBLLl ª
H9.1L

m Hmod nBL .

when gcdHm, nBL = 1. In Problem 9.2 the reader is invited to verify that the system also works
when gcdHm, nBL ∫ 1.

We summarize the RSA secrecy system in the next table.

Table 9.1

public eU and nU of all users U
secret dU of user U

property eU dU ≡ 1 Hmod ϕ HnULL
message to Bob 0 < m < nB

encryption by A c ≡ meB Hmod nBL
decryption by B cdB ≡ m Hmod nBL

The RSA System for Privacy

The public and secret exponents in the RSA system are traditionally called eU and dU to denote
the encryption resp. decryption functions that they have in this subsection.

Example 9.1 (Part 3)

We continue with the parameters of Example 9.1, so nB =99052741, eB = 81119923, and
dB = 17089915. The encryption c ª meB Hmod nBL of message m = 12345678 leads with the
Mathematica function PowerMod to

150 FUNDAMENTALS OF CRYPTOLOGY

nB = 99052741; eB = 81119923; dB = 17089915;
m = 12345678;
c = PowerMod@m, eB, nBD

38447790

Bob decrypts this by computing cdB Hmod nBL , which gives m.

PowerMod@c, dB, nBD

12345678

It is possible to reduce the work factor of the decryption process by means of the Chinese
Remainder Theorem (Thm. A.19). Indeed, since Bob knows the factorization of n into p µ q , he
can do the following.

Bob precomputes integers a and b mod n , satisfying : a ≡ 1 Hmod pL
a ≡ 0 Hmod qL: b ≡ 0 Hmod pL
b ≡ 1 Hmod qL

Next, Bob computes m1 ª c1
d Hmod pL and m2 ª c2

d Hmod qL , where c1 = Hc mod pL and
c2 = Hc mod qL . Note that all these calculations take place modulo the integers p and q that are
typically half the length of n . By the Chinese Remainder Theorem, m = Hcd mod nL is now given
by m1.a + m2.b Hmod nL .

There is even an extra bonus in this approach. The exponent d in the calculations of m1 and m2

can be reduced modulo p - 1, resp. q - 1, by Fermat's Theorem (Thm. A.15). Indeed,
m1 ª cd ª cd1 mod p , with d1 = Hd mod pL and a similar statement is true for the mod q
calculations.

Altogether, this way of computing cd mod n reduces the workload by a factor of about 4.

Example 9.1 (Part 4)

We continue with the parameters of Example 9.1, so pB = 9733, qB = 10177, nB =99052741,
eB = 81119923, and dB = 17089915. To compute the solutions to: a ≡ 1 Hmod 9733L

a ≡ 0 Hmod 10177L: b ≡ 0 Hmod 9733L
b ≡ 1 Hmod 10177L

we load the Mathematica package NumberTheory`NumberTheoryFunctions`

RSA Based Systems 151

<<NumberTheory`NumberTheoryFunctions`

and find a and b with the function ChineseRemainderTheorem.

a = ChineseRemainderTheorem@81, 0<, 89733, 10177<D
b = ChineseRemainderTheorem@80, 1<, 89733, 10177<D

45287650

53765092

Next, we calculate m1 ª cd1 Hmod pL and m2 ª cd ª cd2 Hmod qL . We get

p = 9733; q = 10177; d = 17089915;
c = 38447790;
c1 = Mod@c, pD
c2 = Mod@c, qD
d1 = Mod@d, p − 1D
d2 = Mod@d, q − 1D
m1 = PowerMod@c1, d1, pD
m2 = PowerMod@c2, d2, qD

2440

9261

523

4411

4234

977

The result of the decryption process is now given by m1.a + m2.b mod n and coincides with our
earlier decryption process.

152 FUNDAMENTALS OF CRYPTOLOGY

n = 99052741;
Mod@m1∗a + m2∗ b, nD

12345678

9.1.4 RSA for Signatures

The RSA system can equally be used to sign messages. To sign a message m , 0 < m < nB , Bob
will compute c = HmdB mod nBL .

The receiver of c , say Alice, can easily retrieve the original message from ceB Hmod nBL , because
Bob's parameters eB and nB are public. To check this we repeat (9.5) (with a minor variation):

(9.6) ceB ª HmdBLeB ª meB dB ª
H9.4L

m1+l.jHnBL ª m.HmjHnBLLl ª
H9.1L

m Hmod nBL .

for all m with gcdHm, nBL = 1. The relation ceB ª m Hmod nBL also holds when gcdHm, nBL ∫ 1. In
Problem 9.2 the reader is asked to prove this.

Alice should keep c as Bob's signature on m . Only Bob can have made c out of m , because he is
the only one knowing dB . The reader is advised to reread the discussion above Table 7.2.

Table 9.2

public eU and nU of all users U
secret dU of user U

property eU dU ≡ 1 Hmod ϕ HnULL
message of Bob 0 < m < nB

signing by B c ≡ mdB Hmod nBL
verification by A ceB ≡ m Hmod nBL

signature the pair Hm, cL
The RSA System for Signing

Example 9.1 (Part 5)

Bob signs message m = 11111111 by computing c ª mdB Hmod nBL .

m = 11111111;
c = PowerMod@m, dB, nBD

74138899

RSA Based Systems 153

Alice verifies this by computing ceB Hmod nBL , which gives m.

9.1.5 RSA for Privacy and Signing

Suppose that Alice wants to sign a confidential message m to Bob. The solution described in
Subsection 7.1.4 , namely Alice first signs m with her secret key and then encrypts the result with
Bob's public key, can not always be applied directly in the RSA-case.

To see this, we observe that Alice would like to send

(9.7) c = HmdA Hmod nALLeB Hmod nBL .

However, this mapping is not one-to-one if nA > nB . For instance, the messages m = 1 and
m = H1 + nBLeA will both be mapped to c = 1.

Since Alice and Bob do not want to share their prime numbers, we must have nA < nB . In this
case, Bob can recover m as follows:HcdB Hmod nBLLeA Hmod nAL = m .

To verify this, combine (9.5) with (9.6).

Of course, there now is the problem of what to do when Bob wants to sign a confidential message
to Alice. A simple solution is to have every user U make two sets of parameters, one with its
modulus smaller than some threshold T and the other with its modulus larger than T . In this
setting, the sender uses his own smaller modulus for the signature and the receivers larger
modulus for the encryption.

154 FUNDAMENTALS OF CRYPTOLOGY

public eUi and nUi of all users U, i = 1, 2

secret dUi of user U, i = 1, 2

properties eUi dUi ≡ 1 Hmod ϕ HnUiLL
nU1 < T < nU2

message from
Alice to Bob

0 < m < nA1

Alice sends c ≡ HHmdA1 mod nA1LeB2 mod nB2L
Bob computes HHcdB2 mod nB2LeA1 mod nA1L = m

Bob keeps as
signature

m and HcdB2 mod nB2L
which is equal toHmdA1 mod nA1L

Table 9.3

RSA for privacy and signing

If there is an argument between Alice and Bob, they will go to an arbitrator. This arbitrator is
given the pair m and u = HcdB2 mod nB2L by Bob. As an integer, the latter is equal toHmdA1 mod nA1L , sinceHcdB2 mod nB2L =

H9.7L IHHmdA1 mod nA1LeB2 mod nB2LdB2 mod nB2M =
H9.5L HmdA1 mod nA1L .

Just like in Subsection 9.1.4, the arbitrator now checks if ueA1 ª m Hmod nA1L .

If this is the case, the message m came indeed from Alice, if not, u will not be considered as
Alice's signature on m .

Note that the arbitrator does not need to know the secret exponents of Alice or Bob to make his
decision. Therefore, Alice and Bob can continue to use their original set of parameters.

RSA Based Systems 155

9.2 The Security of RSA: Some Factorization Algorithms

9.2.1 What the Cryptanalyst Can Do

Suppose that an eavesdropper, say Eve, gets hold of a secret message c = meB Hmod nBL for Bob.
Once Eve knows the secret exponent dB of Bob, she can compute m from the ciphertext c in
exactly the same way as Bob can, namely by computing cdB Hmod nBL (see (9.5)).

To determine dB from the public exponent eB and the relation eB.dB ª 1 Hmod jHnBLL (see (9.4)) is
easy for Eve as soon as she knows jHnBL: just like Bob did when he set up the system, she will use
Euclid's Algorithm.

To find jHnBL = pB.qB (see (9.3)) from the publicly known modulus nB , Eve will have to find the
factorization of nB .

At the time of the introduction of RSA, Schroeppel (not published) had a modification of a
factorization algorithm by Morrison and Brillhart [MorB75]. It involved

e
è!!!!!!!!!!!!!!!!!!!!!ln n lnln n operations

In the next table we have made use of the Mathematica functions TableForm, Table, Exp,
Sqrt, Log, and N to give an impression of the growth of the above expression.

TableForm@ Table@
8k, N@Exp@ Sqrt@Log@10^kD Log@Log@10^kDDDD, 3D<,
8k, 25, 250, 25<D , TableHeadings −>

88<, 8"length in digits", "complexity"<<,
TableAlignments −> 8Center<D

length in digits complexity
25 4.3×106

50 1.42× 1010

75 8.99× 1012

100 2.34× 1015

125 3.41× 1017

150 3.26× 1019

175 2.25× 1021

200 1.2× 1023

225 5.17× 1024

250 1.86× 1026

156 FUNDAMENTALS OF CRYPTOLOGY

As one can see, if n is about 200 digits long, the above cryptanalysis is clearly not tractable. On
the other hand, much larger numbers have been factored than was thought to be possible at the
time that the original RSA scheme was proposed (at the time of the printing the record stood at
512 bits numbers). For this reason, one now sees proposals for implementations of RSA with a
much larger modulus.

An example of a fast modern factorization algorithm can be found in [LensH86]. Other methods
will be discussed in Section 9.2.3. There does exist special factorization algorithms that run faster
if n is of a special form. We shall discuss one of these methods in the next subsection.

Up to now, there seems to be no way of breaking the RSA system other than by factoring the
modulus n . There is no formal proof however that these two problems are equivalent. In Section
9.5 we shall discuss a variant of the RSA system for which it can be shown that breaking it is
equivalent to factoring its modulus.

A drawback of having to choose large moduli is that the execution of a single exponentiation takes
more time than one may like, especially when one wants to encrypt a long file. Quite often in such
a situation one shall use a hybrid system: a symmetric system with secret key k is used for
encryption of the data and the RSA scheme is used to send this key securely to the receiver (using
the public parameters of the receiver).

When generating p and q it is a bad idea to first generate p and then try out p + 2, p + 4, … for
primality. One really wants p - q to be large. Indeed, if a cryptanalyst can guess p - q , for
instance by checking all likely values, it follows from

4 n = 4 p.q = Hp + qL2 - Hp - qL2

 that p + q also can be determined. From these two linear relations p and q can be found, which
implies that the system has been broken.

Example 9.2

Let n = 5007958289. Guessing that q - p = 200, we get p + q from

n = 5007958289;
"#####################
4 n + 2002

141534

From p + q =
è!!!!!!!!!!!!!!!!!!!!4 n + 2002 and q - p = 200, we get that q = Iè!!!!!!!!!!!!!!!!!!!!4 n + 2002 + 200M ë2.

RSA Based Systems 157

q = i
k
jj"#####################

4 n + 2002 + 200y
{
zz ì 2

p = q − 200

70867

70667

p ∗ q == n

True

We conclude that » p - q » has to be large. A way to do this is to take q more than p +
è!!!!p .

In the literature one can also find a few attacks on the RSA system, that have a probability of
success which is not significantly more than the probability that a randomly chosen integer a
smaller than n has a non-trivial factor in common with n . This factor would then be p or q . The
probability that the latter happens can be evaluated with the Euler Totient function jHnL and is
given by

n-jHnLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn =
H9.3L p.q-Hp-1L Hq-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp.q = p+q-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp.q º 1ÅÅÅÅÅp ,

assuming that p < q . That one should not take p too small will follow from the factorization
algorithm that we shall discuss in the next subsection.

Because the "attacks" mentioned above have such a small probability of success, we choose not to
discuss them here. Some of the problems at the end of this chapter are based on them.

9.2.2 A Factorization Algorithm for a Special Class of Integers

We shall now briefly discuss a factorization algorithm that runs faster than the general
factorization algorithms that we shall address later under the assumption that at least one of the
prime factors of n , say p , has the property that p - 1 only contains small prime factors.

É Pollard's p - 1 Method

In [Poll75], Pollard describes a way to factor n in è!!!!p steps, where p is the smallest prime
divisor of n . This explains why we have to take p and q both large.

The assumption in Pollard's p - 1 method is that in the factorization of n at least one of the two
factors, say p , has the property that p - 1 has only small prime factors. To be more precise, an

158 FUNDAMENTALS OF CRYPTOLOGY

integer is said to be smooth (see also Subsection 8.3.4) with respect to S if all its prime factors are
less than or equal to S . We shall assume that p - 1 is smooth with respect to some integer S .

Example 9.3

The prime number p = 70877 has the property that p - 1 is smooth with respect to S = 50, as one can
check with the Mathematica function FactorInteger and PrimeQ.

p = 70877; PrimeQ@pD
FactorInteger@p − 1D

True

882, 2<, 813, 1<, 829, 1<, 847, 1<<
For each prime number r , r § S , the largest power of r that is still less than or equal to n can be
determined from

ri § n , or, equivalently, i § logr n .

Define R by

(9.8) R = ¤p§S, p prime pdlogr nt
Example 9.4 (Part 1)

Consider the number n = 6700892281 and assume that at least on of its factors, say p, is smooth with
respect to S = 50. It follows from

Prime@15D
Prime@16D

47

53

that there are 15 primes less than or equal to S = 50. So, R can be calculated from H9.8L with the
Mathematica functions Prime, Log, and Floor as follows

n = 6700892281; R = ‰
i=1

15

HPrime@iDLFloor@ Log@Prime@iD,nDD

RSA Based Systems 159

404956718036087157154810988735114505168715463893514902450607270767
02214282424813734946501919403167962039754577870030089486336000000
00000000

To see the exponents of the primes up to 50 (out of curiosity), we give

FactorInteger@RD

882, 32<, 83, 20<, 85, 14<, 87, 11<, 811, 9<, 813, 8<, 817, 7<, 819, 7<,823, 7<, 829, 6<, 831, 6<, 837, 6<, 841, 6<, 843, 6<, 847, 5<<
If p - 1 is smooth with respect to S , each prime power ri that divides p - 1, will also be a factor
of R , since i will be at most dlogr nt . It follows that Hp - 1L divides R .

We know from Fermat's Theorem (Thm. A.15) that any integer a , 1 § a < p, will satisfy
ap-1 ª 1 Hmod pL . Since Hp - 1L » R , also aR ª 1 Hmod pL .

Now take a random integer a , 2 § a < n , and check if gcdHa, nL = 1. If this gcd is not 1, we have
found a factor of n and we are done.

If gcdHa, nL = 1 it follows from aR ª 1 Hmod pL that p » HaR - 1L . Since it is very unlikely that also
aR ª 1 Hmod qL , we shall almost certainly find a factor of n (namely p) from gcdHaR - 1, nL . Note
that aR does not have to be evaluated for this calculation, the value of aR Hmod nL suffices.

Example 9.4 (Part 2)

To find a factor of n = 6709248019 we pick a random a in between 2 and n - 1 and compute the
gcd of aR - 1 with n by means of the Mathematica functions Random, PowerMod, and GCD.

a = Random@Integer, 82, n<D
GCD@PowerMod@a, R, nD − 1, nD

3922094384

81919

It follows that p = 81919 is a factor of n. The other factor follows from n ê p = 81799. Note that if
q is also smooth with respect to S , we would have found n as outcome of the gcd calculation.

We summarize Pollard's p - 1 method in the following table.

input : integer n.
select a smoothness parameter S.
calculate R from H9.8L.
select a random a, 2 ≤ a < n.

160 FUNDAMENTALS OF CRYPTOLOGY

compute d = gcd HaR − 1, nL.
if 1 < d < n then d is a factor of n

else STOP or select a new random a

Figure 9.1

Pollard ' s p - 1 Method to Factor n

To make Pollard's p - 1method infeasible, one often chooses so-called safe primes when setting
up the RSA system. These strong primes are primes p of the form p = 2 p ' + 1, where p ' is a
(large) prime. In this case, p - 1 has just one small factor.

9.2.3 General Factorization Algorithms

É The Pollard-· Method

Let p be an unknown prime factor of the integer n that we want to factor. Now look at the
sequence a0, a1, …, defined recursively by

a0 = 1,
ai+1 ª ai

2 + 1 Hmod pL , i ¥ 0.

Suppose that we have found indices u and v with v > u and au ª av Hmod pL . Then clearly
gcdHav - au, nL is divisible by p and very likely this gcd is equal to p .

Of course, p is not known, so we replace the above recursion relation by

(9.9) a0 = 1,
ai+1 ª ai

2 + 1 Hmod nL , i ¥ 0.

Since p » n we will find the factor p from gcdHav - au, nL for the same values of u and v (the
probability that other large factors of n divide this gcd is negligible).

Instead of having to store all previously computed values of ai , i ¥ 0, we use Floyd's cycle-finding
algorithm to find an index k such that a2 k = ak and then we take u = k and v = 2 k . The idea is
simply that one starts with a1 and a2 and recursively determines the pair Hai, a2 iL fromHai-1, a2 Hi-1LL .

The above is summarized in the following figure.

input : integer n.
put a = 1, b = 2.
do a ← Ha2 + 1L mod n ,

b ← IHHb2 + 1L mod nL2 + 1M mod n
until d = gcd Hb − a, nL > 1
if d < n then d is a factor of n

else STOP

Figure 9.2

Pollard's · Method to Factor n

RSA Based Systems 161

Example 9.5

To find a factor of n = 9032411471 with the above method we use the Mathematica functions While, Mod,
and GCD functions.

n = 168149075693;
a = 1; b = 2; d = GCD@b − a, nD;
WhileAd == 1, a = Mod@a2 + 1, nD;
b = ModAHMod@b2 + 1, nDL2 + 1, nE; d = GCD@b − a, nDE

d

350377

So, 350377 is a factor of n = 168149075693. The quotient n ê p is 479909, which happens to be a
prime too, as can easily be checked with the function PrimeQ.

a = nê350377
PrimeQ@aD

479909

True

É Random Square Factoring Methods

This method and the next one are related to the Index-Calculus Method discussed in Subsection
8.3.4. The reader may want to read the introduction there first, but that will not necessary for the
understanding of the discussion here. We assume that n is a composite odd integer.

The method consists of the following four steps.

Step 1:

Construct the set S = 8p1, p2, …, pk< consisting of the first k prime numbers, so p1 = 2, p2 = 3,
etc. The set S will be called the factor base.

Step 2:

Find sufficiently many pairs Hai, biL such that

(9.10) ai
2 ª bi Hmod nL

162 FUNDAMENTALS OF CRYPTOLOGY

and such that bi is smooth with respect to S , i.e. bi factors completely into elements of the factor
base S , say

bi = ‰
j=1

k
p j

ui, j , with ui, j ¥ 0.

Put ui = Hu1,1, u1,2, …, u1,kL . Pairs Hai, biL satisfying property (9.10) can be found by trying
random choices of ai . An alternative is to use any suitable recursion relation that generates
candidates for ai . For instance, after trying ai = a one may want to try ai = HHa2 + 1L mod nL .

Step 3:

Find a collection of bi 's whose product is a perfect square. Quite clearly, only the parity of the
ui, j 's matters in this condition, so let us put vi, j = Hui, j mod 2L and vi = Hv1,1, v1,2, …, v1,kL . We
write vi ª ui Hmod 2L .

Since any k + 1 vectors vi (all of length k) must be linearly dependent over 2 , there must be a
non-trivial linear combination adding up to 0. Such a linear combination can be found very
efficiently with standard methods from linear algebra.

Let I denote the subset of 81, 2, …, k< with ⁄iœI vi ª 0 H mod 2L . Set

x = ¤iœI ai and y = H¤iœI biL1ê2 .

Step 4:

It follows from (9.10) that x2 ª y2 Hmod nL , i.e. n divides Hx - yL Hx + yL . Assume that
x T ≤ y Hmod nL (the probability that this happens is at least 1/2 as we shall see in a moment and as
will be demonstrated more extensively in Subsection 9.5.1 for the case that n is the product of two
different primes). Then x - y must be divisible by a non-trivial divisor of n . In other words,
gcdHx - y, nL yields a non-trivial factor of n .

If gcdHx - y, nL = n one has to try to find another perfect square, either by another linear
dependency between the vi 's or by exchanging one of the pairs Hai, biL for a new one.

Consider the congruence relation x2 ª y2 Hmod nL where y is assumed to have a given fixed value
that is coprime with n . Further, let pa be any factor in the prime power decomposition of n (see
Theorem A.6). Then x2 ª y2 Hmod paL has just two solutions, namely x ª ≤ y Hmod paL . Indeed, for
a = 1 this follows from Theorem B.15. For a > 1, we still have that pa must divide either x - y or
x + y , because if p » Hx - yL and p » Hx + yL then p » 2 y , but p I y (since n is odd, also p will be
odd). We conclude that x ª ≤ y Hmod paL also when a > 1.

It now follows directly from the Chinese Remainder Theorem (Thm. A.19) that relation
x2 ª y2 Hmod nL has 2l solutions, where l is the number of different prime numbers dividing n .
Only two of these 2l , l ¥ 2, solutions are given by x ª ≤ y Hmod nL , therefore, the probability that
gcdHx - y, nL yields a non-trivial factor of n is at least H2l - 2L ê2l ¥ 2 ê 4 = 1 ê2.

input : integer n.
make factor base S = 8p1, …, pk<
find pairs Hai, biL with

RSA Based Systems 163

ai random, ai
2 ≡ bi Hmod nL, bi smooth w.r.t. S

find index set I such that‰
i∈I

 bi is a perfect square

put x = ‰
i∈I

ai, y = "###############¤i∈I bi

put d = gcdHx − y, nL
if d < n then d is a factor of n

else retry with other I

Figure 9.3

Factoring by Random Squares

Example 9.6

Suppose that we try to factor n = 1271 with the above method. We first make the factor base consisting of
the first 8 primes by means of the Mathematica functions Table and Prime.

S = Table@Prime@iD, 8i, 1, 8<D

82, 3, 5, 7, 11, 13, 17, 19<
Next, we use the function Random to generate a random a, 1 § a § n, and the function
FactorInteger to factor b ª a2 Hmod nL .

n = 1271; a = Random@Integer, 81, n<D
b = Mod@a2, nD
FactorInteger@bD

460

614

882, 1<, 8307, 1<<
Unfortunately, b = 614 is not smooth with respect to S , but after some trial and error we found
the following nine smooth numbers (they are put in a list called a).

164 FUNDAMENTALS OF CRYPTOLOGY

n = 1271;
a = 8583, 879, 1137, 421, 727, 1034, 1051, 107, 1111<;
b = Mod@a2, nD;
TableForm@Table@ 8a@@iDD, b@@iDD,

Times @@ Superscript @@@ FactorInteger@ b@@iDD D <,
8i, 1, Length@aD< D, TableHeadings −>

88<, 8"a", "a2 mod n", "factors"<<,
TableAlignments −> 8Left<D

a a2 mod n factors
583 532 22 71 191

879 1144 23 111 131

1137 162 21 34

421 572 22 111 131

727 1064 23 71 191

1034 245 51 72

1051 102 21 31 171

107 10 21 51

1111 180 22 32 51

The exponents in the factorization of the bi 's are given by the vectors ui , that form the rows of the
matrix U below. The vectors vi are the modulo 2 reductions of the ui 's. They form the rows of the
matrix V below.

For instance, b1 = 532 = 22 .7 .19 gives u1 = 82, 0, 0, 1, 0, 0, 0, 1< and v1 = 80, 0, 0, 1, 0, 0, 0, 1< .
These two rows are the first row of the matrices U resp. V below. We use the function
MatrixForm to display them.

U = 882, 0, 0, 1, 0, 0, 0, 1<, 83, 0, 0, 0, 1, 1, 0, 0<,
81, 4, 0, 0, 0, 0, 0, 0<, 82, 0, 0, 0, 1, 1, 0, 0<,
83, 0, 0, 1, 0, 0, 0, 1<, 80, 0, 1, 2, 0, 0, 0, 0<,
81, 1, 0, 0, 0, 0, 1, 0<, 81, 0, 1, 0, 0, 0, 0, 0<,
82, 2, 1, 0, 0, 0, 0, 0<<;

V = Mod@U, 2D;
MatrixForm@UD
MatrixForm@VD

RSA Based Systems 165

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

2 0 0 1 0 0 0 1
3 0 0 0 1 1 0 0
1 4 0 0 0 0 0 0
2 0 0 0 1 1 0 0
3 0 0 1 0 0 0 1
0 0 1 2 0 0 0 0
1 1 0 0 0 0 1 0
1 0 1 0 0 0 0 0
2 2 1 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 1 0 0 0 1
1 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
1 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0
1 1 0 0 0 0 1 0
1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
To find a non-trivial linear combination of the rows of V adding up to the all-zero vector modulo
2, we use the NullSpace and Transpose functions.

NullSpace@Transpose@VD, Modulus −> 2D

880, 0, 0, 0, 0, 1, 0, 0, 1<, 80, 0, 1, 0, 0, 1, 0, 1, 0<,81, 0, 1, 0, 1, 0, 0, 0, 0<, 80, 1, 1, 1, 0, 0, 0, 0, 0<<
We see that the first of the above linear dependencies between rows of V reflect two identical
rows, but the third one does give an index set I that can be used, namely I = 81, 3, 5< .

It leads to the values x = a1 a3 a5 and y = è!!!!!!!!!!!!!!!b1 b3 b5

x = a@@1DD ∗a@@3DD ∗a@@5DD
y = Hb@@1DD ∗b@@3DD ∗ b@@5DDL1ê2
GCD@x − y, nD

481907217

9576

41

166 FUNDAMENTALS OF CRYPTOLOGY

We conclude that p = 41 is a factor of n = 1271. Indeed 1271 = 31 µ 41.

n ê 41

31

É Quadratic Sieve

The complexity of this method is given by

e1.923.. Hln nL1ê3 Hln ln nL2ê3 operations.

As with the previous methods, we shall not explain all details of this factorization technique. Let n
be the number that we want to factor.

To start we need a so-called factor base S , which means that S is a list of k primes (which k
primes will be determined later).

Let r = eè!!!n u and let the polynomial f HxL be defined by

 f HxL = Hx + rL2 - n = x2 + 2 r.x + r2 - n .

Note that r2 § n < Hr + 1L2 , so 0 § n - r2 < 2 r + 1 § 2
è!!!n + 1. It follows that if x is small in

absolute value, then also f HxL will be small (when compared to n).

For x = 0, ≤1, ≤2, … define a by a = x + r and test b = Hx + rL2 - n for smoothness with respect
to S , i.e. test if all prime factors of b are in S . If so, we save the pair Ha, bL in a list of pairs Hai, biL
with this property.

Note that ai
2 ª Hx + rL2 ª bi Hmod nL , just as in equation (9.10).

If a prime p divides bi , then p » HHx + rL2 - nL for some known value of x . This means that
n ª Hx + rL2 Hmod pL and thus that n is a quadratic residue (QR) mod p . This means that the only
prime factors that will appear in the factorization of any of the bi 's will have Jacobi symbolHn ê pL = 1.

So, we let the factor basis S consist of the k smallest p j , 1 § j § k , with the property thatHn ê p jL = 1. We also add -1and 2 to S , because the bi 's may be negative and/or even.

Now that we know how to construct a list of pairs Hai, biL , satisfying

ai
2 ª bi Hmod nL ,

bi is smooth with respect to S ,

we can continue with Step 3 in the algorithm described in the previous subsubsection.

We summarize the quadratic sieve method in the following figure.

RSA Based Systems 167

input : integer n.
make factor base S = 8−1, 2, p1, …, pk< with Hnê pjL = 1

find pairs Hai, biL with ai − dè!!!nt small,
ai
2 ≡ bi Hmod nL, and bi smooth w.r.t. S

find index set I such that‰
i∈I

 bi a perfect square

put x = ‰
i∈I

ai, y = "####################H¤i∈I biL
put d = gcd Hx − y, nL
if d < n then d is a factor of n

else retry with other I

Figure 9.4

Quadratic Sieve Factoring Algorithm

We shall only give an example of the first two steps of the quadratic sieve method.

Example 9.7

Let n = 661643. To make a factor base with 10 primes, we use the Mathematica functions While,
Length, JacobiSymbol, Prime, and AppendTo.

n = 661643; k = 10;
SS = 8−1, 2<; i = 2;
While@Length@SSD − 2 < k,
If@JacobiSymbol@n, Prime@iDD == 1,
AppendTo@SS, Prime@iDDD; i = i + 1D;

SS

8−1, 2, 11, 19, 23, 31, 37, 47, 53, 59, 79, 89<
To try out if any of f H-5L, f H-4L, …, f H5L is smooth with respect to S we use the functions
TableForm, Table, and FactorInteger:

n = 661643; Clear@x, fD;
r = eè!!!!

nu; m = 5;

f@x_D := Hx + rL2 − n;
TableForm@ Table@ 8r + i, f@iD,

FactorInteger@f@iDD êê OutputForm<, 8i, −m, m<DD

168 FUNDAMENTALS OF CRYPTOLOGY

808 −8779 88−1, 1<, 88779, 1<<
809 −7162 88−1, 1<, 82, 1<, 83581, 1<<
810 −5543 88−1, 1<, 823, 1<, 8241, 1<<
811 −3922 88−1, 1<, 82, 1<, 837, 1<, 853, 1<<
812 −2299 88−1, 1<, 811, 2<, 819, 1<<
813 −674 88−1, 1<, 82, 1<, 8337, 1<<
814 953 88953, 1<<
815 2582 882, 1<, 81291, 1<<
816 4213 8811, 1<, 8383, 1<<
817 5846 882, 1<, 837, 1<, 879, 1<<
818 7481 887481, 1<<

We see that we have only found three pairs Hai, biL , namely H811, -3922L , H812, -2299L , andH817, 5846L .

So, we need to try a larger range of values. We leave the rest of this example as an exercise to the
reader (see Problem 9.7).

9.3 Some Unsafe Modes for RSA

9.3.1 A Small Public Exponent

We shall discuss here two particular dangers described in [Håst88] (see also [CoppFPR96]). The
first one is the situation that more people have chosen the same (small) public exponent and that a
sender wants to transmit the same message to all of them. The second danger is when a sender
wants to transmit several mathematically related messages to the same receiver, who happens to
have a small public exponent.

Both dangers may appear farfetched to the reader, but since exponentiations modulo large
numbers are still rather cumbersome, it remains very appealing in practical situations to select
small public exponents.

É Sending the Same Message to More Receivers Who All Have the Same Small Public Exponent

Suppose that Alice wants to send the same secret message m to Bob, Chuck, and Dennis. Let the
public modulus of these three people be given by the numbers nB , nC , and nD . Now assume that
they all happen to have the same public exponent e = 3. The messages that Alice will transmit are

(9.11)
cB ≡ m3 Hmod nBL for Bob,
cC ≡ m3 Hmod nCL for Chuck,
cD ≡ m3 Hmod nDL for Dennis.

RSA Based Systems 169

Almost certainly the three moduli will be coprime (otherwise at least two of moduli are
compromised in a trivial way). The eavesdropper Eve, who intercepts cB , cC , and cD can use the
Chinese Remainder Theorem (Thm. A.19) to determine m3 Hmod nB nC nDL from (9.11).

Since it can be assumed that m < min 8nB, nC, nDL , also m3 < nB nC nD holds. So, the above
means that Eve in fact has found the integer m3 . To compute m is now straightforward.

Example 9.8

Suppose that nB = 137703491, nC = 144660611, and nD = 149897933. Let the three intercepted messages
be given by cB = 124100785, cC = 85594143, and cD = 148609330.

To solve the system of linear congruence relations

m3 ª cB Hmod nBL; m3 ª cC Hmod nCL; m3 ª cD Hmod nDL ,

with known right hand sides and known moduli, we use the Mathematica function
ChineseRemainderTheorem. To this end we first have to load the package
NumberTheory`NumberTheoryFunctions`.

<<NumberTheory`NumberTheoryFunctions`

nB = 137703491; nC = 144660611; nD = 149897933;
cB = 124100785; cC = 85594143; cD = 148609330;
mCubed = ChineseRemainderTheorem@8cB, cC, cD<, 8nB, nC, nD<D

1881563525396008211918161

We conclude that m3 ª 1881563525396008211918161 Hmod nB nC nDL . Since m3 < nB nC nD , we
even have

m3 = 1881563525396008211918161.

To find m is now easy.

m = HmCubedL1ê3

123454321

That this outcome is correct can easily be checked by means of the Mod function.

170 FUNDAMENTALS OF CRYPTOLOGY

Mod@m3, nBD == cB
Mod@m3, nCD == cC
Mod@m3, nDD == cD

True

True

True

É Sending Related Messages to a Receiver with Small Public Exponent

Alice wants to send two secret messages, say m1 and m2 to Bob, who happens to have a public
exponent eB that is rather small. Let nB be Bob's modulus. Now, assume that the two messages of
Alice are related in a linear way, say m2 = a.m1 + b , where a and b are in nB and assume further
that eavesdropper Eve knows this linear relation.

Coppersmith et al. [CoppFPR96] describe two surprising methods for Eve to recover the plaintext
m .

Direct Method

We shall first describe this method for the case e = 3.

Let the encryptions of m1 and m2 be denoted by c1 , resp. c2 . So, c1 ª m1
3 Hmod nBL and

c2 ª Ha.m1 + bL3 Hmod nBL . Then

(9.12)
b Hc2 + 2 a3 c1 - b3L
ÅÅ
a Hc2 - a3 c1 + 2 b3L ª

3 a3 bm1
3 + 3 a2 b2 m1

2 + 3 ab3 m1ÅÅ
3 a3 bm1

2 + 3 a2 b2 m1 + 3 ab3 ª m1 Hmod nBL.
With the Mathematica function Simplify one can verify these calculations as follows

Clear@a, b, c1, c2, m1, m2D;

SimplifyA b Hc2 + 2 a3 c1 − b3L
ccc
a Hc2 − a3 c1 + 2 b3L êê. 8c1 −> m13, c2 −> Ha∗ m1 + bL3<E

m1

A particular simple case is given by m1 = m and m2 = m + 1, i.e. a = b = 1. Then (9.12) reduces to Hm + 1L3 + 2 m3 - 1
ÅÅHm + 1L3 - m3 + 2

ª
3 m3 + 3 m2 + 3 m
ÅÅ

3 m2 + 3 m + 3
ª m Hmod nBL

RSA Based Systems 171

Example 9.9

Suppose that nB = 477310661 and that the messages m1 and m2 are related by m2 ª 3 m1 + 5 Hmod nBL . So,
a = 3 and b = 5. Let c1 = 477310661 and c2 = 5908795. Then m1 can be computed with the Mathematica
functions Mod and Solve as follows

Clear@c1, c2, f, g, m1, m2, a, bD;
n = 477310661;
c1 = 5908795; c2 = 374480016;
a = 3; b = 5;
f = Mod@b Hc2 + 2 a3 c1 − b3L, nD;
g = Mod@a Hc2 − a3 c1 + 2 b3L, nD;
Solve@8f == g∗ m1, Modulus == n<, m1D

88Modulus → 477310661, m1 → 321321321<<
So, we have found m1 = 321321321. That this is indeed the solution can be verified quite easily as
follows

m1 = 321321321;
m2 = Mod@3∗ m1 + 5, nD
PowerMod@m1, 3, nD == c1
PowerMod@m2, 3, nD == c2

9342646

True

True

If a = b = 1 and eB > 3, a method like the above still exists. In fact, it can be shown [CoppFPR96]
that polynomials PHmL and QHmL exist such that each of them can be expressed as rational
polynomials in c1 ª me Hmod nBL and c2 ª Hm + 1Le Hmod nBL and such that QHmL = m.PHmL . For
eb = 5 these polynomials are given by

PHmL = c2
3 + 2 c1 c2

2 - 4 c1
2 c2 + c1

3 - 2 c2
2 + 9 c1 c2 + 8 c1

2 + c2 - 2 c1 ,

QHmL = 9 c1 c2
2 - 9 c1

2 .

Again, one can check this with

172 FUNDAMENTALS OF CRYPTOLOGY

Clear@c1, c2, mD;
P = c23 + 2 c1∗c22 − 4 c12 c2 + c13 − 2 c22 +

9 c1∗c2 + 8 c12 + c2 − 2 c1; Q = 9 c1∗c22 − 9 c12;
Expand@P êê. 8c1 −> m3, c2 −> Hm + 1L3<D
Expand@Q êê. 8c1 −> m3, c2 −> Hm + 1L3<D

SimplifyA Q
cccc
P

êê. 8c1 −> m3, c2 −> Hm + 1L3<E

9 m2 + 54 m3 + 135 m4 + 171 m5 + 135 m6 + 54 m7 + 9 m8

9 m3 + 54 m4 + 135 m5 + 171 m6 + 135 m7 + 54 m8 + 9 m9

m

To find such a solution, write P = ‚
i+ j§e

pi, j c2
i c1

j and Q = ‚
i+ j§e

qi, j c2
i c1

j . Next, substitute

c2 = Hm + 1Le and c1 = me in P and Q to obtain two polynomials in m of degree § e2 . Now,
equate the coefficients of m in QHmL = m.PHmL . This gives 2 HHe + 1L + e + … + 2 + 1L =

2 Je + 2
2

N = He + 2L He + 1L linear equations in the coefficients of P and Q . So, there is in fact a

large solution space.

Since the number of terms in PHmL and QHmL grows quadratic in e the above approach will still be
rather cumbersome for larger values of e .

Method through GCD calculation

For arbitrary values of e there is a more direct way to determine m1 and m2 from c1 and c2 , when
they satisfy a polynomial relation that is known to the eavesdropper. Suppose that
m2 ª f Hm1L Hmod nBL . The idea is to compute the gcd of ze - c1 and H f HzLLe - c2 . Indeed, since m1
is a zero of both polynomials, it follows that both are divisible by z - m1 . As a consequence, also
the gcd will contain this factor. Almost certainly the gcd will not contain any other factors.

We shall demonstrate this idea with an example.

Example 9.10

Let eB = 5, nB = 466883. Further suppose that the message m1 and m2 are related by m2 = 2 m1 + 3 and
that they are encrypted into c1 = 66575, resp. c2 = 387933. We want to compute
gcdHz5 - 66575, H2 z + 3L5 - 387933L mod 466883. In general, this can not be done since nB is not prime.
Also Mathematica can not do this directly. We shall simply follow the polynomial version of Euclid's
Algorithm step for step. Problems may arise, when numbers appear that are not coprime with n. This
happens rarely and is not bad at all. Indeed, one almost always finds in this way a non-trivial factor of n,
so the system will be broken!

RSA Based Systems 173

In the first step we calculate f1 = H2 z + 3L5 - 387933 and f2 = z5 - 66575 and then divide f1 by f2 . We use
the Mathematica functions PolynomialMod and Expand.

n = 466883;
c1 = 66575; c2 = 387933;
f1 = Expand@H2 z + 3L5 − c2D
f2 = z5 − c1
f3 = PolynomialMod@f1 − 32 f2, nD

−387690 + 810 z + 1080 z2 + 720 z3 + 240 z4 + 32 z5

−66575 + z5

342061 + 810 z + 1080 z2 + 720 z3 + 240 z4

To keep the division process more manageable, we normalize f3 by multiplying it with the
multiplicative inverse of its leading coefficient (mod nB). We use the Mathematica function
PowerMod.

InverseLeadCoeff = PowerMod@240, −1, nD
f3 = PolynomialMod@InverseLeadCoeff∗f3, nD

258731

376877 + 408526 z + 233446 z2 + 3 z3 + z4

We continue with this division process until fk = 0 for some k . The gcd will be given by fk-1 .

f4 = PolynomialMod@f2 − f3∗Hz + 466880L, nD

130290 + 381818 z + 291812 z2 + 233446 z3

InverseLeadCoeff = PowerMod@233446, −1, nD
f4 = PolynomialMod@InverseLeadCoeff∗f4, nD

103752

174 FUNDAMENTALS OF CRYPTOLOGY

184581 + 292352 z + 116723 z2 + z3

f5 = PolynomialMod@f3 − f4∗Hz + 350163L, nD

355162 + 4681 z + 203714 z2

InverseLeadCoeff = PowerMod@203714, −1, nD
f5 = PolynomialMod@InverseLeadCoeff∗f5, nD

349909

397084 + 98465 z + z2

f6 = PolynomialMod@f4 − f5∗Hz + 18258L, nD

451016 + 87731 z

InverseLeadCoeff = PowerMod@87731, −1, nD
f6 = PolynomialMod@InverseLeadCoeff∗f6, nD

132235

466340 + z

f7 = PolynomialMod@f5 − f6∗Hz + 99008L, nD

0

We conclude that k = 7 and that

gcdHz5 - 66575, H2 z + 3L5 - 387933L ª z + 466340 ª z - 543 (mod 466883).

Therefore, the secret message m is 543. One can check this with the Mathematica function
PowerMod.

RSA Based Systems 175

m = 543;
PowerMod@m, 5, nD == c1
PowerMod@2 m + 3, 5, nD == c2

True

True

The above approach of finding m by computing a gcd is still practical for e up to 32 bits long
([CoppFPR96]).

9.3.2 A Small Secret Exponent; Wiener's Attack

Wiener [Wien90] shows that it is unsafe to use the RSA system with a small secret exponent d ,
where "small" means something like è!!!n . This observation is of importance, because often one is
inclined to reduce the work load of the exponentiation, by choosing a small exponent. For
instance, if a smart card is used to sign messages (see Subsection 9.1.3), it will have to compute
exponentiations cd Hmod nL . If the card has limited computing power, a relatively small value of d
(of course not so small that d can be found by exhaustive search) would be handy.

We first show that we can replace (9.4) by the slightly stronger relation

e.d ª 1 Hmod lcmHp - 1, q - 1LL ,

where lcm denote the least common multiple. We remark that p - 1 and q - 1 both divide fHnL
and so does lcmHp - 1, q - 1L . Now note that for a correct functioning of the RSA system, one
only needs that e.d ª 1 Hmod p - 1L and e.d ª 1 Hmod q - 1L . The reason is that these two
congruences are sufficient to prove that (9.5) and (9.6) hold modulo p resp. modulo q . From the
Chinese Remainder Theorem it then follows that (9.5) and (9.6) also hold modulo n . We conclude
that it is sufficient that e.d ª 1 Hmod lcmHp - 1, q - 1LL .

The subsequent cryptanalysis will deal with this most general case. It is the cryptanalyst's aim to
find d satisfying this relation (and also p and q). The above congruence can be rewritten as

e.d = 1 + K. lcmHp - 1, q - 1L = 1 + KÅÅÅÅÅÅG Hp - 1L Hq - 1L ,

where G = gcdHp - 1, q - 1L . If K and G have a factor in common, the above relation may be
further simplified to

(9.13) e.d = 1 + kÅÅÅÅÅg Hp - 1L Hq - 1L , with gcdHk, gL = 1.

176 FUNDAMENTALS OF CRYPTOLOGY

One should realize that often G (and thus also g) will be very small. In a typical RSA system, p
and q will be safe primes, meaning that p - 1 = 2. p ' and q - 1 = 2. q ' , with p ' and q ' prime. So,
in this case G = 2 and g = 1 or 2.

Let us rewrite (9.13) by dividing both hands by d.n (= d.p.q) and rearranging the terms:

(9.14) kÅÅÅÅÅÅÅÅÅd.g = eÅÅÅÅn + kÅÅÅÅÅÅÅÅÅd.g I 1ÅÅÅÅÅp + 1ÅÅÅÅq - 1ÅÅÅÅn M - 1ÅÅÅÅÅÅÅÅÅd.n .

What we like to show is that k ê Hd.gL is a convergent of the continued fraction of the known
rational e ê n . Since these continued fractions are easy to compute, it is then possible to find the
secret exponent d (and k and g).

Theorem 9.2
Assume that p ~ q ~

è!!!n , e ~ n , and 2 g < d .
Then k ~ Hg.dL and the numbers d, k, g, p , and q can be found from the continued
fraction of e ên for secret exponents d up to n1ê4 .

Remark 1:

We shall be a little sloppy with the use of the ~ symbol. What we mean with a ~ b is something
like "a and b have the same order of magnitude".

Remark 2:

We already discussed the likelihood that g is small. If d is selected as a small integer, the value of
e will be like that of a random number in the range 81, 2, …, lcmHp - 1, q - 1L< , so also the
assumption e ~ n is very reasonable. The same holds for p ~ q ~

è!!!n (see the discussion around
Example 9.2).

Remark 3:

Relation (9.14) implies that kÅÅÅÅÅÅÅÅÅd.g > eÅÅÅÅn , therefore, it suffices to check only the odd convergents of
e ê n .

Proof of Theorem 9.2:

If e ~ n then k ~ g.d by (9.14), since the other terms there all tend to zero. It further follows from
(9.14) that

| kÅÅÅÅÅÅÅÅÅd.g - eÅÅÅÅn | = … kÅÅÅÅÅÅÅÅÅd.g I 1ÅÅÅÅÅp + 1ÅÅÅÅq - 1ÅÅÅÅn M - 1ÅÅÅÅÅÅÅÅÅd.n … § k+gÅÅÅÅÅÅÅÅÅÅÅÅÅd.g.n + kÅÅÅÅÅÅÅÅÅd.g I 1ÅÅÅÅÅp + 1ÅÅÅÅq M
 ~ d+1ÅÅÅÅÅÅÅÅÅÅÅd.n + 1ÅÅÅÅÅÅÅÅÅÅè!!!!n ~ 1ÅÅÅÅÅÅÅÅÅÅè!!!!n .

Since 2 g.d < d2 < n1ê2 , we conclude that

| kÅÅÅÅÅÅÅÅÅd.g - eÅÅÅÅn | § 1ÅÅÅÅÅÅÅÅÅÅè!!!!n < 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Hd.gL2 .

It follows from Theorem A.35 that the rational number k ê Hd.gL will appear as a convergent in the
continued fraction of e ê n . Since gcdHk, gL = 1 and since (9.13) also implies that gcdHk, dL = 1, it
follows from Corollary A.32 that k and d.g will be obtained from one of the convergents. Because

RSA Based Systems 177

g is very small, we can find g and d with a small trial and error effort.

From (9.13) one can now compute Hp - 1L Hq - 1L and since p.q is known, one can also find the
factorization of n into p and q .

Ñ

Example 9.11

Consider n = 9998000099 and e = 6203014673. Let us compute the successive convergents of e ên. We first
load the Mathematica package NumberTheory`ContinuedFractions` and then we can use the
functions ContinuedFraction and FromContinuedFraction (use Normal in Mathematica 3).

<<NumberTheory`ContinuedFractions`

n = 9998000099; e = 6203014673;
FromContinuedFraction@ContinuedFraction@eên, 2DD
FromContinuedFraction@ContinuedFraction@eên, 4DD
FromContinuedFraction@ContinuedFraction@eên, 6DD
FromContinuedFraction@ContinuedFraction@eên, 8DD

1

2
cccc
3

5
cccc
8

18
ccccccc
29

Let us check why the last one does not lead to d (the other cases are even simpler). Writing
18 ê29 = k ê Hd.gL leads to k = 18, g = 1, and d = 29. An easy argument to show that this is not
the right value of d is an encryption followed by a decryption, not resulting into the original
message. We use the function PowerMod.

m = 123; d = 29;
c = PowerMod@m, e, nD;
PowerMod@c, d, nD == m

False

178 FUNDAMENTALS OF CRYPTOLOGY

Let us try the next convergent.

FromContinuedFraction@ContinuedFraction@eên, 10DD

85
cccccccccc
137

Writing 85 ê137 = k ê Hd.gL leads to k = 85, g = 1, and d = 137. From (9.13) we getHp - 1L Hq - 1L = 9993745862.

k = 85; g = 1; d = 137;
He ∗d − 1L gêk

9997800120

Together with n = p.q = 9998000099 we get p + q - 1 = p.q - Hp - 1L Hq - 1L =

n − He∗d − 1L gêk

199979

So, p and q are the roots of Hx - pL Hx - qL = x2 - 199980 x + 9998000099. They can be found
with the function Solve

Clear@xD;
Solve@x2 − 199980 x + 9998000099 == 0, 8x<D

88x → 99989<, 8x → 99991<<
Indeed, 99989 µ 99991 = n.

99989∗99991 == n

True

RSA Based Systems 179

9.3.3 Some Physical Attacks

Clearly physical attacks on cryptographic implementations are beyond the scope of this
introduction. Nevertheless, two such attacks will be mentioned briefly, because of their relation to
theory that we have explained here.

É Timing Attack

Suppose that RSA is implemented on a hardware device (like a smartcard), and that the secret
exponentiation (m Ø Hmd mod nL or c Ø Hcd mod nL) in the RSA process follows a computational
scheme of the type explained in Subsection 8.1.1, i.e. any method that consists of repeated
squarings and/or multiplications. See for instance Example 8.1.3.

It is further assumed in this attack (see [Koch96]) that an observer can measure the electro-
magnetic radiation or power consumption of the device and can clock the length of the various
calculations. Typically, a multiplication takes longer than a simple squaring operation.

In this way, the attacker can determine the particular sequence of squarings and multiplications
that the program went through. Based on the outcome, he can simply compute the secret exponent
d stored on the card.

For instance, if the measurements give Sq.Sq.M.Sq.Sq.M.Sq.Sq.M.Sq.M, where Sq stands for
Squaring and M for Multiplying, we get the exponent from

Clear@aD;
i
k
jjjjj
i
k
jjjjJJIHHaL2L

2
 aM2N

2
 aN

2y
{
zzzz
2

 a
y
{
zzzzz
2

 a

a171

É The "Microwave" Attack

Suppose again that RSA is implemented on a hardware device (say a smartcard), but now assume
that the secret exponentiation (m Ø Hmd mod nL or c Ø Hcd mod nL) in the RSA process makes use
of the Chinese Remainder Theorem (Thm. A.19). See for instance Example 9.1, Part 4. So, we
assume that two independent exponentiations take place on this device: one modulo p and one
modulo q , where n = p.q .

Now suppose that this RSA implementation is used to sign data (this is the simplest version of the
attack, cfr. [LensA96] and [BoDML97]). So, typically, the attacker presents a message m to the
smart card and would normally expect c = Hmd mod nL back. However, the attacker submits the

180 FUNDAMENTALS OF CRYPTOLOGY

smart card, when it is making its calculations, to the right kind of radiation ("just put it in a
microwave" is an oversimplification of this attack) and hopes that in one of the two
exponentiations an incorrect calculation will be made.

For instance, the smart card calculates c1 = Hmd mod pL correctly, but gets a wrong value for c2 ,
i.e. c2 ' ∫ Hmd mod qL . The reader should remember that in the smart card values a and b are stored
satisfying: a ≡ 1 Hmod pL

a ≡ 0 Hmod qL: b ≡ 0 Hmod pL
b ≡ 1 Hmod qL

So, the card will output c ' = Ha.c1 + b.c2 ' mod nL . Now note that since b ª 0 Hmod pL and
a ª 0 Hmod qL

c - c ' ª a.c1 - a.c1 ª 0 Hmod pL ,

c - c ' ª b.c2 - b.c2 ' ª bHc2 - c2 ' L T 0 Hmod qL .

It follows that gcdHc - c ', nL gives a non-trivial factorization of n .

It depends on the application whether the attacker can let the card give the correct value of c too,
for instance by having the card sign m again without introducing any radiation). A way around
this problem is to let the attacker select a message c , compute m = Hce mod nL with the public
exponent e and submit m when attacking the card. In this way, the correct value of c is already
known beforehand.

Example 9.1 (Part 6)

We continue with the parameters of Example 9.1, so pB = 9733, qB = 10177, nB =99052741,
eB = 81119923, and dB = 17089915.

Further, a = 45287650 and b = 53765092 (see Ex. 9.1, Part 4).

When, m = 12345678, the correct value of c is given by

n = 99052741; e = 81119923;
c = 11111111;
m = PowerMod@c, e, nD

24307114

So, when signing m = 24307114 the card should produce c = 11111111.

In his calculations the card computes numbers c1 and c2 and gets c as follows:

RSA Based Systems 181

p = 9733; q = 10177;
d = 17089915; d1 = Mod@d, p − 1D; d2 = Mod@d, q − 1D;
m1 = Mod@m, pD; m2 = Mod@m, qD;
a = 45287650; b = 53765092;
c1 = PowerMod@m1, d1, pD;
c2 = PowerMod@m2, d2, qD;
c = Mod@a∗c1 + b∗c2, nD

11111111

However, when c1 is calculated incorrectly due to radiation, say c1 ' = 8765, the card will
produce an incorrect value c ' for c = 11111111 and the gcd of the difference of these two
numbers with n will yield a factor of n.

c1Prime = 8765;
cPr = Mod@a∗c1Prime + b∗c2, nD
GCD@c − cPr, nD

92608527

10177

The number 10177 is indeed one of the two factors of n.

9.4 How to Generate Large Prime Numbers; Some Primality Tests

9.4.1 Trying Random Numbers

To make the RSA system practical, one needs an efficient way to generate very long prime
numbers. The following pseudo-algorithm describes a probabilistic way of how this can be done.

Algorithm 9.3 Method to generate an l -digits long prime number

Step 1: Write down a random, odd integer u of l digits long.

Step 2: Test the candidate u for primality.
 If u is not prime, go back to Step 1, otherwise STOP.

182 FUNDAMENTALS OF CRYPTOLOGY

In the next two paragraphs we shall discuss several ways to test an integer u for primality. The
first two tests do not give an absolute guarantee that u is prime, but the probability that a
composite number u meets the test can be made arbitrary small. The second test (of which only an
outline will be given in Section 9.3.3) can guarantee the primality, but it is much slower. For other
tests we refer the reader to [Knut81], Section 4.5.4.

Example 9.12

In Mathematica one can use the functions Random, PrimeQ, and While to simulate the above algorithm.
Note that the parity of u is not tested below (this is not an essential part of the above algorithm anyway).

u = 1; l = 3;
att = 0;
While@PrimeQ@uD == False, att = att + 1;

u = Random@Integer, 810l−1, 10l<DD;
Print@"prime number is ", uD
Print@att, " attemptHsL"D

prime number is 907

7 attemptHsL
How often does one expect to have to go through Steps 1 and 2 in the above "algorithm" before
obtaining a prime? To answer this question we have to know the fraction of the prime numbers in
the set of odd, l-digit numbers. To this end we quote the Prime Number Theorem (Th. A.2).

Theorem 9.4
Let pHxL count the number of primes less than or equal to x (see Definition A.1). Then

limxØ¶
pHxLÅÅÅÅÅÅÅÅÅÅÅÅÅxêln x = 1

With the Prime Number Theorem one can quite easily obtain an approximation of the fraction of
odd, l-digit numbers that are prime. One gets

pH10lL-pH10l-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH10l-10l-1Lê2 º
P.N .T . 10l

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ln 10l - 10l-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ln 10l-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH10l-10l-1Lê2 = 2 H9 l-10LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ9. l.Hl-1L.ln 10 º 2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅl.ln 10

For instance, with l = 100, one gets

l = 100;
EstimateProb@l_D =

2 H9∗l − 10LêH9∗l∗Hl − 1L∗Log@10DL;
N@EstimateProb@100D, 3D

RSA Based Systems 183

0.00868

Since the reciprocal of this number is about 115, we estimate that the expected number runs in the
prime generation algorithm above will be 115.

9.4.2 Probabilistic Primality Tests

É The Solovay and Strassen Primality Test

Let p be a prime number. We recall from Definition A.9 that an integer u with p I u (read: p does
not divide u), is called a quadratic residue (QR) modulo p , if the equation

x2 ª u Hmod pL ,

has an integer solution. If p I u and this congruence relation does not have an integer solution, u
will be called a quadratic non-residue modulo p (NQR). The well known Legendre symbol Hu ê pL
(see Definition A.10) is defined byI uÅÅÅÅÅp M =

looomnooo +1
-1

0

if u is a quadratic residue mod p,
if u is a quadratic nonresidue mod p,
if p divides u.

The Jacobi symbol H uÅÅÅÅÅm L (see Definition A.11) generalizes the Legendre symbol to all odd integers
m . Let m = Pi HpiLei where the pi 's are (not necessarily distinct) odd primes. Then, H uÅÅÅÅÅm L is defined
by I uÅÅÅÅÅÅm M = ‰

i
I uÅÅÅÅÅÅÅpi

Mei

In Section A.4, the reader can find all kinds of properties of the Legendre symbol and the Jacobi
symbol. These properties culminate in an extremely efficient algorithm to compute the values of
these symbols. An example can be found there. In Mathematica, both symbols can be computed
with the JacobiSymbol function:

u = 12703; m = 16361; JacobiSymbol@u, mD

1

As a matter of fact, since m in the example above, is a prime number, it is quite easy to compute a
"square-root" of u . For a discussion of how this can be done, we refer the reader to Section 9.5. In
Mathematica one can simply use the Solve function.

184 FUNDAMENTALS OF CRYPTOLOGY

Clear@xD;
Solve@8x2 == 12703, Modulus == 16361<, xD

88Modulus → 16361, x → 7008<, 8Modulus → 16361, x → 9353<<
Indeed, H≤7008L2 ª 12703 Hmod 16361L , as can be checked with the PowerMod function.

PowerMod@7008, 2, 16361D

12703

To find a solution of the equation x2 ª u Hmod mL for composite integers m is, in general, a very
difficult problem and intractable for large values of m (see [Pera86] for a discussion of this
problem).

If m is the product of different primes and this factorization is known (!), one can find the square
root of u by finding the square root of u modulo all the prime factors of m and then combine the
result by means of the Chinese Remainder Theorem. In Section 9.5, this method will be
demonstrated. When m has higher prime powers in its factorization, matters get much more
complicated.

Let p be a prime number, p > 2. We recall from Theorem A.23 that for all integers u :

(9.15) I uÅÅÅÅÅp M ª uHp-1Lê2 (mod p).

The Solovay and Strassen Algorithm [SolS77] relies on the following theorem.

Theorem 9.5
Let m be an odd integer and let G be defined by

G = 9 0 § u < m » gcdHu, mL = 1 and I uÅÅÅÅÅÅm M ª uHm-1Lê2 Hmod mL =
Then

(9.16) » G » = m - 1 if m is prime.

(9.17) » G » § Hm - 1L ê2 if m is not a prime,

Proof: If m is prime, every integer 0 < u < m satisfies (9.15), and has gcd 1 with m , so» G » = m - 1 in this case.

So, we now consider the case that m is not a prime number. Clearly, G is a subgroup of the
multiplicative group

RSA Based Systems 185

m
* = 8 0 § u < m » gcdHu, mL = 1 <.

It follows (from Theorem B.5) that the cardinality of G divides that of m
* . So, if G ∫ m

* we can
conclude that » G » § » m

* » ê 2 = jHmL ê2 § Hm - 1L ê 2.This would prove the theorem. We
conclude, that it suffices to prove the existence of an element u in m

* with H uÅÅÅÅÅm L T uHm-1Lê2 Hmod mL .

We distinguish two cases. In [SolS77], the authors omit to consider the case that m is a square. In
the proof below, which is due to J.W. Nienhuys (private communication), Case 1 will cover this
possibility.

Case 1: The number m is divisible by at least the square of some prime number. We write
m = pr.s with p an odd prime, r ¥ 2, and gcdHp, sL = 1.

Let u be a solution of the system simultaneous congruence relations:

(9.18) u ª 1 + p Hmod prL ,

(9.19) u ª 1 Hmod sL .

By the Chinese Remainder Theorem (Thm. A.19) such a solution u exists and is unique modulo
m . Clearly, gcdHu, prL = gcdHu, sL = 1, so gcdHu, mL = 1, i.e. u œ m

* .

It follows from (9.18), the binomial theorem, and an argument similar to the proof of Theorem
B.26 that um ª H1 + pLm ª 1 Hmod prL . By (9.19) we also have that um ª 1 Hmod sL . By the Chinese
Remainder Theorem we now have that um ª 1 Hmod mL .

Since u T 1 Hmod mL by (9.18), it also follows that um-1 T 1 Hmod mL . This in turn implies that
uHm-1Lê2 T ≤1 Hmod mL , which implies that u can not satisfy (9.15). We conclude that this element
u is a member of m

* , but not of G .

Case 2: m is the product of s distinct prime numbers, say m = p1 p2 … ps , with s ¥ 2.

Let a be a quadratic non-residue modulo p1 . By the Chinese Remainder Theorem there is a unique
integer u modulo m satisfying the system simultaneous congruence relations

(9.20)u ª a Hmod p1L,
(9.21) u ª 1 Hmod piL, 2 § i § s .

Clearly, gcdHu, piL = 1 for 1 § i § s , so u œ m
* . To show that u – G , we need to show that (9.15)

does not hold.

Since u ª 1 Hmod piL, 2 § i § s , it follows that I uÅÅÅÅÅÅpi
M = 1 for these indices. But I uÅÅÅÅÅÅÅp1

M = I aÅÅÅÅÅÅÅp1
M = -1,

because a is NQR. From the definition of the Jacobi symbol (Def. A.11) it follows thatH uÅÅÅÅÅm L = -1. In particular this implies that H uÅÅÅÅÅm L ª -1 Hmod piL for any 2 § i § s .

On the other hand, (9.21) implies that uHm-1Lê2 ª 1 Hmod piL for any 2 § i § s . HenceHu êmL T uHm-1Lê2 Hmod piL
for any i , 2 § i § s , and a fortiori (9.15) does not hold.

Ñ

186 FUNDAMENTALS OF CRYPTOLOGY

We can now describe the Solovay and Strassen Algorithm.

Algorithm 9.6 Solovay and Strassen primality test
input odd integer m (candidate)

security parameter k
initialize prime=True; i=1;
while prime and i § k do

begin
select a random integer u, 1 < u < m ;
if gcdHu, mL ∫ 1 or Hu êmL T uHm-1Lê2 Hmod mL then prime=False;
i=i+1;
end

output prime

In the algorithm above, k can be any positive integer. The probability that k independently and
randomly selected elements u will pass the two tests, given in Algorithm 9.6, while m is not
prime, is less than or equal to 2-k by Theorem 9.5. By taking k sufficiently large, the probability
that a non-prime number survives the above algorithm can be made arbitrary small.

See however the Miller-Rabin test in the next subsubsection, where we have 4-k as probability
that a composite number is not detected after k tests.

Example 9.13

To test if the odd number m = 1234563 is prime we use the Mathematica functions GCD, JacobiSymbol,
PowerMod, and Mod:

m = 1234563;
u = 1212121;
GCD@u, mD == 1
Mod@JacobiSymbol@u, mD − PowerMod@u, Hm − 1Lê 2, mD, mD == 0

True

False

The reader is invited to test m = 104729 for primality.

É Miller-Rabin Test

The Miller-Rabin test [Mill76], [Rabi80a] is based on the fact (see Theorem B.14) that the
equation x2 ª 1 Hmod pL has only two solutions: x ª ≤1 Hmod pL .

So, let m be an odd integer that we want to test for primality. Assuming for a moment that m is in
fact prime, we have by Fermat's Theorem (Thm. A.15) that any integer a with gcdHa, mL = 1

RSA Based Systems 187

satisfies am-1 ª 1 Hmod mL .

Since m - 1 is even, it follows that aHm-1Lê2 ª ≤1 Hmod mL . If aHm-1Lê2 happens to be +1 andHm - 1L ê2 is even, we can repeat the argument, so in this case we conclude that
aHm-1Lê4 ª ≤1 Hmod mL , etc. In this way, one can prove the following lemma.

Lemma 9.7
Let p be a prime and write p - 1 = a .2 f , with a odd. Let u be an integer in between 1
and p - 1. Then
either ua ª 1 Hmod pL
or ua .2i

ª -1 Hmod pL for some 0 § i < f .

To test an odd integer m for primality we proceed as follows. First we write m - 1 = a .2 f , with a
odd. Next we pick a random integer u , 2 § u < m , and compute from left to right
ua, ua .2, …, ua .2 f . As soon as one of these numbers is not in 8-1, 1< , while the next one is +1, or
if ua .2 f

T 1 Hmod mL we may conclude that m is composite and we can stop.

We repeat the test k times, where k is a security parameter, that will be discussed in a moment.

Let m be an integer and let u be such that ua .2 j
ª 1 Hmod mL , j ¥ 1, while ua .2 j-1

T ≤1 Hmod mL .
Then u is called a strong witness to the composedness of m . It gives a proof that m is composite.

On the other hand, let m be composite and let u be an integer that satisfies ua ª 1 Hmod mL or
ua .2 j

ª -1 Hmod mL for some 0 § j § f - 1, then this u is called a strong liar (to the primality) of
m .

For an efficient primality test we want composite numbers to have as few strong liars as possible.

Algorithm 9.8 Miller-Rabin primality test
input odd integer m (candidate)

security parameter k
initialize prime=True; i=1;
write m - 1 = a .2 f , a odd.
while prime and i § k do

begin
select a random integer u, 1 < u < m - 1;
compute x ª Hua mod mL
if x T ≤1 Hmod mL then

begin put j = 1
while x T ≤1 Hmod mL and j § f - 1
do begin x ≠ Hx2 mod mL

 if x ª 1 Hmod mL then prime=False
 j ≠ j + 1
 end

if x T -1 Hmod mL then prime=False
 end

i = i + 1;
end

output prime

188 FUNDAMENTALS OF CRYPTOLOGY

Example 9.14

Let m = 7933. Then m - 1 = 1983.22 . Let us pick a random u and compute u1983.2i for i = 0, 1, 2. We use
the Mathematica functions While and EvenQ to write m - 1 as a .2 f and use Random, PowerMod,
Print, and Do for the actual test.

m = 7933;
f = 0; a = m − 1; While@EvenQ@aD, f = f + 1; a = aê2D;
8a, f<
u = Random@Integer, 81, m − 2<D
x = PowerMod@u, a, mD;
Do@8Print@xD, x = Mod@x2, mD<, 8i, 0, f<D

81983, 2<
4225

7932

1

1

We see that no matter how often we run this, we shall always get H+1, +1, +1L or H-1, +1, +1L ,
or H*, -1, +1L .

Example 9.15

Let m = 429. A strong witness of the composedness of m is given by the choice u = 34, as we can see below.

RSA Based Systems 189

m = 429;
f = 0; a = m − 1; While@EvenQ@aD, f = f + 1; a = aê2D;
8a, f<
u = 34
x = PowerMod@u, a, mD;
Do@8Print@xD, x = Mod@x2, mD<, 8i, 0, f<D

8107, 2<
34

265

298

1

What remains to be done is to give an estimate of the fraction of strong liars modulo a composite
number. The next theorem says that this fraction is at most 1/4. This means that the probability
that a composite number will not be detected after k runs of the Miller-Rabin test is at mostH1 ê 4Lk . This compares very favorably with the Solovay and Strassen primality test where this
probability can only be upperbounded by H1 ê2Lk .

Theorem 9.9
Let m be a composite number, m ∫ 9. Then the number of strong liars in between 1 and
m - 1 is at most jHmL ê4, where j denotes Euler's totient function.
In other words: the probability that after k runs Algorithm 9.8 has not established the
composedness of a non-prime m is at most 4-k .

The proof of Theorem 9.8 (see [Moni80] or [Rabi80a]) is very technical and does not give further
insight to the reader of this introduction.

If m = 9, jHmL ê 4 will be 6 ê4, which is less than the two "strong liars" -1 and +1.

9.4.3 A Deterministic Primality Test

Primality tests that prove in a deterministic way that a certain is prime or not are of course much
slower than probabilistic algorithms of the type discussed in the previous subsection.

We shall now explain the idea behind the deterministic primality test of H. Cohen and H.W.
Lenstra jr. [CohL82]. This test is an improvement of [AdPR83]. We shall not give a complete
description of this test. That would involve too much advanced and deep number theory. We
closely follow the excellent introductory article by Lenstra [LensH83].

190 FUNDAMENTALS OF CRYPTOLOGY

We start by quoting Fermat's Theorem (Thm. A.15).

Theorem 9.10 Fermat
Let m be a prime number and let a be any integer. Then

(9.22) am ª a Hmod mL .

Let m be an integer that we want to test for primality. A single integer a that does not satisfy
(9.22), proves that m is not a prime number.

Unfortunately, the opposite is not true. For instance, m = 561 satisfies (9.22), while
m = 3 µ 11 µ 17. To see this we first compute lcmHjH3L, jH11L, jH17LL

=
Thm.A .17 lcmH2, 10, 16L = 80 . Let a be coprime with 561. It follows from Euler's Theorem (Thm.

A.14) that a80 is congruent to 1 modulo each of the three prime divisors of 561. The Chinese
Remainder Theorem (Thm. A.19) now implies that a80 ª 1 Hmod 561L . Hence,
a561 ª a.Ha80L7 ª a Hmod 561L .

For the values of a that have a factor in common with 561, (9.22) can be proved in a similar way.

The reader may want to verify the above with the Mathematica functions FactorInteger and
PowerMod:

m = 561; FactorInteger@mD
a = 543;
PowerMod@a, m, mD == a

883, 1<, 811, 1<, 817, 1<<
True

Composite integers m with the property that am-1 ª 1 Hmod mL , for all a with gcdHa, mL = 1, are
commonly called Carmichael numbers.

The converse of a slightly stronger statement than Theorem 9.10 does hold however. In the sequel,Ha ê mL denotes, as usual, the Jacobi symbol.

Theorem 9.11
An odd integer m is prime if and only if for all integers a

gcdHa, mL = 1 ï aHm-1Lê2 ª Ha êmL Hmod mL .

Proof: That the relation above holds for prime numbers was already remarked on in (9.15). The
converse was first proved by Lehmer [Lehm76], but it also follows directly Theorem 9.5.

RSA Based Systems 191

Ñ

The above theorem is of course not a very efficient primality test for numbers that are more than
100 digits long. Lenstra offers the following "attractive" alternative.

Theorem 9.12
An odd integer m is prime if and only if every divisor d of m is a power of m .

Proof: This statement is completely trivial, since d = 1 = m0 and d = m = m1 are the only
divisors of a prime number m . All other numbers in between 1 and m can not be written as power
of m .

Ñ

Clearly it is not this theorem that we want to use as a primality test, but a variation of it does turn
out to be very powerful. We shall show that under certain conditions every divisor of m looks a
little bit like a power of m .

Theorem 9.13
Let m be an integer m that is coprime with 6. Assume further that

(9.23) Hu êmL ª uHm-1Lê2 Hmod mL for u = -1, 2, and 3,

(9.24) aHm-1Lê2 ª -1 Hmod mL for some integer a .

Then, for each d dividing m

(9.25) d ª m j Hmod 24L for some non-negative integer.

In fact, (9.19) can be strengthened to

(9.26) d ª m j Hmod 24L for j = 0 or 1.

Condition (9.24) can not be omitted in the theorem above. Indeed, m = 1729 = 7 µ 13 µ 19 does
satisfy (9.23), but does not satisfy (9.25). Note that m ª 1 Hmod 24L , therefore, no power of m will
ever be equal to one of the prime divisors of m .

All these statements can be checked with the Mathematica functions FactorInteger,
JacobSymbol, PowerMod, and Mod:

192 FUNDAMENTALS OF CRYPTOLOGY

m = 1729; FactorInteger@mD
Mod@m, 24D
Mod@JacobiSymbol@−1, mD − PowerMod@−1, Hm − 1Lê 2, mD, mD == 0
Mod@JacobiSymbol@2, mD − PowerMod@2, Hm − 1Lê 2, mD, mD == 0
Mod@JacobiSymbol@3, mD − PowerMod@3, Hm − 1Lê 2, mD, mD == 0

887, 1<, 813, 1<, 819, 1<<
1

True

True

True

Before we prove Theorem 9.13, we shall illustrate how it can be used to test the primality of
integers m , 24 < m < 242 . After the proof we shall discuss generalizations of Theorem 9.13, that
yield efficient primality tests for larger values of m .

Algorithm 9.14 (Cohen and Lenstra limited primality test)
input m , 24 < m < 242 ,
initialize prime=True,
test 1: if gcdHm, 6L ∫ 1 then prime=False
test 2: if Hu êmL T uHm-1Lê2 Hmod mL for u = -1, 2, or 3

then prime=False
test 3: find an integer a with aHm-1Lê2 ª -1 Hmod mL ;

if no such integer a exists then prime=False
test 4: compute d = Hm mod 24L .

if d > 1 and d » m then prime=False
output prime

Proof: The first matter to be addressed is Test 3. If m is prime, the probability that a random
1 < a < m satisfies (9.24) is 1/2 by Theorem A.23 and Theorem A.20. So, in two tries one can
expect to find an integer a satisfying (9.24). If no such integer a exists, m is not prime.

More can be said about this step. Assuming the Extended Riemann Hypothesis one can even prove
that (9.24) has a solution a , 1 < a < 2 Hlog mL2 , if m is prime. (See also [Pera86].)

If m meets the first three tests, we know from Theorem 9.13 that each divisor d of m must be
congruent to 1 or m modulo 24. Since m < 242 , we may assume that d < 24 (otherwise consider
n êd instead of d). It follows that d is in fact equal to 1 or to (m mod 24L .

RSA Based Systems 193

The possibility that d = Hm mod 24L , d > 1, is ruled out by Test 4. It follows that this divisor d
must be equal to 1. We conclude that m is prime.

Ñ

To be able to prove Theorem 9.13 we need the following lemmas. The first gives a necessary and
sufficient condition for two integers m1 and m2 , both having gcd 1 with 6, to be congruent to each
other modulo 24.

Lemma 9.15
Let m1 and m2 be two integers, both coprime with 6. Then

m1 ª m2 Hmod 24L ó Hu êm1L = Hu êm2L for u = -1, 2, and 3.

Proof: There are eight integers m , 1 § m § 24, that are coprime with 6, namely 1, 5, 7, 11, 13, 17,
19 and 23. For each of these values m we calculate the values Hu êmL for u = -1, 2, and 3 by
means of Corollary A.24, Theorem A.25, resp. Theorem A.27 or with the Mathematica functions
JacobSymbol, which can be applied at once to a whole list of numbers.

m = 81, 5, 7, 11, 13, 17, 19, 23<;
JacobiSymbol@−1, mD
JacobiSymbol@2, mD
JacobiSymbol@3, mD

81, 1, −1, −1, 1, 1, −1, −1<
81, −1, 1, −1, −1, 1, −1, 1<
81, −1, −1, 1, 1, −1, −1, 1<

It is easy to verify that the matrix with these three vectors as rows has the property that all
columns are different. This shows that the three values Hu êmL , u = -1, 2, 3, uniquely define m
from 81, 5, 7, 11, 13, 17, 19, 23< .

Ñ

For example, by looking at the second column, we see that m = 5 is uniquely defined in81, 5, 7, 11, 13, 17, 19, 23< by the three values H-1, mL = 1, H2 ê mL = -1, and H3 êmL = -1.

Lemma 9.16
Let m be any integer. ThenHm, 6L = 1 ï m2 ª 1 Hmod 24L .

194 FUNDAMENTALS OF CRYPTOLOGY

Proof: Since m is not divisible by 3, it follows that m2 ª 1 Hmod 3L. Similarly, since m is odd, it
follows that m2 ª 1 Hmod 8L . To see this, write m = 2. n + 1. Then m2 = H2. n + 1L2 = 4 nHn + 1L + 1.

Since, 3 and 8 are coprime, the statement follows from the Chinese Remainder Theorem.

Ñ

Of course, we could have checked the above lemma with the Mathematica function Mod as follows

m = 81, 5, 7, 11, 13, 17, 19, 23<
Mod@m2, 24D

81, 5, 7, 11, 13, 17, 19, 23<
81, 1, 1, 1, 1, 1, 1, 1<

We are now ready to prove Theorem 9.13.

Proof of Theorem 9.13:

It is a direct consequence of condition gcdHm, 6L = 1 and Lemma 9.16 that each exponent j in
(9.25) can be reduced modulo 2. This shows that (9.25) can be replaced by (9.26)

Next, note that it suffices to prove (9.25) for prime divisors d of m only. Write m - 1 = f .2k and
d - 1 = g .2l , where f and g are odd and where k > 0, l > 0.

We shall first prove that l ¥ k and then use Lemma 9.15 to show that either d ª n0 Hmod 24L or
d ª n1 Hmod 24L .

Raise both sides in condition (9.24) to the power g and reduce the result modulo d . Since d » m
and g is odd, one obtains

a f .g .2k-1
ª H-1Lg ª -1 Hmod dL .

Since we assume that d is prime and since a can not have a factor in common with d or m , it
follows from Fermat's Theorem (Thm. A.15) that

a f .g .2l
ª a f Hd-1L ª 1 f ª 1 Hmod dL .

We conclude from these two congruence relations that

k - 1 < l .

Now consider u œ 8-1, 2, 3< . Since g is odd and d » m , we have

u f .g .2k-1
ª ugHm-1Lê2 ª

H9.23L Hu êmLg ª Hu êmL Hmod dL .

On the other hand (again because d is prime), we have

u f .g .2l-1
ª u f Hd-1Lê2 ª

H9.15L Hu êdL f ª Hu êdL Hmod dL .

RSA Based Systems 195

It follows from the two last congruence relations that for i = -1, 2, 3

(9.27) Hu êdL = Hu êmL2l-k .

Note that we have replaced the congruence relation above by an equality sign. We can do this,
because both hands have value -1 or 1.

If l = k , relation (9.27) and Lemma 9.15 together imply that d ª m ª m1 Hmod 24L .

On the other hand, if l > k , the right hand side of (9.27) is equal to 1, which is also Hu ê1L . So,
Lemma 9.15 yields that d ª 1 ª n0 Hmod 24L .

Ñ

Crucial in the application of Theorem 9.13 is the fact that we can replace (9.25) by (9.26). Because
of this, only one condition needed to be tested in the fourth step of Algorithm 9.14. The reason
that (9.25) could be replaced by (9.26) (see Lemma 9.16) is the fact that

gcdHn, 24L ï n2 ª 1 Hmod 24L .

Theorem 9.13 can only prove the primality of integers m , 24 < m < 242 . For larger values of m
one needs generalizations of Theorem 9.13. As may be expected, the exponent in Lemma 9.16 will
have to be increased in these generalizations. An example of such a generalization would be

gcdHm, 65520L = 1 ï m12 ª 1 Hmod 65520L.
In order to test 100-digit numbers for primality, one uses

gcdHm, sL = 1 ï m5040 ª 1 Hmod 65520L.
where s is the 53-digit number

26 µ 33 µ 52 µ 72 µ 11 µ 13 µ 17 µ 19 µ 31 µ 37 µ 41 µ 43 µ 61 µ 71
µ 73 µ 113 µ 127 µ 181 µ 211 µ 241 µ 281 µ337 µ 421 µ 631 µ 1009 µ 2521.

Note that è!!!!m < s , if m has not more than 100 digits. A rough outline of the primality test of a
100-digit number is as follows.

Algorithm 9.17 (Cohen and Lenstra; outline of primality test)
input m < 10100

initialize prime=True,
test 1: if gcdHm, sL ∫ 1 then prime=False
test 2: if m fails any of 67 congruence relations like (9.23)

then prime=False
test 3: compute d = Hni mod sL , for i = 1, 2, …, 5039,

if any of these d divide m then prime=False
output prime

If m is composite, the algorithm above will sometimes yield a factor of m . The probability that
this will happen however, is very small. In most cases that m is composite, the algorithm will
terminate in Step 2 and one does not obtain a factor of m . The algorithm above can be adapted to
test larger integers for primality. The expected running time is

196 FUNDAMENTALS OF CRYPTOLOGY

Hln nLc ln ln n

where c is some constant.

9.5 The Rabin Variant
In Subsection 9.2.1, it was mentioned that no other general method of breaking RSA is known
than by factoring n . In [Rabi79], Rabin proposes a variant of the RSA system, whose cryptanalysis
can be proved to be equivalent to the factorization of n .

9.5.1 The Encryption Function

In the RSA system, each user U had to select a public exponent eu with gcdHeU , nU L = 1 (see
(9.2)). In Rabin's variant, all users U take the same exponent

(9.28) eU = 2.

We remind the reader of the discussion in Subsection 9.3.1.

Since gcdH2, jHnU LL = 2, because both pU - 1 and qU - 1 are even, encryption is no longer a one-
to-one mapping. Indeed, if c ª m2 Hmod nU L , with gcdHc , nU L = 1 and nU = pU qU , it follows that
the congruence relation x2 ª c Hmod pU L has two solutions, namely ≤m Hmod pU L and, similarly,
the congruence relation x2 ª c Hmod qU L will have the two solutions ≤m Hmod qU L . By the Chinese
Remainder Theorem (Thm. A.19), the congruence relation

(9.29)x2 ª c Hmod nU L
has four solutions modulo nU . What happens if gcdHc, nU L ∫ 1 is an easy exercise for the reader
(see Problem 9.5).

Example 9.16 (Part 1)

Consider the encryption of the message m = 12345678 modulo the modulus n = 9733 µ 10177 = 99052741
(we use the Mathematica functions Prime and PowerMod).

RSA Based Systems 197

pB = Prime@1200D;
qB = Prime@1250D;
nB = pB∗qB
m = 12345678;
PowerMod@m, 2, nBD

99052741

43962531

To find the four messages that are mapped to the same ciphertext, we have to combine the four
systems of linear congruence relations x ª ≤ m Hmod pL and x ª ≤ m Hmod qL with the Chinese
Remainder Theorem. We have to load the package NumberTheory`NumberTheoryFunctions` to
be able to use the function ChineseRemainderTheorem.

<<NumberTheory`NumberTheoryFunctions`

m1 = ChineseRemainderTheorem@
812345678, 12345678<, 89733, 10177<D

m2 = ChineseRemainderTheorem@
8−12345678, 12345678<, 89733, 10177<D

m3 = ChineseRemainderTheorem@
812345678, −12345678<, 89733, 10177<D

m4 = ChineseRemainderTheorem@
8−12345678, −12345678<, 89733, 10177<D

12345678

48738630

50314111

86707063

To check this we calculate

198 FUNDAMENTALS OF CRYPTOLOGY

PowerMod@m1, 2, nBD
PowerMod@m2, 2, nBD
PowerMod@m3, 2, nBD
PowerMod@m4, 2, nBD

43962531

43962531

43962531

43962531

We note that the image space of the encryption function is not the whole set 80, 1, …, nU < . As a
consequence, this variant by Rabin can not be used in a straightforward way as a signature
scheme. (See the related Fiat-Shamir protocol in Chapter 14.)

9.5.2 Decryption

É Precomputation

How does one decrypt a message c ª m2 Hmod nL in the Rabin variant of the RSA system? As
explained earlier in this section, we do this with the Chinese Remainder Theorem. As
precalculation, one computes integers a and b satisfying

(9.30) a ª 1 Hmod pU L and a ª 0 Hmod qU L ,

(9.31) b ª 0 Hmod pU L and b ª 1 Hmod qU L .

The solutions a and b can easily be found as follows; for instance, to find a , we obtain a = l.qU

from the second congruence relation and substitute this in the first congruence relation. One gets
the congruence relation l.qU ª 1 Hmod pU L , which can be solved with the extended version of
Euclid's Algorithm, (Alg. A.8). See also Example A.3.

These systems of congruence relations can also be solved directly with the Mathematica function
ChineseRemainderTheorem for which the package
NumberTheory`NumberTheoryFunctions` has to be loaded first.

Example 9.16 (Part 2)

Continuing with the parameters of Example 9.16, we need to solve

a ª 1 Hmod 9733L and a ª 0 Hmod 10177L ,

RSA Based Systems 199

b ª 0 Hmod 9733L and b ª 1 Hmod 10177L .

<<NumberTheory`NumberTheoryFunctions`

a = ChineseRemainderTheorem@81, 0<, 89733, 10177<D
b = ChineseRemainderTheorem@80, 1<, 89733, 10177<D

45287650

53765092

So, a = 45287650 and b = 53765092.

É Finding a Square Root Modulo a Prime Number

Next, one has to solve the congruence relation x2 ª c Hmod pU L (and, similarly, x2 ª c Hmod qU L).
If c = 0 the solution is obvious, so, let us assume that c T 0 Hmod pU L .

For notational reasons we omit the subscript U from now on. It turns out that an immediate
technique to find x is not always possible. We consider three cases.

Case 1: p ª 3 Hmod 4L
If c is the square of some element m in p (such a c is called a quadratic residue modulo p; see
Section A.4), the two solutions of x2 ª c Hmod pL are given by ≤cHp+1Lê4 . Indeed, if we square this
expression we get from Fermat's theorem:H≤cHp+1Lê4L2 ª cHp+1Lê2 ª c.cHp-1Lê2 ª c.mp-1 ª

Thm. A .15
c Hmod pL .

Example 9.17

Consider the prime p = 3571 which is congruent to 3 modulo 4. The number c = 2868 is a quadratic
residue modulo p as can be checked with the Legendre symbol. To verify all these assertions we use the
Mathematica functions Prime, Mod, and JacobiSymbol.

200 FUNDAMENTALS OF CRYPTOLOGY

p = Prime@500D
Mod@p, 4D == 3
c = 2868;
JacobiSymbol@c, pD == 1

3571

True

True

The solution of x2 ª 2868 Hmod pL is given by m ª ≤ 2868Hp+1Lê4 ª ≤ 3234 Hmod 3571L .

To verify this we use the Mathematica function PowerMod.

m = PowerMod@c, Hp + 1Lê 4, pD
PowerMod@8m, −m<, 2, pD

3234

82868, 2868<
Case 2: p ª 5 Hmod 8L
With a slight refinement of the method used above it can be shown that the solution of
x2 ª c Hmod pL in this case is given by ≤cHp+3Lê8 if cHp-1Lê4 ª 1 Hmod pL and by ≤2. c.H4. cLHp-5Lê8 if
cHp-1Lê4 ª -1 Hmod pL .

See Problem 9.14, which addresses this case.

Example 9.18

Consider the prime p = 3581 which is congruent to 5 modulo 8. The number c = 2177 is a quadratic
residue modulo p as can be checked with the Legendre symbol, which is a special case of the Jacobi
symbol.

RSA Based Systems 201

p = Prime@501D
Mod@p, 8D == 5
c = 2177;
JacobiSymbol@c, pD == 1

3581

True

True

The solution of x2 ª 2177 Hmod pL is given by m ª ≤ 2177Hp+1Lê4 ª ≤ 3100 Hmod 3581L because
cHp-1Lê4 ª 1 Hmod pL (otherwise the answer would be ≤ 2. c.H4. cLHp-5Lê8).

If@PowerMod@c, Hp − 1Lê 4, pD == 1,
m = PowerMod@c, Hp + 3Lê8, pD,
m = Mod@2 c∗PowerMod@4 c, Hp − 5Lê8, pD pDD

PowerMod@8m, −m<, 2, pD

3100

82177, 2177<
Case 3: p ª 1 Hmod 8L
A fast deterministic algorithm to solve this congruence relation does not exist. We follow
[Rabi79].

In Section A.4 we have introduced QR as the set of quadratic residues modulo p and NQR as the
set of quadratic non-residues modulo p .

Let r and s denote the two solutions ≤m of the congruence relation x2 ª c Hmod pL . Then r + u
and s + u are the two solutions of Hx - uL2 - c ª 0 Hmod pL . In other words,

(9.32)Hx - uL2 - c = Hx - Hr + uLL Hx - Hs + uLL
over the finite field p (=GF(p)).

Since r T s Hmod pL , it follows that the field element Hr + uL ê Hs + uL will never take on value 1.
Since the mapping u Ø Hr + uL ê Hs + uL is one-to-one for u œ p , u ∫ -s , we conclude that

(9.33) 8Hr + uL ê Hs + uL » u œ p \ 8-s<< = p \ 81< .

202 FUNDAMENTALS OF CRYPTOLOGY

The reader may want to verify this by means of the Mathematica functions Table, Mod,
PowerMod, and Union.

p = 19; s = 9;
r = p − s;
S1 = Table@Mod@Hr + uL∗PowerMod@Hs + uL, −1, pD, pD ,

8u, 0, r − 1<D
S2 = Table@Mod@Hr + uL∗PowerMod@Hs + uL, −1, pD, pD ,

8u, r + 1, p − 1<D
S = Union@S1, S2D

818, 3, 8, 9, 4, 16, 15, 7, 10, 0<
82, 11, 14, 6, 5, 17, 12, 13<
80, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18<

It follows from (9.33) and Theorem A.20 that for half of the admissible values of u the elementHr + uL ê Hs + uL will be in QR ‹ 80< and for the other half it will be in NQR. In the first case, either
u = -r or (by Theorem A.21) both r + u and s + u will be an element of QR or they will both be in
NQR. In the latter case, exactly one of them will be in QR and the other will be in NQR.

A property of quadratic residues modulo a prime number that we shall need later on is given by
(A.16):

xHp-1Lê2 - 1 = ¤u is QR Hx - uL.
Example 9.19

As an example, consider the QR's mod 11. We introduce a new function:

ListQuadRes@p_D :=

Select@Range@pD, JacobiSymbol@#1, pD == 1 &D

p = 11;
ListQuadRes@pD

81, 3, 4, 5, 9<
So, the QR's modulo 11 are given by: 1, 3, 4, 5, and 9. We now compute with the Mathematica
function PolynomialMod:

RSA Based Systems 203

PolynomialMod@Hx − 1L Hx − 3L Hx − 4L Hx − 5L Hx − 9L, 11D

10 + x5

This is indeed equal to x5 - 1 modulo 11.

It follows from the above discussion, in particular from (9.33) and (A.16), that for a randomly
chosen u , u œ p \ 8-s< ,

(9.34) gcdHHx - uL2 - c, xHxHp-1Lê2 - 1LL Hmod pL
will be

x − u − r, if u + r ∈ QR ‹ 80< and u + s ∈ NQR,
x − u − s, if u + r ∈ NQR and u + s ∈ QR ‹ 80<,

1, if u + r ∈ NQR and u + s is NQR,Hx − uL2 − c, if u + r ∈ QR ‹ 80< and u + s ∈ QR ‹ 80<.
The counting arguments above imply that with probability Hp-1Lê2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp-1 = 1ÅÅÅÅ2 one of the first two
possibilities will occur. So, with probability 1/2 we have a non-trivial factor of Hx - uL2 - c . Since
u is known, one also has found the value of r or s .

Note that in the extremely unlikely, remaining case, namely if u = -s , expression Hx - uL2 - c will
reduce to x2 + 2 s.x . So, the gcd in (9.34) will contain a factor x and the other factor will yield the
solution s .

An example of the above method will be given later.

The expected number of u 's that one has to try in this algorithm before finding a solution of
x2 ª c Hmod pL is the reciprocal of 1/2, i.e. 2. For a discussion of other methods of taking square
roots modulo a prime number, we refer the interested reader to [Pera86].

É The Four Solutions

The final step in the decryption algorithm is of course to use the Chinese Remainder Theorem to
combine each of the two solutions of x2 ª c Hmod pL with each of the two solutions of
x2 ª c Hmod qL .

Example 9.16 (Part 3)

We continue with the parameters of Example 9.16. So, p = 9733, q = 10177,
n = p µ q = 99052741, and the solutions of

a ª 1 Hmod 9733L and a ª 0 Hmod 10177L ,

b ª 0 Hmod 9733L and b ª 1 Hmod 10177L .

are given by a = 45287650 and b = 53765092.

204 FUNDAMENTALS OF CRYPTOLOGY

p = 9733; q = 10177; n = p∗q;
a = 45287650; b = 53765092;
Mod@p, 8D
Mod@q, 8D

5

1

Let c = 9513124 be a ciphertext. Since p ª 5 Hmod 8L and q ª 1 Hmod 8L , we follow Case 2 to find
the square root of c modulo p and Case 3 to find the square root of c modulo q.è!!!!!!!!!!!!!!!!!!

9513124 modulo p by Case 2

We calculate cHp-1Lê4 ª 1 Hmod pL with the Mathematica functions PowerMod and Mod

c = 9513124;
u = PowerMod@c, Hp − 1Lê 4, pD

1

and find 1. The square root of c modulo p is thus given by ≤ cHp+3Lê8 :

f = PowerMod@c, Hp + 3Lê 8, pD

868è!!!!!!!!!!!!!!!!!!
9513124 modulo q by Case 3

We want to find the zeros of x2 - 9513124 modulo q. We take a random u in q and compute
gcdHHx - uL2 - 9513124, xHxHq-1Lê2 - 1LL and hope to find a linear factor. We use the Mathematica
functions PowerMod, PolynomialGCD and

u = 11; x =.;
PolynomialGCD@Hx − uL2 − c, x HxHq−1Lê2 − 1L, Modulus −> qD

2492 + 10155 x + x2

We try again

RSA Based Systems 205

u = 111; x =.;
PolynomialGCD@Hx − uL2 − c, x HxHq−1Lê2 − 1L, Modulus −> qD

1438 + x

It follows that one of the square roots is given by x - 111 - g ª x + 1438 Hmod qL . So, by

g = Mod@−111 − 1438, qD

8628

It follows from the Chinese Remainder Theorem (Thm. A.19) that the four square roots of
x2 ª 9513124 Hmod 99052741L are given by

Mod@a∗f + b∗g, nD
Mod@a∗f − b∗g, nD
Mod@−a∗f + b∗g, nD
Mod@−a∗f − b∗g, nD

6969696

63567091

35485650

92083045

9.5.3 How to Distinguish Between the Solutions

Let f be one of the two solutions of x2 ª c Hmod pU L and let g be one of the two solutions of
x2 ª c Hmod qU L . Further, let a and b be the solutions of the linear congruence relations (9.30) and
(9.31).

Then, by the Chinese Remainder Theorem (Thm. A.19), the four solutions of (9.29) are given by

≤ f .a ≤ g.b Hmod nU L .

One would like the sender and receiver to be able to distinguish between the four solutions in such
a way that they can agree on one of them. In some cases this can be done quite easily. Indeed, if

206 FUNDAMENTALS OF CRYPTOLOGY

pU and qU are both congruent to 3 mod 4, one has by Corollary A.24 that -1 is a NQR both
modulo pU and modulo qU . Hence, exactly one of f and - f is QR and the same is true for g and
-g . Replacing f by - f and/or g by -g , if necessary, one has without loss of generality that

+f.a + g.b is QR mod pU, +f.a + g.b is QR mod qU,
+f.a − g.b is QR mod pU, +f.a − g.b is QR mod qU,
−f.a + g.b is QR mod pU, −f.a + g.b is QR mod qU,
−f.a − g.b is QR mod pU, −f.a − g.b is QR mod qU.

By Definition A.11 and the second statement in Theorem A.26 we have thatH f .a + g.b ê nU L = H- f .a - g.b ênU L = 1, while H f .a - g.b ê nU L = H- f .a + g.b ênU L = -1. Of the
two solutions with Jacobi value +1, one will lie in between 1 and HnU - 1L ê 2, the other will lie
between HnU + 1L ê2 and nU - 1 (or both are equal to 0).

We conclude that there is a unique solution m satisfying 0 § m § HnU - 1L ê 2 and Hm ê nU L = 1. So,
sender and receiver can agree to use only messages of this form.

Example 9.20 (Part 1)

Let nB = 77 and let c = 53 be a received message. Repeating the decryption process explained in the
previous subsection, we get f = 2, g = 8, a = 22, and b = 56.

With the Mathematica functions Mod and JacobiSymbol, we get the following four possible messages
with their respective Jacobi symbol value.

nB = 77;
f = 2; g = 8;
a = 22; b = 56;
m1 = Mod@a∗f + b∗g, nBD;
m2 = Mod@a∗f − b∗g, nBD;
m3 = Mod@−a∗f + b∗g, nBD;
m4 = Mod@−a∗f − b∗g, nBD;
Print@m1, " ", JacobiSymbol@m1, nBDD
Print@m2, " ", JacobiSymbol@m2, nBDD
Print@m3, " ", JacobiSymbol@m3, nBDD
Print@m4, " ", JacobiSymbol@m4, nBDD

30 −1

58 1

19 1

47 −1

We conclude that m = 19 is the unique solution with Hm ê77L = 1 and 0 § m § 33, so m = 19 was
the message transmitted by the sender.

RSA Based Systems 207

If pU (or qU L is congruent to 1 modulo 4, one can still agree to use only messages with
0 § m § HnU - 1L ê 2. To get Hm ênU L = 1 the sender and receiver could restrict themselves to
shorter messages, say 20 digits shorter, and fill up the remaining 20 digits in such a way that the
resulting message has Jacobi symbol 1 modulo nU .

9.5.4 The Equivalence of Breaking Rabin's Scheme and Factoring n

We shall now show that breaking Rabin's variant of RSA is equivalent to factoring nU . Of
course, when the factorization of nU is known to the cryptanalyst, Rabin's system is in fact broken,
because the cryptanalyst can use the same methods to decrypt as the receiver can (see Subsection
9.5.2).

Theorem 9.18
Let n = p µ q , where p and q are prime. Let  denote an algorithm that for every c ,
which is the square of an integer, finds a solution of x2 ª c Hmod nL with FHnL operations.
Then a probabilistic algorithm exists that factors n with an expected number of
operations that is 2 HFHnL + 2 log2 nL .

Proof: Select a random m , 0 < m < n , compute c ª m2 Hmod nL and solve x2 ª m Hmod nL with
algorithm  in FHnL steps. Let k be the solution found by . The following four possibilities each
have probability 1/4:

iL
iiL
iiiL
ivL

k ≡ +m Hmod pL and k ≡ +m Hmod qL,
k ≡ +m Hmod pL and k ≡ −m Hmod qL,
k ≡ −m Hmod pL and k ≡ +m Hmod qL,
k ≡ −m Hmod pL and k ≡ −m Hmod qL.

Indeed, there are four different messages that are mapped to c and they are all four equally likely.

In case ii), gcdHk - m, nL = p and in case iii) gcdHk - m, nL = q . So, the calculation of
gcdHk - m, nL will yield the factorization of n with probability 1/2. This computation involves less
than 2 log2 n calculations by Theorem A.9, therefore, each choice of m involves at most
FHnL + 2 log2 n operations.

Since the probability of success is 1/2, one expects to need two tries.

Ñ

Example 9.20 (Part 2)

Suppose that n = 77 and that the value of m that we have picked is 30. Then
c ª 302 ª 53 Hmod 77L . Now assume that Algorithm  finds k = 19 as solution to
x2 ª 53 Hmod 77L (see Example 9.20 for these parameters).

Then one of the factors of n will be found from gcdHk - m, nL . This would also have happened if 
had found k = 58, but not with 30 or 47.

All these calculations can easily be checked with the Mathematica function GCD.

208 FUNDAMENTALS OF CRYPTOLOGY

n = 77; m = 30;
GCD@19 − 30, nD
GCD@58 − 30, nD
GCD@30 − 30, nD
GCD@47 − 30, nD

11

7

77

1

9.6 Problems

Problem 9.1
Consider the RSA system with n = 383 µ 563 (so n = 215629) and public key e = 49. So, a plaintext m
will be encrypted into c = EHmL , where

EHmL = m49 Hmod nL .

Prove that every ciphertext c satisfies E10HcL ª c Hmod nL . (Hint: use Fermat's Theorem and the Chinese

Remainder Theorem.) The notation E10HcL stands for EHEH … EHcLLLõúúúúúúúúúúúúúúúù ûúúúúúúúúúúúúú10

.
Give an easy way for a cryptanalyst to recover plaintext m from ciphertext c .

Problem 9.2
Verify that the RSA secrecy system (or signature scheme) works correctly when a message m has a non-
trivial factor in common with the modulus n = p µ q , i.e. show that HmeLd ª m Hmod nL
when gcdHm, nL = p or q Has always e and d denote the public resp.secret exponentsL.HHint : use Fermat' s Theorem and the Chinese Remainder Theorem.L
Problem 9.3
Consider the RSA cryptosystem with modulus n = p µ q and public exponent e .
a) Prove that the number of solutions of the equation mu ª 1 Hmod pL , when u divides p - 1, is exactly u
(hint: use the multiplicative structure of GFHpL , Theorem B.21)
b) Show that each solution of me-1 ª 1 Hmod pL is a solution of mgcdHe-1,p-1L ª 1 Hmod pL and vice versa
(use Fermat's Theorem, use identity A.8 for the extended version of Euclid's algorithm).

RSA Based Systems 209

c) Prove that the number of solutions of the equation me ª m Hmod pL is given by 1 + gcdHe - 1, p - 1L .
d) Prove that the number of plaintexts m satisfying

me ª m Hmod nL
(in which case encryption does not conceal a message), is given by81 + gcdHe - 1, p - 1L<.81 + gcdHe - 1, q - 1L<.
(Hint: use the Chinese Remainder Theorem.)

Problem 9.4
Demonstrate the principle of the Solovay and Strassen primality test on the number m = 33. The number m
has been made small in this problem to keep the calculations simple. So, do not make use of numbers that
"incidentally" have a factor in common with m .

Problem 9.5 M

Give a Mathematica implementation of Algorithm 9.14 and test it out for two values of m , 24 < m < 242 .

Problem 9.6 M

Give a complete factorization of n = 110545695839248001 by means of Pollard's · Algorithm.

Problem 9.7 M

Complete Example 9.7. (Hint: extend the search to H-105, 105L .)

Problem 9.8 M

Apply the Wiener attack to n = 122714980793 and e = 34587422599.

Problem 9.9 M

Find a nontrivial strong liar for the composite number m = 85.

Problem 9.10 M

Suppose that Alice has sent the same secret message to B, C, D, E, and F by means of the RSA system. Let
the public moduli of these people be given by nB = 324059, nC = 324371, nD = 326959, nE = 324851, and
nF = 324899. Assume that they all have the same public exponent e = 5.
Let the intercepted messages be given by cB = 68207, cC = 96570, cD = 251415, cE = 273331, resp.
cF = 154351.
Determine Alice's message (see Example 9.8).

Problem 9.11 M

Suppose that Alice has sent secret messages m1 = m and m2 = m2 + 10 m + 20 to Bob by means of the RSA
system. Let Bob's modulus be nB = 483047 and eB = 3. Suppose that you have intercepted the transmitted
ciphertexts c1 = 346208 resp. c2 = 230313 and that you know the above relation between m1 and m2 .
Determine m1 (see Example 9.10).

Problem 9.12
Consider the Rabin variant of the RSA system. So, only the number n is public.
Suppose that a message m , 1 < m < n , has been sent that has a non-trivial factor in common with n .
How many possible plaintexts will the receiver find at the end of the decryption process?

210 FUNDAMENTALS OF CRYPTOLOGY

Problem 9.13 M

The Rabin variant of the RSA system is used as cryptosystem with n = 17419 µ 17431. Demonstrate the
decryption algorithm of this system for the ciphertext c = 234279292.
Which solution will come up if the method described in Subsection 9.5.3 is being followed? Why can this
method be applied?

Problem 9.14
Let p ª 5 Hmod 8L and let c be a quadratic residue modulo p .
a) Show that cHp-1Lê4 ª ≤1 Hmod pL .
b) Show that the solution of x2 ª c Hmod pL is given by ≤cHp+3Lê8 if cHp-1Lê4 ª 1 Hmod pL .
c) Show that the solution of x2 ª c Hmod pL is given by ≤2 cH4 cLHp-5Lê8 if cHp-1Lê4 ª -1 Hmod pL . (Hint: use
Theorem A.25 which implies that 2 is not a quadratic residue modulo p)

RSA Based Systems 211

212 FUNDAMENTALS OF CRYPTOLOGY

10 Elliptic Curves Based Systems
It will turn out in this chapter that discrete-logarithm-based cryptosystems can also be defined
over elliptic curves. For RSA-based systems the same can be done, but there seems to be little
reason to do so. For discrete-logarithm-like systems over elliptic curves, it may very well be that
smaller parameters are possible with the same level of security as the regular systems over finite
fields.

However, many questions regarding EC-systems are still open at this moment, making it unclear
what the future of these systems will be.

10.1 Some Basic Facts of Elliptic Curves
Let GFHqL be a finite field with q elements, where q = pm . The number p is prime and is called
the characteristic of GFHq). If m = 1, we have GFHqL = p , the set of integers modulo p .

The so-called (affine) Weierstrass equation is given by

(10.1) y2 + u.x.y + v.y = x3 + a.x2 + b.x + c .

It is defined over any field (like √ or ), but for cryptographic purposes we shall always assume
that the coefficients are in GFHqL .

If p ∫ 2, one can simplify the Weierstrass equation by means of the transformation
y Ø y - Hu.x + vL ê 2. One obtains (with new values for a, b , and c)

(10.2) y2 = x3 + a.x2 + b.x + c .

If also p ∫ 3, one can apply x Ø x - a ê 3 to further reduce this form to:

(10.3) y2 = x3 + b.x + c .

If p = 2, two standard simplifications of H10.1L are possible. They are given by

(10.4) y2 + x.y = x3 + a.x2 + c .

(10.5) y2 + v.y = x3 + b.x + c .

Definition 10.1
An elliptic curve  over GFHqL is defined as the set of points Hx, yL satisfying (10.1)
together with a single element O , called the point at infinity.

To verify if a point Hu, vL lies on a particular elliptic curve, say y2 = x3 + 2 x + 3 over 5 , is quite
easy.

Elliptic Curves Based Systems 213

p = 5;
a = 0; b = 2; c = 3;
EC@x_, y_D = y2 − x3 − a∗x2 − b∗x − c;
8u, v< = 81, 4<;
Mod@EC@u, vD, pD == 0

True

To see if  contains a point with a given x-coordinate we can use the Mathematica function
Solve. Since the Weierstrass equation is quadratic in y , there will be at most two values of y
(see Theorem B.14).

p = 11;
Solve@ 8y2 == x3 − 5 x + 3, x == 3, Modulus == p<, 8y<D

88Modulus → 11, x → 3, y → 2<, 8Modulus → 11, x → 3, y → 9<<
So, x = 3 leads to the values y = ≤2, i.e. to the points H3, 2L and H3, 9L . The reader should try
some other values of x .

The reader is referred to Subsection 9.5.2 to find a discussion on how the square root of a
quadratic residue modulo a prime number can be determined by mathematical means.

It follows from the above that a point P = Hx, yL on an elliptic curve is completely characterized
by its x-coordinate and the "sign" of y . This reduces the storage requirement of P by almost a
factor 2. If q = p , p > 2, the "sign" of y can be defined as being plus one when 0 § y § Hp - 1L ê2
and as minus one otherwise.

If q = pm , p > 2, one can use likewise the "sign" of the left-most nonzero coordinate in the p-ary
representation of y .

For small values of p , one can find all points on  by trying out all possible value of x and check
in each case if (10.1) has a solution. Below, we use the Mathematica functions Flatten,
Table, and Solve.

Clear@x, yD;
p = 11;
Flatten@
Table@ Solve@ 8y2 == x3 − 5 x + 3, x == u, Modulus == p<D,

8u, 0, p − 1<D , 1D

214 FUNDAMENTALS OF CRYPTOLOGY

88Modulus → 11, y → 5, x → 0<, 8Modulus → 11, y → 6, x → 0<,8Modulus → 11, y → 1, x → 2<, 8Modulus → 11, y → 10, x → 2<,8Modulus → 11, y → 2, x → 3<, 8Modulus → 11, y → 9, x → 3<,8Modulus → 11, y → 5, x → 4<, 8Modulus → 11, y → 6, x → 4<,8Modulus → 11, y → 2, x → 5<, 8Modulus → 11, y → 9, x → 5<,8Modulus → 11, y → 5, x → 7<, 8Modulus → 11, y → 6, x → 7<,8Modulus → 11, y → 4, x → 9<, 8Modulus → 11, y → 7, x → 9<<
We see that for p = 11, there are 14 solutions (not counting O). There is a (imprecise)
probabilistic argument to predict the number of points on : for each value of x , equation (10.1)
will have two solutions with probability 1/2 and no solutions with probability 1/2, leading to about
q solutions.

As supporting evidence of this statement, consider the right hand side in (10.2) and assume that
p > 2. If, for a given value of x , the right hand side is a square in GF(p) (there are Hp - 1L ê2
squares, namely all even powers of a primitive element in GFHpL; or see Theorem A.20), there will
be two solutions for y . If the right hand side is 0, there is only one solution, namely y = 0. There
are no other solutions.

 A famous theorem by Hasse [Silv86] states:

Theorem 10.1 Hasse
Let N be the number of points on a elliptic curve over GFHqL . Then… N - Hq + 1L … § 2

è!!!q
Note that in the example above, we have indeed that … 15 - 12 … § 2

è!!!!!!11 .

In general, it is very hard to find the precise number of points on an elliptic curve. There is
however an algorithm by Schoof [Scho95] which computes this number (see also [Mene93] for a
further discussion).

Although it is not necessary for the understanding of the rest of this chapter, we like to remind the
reader of the possibilities in Mathematica to make calculations over fields GFHpmL with m > 1.

Example 10.1

As an example of a curve over GFH24L = GFH2L@a D ê H1 + a 3 + a 4L (see Table B.2), we can consider the
equation y2 = x3 + ax + 1. To test if Ha 2, a 14L is on the curve we first load the Mathematica package
Algebra`FiniteFields`.

<< Algebra`FiniteFields`

Elliptic Curves Based Systems 215

f16 = GF@2, 81, 0, 0, 1, 1<D;
al = f16@80, 1, 0, 0<D;
EC@x_, y_D = y2 − x3 − al∗x − 1;
8u, v< = 8al2, al14<;
EC@u, vD

0

Indeed, Ha 14L2 = Ha 2L3 + a Ha 2L + 1, as can be checked with

al6 + al3 + 1

Hal14L2

80, 1, 1, 0<280, 1, 1, 0<2
10.2 The Geometry of Elliptic Curves
The reason that we are interested in elliptic curves is the addition operation that can be defined on
them. This operation will have O œ  (the point at infinity) as its unit-element and will have the
structure of an additive group.

To be able to define a suitable addition on , we shall make use of the property that any line
intersecting  in at least two points, will intersect it in a third. Here, a tangent point should be
counted twice. The point O at infinity is the intersection point of all vertical lines.

We shall first show a picture of an elliptic curve over the reals. We use the Mathematica function
ImplicitPlot for which the package Graphics`ImplicitPlot` has to be loaded first.

216 FUNDAMENTALS OF CRYPTOLOGY

<< Graphics`ImplicitPlot`

elliptic = ImplicitPlot@ y2 == x3 − 5 x + 3, 8x, −3, 3<D

-2 -1 1 2 3

-4

-2

2

4

The reader is invited to change the coefficient of x in the function plotted above from -5 to -4
and -3 and observe how the graph changes.

To see how the line y = x + 1 intersects y2 = x3 - 5 x + 3 we use the additional functions Epilog
and Line.

Elliptic Curves Based Systems 217

ImplicitPlot@ y2 == x3 − 5 x + 3, 8x, −3, 4<,
PlotRange −> 8−4, 4<,
Epilog −> Line@ 88−3, 4<, 84, −3<<DD

-2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

To find the intersection points numerically, one can use NSolve.

NSolve@ 8y2 == x3 − 5 x + 3, y == −x + 1<, 8x, y<D

88y → −1., x → 2.<, 8y → 0.381966, x → 0.618034<,8y → 2.61803, x → −1.61803<<
When the curve is defined over p we can find the intersection points of a line with the curve by
means of the Solve function as follows.

p = 11;
Solve@ 8y2 == x3 − 5 x + 3, y == x − 1, Modulus == p<, 8x, y<D

88Modulus → 11, y → 1, x → 2<,8Modulus → 11, y → 2, x → 3<, 8Modulus → 11, y → 6, x → 7<<
A different way to find the intersection points of a line y = u.x + v with an elliptic curve is to
substitute y = u.x + v in (10.1), obtain a third degree equation in x and find its factorization.

218 FUNDAMENTALS OF CRYPTOLOGY

Example 10.2

Suppose that we are working over 11 . To find the intersection points of y = 4 x + 1 with y2 = x3 - 5 x + 1,
we factor H4 x + 1L2 - Hx3 - 5 x + 1L with the Mathematica function Factor.

p = 11;
Clear@xD;
ec = x3 − 5 x + 3;
il = 4 x + 1;
Factor@il2 − ec, Modulus −> pD

10 H2 + xL H7 + xL H8 + xL
We get as x-values of the intersection points: -2, -7, and -8. From y = 4 x + 1 we find the
solutions H9, 4L, H4, 6L , and H3, 2L .

x = Mod@8−2, −7, −8<, pD
y = Mod@4∗x + 1, pD

89, 4, 3<
84, 6, 2<

É A Line Through Two Distinct Points

Let P1 = Hx1, y1L and P2 = Hx2, y2L be two distinct points on an elliptic curve  (both not at
infinity). Let  be the line through P1 and P2 . How do we find the third point on the intersection
of  with ? If x1 = x2 and y1 = - y2 the point O will be defined as this third point.

So, let us consider the case that x1 ∫ x2 . The line  though P1 and P2 is given by:

(10.6) y - y1 = lHx - x1L , with l= y2-y1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx2-x1
.

We discuss two cases.

p π 2

Assume that the elliptic curve is already in reduced form (see (10.2)). Substitution of (10.6) into
this relation yields HlHx - x1L + y1L2 = x3 + a.x2 + b.x + c . Since we know two roots of this third
degree equation, there must be a third one (to be called x3). So, the same equation can also be
written as Hx - x1L Hx - x2L Hx - x3L = 0. Comparing the coefficient of x2 in both notations, we get

(10.7) x3 = l2 - a - x1 - x2 ,

Elliptic Curves Based Systems 219

and, by (10.6),

(10.8) y3 = lHx3 - x1L + y1 .

Example 10.3

Consider the elliptic curve y2 = x3 + 11 x2 + 17 x + 25 over 31 . The points P1 = Hx1, y1L = H2, 7L and
P2 = Hx2, y2L = H23, 9L lie on  as can be verified with the Mod function as follows:

p = 31;
a = 11; b = 17; c = 25;
x1 = 2; y1 = 7; x2 = 23; y2 = 9;
F@x_, y_D := y2 − Hx3 + a∗x2 + b∗x + cL;
Mod@F@x1, y1D, pD == 0
Mod@F@x2, y2D, pD == 0

True

True

The slope l of the line  through P1 and P2 is given by (10.6): l = 9-7ÅÅÅÅÅÅÅÅÅÅÅÅÅ23-2 = 2 µ 3 = 6. Here we
use the PowerMod function to get the multiplicative inverse of 21 modulo 31.

PowerMod@21, −1, pD

3

The coordinates Hx3, y3L of the third intersection point of  with  are given by (10.7) and (10.8):

lam = 6;
x3 = Mod@lam2 − a − x1 − x2, pD
y3 = Mod@lam Hx3 − x1L + y1, pD

0

26

That the point P3 = H0, 26L indeed lies on  can be verified with the calculation

Mod@F@x3, y3D, pD == 0

220 FUNDAMENTALS OF CRYPTOLOGY

True

p=2

We now assume reduced form (10.4). As above, we substitute (10.6) into (10.4) and look at the
coefficient of x2 . We get

(10.9) x3 = a - l2 - l - x1 - x2 ,

(10.10) y3 = lHx3 - x1L + y1 .

Note that all minus signs can be replaced by plus signs, when p = 2.

É A Tangent Line

There is one more possibility that we want to discuss, namely that P1 = Hx1, y1L = P2 . Let  be
the tangent line to  though P . This means that  meets  in P = Hx1, y1L , and that the slope of 
is the same as the derivative of  in P . One usually views P as point of intersection with
multiplicity two.

Over  this situation looks like:

ImplicitPlot@ y2 == x3 − 5 x − 3, 8x, −3, 4<,
PlotRange −> 8−4, 4<,
Epilog −> Line@ 88−3, 3<, 84, −4<<DD

-1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

At this moment we exclude the possibility that  is a double tangent line to  (meaning that its
multiplicity is 3). If it were, the tangent line already intersects  in a point with multiplicity 3.

Elliptic Curves Based Systems 221

In the sequel, when we speak of taking a derivative of a polynomial over a finite field we mean to
take the formal derivative and then reduce the coefficients modulo the characteristic of the field.

For instance, in GFH3mL the derivative of x4 + 2 x3 + x2 + 1 is given by 4 x3 + 6 x2 + 2 x , which
reduces to x3 + 2 x .

p π 2

The slope of the tangent line through a point P = Hx1, y1L on the curve y2 = x3 + a.x2 + b.x + c (see
(10.2)) is given by the value of y ' determined through implicit differentiation, so
2 y1.y ' = 3 x1

2 + 2 a.x1 + b . We conclude that the tangent line through P is given by

(10.11) y - y1 = lHx - x1L , with l= 3 x1
2+2 a.x1+b

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 y1
.

To find the third point of the line  through  we can still use (10.7) and (10.8).

p = 2

The slope of the tangent line through a point P = Hx1, y1L on the curve y2 + x.y = x3 + a.x2 + c (see
(10.4)) is given by the value of y ' determined from 2 y1.y ' + y1 + x1.y ' = 3 x1

2 + 2 a.x1 , i.e. by
y1 + x1.y ' = x1

2 . Hence, the tangent line through P is given by

(10.12) y - y1 = lHx - x1L , with l= x1
2+y1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx1

= x1 + y1ÅÅÅÅÅÅÅx1
.

To find the third point on  through  we observe that (10.9) (take x2 = x1) reduces to

x3 = a - l2 - l = a + x1
2 + I y1ÅÅÅÅÅÅÅx1

M2 + x1 + y1ÅÅÅÅÅÅÅx1
 =

a + x1
2 + x1 +

y1
2+x1 y1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x1
2 =

H10.4L a + x1
2 + x1 +

x1
3+a.x1

2+c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x1
2 ,

i.e.

(10.13) x3 = x1
2 + cÅÅÅÅÅÅÅ

x1
2 ,

and that (10.10) reduces to

(10.14) y3 = x1
2 + Ix1 + y1ÅÅÅÅÅÅÅx1

M x3 .

Example 10.4

Consider the elliptic curve y2 + x.y = x3 + a 9 x2 + a over GFH16L , where a 4 = a + 1. The point Ha 2, a 12L
lies on this curve, as can be easily checked, once we have loaded the Mathematica package
Algebra`FiniteFields`.

<< Algebra`FiniteFields`

222 FUNDAMENTALS OF CRYPTOLOGY

f16 = GF@2, 81, 1, 0, 0, 1<D;
a = f16@80, 1, 0, 0<D;
EC@x_, y_D = y2 + x∗y − x3 − a9 ∗x2 − a;
8x1, y1< = 8a2, a12<;
EC@x1, y1D

0

The tangent through Ha 2, a 12L has slope l given by (10.12). So,

lam = x1 + y1êx1

81, 1, 0, 0<2
which is a 4 . To find the other point where the tangent intersects , we use (10.13) and (10.14).

x3 = x12 + aêx12
y3 = x12 + Hx1 + y1êx1L x3

80, 0, 1, 1<280, 0, 1, 0<2
So, Hx3, y3L = Ha 6, a 2L . This can all be checked easily.

a6

a2

EC@x3, y3D

80, 0, 1, 1<280, 0, 1, 0<2
0

Elliptic Curves Based Systems 223

10.3 Addition of Points on Elliptic Curves
In the previous section, we have shown how the line through two points on an elliptic curve 
intersects that curve in a third point and how that point can be computed efficiently. The same
holds for a line that is tangent to , with the understanding that the tangent point is counted twice.

We are now ready to define an addition on . The geometric idea behind the formulas below is the
following. First of all, if P = Hx, yL is a point on an elliptic curve  determined by (10.1), then

-P = Hx, - y - u.x - vL .

If u = v = 0, like in (10.2), this reduces to

-P = Hx, - yL .

Geometrically, this can be described as follows: compute the line  through O and P . It intersects
 in a third point, namely -P . As noted before, the point O at infinity should be interpreted as the
intersection point of all vertical lines.

To add points P1 and P2 , both not at infinity, execute the following two steps:

1) Compute the line  through P1 and P2 (or tangent line though P1 , if P1 = P2) and find the
third point of intersection with . Let this be Q .

2) The sum P1 + P2 is defined as P3 := -Q .

The point O serves as unit element of this addition and is its own inverse.

Definition 10.2 addition
Let P be a point on an elliptic curve  (so, it defined by (10.1)), with O as point at
infinity. Then we define the sums

P + O = O + P = P .

Further, let P1 = Hx1, y1L and P2 = Hx2, y2L be two points on , both not O . Then the
sum P1 + P2 is defined by

i) P3 = -Q if x1 ∫ x2 .
Here, Q is the third point of intersection of  with of the line 
through Hx1, y1L and Hx2, y2L .

ii) P3 = -Q if P1 = P2 and the tangent line through P is a single tangent.
Here, Q is the third point of intersection of  with the tangent 
through P .

iii) P3 = -P1 if P1 = P2 and the tangent line through P is a double tangent.

iv) P3 = O if P1 = -P2 .

224 FUNDAMENTALS OF CRYPTOLOGY

Note that possibility iii) can be interpreted as a special case of ii).

We shall depict the two most typical cases, namely i) and ii), by means of elliptic curves over the
reals. We need again package Graphics`ImplicitPlot`.

<< Graphics`ImplicitPlot`

Elliptic Curves Based Systems 225

ImplicitPlot@ y2 == x3 − 5 x + 3, 8x, −3, 4<,
Epilog −> 8Line@88−3, −2<, 84, 5<<D,

Line@883, −6<, 83, 6<<D,
Text@"\!\H\∗

StyleBox@\"P\",\nFontColor−>RGBColor@0, 0, 1DD\L\!\H\∗

StyleBox@\"+\",\nFontColor−>RGBColor@0, 0, 1DD\L\!\H\∗

StyleBox@\"Q\",\nFontColor−>RGBColor@0, 0, 1DD\L",
82.3, −4<D,

Text@"\!\H\∗

StyleBox@\"P\",\nFontColor−>RGBColor@0, 0, 1DD\L",
8−2.4, −2.1<D,

Text@"\!\H\∗

StyleBox@\"Q\",\nFontColor−>RGBColor@0, 0, 1DD\L",
80.35, 1.9<D, PointSize@0.03D,

Point@8−2.31, −1.4<D,
Point@80.28, 1.26<D,
Point@83.01, −3.9<D<D;

-2 -1 1 2 3 4

-6

-4

-2

2

4

6

P+Q

P

Q

226 FUNDAMENTALS OF CRYPTOLOGY

ImplicitPlot@ y2 == x3 − 5 x − 3, 8x, −3, 4<,
Epilog −> 8Line@883, −6<, 83, 6<<D,

Line@88−3, 3<, 84, −4<<D,
Text@"\!\H\∗

StyleBox@\"P\",\nFontColor−>RGBColor@0, 0, 1DD\L",
8−1.1, 1.65<D,

Text@"\!\H\∗

StyleBox@\"2\",\nFontColor−>RGBColor@0, 0, 1DD\L\!\H\∗

StyleBox@\"P\",\nFontColor−>RGBColor@0, 0, 1DD\L",
82.8, 3.5<D, PointSize@0.03D,

Point@8−1.1, 1.1<D,
Point@83.01, +3<D<D;

-1 1 2 3 4

-6

-4

-2

2

4

6

P

2P

The points on an elliptic curve together with the addition defined above form an additive group.
We shall not prove that here. The reader is referred to [Mene93] or [SilT92]. Note that the only
non-trivial part to verify is the associativity of the addition.

Theorem 10.2
The points on an elliptic curve  together with the addition defined in Definition 10.2
form an additive group. The zero element is given by O .

Elliptic Curves Based Systems 227

With the following Module one can compute the sum of two points (the point O at infinity will be
denoted by 8O<) on an elliptic curve over p with p > 2. We make use of formulas (10.6), (10.7),
(10.8) and (10.11). and use the Mathematica function Which with the same order of cases as in
Definition 10.2.

EllipticAdd@p_, a_, b_, c_, P_List, Q_ListD :=

Module@8lam, x3, y3, P3<,
Which@
P == 8O<, Q,
Q == 8O<, P,
P@@1DD != Q@@1DD,

lam = Mod@
HQ@@2DD − P@@2DDL PowerMod@Q@@1DD − P@@1DD, p − 2, pD, pD;

x3 = Mod@lam2 − a − P@@1DD − Q@@1DD, pD;
y3 = Mod@−Hlam Hx3 − P@@1DDL + P@@2DDL, pD;
8x3, y3<,

HP == QL fl HP@@2DD == 0L, 8O<,
HP == QL fl HP != 8O<L,

lam = Mod@ H3∗P@@1DD2 + 2 a∗P@@1DD + bL

PowerMod@2 P@@2DD, p − 2, pD, pD;
x3 = Mod@lam2 − a − P@@1DD − Q@@1DD, pD;
y3 = Mod@−Hlam Hx3 − P@@1DDL + P@@2DDL, pD;
8x3, y3<,

HP@@1DD == Q@@1DDL fl HP@@2DD != Q@@2DDL, 8O<DD

Below, we show the addition of points in a number of cases.

p = 11; a = 0; b = 6; c = 3;
EllipticAdd@p, a, b, c, 84, 6<, 89, 4<D
EllipticAdd@p, a, b, c, 89, 4<, 89, 4<D
EllipticAdd@p, a, b, c, 84, 6<, 84, 6<D
EllipticAdd@p, a, b, c, 84, 6<, 8O<D
EllipticAdd@p, a, b, c, 84, 6<, 84, 5<D
EllipticAdd@p, a, b, c, 8O<, 89, 4<D

83, 9<
87, 6<

228 FUNDAMENTALS OF CRYPTOLOGY

84, 5<
84, 6<
8O<
89, 4<

Observe that the tangent through H4, 6L is a double tangent, so by Definition 10.2, iii) H4, 6L + H4, 6L = -H4, 6L = H4, 5L .

As is common in additive groups, 2 P will stand for P + P , similarly 3 P stands for P + P + P , etc.
Similarly, 0 P stands for O and -n.P stands for -Hn.PL . These multiples of P are often called the
scalar multiples of P .

The order of P is the smallest positive integer n with n.P = O . Since  is a finite group, this
notion is well defined. The set 8O, P, 2 P, …, Hn - 1L P< is a cyclic subgroup of . It follows that n
divides »  » (see Theorem B.5).

Now that we have the Module EllipticAdd, defined above, it is quite easy to compute n.P , n ¥ 1,
recursively as follows:

p = 11; a = 0; b = 6; c = 3; P = 89, 4<;
f@1D = P;
f@n_D := f@nD = EllipticAdd@p, a, b, c, P, f@n − 1DD;
Table@f@nD, 8n, 1, 5<D êê ColumnForm

89, 4<87, 6<87, 5<89, 7<8O<
So, on the curve y2 = x3 + 6 x + 3 over 11 , the point P = H9, 4L has order 5.

In the next section, it will be important to have points available on an elliptic curve  that have a
very large order. If the cardinality of  is known and of a special form, for instance »  » is a small
multiple of a large prime factor, then it is quite easy to find points on  with a known large order.

As an example, consider »  » = 3 µ 7919 = 23757. Suppose that 3 P ∫ O . Then P has order 7919
or 23757. If 7919 P = 0 then P has order 7919, otherwise 3 P will have this order. To check these
assertions, apply Lemma B.4 and Theorem B.5 (rewrite the multiplicative notation in the additive
notation that we use here).

Elliptic Curves Based Systems 229

10.4 Cryptosystems Defined over Elliptic Curves
Most notions in this section can be viewed as direct translations of notions introduced in Chapter
8, but now using addition over an elliptic curve as principal operation instead of modular
multiplication. Modular exponentiation will translate into scalar multiplication.

For the above reason, it will often suffice to just present the new formulations without copying all
the proofs.

In [Demy94] one can find a RSA-like cryptosystem defined over elliptic curves. However, to
break the system it is sufficient to factor its modulus. Since the original RSA system had the same
security restriction and is faster in its calculations, there seems to be little reason to use this
generalization of RSA to elliptic curves.

10.4.1 The Discrete Logarithm Problem over Elliptic Curves

We have seen in Section 10.3 how to add points on an elliptic curve . This is an operation with
relatively low complexity. To compute scalar multiples of a point P , say n.P for some integer n ,
we can use repeated addition, but it is much more efficient to copy the ideas of Subsection 8.1.1.

Example 10.5

Take n=171. Its binary expansion is 10101011, as follows from the Mathematica function
IntegerDigits.

IntegerDigits@171, 2D

81, 0, 1, 0, 1, 0, 1, 1<
So, to compute 171 P, it suffices to compute

2 P = P + P,
4 P = 2 P + 2 P,
8 P = 4 P + 4 P
 ª
 Ç
128 P = 64 P + 64 P

and add the suitable terms. This can be done on the fly as follows:

Clear@PD;
2 H2 H2 H2 H2 H2 H2 PL + PLL + PLL + PL + P

230 FUNDAMENTALS OF CRYPTOLOGY

171 P

Note that we only added partial results to themselves or to P. (The reader may want to look at
Example 8.3 for the analogous modular arithmetic problem.)

Of course, addition chains may further reduce the complexity of these calculations.

The opposite problem of computing scalar multiples of a point is the following:

Definition 10.3
Let  be an elliptic curve. Let P be a point on  and let Q be a scalar multiple of P .
The discrete logarithm problem over an elliptic curve is the problem of determining n
for given P and Q from the relation

(10.15) n.P = Q .

Although we shall see more efficient ways to solve (10.15) than by simply trying n = 1, 2, …, all
the methods have a complexity of the form na , a > 0, and so they are exponentially slower than
the (logarithmic) complexity of computing n.P out of P .

10.4.2 The Discrete Logarithm System over Elliptic Curves

Now that we have formulated the discrete logarithm problem over elliptic curves, we can describe
the analogue of the Diffie-Hellman key exchange protocol (see Subsection 8.1.2).

As system parameters one needs an elliptic curve  over a finite field GFHqL and a point P on the
curve of high order, say the order n of P is 150-180 digits long.

Each user U of the system, selects a secret scalar mU , computes the point QU = mU P and makes
QU public. Alice and Bob can now agree on the common key KA,B = mA mB P . Alice can find this
common key by computing mA QB with her secret scalar mA and Bob's public QB . Bob can do
likewise.

This system is summarized in the following table.

Elliptic Curves Based Systems 231

system
parameters

elliptic curve  over GF HqL
point P on  of high order

secret key of U mU
public key of U QU = mU P

common key of A and B KA,B = mA mB P
Ann computes mA QB
Bob computes mB QA

Table 10.1

The Diffie-Hellman Key Exchange System over Elliptic Curves

Example 10.6

Consider the elliptic curve  over 863 defined by y2 = x3 + 100 x2 + 10 x + 1. The point P = 8121, 517<
lies on it as can be checked with the Mathematica function Mod.

p = 863;
a = 100; b = 10; c = 1;
x = 121; y = 517;
Mod@y2 − Hx3 + a∗x2 + b∗x + cL, pD == 0

True

The order of P is 432. To show this, we check that 432 P = O and that H432 ê pL P ∫ O for the
prime divisors of 432. We make use the binary expansion of these coefficients (to be found with the
function IntegerDigits). We also use of the EllipticAdd function defined in Section 10.3 and
the Do function.

FactorInteger@432D
IntegerDigits@432, 2D
IntegerDigits@432ê2, 2D
IntegerDigits@432ê3, 2D

882, 4<, 83, 3<<
81, 1, 0, 1, 1, 0, 0, 0, 0<
81, 1, 0, 1, 1, 0, 0, 0<

232 FUNDAMENTALS OF CRYPTOLOGY

81, 0, 0, 1, 0, 0, 0, 0<
p = 863; P =.;
a = 100; b = 10; c = 1;
P@0D = 8121, 517<;
P@i_D := P@iD = EllipticAdd@p, a, b, c, P@i − 1D, P@i − 1DD;
Q = EllipticAdd@p, a, b, c, EllipticAdd@p, a, b, c, P@8D, P@7DD,

EllipticAdd@p, a, b, c, P@5D, P@4DDD
EllipticAdd@p, a, b, c, EllipticAdd@p, a, b, c, P@7D, P@6DD,

EllipticAdd@p, a, b, c, P@4D, P@3DDD
EllipticAdd@p, a, b, c, P@7D, P@4DD

8O<
819, 0<
8341, 175<

Let Alice choose mA = 130 and Bob mB = 288. Then QA = H162, 663L and QB = H341, 688L , as
can be checked as follows (note that we have chosen very friendly secret scalars).

QAlice = EllipticAdd@p, a, b, c, P@7D, P@1DD
QBob = EllipticAdd@p, a, b, c, P@8D, P@5DD

8162, 663<
8341, 688<

Alice can compute the common key KA,B with the calculation KA,B = mA QB , where mA = 130 is
her secret key. She finds

QA@0D = 8341, 688<;
QA@i_D :=

QA@iD = EllipticAdd@p, a, b, c, QA@i − 1D, QA@i − 1DD;
EllipticAdd@p, a, b, c, QA@7D, QA@1DD

8341, 688<

Elliptic Curves Based Systems 233

Likewise, Bob can compute the common key KA,B with the calculation KA,B = mB QA , where
mB = 288 is his secret key. He also finds

QB@0D = 8162, 663<;
QB@i_D := QB@iD = EllipticAdd@p, a, b, c, QB@i − 1D, QB@i − 1DD;
EllipticAdd@p, a, b, c, QB@8D, QB@5DD

8341, 688<
Now that the Diffie-Hellman key exchange system over elliptic curves has been described, it
really is a straightforward exercise to show that the ElGamal protocol and the other systems,
described in Section 8.2, can be rewritten in the language of elliptic curves.

10.4.3 The Security of Discrete Logarithm Based EC Systems

In Section 8.3, various methods are described to take the discrete logarithm over a finite field. The
Pohlig-Hellman algorithm, the baby-step giant-step method, and the Pollard-r method can all be
directly translated into elliptic curve terminology: just replace modular exponentiations by scalar
multiplication on the elliptic curve.

At the time of this writing, the index-calculus method has defeated any attempt to transfer it
efficiently to the elliptic curve setting (see [Mill86]). That is of great cryptographic significance,
because the index-calculus method was the only one with a subexponential complexity. This
means that in regular discrete-logarithm-like systems the index-calculus method is the governing
factor in determining the size of its parameters (to keep the system computationally secure). Since
the index-calculus method is no longer around in the elliptic curve setting, one can afford much
smaller parameters to achieve the same level of security.

At the time of this writing, the XEDNI method has been proposed [Silv98] as an alternative to
solve the elliptic curve discrete logarithm problem. Further analysis is needed to determine the
implications of this method.

There are special attacks on discrete logarithm based elliptic curve cryptosystems. These attacks
make it necessary to avoid special classes of elliptic curves. In particular, one should not use

singular curves,
supersingular curves,
anomalous curves.

We shall not describe these attacks (see [MeOkV93], [SatA98], and [Smar98]. In each case the
logarithm problem over an elliptic curve can be translated to the logarithm problem over a finite
field (or an even simpler problem). We shall explain in one case that one can counter these attacks
by simply avoiding these special curves.

234 FUNDAMENTALS OF CRYPTOLOGY

Before we do so, we need to introduce a new notion. We homogenize the Weierstrass equation
(10.1). This means that we multiply each term in it with the smallest power of z in such a way that
all terms have the same degree:

(10.16) FHx, y, zL = y2 z + u.x.y.z + v.y.z2 - x3 - a.x2 z - b.x.z - c.z3 = 0.

Note that if Hx, y, zL satisfies (10.16), then so does lHx, y, zL . For that reason, one often normalizes
solutions to (10.16) by requiring the right-most non zero coordinate to be equal to 1.

Points Hx, yL that satisfy (10.1) now lead to solutions Hx, y, 1L of (10.16). The (somewhat
mysterious) point O at infinity can be represented by H0, 1, 0L .

A point on a curve  is a called singular if all partial derivatives ∑ F ê ∑ x , ∑ F ê ∑ y , and ∑ F ê ∑ z are
zero. An elliptic curve can not contain two singular points. If a curve  contains a singular point
then it is called a singular curve, otherwise it is called a non-singular curve.

With some effort one can show that (10.2) defines a non-singular curve if and only if the cubic
expression on its right side has no multiple roots. For (10.3) with c ∫ 0, this is equivalent to the
condition 4 b3 + 27 c2 T 0 Hmod pL .

When p = 2, (10.4) gives non-singular curves when c ∫ 0 and (10.5) when v ∫ 0.

The above means, that it is quite simple to test if a curve is non-singular or not.

We shall not give a definition of what supersingular means. Here it suffices to know that curves
defined by (10.5) are supersingular and need to be avoided. Again, it is easy to avoid these curves.

Finally, anomalous curves are elliptic curves  over p with the property that »  » = p .

Elliptic Curves Based Systems 235

10.5 Problems

Problem 10.1 M

How many points lie on the elliptic curve defined in Example 10.1?

Problem 10.2
Find the intersection points over 31 of the lines y = 4 x + 20 and y = 4 x + 21 with the elliptic curve
y2 = x3 + 25 x + 10.

Problem 10.3
Find the line that is tangent to the elliptic curve y2 = x3 + 11 x2 + 17 x + 25 over 31 in the point H2, 7L .
Where else does this line intersect the curve?

Problem 10.4 M

Consider the elliptic curve  defined by y2 = x3 + 11 x2 + 17 x + 25 over 31 .
Check that the points P = 812, 10< and Q = 825, 14< lie on . What is -P? Compute the sum of P and Q
without using the Mathematica procedure presented in Subsection 10.3.

Problem 10.5
Consider an elliptic curve . Let P on  have order n . What is the order of -P?

Problem 10.6 M

Consider (again) the elliptic curve  defined by y2 = x3 + 11 x2 + 17 x + 25 over 31 .
Determine the orders of P = 827, 10< and Q = 824, 28< . What can you conclude about the cardinality of 
(hint: use Theorem B.5)?
What is the cardinality of  (hint: use Theorem 10.1)?
Construct a point of maximal order from P and Q .

Problem 10.7 M

Duplicate Example 10.6 for the elliptic curve  over 523 defined by the equation
y2 = x3 + 111 x2 + 11 x + 1. Use for P a point of order at least one hundred.

236 FUNDAMENTALS OF CRYPTOLOGY

11 Coding Theory Based Systems

11.1 Introduction to Goppa codes
In this chapter it is assumed that the reader is familiar with algebraic coding theory. A reader
without this background can freely skip this chapter and continue with Chapter 12. From
[MacWS77] we recall the following facts about Goppa codes.

Theorem 11.1
Let GHxL be any irreducible polynomial of degree t over GF H2mL . Then the set

(11.1) GHGHxL, GFH2mLL = 9 HcwLwœGFH2mL œ 80, 1<n À ‚
wœGFH2mL cwÅÅÅÅÅÅÅÅÅÅÅx-w

ª 0 Hmod GHxLL >
defines a binary Goppa code of length n = 2m , dimension k ¥ n - t.m and minimum
distance d ¥ 2 t + 1.
A fast decoding algorithm with running time n.t , exists (see [Patt75]).

Note that we have used the elements in GFH2mL as an index set for the coordinates of the vectors in80, 1<n . The notions used above mean that the elements in GHGHxL, GFH2mLL (which are called
codewords) form a linear subspace in 80, 1<n of dimension at least n - t.m and that different
codewords differ in at least 2 t + 1coordinates (one says that the Hamming distance dH Hc, c 'L
between different codewords is at least 2 t + 1).

A decoding algorithm will map any word in 80, 1<n that differs in at most t coordinates from a
codeword c (which is unique by the triangle inequality) to that codeword. Hence, if a codeword c
is transmitted and the received word r differs from c in no more than t coordinates (dH Hc, rL § t),
the receiver is able to recover c from r . For this reason, t is called the error-correcting capability
of the code GHGHxL, GFH2mLL .

Any k µ n matrix of which the rows span a particular linear code is called a generator matrix of
that code. It follows from this definition that the code can be described by

(11.2)8 m.G » m œ 80, 1<k <.
Example 11.1 (Part 1)

Let a be the primitive element in GFH24L satisfying a 4 + a 3 + 1 = 0. After having loaded the Mathematica
package Algebra`FiniteFields` we can generate the log table of GFH24L with the functions
MatrixForm and PowerList.

Coding Theory Based Systems 237

<<Algebra`FiniteFields`

MatrixForm@PowerList@GF@2, 81, 0, 0, 1, 1<DDD

i

k

jjj

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1
1 1 0 1
1 1 1 1
1 1 1 0
0 1 1 1
1 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0
0 1 1 0
0 0 1 1

y

{

zzz
Consider the binary Goppa code G HGHxL, GFH24LL of length 16 defined by GHxL = x2 + x + a . That
GHxL is indeed an irreducible polynomial over GFH24L can easily be checked with the
Mathematica functions GF, Table, and TableForm because it suffices to show that GHxL has no
linear factors.

f16 = GF@2, 81, 0, 0, 1, 1<D;
x = f16@80, 1<D;
a = f16@80, 1<D;
G@x_D := x2 + x + a;
G@0D
Table@8i, G@xiD<, 8i, 0, 14<D êê TableForm

80, 1, 0, 0<2

238 FUNDAMENTALS OF CRYPTOLOGY

0 80, 1, 0, 0<2
1 80, 0, 1, 0<2
2 81, 1, 1, 1<2
3 81, 0, 1, 0<2
4 81, 0, 1, 0<2
5 81, 1, 0, 0<2
6 80, 1, 1, 1<2
7 81, 0, 0, 1<2
8 80, 1, 1, 1<2
9 81, 1, 1, 1<2
10 81, 1, 0, 0<2
11 80, 0, 0, 1<2
12 80, 0, 1, 0<2
13 81, 0, 0, 1<2
14 80, 0, 0, 1<2

To determine the inverses 1 ê Hx - wL (mod x2 + x + a) in (11.1) we use the Mathematica package
Algebra`PolynomialExtendedGCD`

<<Algebra`PolynomialExtendedGCD`

and the Mathematica function PolynomialExtendedGCD. For instance, 1 ê Hx - a 3L (mod
x2 + x + a) can be found by

x =.;
PolynomialExtendedGCD@x − a3, x2 + x + aD

81, 880, 1, 0, 1<2 + x 81, 1, 1, 1<2, 81, 1, 1, 1<2<<
With the logarithm table above we can rewrite these coefficients as follows:

0.1 + 1. a + 0. a + 1 a 3 = a 10 ,

1.1 + 1. a + 1. a 2 + 1. a 3 = a 6 .

It follows from (A.8) that Hx - a 3L.Ha 10 + a 6 xL +a 6.GHxL = 1,

i.e. 1 ê Hx - a 3L = a 10 + a 6 x. This can be checked with the Mathematica function
PolynomialMod

Clear@xD;
PolynomialMod@Hx − a3L Ha10 + a6 xL, x2 + x + aD

Coding Theory Based Systems 239

81, 0, 0, 0<2
We express all the inverses 1 ê Hx - wL , w œ GFH24L , in this way as polynomials g0

HwL + g1
HwL x, by

means of

Clear@xD;
PolynomialExtendedGCD@x, x2 + x + aD
Do@Print@PolynomialExtendedGCD@x − ai, x2 + x + aDD, 8i, 0, 14<D

81, 880, 0, 1, 1<2 + x 80, 0, 1, 1<2, 80, 0, 1, 1<2<<81, 8x 80, 0, 1, 1<2, 80, 0, 1, 1<2<<81, 880, 1, 0, 1<2 + x 80, 1, 1, 0<2, 80, 1, 1, 0<2<<81, 880, 0, 0, 1<2 + x 81, 0, 1, 0<2, 81, 0, 1, 0<2<<81, 880, 1, 0, 1<2 + x 81, 1, 1, 1<2, 81, 1, 1, 1<2<<81, 881, 0, 1, 0<2 + x 81, 1, 1, 1<2, 81, 1, 1, 1<2<<81, 8x 80, 0, 0, 1<2 + 80, 1, 1, 0<2, 80, 0, 0, 1<2<<81, 881, 0, 0, 0<2 + x 81, 1, 1, 0<2, 81, 1, 1, 0<2<<81, 881, 0, 1, 0<2 + x 81, 0, 1, 1<2, 81, 0, 1, 1<2<<81, 880, 1, 1, 0<2 + x 81, 1, 1, 0<2, 81, 1, 1, 0<2<<81, 8x 81, 0, 1, 0<2 + 81, 0, 1, 1<2, 81, 0, 1, 0<2<<81, 8x 80, 0, 0, 1<2 + 80, 1, 1, 1<2, 80, 0, 0, 1<2<<81, 881, 0, 1, 1<2 + x 81, 1, 0, 0<2, 81, 1, 0, 0<2<<81, 880, 0, 1, 1<2 + x 80, 1, 1, 0<2, 80, 1, 1, 0<2<<81, 880, 0, 0, 1<2 + x 81, 0, 1, 1<2, 81, 0, 1, 1<2<<81, 880, 1, 1, 1<2 + x 81, 1, 0, 0<2, 81, 1, 0, 0<2<<
and put them as columns

ikjjjjjg0
HwL

g1
HwL y{zzzzz in a 2ä 16 matrix H . Note that 1 ê Hx - a 3L appears as ikjjja 10

a 6
y{zzz in

column 5, because the first column corresponds to w = 0, the second column has index w = 1, etc.

H =
ikjjj a 14 0 a 10 a 3 a 10 a 9 a 13 1 a 9 a 13 a 11 a 8 a 11 a 14 a 3 a 8

a 14 a 14 a 13 a 9 a 6 a 6 a 3 a 7 a 11 a 7 a 9 a 3 a 12 a 13 a 11 a 12
y{zzz

Here, we have made use of the log table of GFH24L , computed earlier.

The defining equation in (11.1) can be rewritten as ‚
wœGFH24L cw Hg0

HwL + g1
HwL xL ª 0 Hmod x2 + x + a L ,

240 FUNDAMENTALS OF CRYPTOLOGY

or, equivalently, asJ‚
wœGFH24L cw g0

HwLN + J‚
wœGFH24L cw g1

HwLN x ª 0 Hmod x2 + x + a L .

So, we have two linear equations for c = HcwLwœGFH24L :‚
wœGFH24L cw g0

HwL = 0 and ‚
wœGFH24L cw g1

HwL = 0.

These two equations can be efficiently denoted by

H.cT = 0T .

Expressing each power of a as binary linear combination of 1, a , a 2 , and a 3 (or using the output
of the PolynomialExtendedGCD-calculations directly) gives the 8ä16 binary matrix H ' :

H ' =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0
0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1
1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1
1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1
0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1
1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0
1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
.

So, another way to describe G Hx2 + x + a , GFH24LL is

C = 8c œ 80, 1<16 » H '.cT = 0T }.

It is not difficult to check that C is a binary, linear code of length 16, dimension 7 and minimum
distance 5.

We call a matrix H whose nullspace is a particular linear code C a parity check matrix of C . We
write

(11.3)C = 8c œ 80, 1<n » H .cT = 0T <.
The syndrome of a received vector r is defined by: sT = H .rT .

The number of irreducible polynomials of degree t over GFH2mL is about 2m.t ê t (see Corollary
B.18). So, a randomly selected polynomial of degree t over GFH2mL will be irreducible with
probability 1 ê t . Since fast algorithms for testing irreducibility (see [Berl68], Ch. 6 or [Rabi80])
exist, one can find an irreducible polynomial of degree t over GFH2mL , just like in Algorithm 9.3,
by repeatedly guessing and testing.

11.2 The McEliece Cryptosystem
Based on the theory of error-correcting codes, McEliece [McEl78] proposed the following secrecy
system.

Coding Theory Based Systems 241

11.2.1 The System

É Setting Up the System

1) Each user U chooses a suitable Goppa code of length nU = 2mU and with error-correcting
capability tU . To this end, user U selects a random, irreducible polynomial pU HxL of degree tU
over GFH2mU L and makes a generator matrix GU of the corresponding Goppa code
GHpU HxL, GFH2mU LL . The size of GU is kU µ nU .

2) User U chooses a random, dense kU µ kU nonsingular matrix SU and a random nU µ nU

permutation matrix PU and computes

(11.4) GU
* = SU GU PU .

3) User U makes GU
* and tU public, but keeps GU , SU , and PU secret.

É Encryption

Suppose that user Alice wants to send a message to user Bob. She looks up Bob's publicly known
parameters GB

* (of size kB µ nB) and tB represents her message as a binary string m of length kB .
Next Alice chooses a random vector e (error pattern) of length nB with at most tB coordinates are
equal to 1. As encryption of m Alice sends to Bob

(11.5) r = m.GB
* + e .

(One usually says: the weight of e is at most tB , denoted by wH HeL § tB , where the weight function
w counts the number of non-zero coordinates in a vector.)

É Decryption

Upon receiving c , Bob computes with his secret permutation matrix PB

r.PB
-1 =

H11.5L m.GB
* HPBL-1 + eHPBL-1 =

H11.4L m.SB GB PB PB
-1 + e ' = Hm.SBL GB + e '.

where e ' = e.PB
-1 is a permutation of e , so it also has weight H § tLB . With the decoding algorithm

of the Goppa code GHpU HxL, GFH2mU LL Bob can efficiently decode r.PB
-1 . He will find e ' as error

pattern and can retrieve m.SB . Multiplication of this expression on the right with SB
-1 (known to

Bob) yields the originally transmitted message m œ 80, 1<kB .

242 FUNDAMENTALS OF CRYPTOLOGY

11.2.2 Discussion

É Summary and Proposed Parameters

The McEliece cryptosystem introduced in the previous section can be summarized as follows.

Public GU∗ and tU of all users U
GU∗ has size kU ×nU

Secret pU HxL, SU, and PU by each user U

Property SU−1 GU∗ PU is the generator
matrix of the Goppa code
defined by pU HxL of degree tU

Format of message
of Ann to Bob

m ∈ 80, 1<kB
Encryption c = m.GB∗ + e,

weight of e is ≤ tB
Decryption compute c' = c.PB−1

decode c' to find m' = m.SB
compute m'.SB−1 = m

Table 11.1

The McEliece cryptosystem

The reason that an error pattern e is introduced in (11.5), is of course to make it impossible for the
cryptanalyst to retrieve m from c by a straightforward Gaussian elimination process.

McEliece suggests in his original proposal [McEl78] to take mB = 10 (so nB = 1024) and tB = 50
(so kB º 1025 - 50 µ 10 = 524).

É Heuristics of the Scheme

The heuristics behind this scheme are not difficult to guess. Take a sufficiently long, binary, linear
block code, that can correct a large number, say t , of errors and for which an efficient decoding
algorithm exists. The code should belong to a large class of codes, making it impossible to guess
which particular code has been selected. Let n be the length of the code and k its dimension.
Manipulate the generator matrix to such an extent, that the resulting matrix looks like a random
k µ n matrix of full rank. The decoding complexity of a randomly generated code with these
parameters should be infeasible. In the next section the complexity of several decoding methods
will be discussed.

Coding Theory Based Systems 243

In [BerMT77] it is shown that the general decoding problem of linear codes, i.e. how to find the
closest codeword to any word of length n , is NP-complete. We shall not explain what this notion
means exactly. We refer the interested reader to [GarJ79].

Here, it suffices to know that this characterization implies that no known algorithm can decode an
arbitrary word to its closest codeword neighbor in a running time that depends in a polynomial
way on the size of the input.

Moreover, if one were to find such an algorithm, it could be adapted to solve a large class of
equally hard problems.

É Not a Signature Scheme

The encryption function of the McEliece cryptosystem maps binary k -tuples to binary n-tuples.
This mapping is not surjective. Indeed, for the proposed parameter set the number of vectors of
length 1024 at distance § 50 to a codeword is

2k „
i=0

50
 Jn

i
N º 2524 „

i=0

50
 J1024

i
N º 2808.4.

which is an ignorable fraction of the total number of 1024-length words. So, the (secret) function
SU mentioned in Property PK4 (in Subsection 7.1.1) is not defined for most words in 80, 1<n .
Consequently, the McEliece system can not be turned into a signature scheme. See, also Table 7.2.

11.2.3 Security Aspects

We shall now discuss the security of the McEliece cryptosystem by analyzing four possible
attacks on the specific parameters that McEliece suggests. (The most powerful attack at this
moment seems to be [CanS98].)

n = 1024; k = 524; t = 50;

É Guessing SB and PB

As a cryptanalyst, one may try to guess SB and PB to calculate GB from GB
* by means of (11.4).

Once GB has been recovered, it is not so difficult for the cryptanalyst to find the defining Goppa
polynomial pU HxL of the Goppa code GHpU HxL, GFH2mU LL that has GB as generator polynomial.
One can now follow the decryption algorithm of Bob to find the transmitted message m.

However the number of invertible matrices SB and permutation matrices PB is so astronomical
(¤i=0

k-1 H2k - 2iL resp. n !), that the probability of success of this attack is smaller than the
probability of correctly guessing vector m directly.

244 FUNDAMENTALS OF CRYPTOLOGY

É Exhaustive Codewords Comparison

The cryptanalyst can compare the received vector r with all 2k codewords in the code generated
by GB

* . Let c be the closest codeword. It is at distance § t from r (by the encryption rule (11.5))
and is unique because the minimum distance of the code is at least 2 t + 1. It also follows from
(11.5) that c = m.GB

* . With a simple Gaussian elimination process one can now retrieve the
transmitted message m from c.

This approach involves the following number of comparisons!

N@2k, 5D

5.4918×10157

Example 11.2 (Part 1)

Consider the binary code of length n = 7 and dimension k = 4, generated by

G =

i

k

jjjjjjjjjjjj

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

y

{

zzzzzzzzzzzz
;

and suppose that r = H1, 1, 0, 0, 1, 0, 1L is a intercepted ciphertext which is a codeword c plus an
error vector of weight at most 1 (so t = 1).

We shall compare r with two codewords (instead of 2k = 16) and use again the Mod function:

r = 81, 1, 1, 0, 1, 0, 1<;
i1 = 81, 1, 1, 1<;
c = Mod@i1.G, 2D
Mod@r − c, 2D

81, 1, 1, 1, 1, 1, 1<
80, 0, 0, 1, 0, 1, 0<

So, c = i1.G lies at distance ¥2 from r, which is too much.

Coding Theory Based Systems 245

i2 = 81, 0, 1, 0<;
c = Mod@i2.G, 2D
Mod@r − c, 2D

81, 0, 1, 0, 1, 0, 1<
80, 1, 0, 0, 0, 0, 0<

Now c = i2.G lies at distance 1 from r and we conclude that H1, 0, 1, 0L was the transmitted
information.

É Syndrome Decoding

The cryptanalyst may compute the parity check matrix HB
* corresponding to GB

* from the equation
HB

* .GB
* = O (see (11.3)). It has rank n - k . Next, generate all error vectors e of weight at most t ,

compute the syndrome HB
* eT for each of them, and put these in a table.

For the intercepted vector r one first computes the syndrome sT = H .rT . From the table one can
find the corresponding error vector e . Subtracting e from r one gets the codeword c = m.GB

* (see
(11.5)). With a simple Gaussian elimination process one can now retrieve the transmitted message
m from this vector c.

The work load of this attack is „
i=0

50
 Jn

i
N:

NA‚
i=0

50

Binomial@n, iD, 5E

3.3623×1085

Example 11.2 (Part 2)

The parity check matrix of the code introduced in Example 11.2 is given by

H =
i

k

jjjjjjj

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

y

{

zzzzzzz;

MatrixForm@HD

246 FUNDAMENTALS OF CRYPTOLOGY

ikjjjjjj 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

y{zzzzzz
as can be checked with the Mathematica function Transpose (and MatrixForm) as follows

U = Mod@G.Transpose@HD, 2D;
MatrixForm@UD

i
kjjjjjjjjjjj
0 0 0
0 0 0
0 0 0
0 0 0

y
{zzzzzzzzzzz

Next, we generate all error vectors e of weight § 1 and compute their syndrome HB
* eT . We put

these in a table. Apart from the Mathematica functions Mod, Do, and Print, we also make use of
ReplacePart, which replaces the i-th coordinate of e by the specified value (here its
compliment).

e = 80, 0, 0, 0, 0, 0, 0<;
Print@e, " ", Mod@H.e, 2DD;
Do@ 8er = ReplacePart@e, Mod@e@@iDD + 1, 2D, iD,

Print@er, " ", Mod@H.er, 2DD<,
8i, 1, 7<D80, 0, 0, 0, 0, 0, 0< 80, 0, 0<81, 0, 0, 0, 0, 0, 0< 81, 1, 0<80, 1, 0, 0, 0, 0, 0< 81, 0, 1<80, 0, 1, 0, 0, 0, 0< 80, 1, 1<80, 0, 0, 1, 0, 0, 0< 81, 1, 1<80, 0, 0, 0, 1, 0, 0< 81, 0, 0<80, 0, 0, 0, 0, 1, 0< 80, 1, 0<80, 0, 0, 0, 0, 0, 1< 80, 0, 1<

With this table it is now easy to find a codeword at distance § 1 from r.

r = 81, 1, 1, 0, 1, 0, 1<;
Mod@H.r, 2D

Coding Theory Based Systems 247

81, 0, 1<
This is the syndrome corresponding to e = H0, 1, 0, 0, 0, 0, 0L , so the closest codeword is given by

e = 80, 1, 0, 0, 0, 0, 0<;
Mod@r − e, 2D

81, 0, 1, 0, 1, 0, 1<
Since the generator matrix G in this example has the form HI4 » PL , we can recover the transmitted
information m from the first four coordinates in c:

m = H1, 0, 1, 0L .

É Guessing k Correct and Independent Coordinates

The cryptanalyst selects k random positions and hopes that they are not in error, i.e. he hopes that
e is zero on these k positions. If the restriction of matrix GB

* to these k positions still has rank k ,
one can find a candidate m ' for the information vector m with a Gaussian elimination process.

If the rank is less than k it will very likely still be close to k (see Problem 11.2). So, the Gaussian
elimination process will either lead to only a few possibilities for m ' or to no solution at all.

For each possible candidate m ' compute m '.Gb
* and check if it lies at distance § t from the

intercepted vector r . If so, one has found the correct m .

The probability that the k positions are correct is about H1 - t ênLk . The Gaussian elimination
process involves k3 steps. So, the expected workload of this method is

N@k3 H1 − tênL−k, 5D

3.5504×1019

Although this attack is the most efficient thus far, it is still not a feasible attack.

Example 11.2 (Part 3)

Guessing that coordinates 2, 4, 5, and 7 are error-free in Example 11.2 we use the Mathematica
functions Transpose and MatrixForm to get the restriction G' of the generator matrix G to
this guess and the restriction r' of the intercepted vector r of Example 11.2 to this guess.

248 FUNDAMENTALS OF CRYPTOLOGY

G =

i

k

jjjjjjjjjjjj

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

y

{

zzzzzzzzzzzz
;

Guess = 82, 4, 5, 7<
RestrG = Transpose@GD @@ GuessDD ;
MatrixForm@Transpose@RestrGDD

82, 4, 5, 7<
i
kjjjjjjjjjjj
0 0 1 0
1 0 1 1
0 0 0 1
0 1 1 1

y
{zzzzzzzzzzz

r = 81, 1, 1, 0, 1, 0, 1<;
rRestr = r@@GuessDD

81, 0, 1, 1<
We use the Mathematica functions LinearSolve, NullSpace, and Transpose to see if the
equation

LinearSolve@RestrG, rRestr, Modulus −> 2D
NullSpace@RestrG, Modulus −> 2D

80, 1, 0, 0<
8<

has a solution.

Apparently the restriction of G to the four coordinates has full rank. The solution H0, 1, 0, 0L gives
rise to a codeword that has distance ¥ 2 to r .

m1 = 80, 1, 0, 0<;
Mod@r − m1.G, 2D

81, 0, 1, 0, 0, 0, 0<

Coding Theory Based Systems 249

Let us now try another guess.

Guess = 81, 3, 6, 7<;
RestrG = Transpose@GD @@ GuessDD ;
MatrixForm@Transpose@RestrGDD

i
kjjjjjjjjjjj
1 0 1 0
0 0 0 1
0 1 1 1
0 0 1 1

y
{zzzzzzzzzzz

r = 81, 1, 1, 0, 1, 0, 1<;
rRestr = r@@GuessDD

81, 1, 0, 1<
LinearSolve@RestrG, rRestr, Modulus −> 2D
NullSpace@RestrG, Modulus −> 2D

81, 0, 1, 0<
8<

The solution H1, 0, 1, 0L now turns out to generate a codeword at distance § 1 to r.

m = 81, 0, 1, 0<;
Mod@r − m.G, 2D

80, 1, 0, 0, 0, 0, 0<
We conclude that H1, 0, 1, 0L was the transmitted information.

To let Mathematica make guesses one first has to load the package
DiscreteMath`Combinatorica`

<<DiscreteMath`Combinatorica`

and one can then use the Mathematica function RandomKSubset.

250 FUNDAMENTALS OF CRYPTOLOGY

RandomKSubset@81, 2, 3, 4, 5, 6, 7<, 4D

82, 3, 4, 6<
É Multiple Encryptions of the Same Message

It is not safe to encrypt the same message several times with the same encryption matrix GB . To
see this, let us consider two different encryptions of the same message m , say r = m.GB

* + e and
r ' = m.GB

* + e' (see (11.5)). On the coordinates where r and r ' disagree, we know for sure that
either e or e ' has a 1. On the coordinates where r and r ' agree, we know almost for sure that both
r and r ' are error-free.

To be more precise, if the error vectors e and e ' are truly randomly chosen, as they should be, one
expects the following valuesHei, ei'L # coordinatesH0, 0L Hn − tL2 ênH0, 1L or H1, 0L 2 t Hn − tLênH1, 1L t2 ên
For instance, when the parameters are n = 1024 and t = 50, one expects ei = ei ' = 1 on roughly
502 ê 1024 º 2.44 coordinates.

Also, one expects

n = 1024; t = 50;
N@Hn − tL2 ên, 3D

926.

coordinates where r and r ' agree. At most three of these coordinates are likely to be corrupted.

By removing in every possible way t2 ê n coordinates from the coordinate set where r and r ' agree,
one almost surely finds a coordinate set that is error free and on which the matrix GB

* still has full
rank (see Problem 11.2). With a simple Gaussian elimination process one recover m from r .

When the same message has been encrypted more than two times, it is correspondingly easier to
break the system.

Coding Theory Based Systems 251

11.2.4 A Small Example of the McEliece System

Example 11.1 (Part 2)

The Goppa code G Hx2 + x + a , GFH24LL of Example 11.1 has a generator matrix G that can be
computed from the parity check matrix H by means of the Mathematica function Nullspace.

H =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0
0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1
1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1
1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1
0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1
1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0
1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

;

G = NullSpace@H, Modulus −> 2D;
MatrixForm@GD

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0
1 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0
1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
The generator matrix G of G Hx2 + x + a , GFH24LL will be transformed into G* = S.G.P, where S
is an invertible matrix and P a permutation matrix, as follows:

252 FUNDAMENTALS OF CRYPTOLOGY

S =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

;

P =

i

k

jj

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

y

{

zz

;

Gstar = Mod@S.G.P, 2D;
MatrixForm@GstarD

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1
1 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0
1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0
1 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0
1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
A possible encoding of the information sequence H1, 1, 0, 0, 1, 0, 0, 1L is given by

Coding Theory Based Systems 253

m = 81, 1, 0, 0, 1, 0, 0, 1<;
err = 80, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0<;
cw = Mod@m.Gstar + err, 2D

81, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0<
Note that errors have been introduced at coordinates 5 and 9.

An eavesdropper has no efficient algorithm to find the information vector m from the word cw.

The legitimate receiver will first compute cd = cw.P-1 with the Mathematica function Inverse.

PInv = Inverse@P, Modulus −> 2D;
cd = cw.PInv

81, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1<
Next, this vector has to be decoded with a decoding algorithm of the Goppa code
G Hx2 + x + a , GFH24LL . Such a method has not been discussed here. The outcome turns out to be
the vector m' = 81, 0, 0, 0, 1, 1, 1, 0< . This can be checked by computing m'.G and compare that
with cd. The difference is an error vector err' of weight 2 which is exactly err.P-1 .

mpr = 81, 0, 0, 0, 1, 1, 1, 0<;
errpr = Mod@mpr.G − cd, 2D
err.PInv

80, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0<
80, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0<

To find m, the legitimate receiver computes m'.S-1 .

mpr = 81, 0, 0, 0, 1, 1, 1, 0<;
InvS = Inverse@S, Modulus −> 2D;
Mod@mpr.InvS, 2D

81, 1, 0, 0, 1, 0, 0, 1<
This is indeed the original message.

254 FUNDAMENTALS OF CRYPTOLOGY

11.3 Another Technique to Decode Linear Codes
A large research effort has been made in the past to find decoding algorithms for general linear
codes. The McEliece cryptosystem has only intensified this quest. Most of these algorithms are of
the type that was discussed before: find k coordinates where the generator matrix has full rank and
where the received vector is error free. Such a technique is called information set decoding.

Here we describe a technique introduced by Van Tilburg [vTbu88] (see also [LeeB88]).

Algorithm 11.2 Bit Swapping Technique
Let G be the generator matrix of a binary code C of length n , dimension k , and
minimum distance d .
Let r = c + e be a received vector, where c œ C (say c = m.G) and e has weight at most t ,
with 2 t + 1 § d .

Step 1: Apply suitable elementary row operations and a column permutation to G to
bring G in so-called standard form i.e. S.G.P = HIk » AL .
Put r ' = r.P and write r ' = Hr1 ', r2 'L , where r1 ' has length k .
Note that r = m.G.P + e.P = m.S-1HIk » AL + e ' , where e and e ' have the same weight.

Step 2: Put c ' = r1 '.HIk » AL . The first k coordinates of c ' and r ' are identical.

Step 3: If c ' and r ' differ in at most t coordinates, conclude that the first k coordinates
are error-free. Compute m from r ' = m.S-1 with Gaussian elimination.
Let the algorithm terminate.

Step 4: If c ' and r ' differ in more than t coordinates, pick a random row index
i, 1 § i § k , and column index j, 1 § j § n - k , with Ai, j ∫ 0. Construct a new matrix G
from HIk » AL by interchanging the i-th and the Hk + jL-th column of G (the i-th column of
Ik is swapped with the j-th column of A).
Return to Step 1, but use there only elementary row operations with the i-th row to bring
the matrix in standard form again.

Let us demonstrate one cycle of the above algorithm. We continue with Example 11.2.

Example 11.2 (Part 4)

G =

i

k

jjjjjjjjjjjj

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

y

{

zzzzzzzzzzzz
;

MatrixForm@GD
r = 81, 1, 1, 0, 1, 0, 1<

Coding Theory Based Systems 255

i
kjjjjjjjjjjj
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

y
{zzzzzzzzzzz81, 1, 1, 0, 1, 0, 1<

The matrix G is already in standard form. We also see that the first four coordinates of r lead to a
codeword c' that has distance 2 to r .

r1 = Take@r, 4D
cc = Mod@r1.G, 2D
Mod@r − cc, 2D

81, 1, 1, 0<
81, 1, 1, 0, 0, 0, 0<
80, 0, 0, 0, 1, 0, 1<

To make a swap we pick G2,5 as non-zero entry from columns 5-7 in G. We perform a swap of the
2-nd and 5-th column of G, by using the function:

ColumnSwap@B_, i_, j_D := Module@8U, V<, U = Transpose@BD;
V = U@@iDD; U@@iDD = U@@jDD; U@@jDD = V; Transpose@UDD

G1=ColumnSwap[G,2,5];
MatrixForm[G1]

i
kjjjjjjjjjjj
1 1 0 0 0 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 1 0 1 0 1 1

y
{zzzzzzzzzzz

To bring this in systematic form we use the Mathematica function RowReduce.

G2 = RowReduce@G1, Modulus −> 2D;
MatrixForm@G2D

256 FUNDAMENTALS OF CRYPTOLOGY

i
kjjjjjjjjjjj
1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

y
{zzzzzzzzzzz

In order to analyze the complexity of the bit-swapping algorithm, we let PrHl + u » lL denote the
conditional probability that exactly l + u of the first k positions of e are in error after a swap
given that precisely l were in error before the swap (u = -1, 0, 1).

Let a = min 8t, k< . Then the following straightforward relations hold:

(11.6) PrHl - 1 » lL = lÅÅÅÅk µ n-k-t+lÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn-k , if 1 § l § a,

(11.7) PrHl + 1 » lL = k-lÅÅÅÅÅÅÅÅÅk µ t-lÅÅÅÅÅÅÅÅÅÅn-k , if 1 § l § a - 1,

(11.8) PrHl » lL=9 1 - PrHl - 1 » lL - PrHl + 1 » lL,
1 - PrHl - 1 » lL, if 1 § l § a - 1,

if l = a.

Example 11.3 (Part 1)

Consider a (binary) code with parameters n = 23, k = 12, and t = 3. Then a = min 8k, t< = 3. The values of
PrHl - 1 » lL and PrHl + 1 » lL can be computed (and printed) from (11.6) and (11.7) with the Mathematica
functions Min, Do, and Print.

n = 23; k = 12; t = 3;
a = Min@k, tD;
PrDown@l_D := l∗Hn − k − t + lLêHk∗Hn − kLL;
PrUp@l_D := Hk − lL∗Ht − lLêHk∗Hn − kLL;
Do@
Print@"PrH", i − 1, "»", i, "L=", PrDown@iDD, 8i, a, 1, −1<D;

Print@"and"D;
Do@Print@"PrH", i + 1, "»", i, "L=", PrUp@iDD,
8i, a − 1, 1, −1<D

PrH2»3L=
1
cccc
4

PrH1»2L=
5

ccccccc
33

PrH0»1L=
3

ccccccc
44

and

PrH3»2L=
5

ccccccc
66

PrH2»1L=
1
cccc
6

Note that the probability of a successful swap gets smaller for smaller values of l .

Coding Theory Based Systems 257

Lemma 11.3
Let Nl, 1 § l § a , denote the expected number of swaps needed to pass from a state with
l errors to a state with l - 1 errors.
Then, the Nl 's can be computed recursively by

(11.9) Na = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅPrHa-1»aL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1-PrHa»aL ,

(11.10) Nl-1 = 1+PrHl»l-1L NlÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅPrHl-2»l-1L .

Proof:

The first equality in equation (11.9) follows directly from the definition of PrHa - 1 » aL . The
second equality follows from (11.8).

To show (11.10), we note that from state l - 1 there are three possible directions for the algorithm
to follow:

i) with probability PrHl - 2 » l - 1L it goes to state l - 2 in one step.

ii) with probability PrHl - 1 » l - 1L it stays in state l - 1 and so one can expect the algorithm to
reach state l - 2 in 1 + Nl-1 steps.

iii) With probability PrHl » l - 1L it goes back to state l and so one expects it to reach state l - 2 in
1 + Nl + Nl-1 steps.

The above proves the following recurrence relation

Nl-1 = PrHl - 2 » l - 1L .1 + PrHl - 1 » l - 1L.81 + Nl-1< +PrHl » l - 1L.81 + Nl + Nl-1< ,

which reduces to (11.10) because PrHl - 2 » l - 1L = 1 - PrHl - 1 » l - 1L-PrHl » l - 1L .

Ñ

Note that in the calculations of Nl only probabilities of the form PrHi - 1 » iL play a role.

Example 11.3 (Part 2)

Continuing with Example 11.3, we see that the values of Nl can be computed recursively with
(11.9) and (11.10).

Numb@aD = 1êPrDown@aD;
Do@Numb@i − 1D = H1 + PrUp@i − 1D∗ Numb@iDLê PrDown@i − 1D,
8i, a, 2, −1<D

Do@Print@"NumbH", i, "L=", Numb@iDD, 8i, a, 1, −1<D

NumbH3L=4

NumbH2L=
43
ccccccc
5

258 FUNDAMENTALS OF CRYPTOLOGY

NumbH1L=
1606
ccccccccccccc
45

Theorem 11.4
The expected number of swaps for the bit swapping algorithm to find k error-free
coordinates is given by

(11.11) „
j=1

a

ikjjjkjy{zzz
ikjjjn-k
t- j

y{zzzÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅikjjjnty{zzz ⁄l=1
j Nl .

Proof:

The expected number of steps to reach state 0 when one starts in state j , 1 § j § a , is given by the
expected number of steps to reach state j - 1 from state j , plus the expected number of steps to
reach state j - 2 from state j - 1, etc. This explains the inner sum in (11.11):

N j + N j-1 + … + N1 .

The probability of starting in state j is equal to the probability that a randomly selected k tuple
contains j errors. This probability is equal to the fraction of the number of t -tuples out of n that
have intersection j with a given k -tuple (and intersection t - j with the other n - k positions). So,
this probability is given byikjjjkjy{zzz

ikjjjn-k
t- j

y{zzzÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅikjjjnty{zzz .

Now, take the product of the two factors above and sum it over all values of j .

Ñ

Example 11.3 (Part 3)

It follows from Theorem 11.4 that the expected number of swaps that are needed in a code with
n = 23, k = 12, and t = 3 (as introduced in Example 11.3) to get 12 error-free coordinates is
given by:

NS = „
j=1

a

HBinomial@k, jD∗Binomial@n − k, t − jDê Binomial@n, tDL

‚
l=1

j

Numb@lD;

N@NS, 5D

Coding Theory Based Systems 259

37.455

The above bit swapping algorithms gives a significant improvement (also asymptotically) over the
methods explained in Subsection 11.2.3. For the strongest result in this area we refer the reader to
[BaKT99].

11.4 The Niederreiter Scheme
The Niederreiter scheme [Nied86] is a variation of the McEliece cryptosystem. It applies the very
same idea to the parity check matrix of a linear code. The scheme is summarized in the Table 11.2
below.

So, again we have a Goppa code GHpU HxL, GFH2mLL , (see (11.1)) defined by user's U Goppa
polynomial pU HxL over GFH2mL of degree tU . Let HU be a parity check matrix of this code. It has
size HnU - kU L µ nU , where kU is the dimension of the code.

The code GHpU HxL, GFH2mLL is tu -error correcting which implies that every vector y of weightH § tLU has a unique syndrome HU .y . Existing decoding algorithms for Goppa codes find y
efficiently from its syndrome.

Just like in the McEliece system, the structure of the Goppa code has to be hidden from the matrix
HU . This is done by computing

(11.12) HU
* = SU HU PU ,

where SU is a HnU - kU L µ HnU - kU L invertible matrix and PU a permutation matrix of size nU (see
(11.4)).

The matrix HU
* has to be made public, together with the value tU .

If Alice wants to send a message to Bob, she looks up Bob's public parameters HB
* and tB . She

represents her message by means of a (column) vector m of weight § tB . She computes v = HB
*.m

and sends that as her ciphertext to Bob.

Bob first multiplies v on the left with SB
-1 . He obtains v ' = SB

-1 m = HB HPB mL by (11.12). Since
PB m is a permutation of m , and thus also of weight H § tLB , the decoding algorithm of Bob's
Goppa code will find m ' = PB m efficiently. The message m can now be recovered by multiplying
m ' on the left with PB .

260 FUNDAMENTALS OF CRYPTOLOGY

Public HU∗ and tU of all users U
HU∗ has size HnU − kUL ×nU

Secret pU HxL, SU, and PU by each user U

Property SU−1 HU∗ PU is the parity check
matrix of the Goppa code
defined by pU HxL of degree tU

Format of message
of Ann to Bob

m ∈ 80, 1<nB
weight HmL ≤ tB

Encryption v = HB∗.m

Decryption compute v' = SB−1.v
use decoding algorithm to

find m ' with HB∗.m' = v'
compute m'.PB−1 = m

Table 11.2

The Niederreiter cryptosystem

11.5 Problems

Problem 11.1
What is the probability that k columns in a random k µ n binary matrix have rank k ? How about the
probability that k + 1 columns in this matrix have rank?
Compute these two probabilities for n = 16 and k = 5.

Problem 11.2
Let C be a linear code of length n = 23 and dimension k = 12. Assume that at most three errors have
occurred. What is the complexity of the various attacks described in Subsection 11.2.3.

Problem 11.3M

Let C be a linear code of length 11 and dimension 6. Suppose that two errors have occurred.How many
swaps are expected to get 6 error-free coordinates if one follows Algorithm 11.2?

Coding Theory Based Systems 261

262 FUNDAMENTALS OF CRYPTOLOGY

12 Knapsack Based Systems

12.1 The Knapsack System

12.1.1 The Knapsack Problem

In [MerH78], Merkle and Hellman propose a public key cryptosystem that is based on the
difficulty of solving the knapsack problem. Since then, other knapsack related cryptosystems have
been suggested, most of which turned out to be insecure. An exception, up to now, is the Chor-
Rivest scheme proposed in [ChoR85], but in [Vaud98] it is shown that the suggested parameters in
[ChoR85] are also insecure.

Definition 12.1
Let a1, a2, …, an be a sequence of n positive integers. Let also S be an integer. The
question if the equation

(12.1) x1 a1 + x2 a2 + … + xn an = S

has a solution with each xi in 80, 1< is called the knapsack problem.

Note that we do not ask for a solution of (12.1), the question is only if there exists a solution.
Finding a 80, 1<-solution to (12.1) is of course at least as difficult as just finding out whether a
solution exists.

For large n the knapsack problem is intractable to solve. In fact it has been shown that the
knapsack problem is NP-complete (see [GarJ79] or a very short discussion in Subsection 11.2.2).

For some sequences 8ai<i=1
n it is not difficult to find a 80, 1<-solution to (12.1), resp. to show that

no such solution exists. For example, with the sequence ai = 2i-1 ,1 § i § n , equation (12.1) will
have a solution if and only if 0 § S § 2n - 1. Finding the solution is very easy in this case.

A much more general class of sequences 8ai<i=1
n exists, for which (12.1) is easily solvable. This is

the class of so-called super-increasing sequences.

A sequence 8ai<i=1
n is called super-increasing, if for all 1 § k § n ,

(12.2) ⁄i=1
k-1 ai < ak .

Knapsack Based Systems 263

Algorithm 12.1 solves the knapsack problem for super-increasing sequences. It actually finds the
solution 8xi<i=1

n for each right hand side S for which (12.1) is solvable. The idea is very simple:
since ⁄i=1

n-1 ai < an , it follows that in a solution

xn = 1 ó S ¥ an .

Now, subtract xn an from S and determine xn-1 in the same way. So, recursively for
k = n - 1, n - 2, …, 1

xk = 1 ó HS - ⁄i=k+1
n xi.aiL ¥ ak .

If at the end S - ⁄i=1
n xi.ai = 0 one has found the solution to (12.1), otherwise one may conclude

that (12.1) does not admit a solution.

Algorithm 12.1 Solving the knapsack problem for a super-increasing sequence.
input 8xk<k=1

n a super-increasing sequence of positive integers,
S integer

initialize k = n
while k ¥ 1do begin

if S ¥ ak then xk = 1 else xk = 0,
put S = S - xk.ak ,
put k = k - 1
end

if S = 0 then print 8xk<k=1
n else print "no solution"

Example 12.1 (Part 1)

Consider the super-increasing sequence 8ai<i=1
6 = 822, 89, 345, 987, 4567, 45678< and the right hand side

S = 5665. To see if (12.1) has a solution we apply Algorithm 12.1.

Because S < a6 , we get x6 = 0. Next, we see that S ¥ a5 , so we have x5 = 1. We subtract a5 from S and get
1098. We see that this new value of S satisfies S ¥ a4 , so x4 = 1, etc. The final solution is 81, 1, 0, 1, 1, 0< .

Below the same process is written in Mathematica. We make use of the functions Length, While, If,
and Join. The solution 8xi<i=1

6 is formed by prepending each newly found value xi to 8xi+1, …, x6< ,
i = 6, 5, …, 1.

KnapsackForSuperIncreasingSequence@a_List, S_D :=

Module@8n, x, X, T<,
n = Length@aD; X = 8<; T = S;
While@n ≥ 1,

If@T ≥ a@@nDD, x = 1, x = 0D;
T = T − x∗a@@nDD;
X = Join@8x<, XD; n = n − 1D;

If@T != 0, Print@"No solution"D, XDD

264 FUNDAMENTALS OF CRYPTOLOGY

a = 822, 89, 345, 987, 4567, 45678<; S = 5665;
X = KnapsackForSuperIncreasingSequence@a, SD

81, 1, 0, 1, 1, 0<
Indeed

X.a

5665

12.1.2 The Knapsack System

É Setting Up the Knapsack System

The knapsack cryptosystem, as proposed in [MerH78] is based on the apparent difficulty of
solving the knapsack problem and the ease of solving this problem for super-increasing sequences.

Each user U makes a super-increasing sequence 8ui<i=1
n

U of length nU . Next, U selects integers
WU and NU such that

(12.3) NU > ⁄i=1
n

U ui

and

(12.4) gcdHWU , NU L = 1.

User U computes the numbers

(12.5) ui ' = HWU .ui mod NU L , 1 § i § n,

and makes the sequence 8ui '<i=1
nU known as his public key.

As a precalculation for the decryption, user U also computes WU
-1 mod NU .

The number WU
-1 mod NU can be computed with the extended version of Euclid's Algorithm (Alg.

A.8). Indeed, since gcdHWU , NU L = 1, this algorithm will give X and Y such that
1 = X .WU + Y .NU . It follows that X .WU ª 1 Hmod NU L , i.e. X = WU

-1 .

Each user keeps the super-increasing sequence 8ui<i=1
n

U and the numbers WU , HWU L-1 , and NU

secret.

Example 12.1 (Part 2)

We continue with the parameters of Example 12.1. So, Bob chooses8bi<i=1
6 = 822, 89, 345, 987, 4567, 45678< as his super-increasing sequence. Further, he selects

Knapsack Based Systems 265

NB = 56789, which satisfies NB > ⁄i=1
6 bi and WB = 12345 which is coprime with NB .

Next, he calculates bi ' = HWB bi mod NBL . Here, we do this with the Mathematica function Mod. To
check the conditions above we need the GCD function.

b = 822, 89, 345, 987, 4567, 45678<;
WB = 12345; NB = 56789;

‚
i=1

6

b@@iDD < NB

GCD@WB, NBD == 1
bb = Mod@WB∗ b, NBD

True

True

844434, 19714, 56639, 31669, 44927, 36929<
So, 8bi '<i=1

6 = {44434,19714,56639,31669,44927,36929} is the public key.

For this small value of nB it already takes some effort to solve the knapsack problem (try 101077).

The number WB
-1 mod NB can be found with the ExtendedGCD and Mod functions.

WB = 12345; NB = 56789;
Mod@ExtendedGCD@WB, NBD, NBD

81, 839750, 3704<<
It follows that WB

-1 = 39750. Indeed

WBinverse = 39750;
Mod@WB∗ WBinverse, NBD

1

266 FUNDAMENTALS OF CRYPTOLOGY

É Encryption

Suppose that Alice wants to send a message to Bob. She looks up the public encryption key8bi '<i=1
nB of Bob. Next, she represents her message by a binary vector Hm1, m2, …, mnBL of length

mB (or by more vectors of this length if the messages is too long).

Alice will send to Bob the ciphertext

(12.6) C = ⁄i=1
n

B mi.bi ' .

Example 12.1 (Part 3)

We continue with the parameters of Example 12.1.So, Bob's public key is given by8bi '<i=1
6 = 844434, 19714, 56639, 31669, 44927, 36929< .

Let Alice's message be 8mi<i=1
6 = 81, 1, 0, 0, 0, 1< . Then the ciphertext that she will send will be⁄i=1

6 mi.bi ' = 101077.

bb = 844434, 19714, 56639, 31669, 44927, 36929<;
m = 81, 1, 0, 0, 0, 1<;
CipherText = m.bb

101077

É Decryption

When Bob receives a ciphertext C he will first multiply it with WB
-1 and reduce the answer

modulo NB (both are his secret parameters). It follows that

WB
-1.C ª

H12.6L
WB

-1.⁄i=1
n

B mi.bi ' ª
H12.5L ⁄i=1

n
B mi.bi Hmod NBL .

Inequality (12.3) implies that ⁄i=1
n

B mi.bi < NB . So, we can rewrite the above equation as follows:

(12.7) ⁄i=1
n

B mi.bi = HWB
-1.C mod NBL .

Since the sequence 8bi<i=1
n

B is super-increasing, Bob can now apply Algorithm 12.1 withHWB
-1.C mod NBL as right hand side to recover the message 8mi<i=1

n
B

Example 12.1 (Part 4)

We continue with the parameters of Example 12.1.

Assume that Bob has received C = 101077. First Bob computes HWB
-1.C mod NBL with

WB
-1 = 39750 and NB = 56789.

Knapsack Based Systems 267

CipherText = 101077;
S = Mod@WBinverse∗CipherText, NBD

45789

He gets 45789. To solve (12.1) ⁄i=1
6 mi.bi = S , he can use the

KnapsackForSuperIncreasingFunction defined earlier.

b = 822, 89, 345, 987, 4567, 45678<; S = 5665;
X = KnapsackForSuperIncreasingSequence@b, SD

81, 1, 0, 1, 1, 0<
É A Further Discussion

The knapsack system is summarized in the table below.

Table 12.1

Public 8ui'<i=1
nU of all users

Secret to U 8ui<i=1
nU , WU−1, NU

Properties ui' ≡ WU.ui Hmod NUL,8ui'<i=1
nU super − increasing,
gcd HWU, NUL = 1

Message for B 8mi<i=1
nB

Encryption C = ⁄i=1
nBmi .bi'

Decryption by B Apply Algorithm 12.1 to8ui'<i=1
nU and WB−1.C mod NB

The Knapsack Cryptosystem

Even though the knapsack cryptosystem does not have the signature property, for a short while it
gained an enormous popularity. The main reason is the low complexity of its implementation. In
applications, both encryption and decryption can take place at very high data rates.

The authors [MerH78] recommend the users to take length nU = 100, a sequence 8ui<i=1
n

U
satisfyingH2i - 1L .2100 < ui < 2i .2100 , 1 § i § 100,

(it will automatically be super-increasing), and a modulus NU such that

2101 + 1 < NU < 2202 .

268 FUNDAMENTALS OF CRYPTOLOGY

Note that also (12.3) is satisfied.

It is further recommended that user U makes a permuted version 8ui '<i=1
n

U public instead of8ui '<i=1
n

U itself to disguise the order of the original super-increasing sequence. In this way, a
cryptanalyst has no information about which element ui ' in the public knapsack came from (the
smallest knapsack element) u1 , for instance.

The idea of multiplying a super-increasing sequence with a constant WU modulo NU is of course
to obtain a knapsack that looks random. To increase this effect and thus to increase the security of
the knapsack cryptosystem, [MerH78] advises to iterate this multiplication.

Hence, each user U also selects NU
' > ⁄i=1

n
U ui ' and 1 < WU

' < NU
' with gcdHWU

' ,NU
')=1,

computes ui ' ' ª WU
' .ui ' Hmod NU

' L , 1 § i § nU , and makes 8ui ' '<i=1
n

U public instead of 8ui '<i=1
n

U .

It makes sense to iterate this process of modulo-multiplication, as is illustrated in the following
example.

Example 12.2

Let n = 3 and consider 8ui<i=1
3 = 85, 10, 20< . Multiplying this sequence with 17 modulo 47 gives8ui '<i=1

3 = 838, 29, 11< . Multiplying this sequence with 3 modulo 89 gives 8ui ' '<i=1
3 = 825, 87, 33< .

These calculations can be verified with the Mod function.

u = 85, 10, 20<
uu = Mod@17 u, 47D
uuu = Mod@3 uu, 89D

85, 10, 20<
838, 29, 11<
825, 87, 33<

It is impossible to find integers W and N that map 8ui<i=1
3 directly into 8ui ' '<i=1

3 . Indeed the
congruence relations

5 W ª 25 Hmod NL ,
10 W ª 87 Hmod NL

imply that N divides 87 - 2 µ 25 = 37. Since 37 is a prime, it follows that N = 37. It also
follows that W = 5. These values of W and N however violate the third congruence relation

20 W ª 33 Hmod NL .

This shows that an iteration of modulo-multiplications can not always be replaced by a single
modulo-multiplication.

Knapsack Based Systems 269

The above example also demonstrates something else. Note that the second iteration mapped the
not-super-increasing knapsack 838, 29, 11< into 825, 87, 33< , which after a reordering is a super-
increasing sequence.

This also makes it clear that cryptanalyst Eve does not have to guess the original integers WU and
NU (and also WU

' and NU
' in the iterated case) to convert the public key back into a super-

increasing sequence. Eve can also decrypt the ciphertext, if she is able to obtain another super-
increasing sequence from 8ui '<i=1

n
U (resp. 8ui ' '<i=1

n
U).

These observations demonstrate two important things:

1) Iteration does not necessarily increase the security of the system.

2) It may be easier for a cryptanalyst to map the public knapsack into a super-increasing
sequence other than the original.

Some critics of the knapsack cryptosystem did not trust the linearity of the system. Their
intuition/experience told them that the knapsack cryptosystem was bound to be broken.

The reader should remember that the general knapsack problem is NP-complete. This implies in
particular that no known algorithm solves it in polynomial time. However, the property of NP-
completeness has never been proved for the restriction of the knapsack problem to the subclass of
knapsacks, obtained by a single modulo-multiplication of a super-increasing sequence. In 1982,
Shamir [Sham82] showed that the single iteration version of the knapsack system can be broken
with very high probability in polynomial time. This attack was later generalized by others (see
[Adle83] and [Bric85])

In Section 12.2, an outline of the much more general attack by Lagarias and Odlyzko [LagO83]
will be given.

12.2 The L3-Attack

12.2.1 Introduction

In the original knapsack cryptosystem it is assumed that the secret sequence 8ui<i=1
nU is super-

increasing. However, this is not crucial for a knapsack-based cryptosytem. It only makes the
decryption easy, because of Algorithm 12.1. The only essential requirement is that the plaintext-to-
ciphertext mapping 8mi<i=1

nU öC in (12.6) is one-to-one.

Since the general knapsack problem is NP-complete, no known algorithm solves it in polynomial
time. Still, it is quite possible that polynomial-time algorithms do exist, which solve with some
positive probability any knapsack problem in a large subclass of knapsack problems. Such an
algorithm would make the knapsack system unsuitable for cryptographic purposes.

270 FUNDAMENTALS OF CRYPTOLOGY

In this section, we shall often use the vector notation u = Hu1, u2, …, unL for a knapsack 8ui<i=1
n .

Before we give an outline of the Lagarias and Odlyzko attack (also called the L3 -attack)
[LagO83], we have to define a few new notions.

Definition 12.2
The density dHuL of a knapsack u = Hu1, u2, …, unL is defined by

dHuL = nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅmax1§i§n log2 ui
.

Example 12.3

For instance, the density of the knapsack 822, 89, 345, 987, 4567, 45678< is 6 ê log2 45678 º 0.39, as can
be checked with the Mathematica functions Max, Log, Length, and N.

a = 822, 89, 345, 987, 4567, 45678<;
N@Length@aDê Log@2, Max@aDD, 2D

0.39

The density dHuL serves as measure for the information rate of a knapsack system. Indeed, the
numerator is the number of message bits that are stored in the sum C of the knapsack (see (12.6)).
The denominator is a good approximation of the average number of bits needed for the binary
representation of C . For instance, with ui = 2i-1 , 1 § i § n , the density is n ê Hn - 1L º 1as it should
be.

We shall show further on that the Lagarias and Odlyzko attack is more likely to break the
knapsack system if its density is smaller.

This may sound like a heavy restriction, but one should realize that nobody likes to use a
cryptosystem that has a non-trivial positive chance to be broken.

12.2.2 Lattices

Definition 12.3
Let 8v1, v2, …, vn< be a set of vectors in n that are linearly independent over  . Then
the set of all integer linear combinations of 8v1, v2, …, vn< is called an integer lattice. In
formula:

L = 8⁄i=1
n ai.vi » ai œ , 1 § i § n<

or
L = .v1 + .v2 + … + vn .

We say that the n independent vectors v1, v2, …, vn form a basis for the lattice L . Note that the
basis of a lattice is certainly not unique. Normally, the order of the basis vectors does not matter,

Knapsack Based Systems 271

but in the sequel such an order will matter. We shall use the notation @v1, v2, …, vnD to indicate a
particular ordering.

Example 12.4

Consider the lattice L in  2 with basis u = H3, 1L and v = H1, 2L . It consists of all points of the form
a .H3, 1L + b .H1, 2L , with a , b œ  . Below part of this lattice is depicted.

u
v

Figure 12.1

Lattice in 2 with basis H3, 1L and H2, 1L
For the L3 -attack that we shall describe later on, it is of great importance to find a vector in L of
short length, or even better to find a complete basis of short vectors for L. For this reason, we
need to study basis transformations more carefully.

The Gram-Schmidt process is a well known algorithm from linear algebra to transfer a basis8v1, v2, …, vn< of a linear (sub)space into an orthogonal basis, i.e. in a basis 8u1, u2, …, un< with
the property that all vectors ui are orthogonal to each other, i.e. Hui, u jL = 0, for i ∫ j . It goes as
follows:

u1 = v1 ,
u2 = v2 - m1,2 u1 ,
u3 = v3 - m1,3 u1 - m2,3 u2 ,

ª

un = vn - m1,n u1 - m2,n u2 - … - mn-1,n un-1 .

where

mi, j =
Hv j,uiLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHui,uiL , 1 § i § j § n .

272 FUNDAMENTALS OF CRYPTOLOGY

Example 12.5

To demonstrate the Gram-Schmidt process we take v1 = H3, 4, 2L , v2 = H2, 5, 2L , and v3 = H1, 2, 6L in 3 .

v1={3,4,2};v2={2,5,2};v3={1,2,6};
u1=v1
u2=v2-((u1.v2)/(u1.u1))u1
u3=v3-((u1.v3)/(u1.u1))u1-((u2.v3)/(u2.u2))u2

83, 4, 2<
9−

32
ccccccc
29

, 25
ccccccc
29

, −
2

ccccccc
29

=
9−

24
ccccccc
19

, −
24
ccccccc
19

, 84
ccccccc
19

=
This can also be done in Mathematica. We first load the Mathematica package
LinearAlgebra`Orthogonalization` and then run GramSchmidt. The result will be
orthonormal basis, i.e. we obtain a set of n orthogonal vectors ui that have been further divided
by their length to give them unit-length.

<<LinearAlgebra`Orthogonalization`

v1={3,4,2};v2={2,5,2};v3={1,2,6};
{u1,u2,u3}=GramSchmidt[{v1,v2,v3}]

99 3
ccccccccccccè!!!!!!29

, 4
ccccccccccccè!!!!!!29

, 2
ccccccccccccè!!!!!!29

=,9−
32

cccccccccccccccccè!!!!!!!!!!!1653
, 25

cccccccccccccccccè!!!!!!!!!!!1653
, −

2
cccccccccccccccccè!!!!!!!!!!!1653

=, 9−
2

ccccccccccccè!!!!!!57
, −

2
ccccccccccccè!!!!!!57

, 7
ccccccccccccè!!!!!!57

==
As we can see in the example above, the vectors ui , 1 § i § n , will, in general, no longer have
integer coordinates. In the context of integer lattices that is an undesirable situation.

In the next subsection we shall discuss an (integer-valued) basis for lattice fl, that is not
completely orthonormal, but has two other attractive properties.

Knapsack Based Systems 273

12.2.3 A Reduced Basis

Let »» u »» denote the standard Euclidean norm or length of a vector u . So,»» u »» = Hu, uL1ê2 = ⁄i=1
n HuiL2 .

Definition 12.4
A basis 8v1, v2, …, vn< of an integer lattice L is called y-reduced, where 1 ê4 < y < 1, if
the orthogonal basis 8u1, u2, …, un< obtained from 8v1, v2, …, vn< through the Gram-
Schmidt process satisfies»» ui + mi,i-1 ui-1 »»2 ¥ y. »» ui-1 »»2 , 2 § i § n ,H » mLi, j » § 1 ê2, 1 § i § j § n .

An alternative definition of a y-reduced basis can be given as follows. Let Vk be the k -
dimensional linear subspace of n , spanned by 8v1, v2, …, vk< or, equivalently, by 8u1, u2, …, uk< .

Let Vk
¦ be the orthogonal complement of Vk . Define v j

HkL , k + 1 § j § n , as the projection of v j

onto Vk
¦ . In particular, vk+1

HkL = uk+1 . Then it can be shown (see [LagO83]) that the two conditions
in Definition 12.4 are equivalent to

(12.8) »» vi
Hi-2L »»2 ¥ y. »» vi-1

Hi-2L »»2 = y. »» ui-1 »»2 , 2 § i § n ,

resp.

(12.9) »» v j
HiL - v j

Hi-1L »» § 1ÅÅÅÅÅÅ2 »» vi
Hi-1L »» , 1 § i § j § n .

Note that (12.8) implies that the projection of vi onto Vi-2
¦ should not be too small in size (when

compared with the length of ui-1). The inequality in (12.9) says that the projection of v j onto ui is
relatively small.

These two statements can be interpreted by saying that the vectors in a y-reduced basis are of
comparable size and all point in different directions.

In the sequel, y will always be 3/4. The L3 - Algorithm (see [LenLL82]) is a very effective way to
find a y-reduced basis for a lattice L. It will not be described in full detail here (see however
Subsection 12.2.5). We quote the following facts from [LenLL82].

Theorem 12.2
Let 8v1, v2, …, vn< be a basis of an integer lattice L. in n and let B = max1§i§n »»vi ||.
Then the L3 -lattice basis reduction algorithm produces a reduced basis 8w1, w2, …, wn<
for L in about n6Hlog BL3 bit operations.

Theorem 12.3
Let 8w1, w2, …, wn< be a reduced basis for an integer lattice L.
Then »» w1 »»2 § 2n-1.min 8 »» x »»2 » x œ L \ 80<< .

274 FUNDAMENTALS OF CRYPTOLOGY

In fact, Prop.1.12 in [LenLL82] shows that no vector in a reduced basis can be very long.

12.2.4 The L3 -Attack

We can now present the idea behind the L3 -attack. We want to find a solution to the knapsack
problem ⁄i=1

n xi ai = C (see (12.1)).

The idea of the attack will be to convert the parameters of the knapsack problem into a basis of
some integer lattice L. Then we find a short vector in this lattice with the L3 -lattice basis
reduction algorithm. The hope will be that this short vector can be transformed back into the
solution 8xi<i=1

n of (12.1).

L3 -attack on ⁄i=1
n ai xi = S .

Step 1:

Define the vectors

(12.10)

v1 = H1, 0, …, 0, −a1L
v2 = H0, 1, …, 0, −a2L

ª
vn = H0, 0, …, 1, −anL
vn+1 = H0, 0, …, 0, SL

Together they form a basis for a Hn + 1L-dimensional lattice L in n+1 .

Note that for the solution 8xi<i=1
n one has ⁄i=1

n xi vi + vn+1 = Hx1, x2, …, xn, 0L .

So, this vector has length è!!!n , which is relatively very short, e.g., if the knapsack has length
n = 100, we have »» ⁄i=1

n xi vi + vn+1 »» § 10.

Step 2:

Find a reduced basis 8w1, w2, …, wn< for L with the L3 -algorithm ([LenLL82]).

Step 3:

Check if one of the n + 1 "short" vectors wi , 1 § i § n + 1, has the property that HwiLn+1 = 0 and
that each of the first n coordinates is either 0 or a, for some constant a.

If so, check if the vector 1ÅÅÅÅÅ
a

 HHwiL1, HwiL2, …, HwiLnL is a solution of (12.1). If it does, STOP,
otherwise continue with Step 4.

Step 4:

Repeat Steps 1, 2 and 3 with S replaced by ⁄i=1
n ai - S . If these steps result in a solution 8xi '<i=1

n

for this new knapsack problem then 8xi<i=1
n , defined by xi = 1 - xi ' , 1 § i § n , will be the solution

of the original knapsack.

Knapsack Based Systems 275

Example 12.6

Consider the knapsack problem with 8ai<i=1
10 = {541,400,259,1059,895,590,498,973,41,649} and S = 4517.

Let us first make the vectors vi , 1 § i § 10, as indicated by (12.10). We use the Mathematica functions
Transpose, Append, IdentityMatrix, Do, Table, and MatrixForm.

a = 8541, 400, 259, 1059, 895, 590, 498, 973, 41, 649<;
s = 4517;
aux = Transpose@ Append@IdentityMatrix@10D, −aDD;
Do@v@iD = aux@@iDD, 8i, 1, 10<D;
v@11D = Append@Table@0, 810<D, sD;
Table@ v@iD, 8i, 1, 11<D êê MatrixForm

i

k

jj

1 0 0 0 0 0 0 0 0 0 −541
0 1 0 0 0 0 0 0 0 0 −400
0 0 1 0 0 0 0 0 0 0 −259
0 0 0 1 0 0 0 0 0 0 −1059
0 0 0 0 1 0 0 0 0 0 −895
0 0 0 0 0 1 0 0 0 0 −590
0 0 0 0 0 0 1 0 0 0 −498
0 0 0 0 0 0 0 1 0 0 −973
0 0 0 0 0 0 0 0 1 0 −41
0 0 0 0 0 0 0 0 0 1 −649
0 0 0 0 0 0 0 0 0 0 4517

y

{

zz
The vectors 8v1, v2, …, v10< form the basis of a lattice L.

Next we use the Mathematica function LatticeReduce to find a reduced basis.

LatticeReduce@ Table@v@iD, 8i, 1, 11<DD

881, −2, 1, 0, 0, 0, 0, 0, 0, 0, 0<,8−1, 0, −2, 1, 0, 0, 0, 0, 0, 0, 0<, 80, 1, −1, 1, −2, 1, 0, 0, 0, 0, 0<,81, −1, −1, 0, −1, 0, 0, 1, 1, 0, −1<,81, 1, −2, 0, 0, 1, 0, −1, −1, 0, 1<,81, 1, −1, 0, 0, −2, 1, 0, 0, 0, 0<, 81, −1, 0, 0, 1, 0, −2, 0, −1, 0, 1<80, 1, 0, −1, 0, 1, −1, 0, −2, 1, 0<,80, 0, −1, −1, −1, 1, 0, 1, 0, 1, 1<,81, −1, 0, 0, 0, 1, 0, 0, −2, −1, 0<, 81, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0<<
We see that only the last output is a two-valued vector on its first 10 coordinates. One of the
values is indeed 0, the other value is a=1. Trying out 8ai<i=1

10 = 81, 1, 0, 1, 1, 0, 0, 1, 0, 1< gives
indeed ⁄i=1

n ai xi = S .

276 FUNDAMENTALS OF CRYPTOLOGY

x = 81, 1, 0, 1, 1, 0, 0, 1, 0, 1<;
a.x == S

True

The computing time of Steps 1 and 3 in the L3 -attack is ignorable. Therefore, the running time of
this algorithm is essentially (twice) the running time of the L3 -algorithm, as given by in Theorem
12.2. There is in no guarantee that the L3 -algorithm will find a solution of the knapsack problem.
However the authors of [LagO83] give the following analysis of the L3 -algorithm.

Theorem 12.4
Let B ¥ 2H1+ bL n2 for some constant b > 0 and knapsack length n . Let KHn, BL denote the
number of knapsacks 8ai<i=1

n satisfying
1) 1 § ai § B for all 1 § i § n ,
2) the L3 -attack will find a {0,1}-solution 8xi<i=1

n for (12.1) for each right hand side S for
which there exists such a solution.
Then

KHn, BL = BnH1 - eHBLL ,

where
0 < eHBL < C1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

BC2-3 Hln nLên
for some constant C1 and where C2 = 1 - H1 + bL-1 > 0.

Theorem 12.4 states that for any b > 0 and n sufficiently large one can solve the knapsack
problem for almost all knapsacks 8ai<i=1

n with density

dH8ai<i=1
n L § nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅlog2 B < 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1+bL n .

With some additional work [LagO83], the inequality above can be weakened to

dH8ai<i=1
n L < H1 - eL 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn.log2 4ê3 .

for any fixed e > 0 and n . This inequality is probably not the best possible one.

12.2.5 The L3 -Lattice Basis Reduction Algorithm

Recall that the L3 -algorithm must find a basis 8v1, v2, …, vn< for an integer lattice that meets the
requirement given in Definition 12.3:»» ui + mi,i-1 ui-1 »»2 ¥ y. »» ui-1 »»2 , 2 § i § n ,HmLi, j » § 1 ê2, 1 § i § j § n ,

Knapsack Based Systems 277

where mi, j =
Hv j,uiLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHui,,uiL .

The L3 -algorithm makes use of the following procedure:

Procedure reduce@k, lD
Input 1 § l < k
Compute ml,k

If HmLl,k » > 1 ê 2 then begin
r = d0.5 + ml,kt
vk := vk - r.vl

end

The L3 -algorithm now runs as follows:

L3 -Algorithm
Input 8v1, v2, …, vn< , basis of integer lattice
Initialize k=2
While k § n do

begin
reduceHk, k - 1L
compute »» uk »» , »» uk-1 »» and mk-1,k

if »» uk »»2 < Hy - mk-1,k
2 L. »» uk-1 »»2

then begin exchange vk and vk-1

k := max 82, k - 1<
 end

 else begin reduceHk, lL for l = k - 1, …, 2, 1
k = k + 1

 end
end

For further reading see [LenLL82]. Notice that only the basis 8v1, v2, …, vn< is adjusted in this
algorithm. No vector ui enters the reduced basis, they are only used in the calculations.

278 FUNDAMENTALS OF CRYPTOLOGY

12.3 The Chor-Rivest Variant
The Chor-Rivest scheme [ChoR85] is a knapsack based cryptosystem that does not convert a
secret knapsack, for which the knapsack problem is easy to solve, into the public knapsack, for
which the knapsack problem should be intractable. It does make use of the standard conversion of
integers to binary sequences of fixed length. Further, it employes a fixed constant, a fixed choice
of an irreducible polynomial, a fixed choice of a primitive element, a fixed permutation, and an
exponentiation in a finite field for which the logarithm problem is tractable.

In [Vaud98], it is shown that the parameters suggested in [ChoR85] are not secure. The author
gives suggestions to repair the original proposal. Here we shall only explain the original idea of
the Chor-Rivest scheme.

É Setting Up the System

1) Each user U selects a finite field GF HqL for which the logarithm problem is feasible (also
by the cryptanalyst). For instance, in view of the Pohlig-Hellman Algorithm explained in
Subsection 8.3.1, this can be achieved by letting q - 1 have only small prime factors. Further, the
characteristic p of GFHqL , so q = pk for some k , should satisfy p > k .

To represent GFHqL , U uses a random irreducible polynomial f HxL of degree k over p The
elements of GFHqL can be represented by p-ary polynomials of degree < k (see Theorem B.15).

Note that, for reasons of clarity, we have omitted the subscript U in the above choices by U).

2) User U selects a random primitive element a in GFHqL . Primitive means that each non-
zero element in GFHqL can be written as some power ai of a, where i < q - 1. Note that a, being
an element in GFHqL , is also a p-ary polynomial of degree less than k .

3) For each i œ p , user U determines the discrete logarithm of the field elements x + i with
respect to the primitive element a. In other words, one needs to find exponents Ui , i œ p ,
satisfying

(12.11) aUi ª x + i Hmod f HxLL .

 This is feasible by our assumption in 1).

4) Finally, user U has to select a random permutation pU of 80, 1, …, p - 1< and a random
element DU , 0 § D < q - 1. He computes the numbers

(12.12) ui ª UpHiL + DU Hmod q - 1L .

and makes these numbers u0, u1, …, up-1 public together with the value q = pk .

(The reader should recall that q - 1 is the order of the multiplicative group of GFHqL , see Theorem
B.20).

Knapsack Based Systems 279

Example 12.7 (Part 1)

Bob selects the finite field GFH73L , so p = 7 and k = 3. An irreducible, binary polynomial f HxL of degree 3
over 7 can be found with the Mathematica function IrreduciblePolynomial , once the package
Algebra`FiniteFields` has been loaded.

<<Algebra`FiniteFields`

p = 7; k = 3; q = pk;
f = IrreduciblePolynomial@x, p, kD

4 + x + 2 x2 + x3

So, f HxL = x3 + 2 x2 + x + 4. It turns out that w = x is a primitive element in GFH73L . This can be
checked as follows. From q - 1 = 73 - 1 = 11 µ 31, we see that the order of any element is either
1, 11, 31, or 342 (see Theorem B.5). But w = x does not have order 11 or 31, as can be checked
with the following calculations. (We use the GF-function. Note that f342 represents
GFH73L = 7@xD ê H f HxLL .)

f341 = GF@7, 84, 1, 2, 1<D;
om = f341@80, 1<D;
om11

om31

86, 1, 3<783, 3, 6<7
To get a random primitive element a in GFH73L , Bob raises w to the power i with gcdHi, q - 1L = 1
(see Lemma B.4). We use the functions Random, GCD, and While.

i = q − 1;
While@GCD@i, q − 1D != 1, i = Random@Integer, 81, q − 2<DD;

i

239

We find i=239. The random primitive element will be a = w i , which is 3 + 4 x + 5 x2 by

280 FUNDAMENTALS OF CRYPTOLOGY

a = omi

83, 4, 5<7
It follows from 83 µ 239 ª 1 Hmod q - 1L that w = a 83 .

To determine the numbers Bi satisfying a Bi ª x + i Hmod f HxLL we use

B = Table@Mod@83∗FieldInd@om + iD, q − 1D, 8i, 0, p − 1<D

883, 101, 175, 90, 170, 321, 213<
We conclude that B0 = 83, B1 = 101, B2 = 175, B3 = 90, B4 = 170, B5 = 321, B6 = 213.

This can be checked with:

B = 883, 101, 175, 90, 170, 321, 213<;
aB

880, 1, 0<7, 81, 1, 0<7, 82, 1, 0<7,83, 1, 0<7, 84, 1, 0<7, 85, 1, 0<7, 86, 1, 0<7<
A few more things need to be done by Bob. He has to select a random number D, 0 § D < q - 1,
and a random permutation p of 80, 1, …, 6< . We load the Mathematica package
DiscreteMath`Combinatorica` and use the function RandomPermutation.

<<DiscreteMath`Combinatorica`

RD = Random@Integer, 80, q − 2<D
pi = RandomPermutation@7D

244

86, 3, 7, 4, 5, 2, 1<
So, D = 244 and p = 86, 3, 7, 4, 5, 2, 1< , meaning that p H1L = 6, p H2L = 3 , …, p H7L = 1.

(The reader should watch out here. Mathematica labels the entries in a list starting with 1, while
we start with 0.)

Knapsack Based Systems 281

The public key is given by the sequence (12.12): bi = Bp HiL + D. We use the functions Table and
Mod.

BPerm = Table@B@@pi@@iDDDD, 8i, 1, 7<D
b = Mod@BPerm + RD, q − 1D

8321, 175, 213, 90, 170, 101, 83<
8223, 77, 115, 334, 72, 3, 327<

Bob makes 8bi<i=0
6 = 8223, 77, 115, 334, 72, 3, 327< public and also k = 3.

É Encryption

Now suppose that Alice wants to send a secret message to Bob. She looks up the public
parameters b0, b1, …, bp-1 and k of Bob. She calculates qB = pk . Alice's message is a number M

in between 1 and J p
k
N .

Alice represents her message (in a manner that is shown below) as a binary string
m0, m1, …, mp-1 of length p and weight k (exactly k of the mi 's are equal to 1), so

(12.13) ⁄i=1
p-1 mi = k .

Alice will send

(12.14) c = I⁄i=1
p-1 mi bi mod qBM .

Example 12.7 (Part 2)

Suppose that Alice wants to send a message to Bob. She looks up Bob's public parameters k = 3
and 8bi<i=0

6 = 8223, 77, 115, 334, 72, 3, 327< (see Example 12.7). So, she knows that p = 7 (and
q = 73 = 341).

Let Alice's message be M = 19 (which indeed lies in between 1 and J7
3
N).

This can be represented by the binary sequence 8mi<i=0
6 = 80, 1, 1, 0, 1, 0, 0L , as shown

below.

The ciphertext c that Alice will send will be ⁄i=0
6 mi bi , which is 264 in this case.

m = 80, 1, 1, 0, 1, 0, 0<;
ct = m.b

264

282 FUNDAMENTALS OF CRYPTOLOGY

There is a recursive way to map a number M , 1 § M § J p
k
N , into a binary string m0, m1, …, mp-1

of length p and weight k . It makes use of the well-known identity:J p
k
N = J p - 1

k
N + J p - 1

k - 1
N .

If M > J p - 1
k

N , we put mp-1 = 1 and decrease M by J p - 1
k

N . This new value will be in between 1

and J p - 1
k - 1

N and can be described by a string m0, m1, …, mp-2 of length p - 1 and weight k - 1.

On the other hand, if M § J p - 1
k

N , put mp-1 = 0 and describe M by a string m0, m1, …, mp-2 of

length p - 1 and weight k .

Algorithm 12.5 Conversion from M to m0, m1, …, mp-1 of weight k

Input M , 1 § M § J p
k

N .

Initialize l = k

For i = 1 to p do if M > J p - i
l

N
 then begin mp-i: = 1

M := M - J p - i
l

N
 l := l - 1

 end
 else mp-i: = 0

Example 12.8

Let p = 7 and k = 3. Then J7
3
N = 35.

To find out into which binary sequence of length 7 and weight 3 the integer M = 19 will be mapped, we
follow the algorithm below, which makes use of the Mathematica functions Table, If, Do, and
Binomial.

p = 7; k = 3;
Me = 19;
l = k;
m = Table@0, 8i, 1, p<D;
Do@If@Me > Binomial@p − i, lD,

8m@@iDD = 1,
Me = Me − Binomial@p − i, lD, l = l − 1<D,

8i, 1, p<D;
m

80, 1, 1, 0, 1, 0, 0<

Knapsack Based Systems 283

É Decryption

Bob receives c , which is in fact c = I⁄i=1
p-1 mi bi mod qBM by (12.14). He computes C = c - k.DB

with his secret DB (see (12.12)).

Next, Bob computes aC . Now note that in GFHqL:

aC = ac-k.DB = aI⁄i=1
p-1mi biM-k.DB =

H12.12L
aH⁄i=1

p-1miHBpHiL+DBL-k.DB

=
H12.13L

a⁄i=1
p-1mi BpHiL = ¤i=1

p-1 HaBpHiL Lmi =
H12.11L ¤i=1

p-1 Hx + pHiLLmi .

This means that

 aC ª ¤i=1
p-1 Hx + pHiLLmi Hmod f HxLL .

Next, we add a suitable multiple of f HxL to aC to make its polynomial representation monic. So,
for some b œ GFHqL: aHxL = aC + b. f HxL is monic.

Since also ¤i=1
p-1 Hx + pHiLLmi is monic, the above in fact implies that

aHxL = ¤i=1
p-1 Hx + pHiLLmi .

It follows that mi = 1, 0 § i § p - 1, if and only if -pHiL is a zero of aHxL .

We summarize the decryption process in the following algorithm.

Algorithm 12.6 Decryption of Chor-Rivest Cryptosystem by Bob
Input ciphertext c
Bob's Secret DB, k, a, f HxL, p .
Compute C = c - k.DB with secret DB (see (12.12)).
Compute aC , where a is Bob's primitive element
Add multiple of f HxL to aC to get monic aHxL
Put mi = 1 if and only if -pHiL is a zero of aHxL .

Example 12.7 (Part 3)

We continue with Example 12.7. Assume that Bob receives the ciphertext c = 264.

Bob's secret parameters are k = 3, D = 244, p = 86, 3, 7, 4, 5, 2, 1< , f HxL = 4 + x + 2 x2 + x3 and
a = 3 + 4 x + 5 x2 .

Bob subtracts k.D from c,

CT = Mod@ct − RD∗k, q − 1D

216

Next he raises a to the power C. To write this as a polynomial we use the function
ElementToPolynomial.

284 FUNDAMENTALS OF CRYPTOLOGY

aCT

u = ElementToPolynomial@aCT, xD

82, 1, 3<7
2 + x + 3 x2

Next, Bob has to add f HxL to get the monic polynomial aHxL . We use the function
PolynomialMod.

AX = PolynomialMod@u + f, 7D

6 + 2 x + 5 x2 + x3

We factor this by means of the function Factor.

Factor@AX, 8Modulus −> 7<D

8H2 + xL H4 + xL H6 + xL<
The inverse permutation of p can be computed with InversePermutation (in the package
DiscreteMath`Combinatorica` that we have already loaded)

InversePermutation@piD

87, 6, 2, 4, 5, 1, 3<
We subtract 1 from these elements because p acts on 80, 1, …, 6< instead of 81, 2, …, 7< . We get

InversePermutation@piD − 1

86, 5, 1, 3, 4, 0, 2<
From this we see that the numbers 2, 4, and 6 are mapped to 1, 4, and 2 under p -1 . In other
words, p maps 1, 2, and 4 to 2, 4, resp. 6.

We conclude that the message vector has ones on the coordinates 1, 2, and 4 (and thus zeros on
the coordinates 0, 3, 5, and 6), i.e. the message vector is given by 8mi<i=0

6 = 80, 1, 1, 0, 1, 0, 0L .
This is indeed equal to the value that was chosen during encryption.

Knapsack Based Systems 285

12.4 Problems

Problem 12.1
Solve the knapsack problem if the elements are given by 333, 41, 4, 172, 19, 3, 80, and 11 and if the total
size of the knapsack equals 227.

Problem 12.2
Solve the knapsack problem if the elements are given by 31, 32, 46, 51 63, 72 and 87 and if the total size of
the knapsack equals 227.

Problem 12.3 M

A knapsack cryptosystem has the numbers 381, 424, 2313, 2527, 2535, 3832, 3879, and 4169 as public
key. They are obtained by multiplying the elements of a super-increasing sequence by W = 4673 and
reducing the result modulo 5011.
Decrypt message 11678.

Problem 12.4
Let p1, p2, …, pn be a sequence of different prime numbers and let P be their product. The numbers ai ,
1 § i § n , are defined by ai = P ê pi .
Let S = ⁄i=1

n xi.ai , where each element xi is either 0 or 1.
Give a simple algorithm to recover the numbers xi , 1 § i § n , from S .

Problem 12.5 M

Let C = 5738 be the ciphertext obtained through a knapsack encryption with 8ui<i=1
n

= 8437, 1654, 1311, 625, 1250, 1720, 663, 1420, 63, 319< as public knapsack.
Apply the L3 -attack to find the plaintext.

Problem 12.6
Which integer will be mapped to the binary vector H1, 1, 0, 1, 1, 0, 1, 0, 1, 1L by Algorithm 12.5?

Problem 12.7 M

Work out a complete Chor-Rivest cryptosystem example (including encryption and decryption) for the
parameters p = 11, k = 2.

286 FUNDAMENTALS OF CRYPTOLOGY

13 Hash Codes & Authentication Techniques

13.1 Introduction
In Section 1.1 we mentioned confidentiality (privacy) as the first reason why people use
cryptosystem. Of course, this goal is very important and it does lead to interesting mathematical
issues, but for the vast majority of data secrecy is not the user's prime concern.

Authentication and integrity on the other hand are almost always essential. Think, for instance, of
receivers of data files, E-mail messages, fax, etc. Violation of the confidentiality does (in general)
little harm, but significant damage may be done if somebody else is able to tamper with data files.

When studying authentication schemes one needs to distinguish between the following goals:

i) Does one want unconditional security or just computational security?

ii) Do the various parties trust each other or not?

iii) Is there a mutually trusted third party?

iv) Are the data files typically very long or just short?

v) Is confidentiality also an issue?

vi) Is the system intended for multiple use or just for single use?

The first two distinctions especially, have lead to completely different research areas. The main
topic of Section 13.3 will be authentication schemes with unconditional security. This means that
even with unlimited computing power the opponent can not break the system.These schemes are
usually called authentication codes and a particular subclass of them is called A-codes.

Computationally secure systems are based on mathematical assumptions like the infeasibility of
factoring large numbers or of taking discrete logarithms. These methods are called digital
signature schemes and have already been discussed in Sections 8.1.2, 8.2.1, 8.2.2, and 9.1.4.

If a file is very long and confidentiality is not an issue a very common technique to add proof of
authenticity and/or integrity to it, is to send it just like it is and then add a relatively short sequence
of bits (e.g. 100-200) that depend in an intricate way on all the bits in the original message. This
tail should be proof that the message indeed came from the assumed sender and that its contents
have not been changed.

The standard way to realize this is to hash the file in a cryptographically secure way into a short
sequence and compute a signature on this hash value. It is the signature of the hash value that is
appended to the original file. If an authentication scheme is slow in its implementations (as is the

Hash Codes & Authentication Techniques 287

case with digital signature schemes), this two-step approach may make them very practical.

In many applications, the hash function also makes use of a secret key that sender and receiver
share. These systems, which are called Message Authentication Codes (MAC's) are not
unconditionally secure, because somebody with unlimited computing power can, in principle, try
out all keys.

Hash functions and MAC's are the topic of Section 13.2.

13.2 Hash Functions and MAC's
We do not intend to give a formal description of various types of hash codes. For our purposes, a
global understanding of these codes and their properties suffices.

A hash function (or hash code) is a mapping h from * , the set of all sequences of symbols from
an alphabet  , to m , where m is some fixed positive integer. So, each sequence over  (of
arbitrary length) will be mapped to a sequence over  of length m . In typical applications
 = 80, 1< and the value of m ranges somewhere between 64 and 256.

Since one normally wants very fast implementations of hash functions h , we also require that it is
easy to evaluate the hash value for any sequence over  .

To make a hash function cryptographically secure, one often requires one or more of the following
properties to hold.

H1: The hash function h is a one-way function (see Section 7.1.2), i.e. for almost all outputs b
it is computationally infeasible to find an input a œ * such that b = hHaL .

H2: The hash function h is weak collision resistant. This means that for a given value of a it is
computationally infeasible to find a second value a ' œ * , a ∫ a ' , such that hHaL = hHa 'L .

H3: The hash function h is strong collision resistant This means that it is computationally
infeasible to find a pair of values a, a ' œ * , a ∫ a ' , such that hHaL = hHa 'L .

The implications of these requirements may be clear to the reader. For instance, H2 implies that if
the hash values hHaL of a file a is protected by a digital signature, one can not replace it by another
file a ' with the same hash value, simply because it is infeasible to find such an a ' .

Property H3 is even much stronger and makes it possible to convince a judge that the system has
been compromised.

Example 13.1

Consider m = 1 and  = n . To hash a = Ha0, a1, …, alL one simply takes b = H⁄i=0
l ai mod nL . This hash

value depends on all symbols in a and is easy to compute, but it does not meet any of the requirements H1-
H3.

288 FUNDAMENTALS OF CRYPTOLOGY

Example 13.2

Consider again m = 1 and  = n . To hash a = Ha0, a1, …, alL one computes b = IH⁄i=0
l aiL2 mod nM . If n

is a large composite number, property H1 will hold, because taking square roots modulo such an integer n
is considered to be infeasible (see Theorem 9.18).

With the Mathematica functions Mod and Length this hash function can be easily evaluated.

h@inputfile_List, nn_IntegerD :=

ModA
i

k
jjjjj ‚

i=1

Length@inputfileD
inputfile@@iDD

y

{
zzzzz
2

, nnE

n = 989;
in = 8189, 632, 900, 722, 349<;
h@in, nD

955

Properties H2 and H3 are not met, because -a will have the same hash value as a. Also, when
one coordinate is increased and the next one decreased by the same amount, the hash value
remains the same.

alternative = Mod@−in, nD
h@alternative, nD

8800, 357, 89, 267, 640<
955

Even if a hash function meets properties H1-H3, it is still possible to intercept a transmissionHa, hHaLL and replace it with another file Ha ', hHa 'LL . For this reason, one sometimes wants to
introduce a secret key, shared by sender and receiver. The hash function h will now be called a
message authentication code (MAC) and is a function of * µ to m , where  is the key
space, just as in conventional cryptosystems.

Example 13.3

Let m = 64 and  = 2 . With DESkHuL we denote a DES encryption of a block u of length under key k .
Assume that k is the key that Alice and Bob share.

Now, consider a binary file 8a1, a2, …, al< of length l that Alice is going to send to Bob. Alice first pads it
with sufficient zeros to make the length a multiple of 64. Let L be this new length. To compute the hash
value on 8a1, a2, …, aL< Alice follows the following algorithm:

Hash Codes & Authentication Techniques 289

Algorithm 13.1 Using DES as Message Authentication Code

input binary string 8a1, a2, …, aL< , padded to make 64 » L .

initialize h = 80, 0, …, 0<õúúúúúúúúúúúúúù ûúúúúúúúúúúú64

for i = 0 to HL ê64L - 1 do h = DESkHh ∆ 8a64 i+1, a64 i+2, …, a64 i+64<L
output hash value h

The receiver duplicates the above calculations to verify that the file has not been changed and was
indeed sent by Alice.

Of course, we could have used any other block cipher instead of DES in this example.

It is also possible to use a block cipher as a keyless hash function. To this end one also makes the
key a public parameter.

The implicit assumption when using a block cipher for authentication purposes is that for a fixed
key it behaves as a random permutation on the input set. Also, one hopes that the block cipher is
cryptographically secure. In the next section, authentication codes will be discussed that are not
based on any mathematical assumption.

There are many different standards for hash functions. The reader is referred to [MeOoV97] and
[Schn96].

13.3 Unconditionally Secure Authentication Codes

13.3.1 Notions and Bounds

No authentication scheme can give an absolute guarantee that an accepted message comes from a
particular user, say Alice. For instance, there is always a small probability that a (randomly or
otherwise) generated sequence could have been made by Alice, but in fact was not. It will then be
accepted by others as a genuine document from Alice.

It follows that it is necessary to define and compute the probability of a successful fraud.
However, in such computations there is an essential difference between assuming the
computational security of certain problems (as we do in public key cryptosystems), or not making
any further assumptions at all (unconditional security). This last situation will be the topic of this
section.

We shall assume that Alice and Bob trust each other and have agreed upon a secret key. This
assumption is not really necessary, but then the notion of a trusted third party (like an arbitrator)

290 FUNDAMENTALS OF CRYPTOLOGY

must be introduced.

Let us start with a simple example.

Example 13.4

Alice wants to send a single bit of information (a yes or a no) to Bob by means of a word of length 2. Alice
and Bob have 4 possible keys available. Alice and Bob make use of the following matrix:

Table 13.1

key \ sent 00 01 10 11
1 0 1 - -
2 1 - 0 -
3 - 0 - 1
4 - - 1 0

Authentication Code for two messages.

So, message 1 will be sent as word 11 under the third key.

The probability that somebody else can successfully impersonate Alice is 1/2, because only two of
the four words in 800, 01, 10, 11< are possible as transmitted word under the joint secret key of
Alice and Bob.

An opponent Eve who tries to replace a transmitted message by another one will know that only
two keys can possibly have been used, but she does not know which one. So, the probability of a
successful substitution is also 1/2. For instance, if Eve intercepts 01, she knows that either
message 1 was sent (under key 1) or message 0 was sent (under key 3). In the first case, she needs
to transmit 00 and in the second case it should be 11, therefore, she succeeds with probability 1/2.

The above scheme even gives secrecy, because every transmitted word can come from message 0
or from message 1 (both with probability 1/2).

The general definition of an authentication code (we deviate here from the standard notation in the
theory of authentication codes in order to avoid confusion with the standard notation in the theory
of error-correcting codes) is as follows:

Definition 13.1
An authentication code is a triple H,  , L and a mapping f : µ Ø  such that
for all m, m ' œ  and for all k œ 

(13.1) fkHmL = fkHm 'L ï m = m ' .

The set  is called the message set,  the key set, and  the codeword set.

An authentication code can be depicted by a table U with the rows indexed by the keys k in  ,
the columns indexed by the codewords c in  and entry Hk, cL in U given by m if an m œ 

Hash Codes & Authentication Techniques 291

exists such that fkHmL = c (such an m is unique by (13.1)) and by a hyphen if such an m does not
exist. We shall call this table the authentication matrix of the code.

In Example 13.4 above,  = 80, 1< ,  = 81, 2, 3, 4< and  = 800, 01, 10, 11< . The authentication
matrix of this code is given by Table 13.1.

Condition (13.1) implies that fk is an injective mapping for each possible key.

When Bob receives codeword c œ  from Alice, he will accept it as a signed version of message
m œ  , where m is uniquely determined by fkHmL = c . Here k is the key that Alice and Bob have
agreed upon. To make the system practical, fk should be easily invertible for each key. To this
end, fk (and ) will often have a much simpler structure.

Definition 13.2
An A-code is a triple H,  ,  L and a mapping g : µ Ø  .
Given key k œ  , message m œ  will be transmitted as Hm, tL , where t = gkHmL is
called the authenticator of m .

By taking fkHmL = Hm, gkHmLL and  = ä we see that an A-code is a special case of an
authentication code.

A good authentication code is designed in such a way that fraudulent words c̀ are spread evenly
over  , while the subset of words that the legitimate receiver expects, knowing the common key
k œ  , is only a fraction of this set.

Thus the aim of an authentication code is that not only Bob, but also an arbitrator, can check the
authenticity of a properly made c (in the case of an A-code by verifying that gkHmL = t , in the case
of a general authentication code by checking that c is in the image space of fk), but an
impersonator who does not know the key has only a small probability of getting a word c̀
accepted. An attack by an impersonator is called an impersonation attack.

The same should be true if the enemy wants to replace a genuine codeword c (made with the
proper key) by another one, say c̀ , that represents a different message. This kind of attack is called
a substitution attack. Note that in this case, some information on the key is available to the
opponent. We shall not discuss systems in which the same key can be safely used more than once
by the legitimate users.

In the following definitions we shall assume that keys will be chosen from  with a uniform
distribution and that messages will be chosen from  with a uniform distribution.

Let us assume that a general authentication code is being used by Alice and Bob. To maximize the
probability of a successful impersonation, the opponent can do no better than select and send a
codeword c œ  that will have the highest probability of being accepted by the legitimate
receiver. This is the case if for the maximum number of keys k œ  the codeword c will be in the
image space of fk .

292 FUNDAMENTALS OF CRYPTOLOGY

Another way of saying this is that one looks for the column in the authentication matrix that has
the maximum number of non-hyphen entries. The column index c of that column will be sent.

Definition 13.3
The probability PI is the maximum probability of a successful impersonation attack, i.e.

(13.2) PI = maxcœ
»8kœ »cœ fk HL<»ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ» »

In Example 13.4, each codeword is the image of a message under exactly two of the four keys
(each column counts two non-hyphens). So, PI = 2 ê4 = 1 ê 2.

In case of a substitution attack one has intercepted a codeword c œ  . This restricts the possible
keys that may have been used by sender and receiver to 8k œ  » c œ fkHL< . The best attack for
the opponent is to search among those codewords that are possible with these keys for the one that
occurs the most often.

A different way of saying this is that in the authentication matrix of the code one looks at the
column under the intercepted c and removes all rows from the matrix that have a hyphen in that
column (these rows are indexed by a key that can not have been used). Also delete the column
indexed by c . Among the remaining columns one looks for the one with the largest number of non-
hyphen entries. The column index c ' of that column will be substituted for c .

Definition 13.4
The probability PS is the maximum probability of a successful substitution attack, i.e.

(13.3) PS = maxc,c'œ,c'∫c »8kœ »cœ fk HL & c'œ fk HL<»ÅÅÅ»8kœ »cœ fkHL<»
In Example 13.4, each codeword is the image of a message under exactly two of the four keys. For
each of these two keys, the other possible message will be mapped to a distinct codeword. So,
PS = 1 ê 2.

The maximum of the two probabilities in (13.2) and (13.3) is often called the probability of
successful deception. In formula

(13.4) PD = max 8PI , PS< .

Since an authentication function fk is injective for each k œ  , it follows that exactly » »
codewords must be authentic for any given key. In other words, it follows that each row of the
authentication matrix U of an authentication code has exactly » » non-hyphen entries. Since U
has » » rows and » » columns it follows that the average number of non-hyphen entries over
the columns of U is » » µ » » ê » » . So, the maximum fraction of non-hyphen entries per
column is at least » » ê » » . This proves the following theorem.

Hash Codes & Authentication Techniques 293

Theorem 13.2
The maximum probability PI of a successful impersonation in an authentication scheme
for H,  , L satisfies

PI ¥ »»ÅÅÅÅÅÅÅÅÅÅ»» .

Similarly, in the case of the substitution attack the restriction of the authentication matrix U to the
rows where an intercepted codeword c has non-hyphen entries consists of » 8k œ  » c œ fkHL< »
rows, each with » » -1 non-hyphen entries. After deleting the column indexed by c , this
restriction has » » -1 columns. So, the average value of the relative frequency of non-hyphen
entries in this restriction of U is H » » -1L ê H »  » -1L . This proves the following bound.

Theorem 13.3
The maximum probability PS of a successful substitution in an authentication scheme forH,  , L satisfies

PS ¥ »»-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»»-1 .

If the messages and keys are not uniformly distributed over the message space and key space, it is
still possible to derive lowerbounds on PI , PS , and PD . In these lowerbounds, functions appear
that we have discussed in Chapter 5. For the proofs of the next two theorems, we refer the
interested reader to [Joha94b].

Theorem 13.4
Let M , K , and C denote random variables defined on , , and , related by a function
f : µ Ø  , satisfying (13.1). Further, let HHX » Y L and IHX ; Y L denote the
conditional entropy function resp. the mutual information function. Then

(13.5) PI ¥ 2-IHC;KL .
(13.6) PS ¥ 2-HHK»CL .
(13.7) PD ¥ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!» » .

The bound in (13.7) is called the square root bound. Authentication codes meeting this bound are
called perfect.

Theorem 13.5
A necessary condition for an authentication code to be perfect is that… … §

è!!!!!!!!!!» » + 1.

294 FUNDAMENTALS OF CRYPTOLOGY

For further reading on authentication codes, we refer the reader to [GilMW74], [MeOoV97],
[Schn96], and [Simm92].

13.3.2 The Projective Plane Construction

In [GilMW74] one can find a nice description of a perfect authentication scheme. We first need to
describe what a projective plane is, before we can explain this construction

É A Finite Projective Plane

A projective plane is a kind of geometric object that differs somewhat from planes in regular
Euclidean geometry. It is defined in a formal way by a set of axioms, that among others does not
allow for parallel lines! After the definition we shall give a construction of these projective planes
that will explain the name "projective".

We start with a finite set , whose elements are called points. Further,  is a collection of subsets
 Õ  , called lines. We shall say that a point P "lies" on a line , if P œ  . Also, two lines may
"intersect" in a point, etc., so, we adopt all the regular terminology from geometry. To avoid
trivialities, we shall assume that all lines contain at least two points (H œ LïH »  » ¥ 2L).

Definition 13.5
The pair H, L is called a finite projective plane if the following axioms hold:

PP-1: There are at least four points, no three of which lie on the same line.
PP-2: For every pair of points there is a unique line going through them.
PP-3: Every pair of lines intersect in a unique point.

Property PP-1 is there to avoid the following object in our considerations. All lines have
cardinality two and go through the same point (depicted below) except for one line which goes
through the remaining points

Hash Codes & Authentication Techniques 295

Theorem 13.6
Let H, L be a projective plane. Then there exists a constant n , called the order of the
plane, such that:

PP-4 Every line contains exactly n + 1 points.
PP-5 Every point lies on exactly n + 1 lines.
PP-6 » » = » » = n2 + n + 1.

Proof:

Proof of PP-4: Every line contains exactly n + 1 points.

Our first step is to show the claim that each point in  lies on at least three different lines. Let us
start with four points P, Q, R , and S no three of which are colinear (see PP-1). For each of these
points, any of the other three defines a unique line through them by PP-2. For a point T not on any
of the lines going through two of the points P, Q, R , and S , the claim is also trivial (each of these
four points defines a unique line through T). We leave it as an exercise to the reader to prove the
claim for a point that is on one of the six lines going through two of the points P, Q, R , and S .

Now, consider an arbitrary point P . We know that at least three lines go through it. Let Q be a
point on one of these lines, say on line . We shall show that all the other lines through P have the
same cardinality. To this end, let A0 = P, A1, A2, …, Am be the points on line  through P (where
 ∫ ) and let B0 = P, B1, B2, …, Bn be the points on line  through P (where  ∫  ,  ∫ ). We
need to show that m = n .

P

Bn

Am

Q

Ai

Bp HiL
A1

B1

A2

B2

n

m

1- 1

For each 0 § i § m there is a unique line through Q and Ai by PP-2. By PP-3 this line will
intersect  in a point, say BpHiL . This is a one-to-one mapping, because a line through Q and BpHiL
can not intersect  in two points (by PP-3). We conclude that m ¥ n . By interchanging the role of
 and  we may conclude that m = n .

So, all the lines through P , except possibly for the line that also meets Q , have the same
cardinality n + 1. By putting Q on one of the other lines through P , say , and repeating the above
argument, we may conclude that all lines through P have cardinality n + 1.

296 FUNDAMENTALS OF CRYPTOLOGY

Let U be another point. For exactly the same reason as above, all the lines through U have the
same cardinality, say u + 1. However one of these lines also goes through P by PP-2. It follows
that u = n .

Proof of PP-5: Every point lies on exactly n + 1 lines.

Consider a point P and a line  not through P . Let the points on  be numbered
M1, M2, …, Mn+1 . Each point Mi on  together with P defines a unique line passing through them
(property PP-2). These lines are all different by the uniqueness property in PP-2. On the other
hand, every line through P must intersect  in a unique point. We conclude that n + 1 lines pass
through P .

Proof of PP-6: » » = » » = n2 + n + 1.

Consider a point P . There are n + 1 lines through P , each containing n other points. This gives
rise to 1 + Hn + 1L n points. There are no other points in  by PP-2.

Similarly, consider a line . There are n + 1 points on it, each being on n other lines. This gives
rise to 1 + Hn + 1L n lines. There are no other lines in  by PP-3. (Notice the symmetry between
points and lines in Definition 13.5.)

Ñ

Example 13.5

Take n = 2. Then » » = » » = 7. Each line contains three points and each point lies on three lines. This
projective plane is depicted in the following figure.

1
2

3 4

5 6

7

P1 P3

P6

P5P7

P2

P4

Ê Ê

Ê

ÊÊ

Ê

Ê

The 7 lines in this figure are the three outer edges, the three bisectors and the circle in the middle.
So,  consists of the following seven lines:

1 = 8P1, P2, P3< , 2 = 8P1, P4, P5< ,
3 = 8P1, P6, P7< , 4 = 8P2, P4, P6< ,
5 = 8P2, P5, P7< , 6 = 8P3, P4, P7< ,
7 = 8P3, P5, P6< .

The projective plane of order 2 is unique and is called the Fano plane.

Hash Codes & Authentication Techniques 297

A projective plane is often described by means of its incidence matrix. This the matrix A of which
the rows are indexed by the lines  œ  , the columns by the points P œ  and where

AP, = 9 1
0

if P on ,
otherwise.

The incidence matrix of the Fano plane (with the labeling given in the figure above) is

A =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

;

The properties in Definition 13.5 and Theorem 13.6 can be directly translated into the following
matrix requirements.

PP-2 Every two different columns of A have inner product 1.
PP-3 Every two different rows of A have inner product 1.
PP-4 Every row of A has n + 1 ones.
PP-5 Every column of A has n + 1 ones.
PP-6 Matrix A has n2 + n + 1 rows and columns.

These properties can be summarized in the formula

(13.8) A.AT = AT .A = n.I + J .

where J is the all-one matrix of size Hn2 + n + 1L µ Hn2 + n + 1L and I the identity matrix (of the
same size).

For the example above we can check this with the Mathematica functions Transpose and
MatrixForm.

MatrixForm@A.Transpose@ADD
MatrixForm@Transpose@AD.AD

i
k
jjjjjjjjjjjjjjjjjjjjjjjjj
3 1 1 1 1 1 1
1 3 1 1 1 1 1
1 1 3 1 1 1 1
1 1 1 3 1 1 1
1 1 1 1 3 1 1
1 1 1 1 1 3 1
1 1 1 1 1 1 3

y
{
zzzzzzzzzzzzzzzzzzzzzzzzz

298 FUNDAMENTALS OF CRYPTOLOGY

i
k
jjjjjjjjjjjjjjjjjjjjjjjjj
3 1 1 1 1 1 1
1 3 1 1 1 1 1
1 1 3 1 1 1 1
1 1 1 3 1 1 1
1 1 1 1 3 1 1
1 1 1 1 1 3 1
1 1 1 1 1 1 3

y
{
zzzzzzzzzzzzzzzzzzzzzzzzz

É A General Construction of a Projective Plane

There is a general construction of projective planes of order q , where q is a prime power. There
are other constructions of projective planes, but they all have an order that is a prime power. It has
been shown that no projective plane exists of order 6 and 10.

Let V H3, qL denote a 3-dimensional vectorspace over GF HqL , the finite field of q elements. Its
elements are vectors a = Ha1, a2, a3L with ai in GFHqL . The cardinality of V H3, qL is q3 . Let
0 = H0, 0, 0L .

Each line through 0 can be described by a non-zero vector a :

(13.9) 8la » l œ GFHqL< .

Of course, non-zero scalar multiples of a will give rise to the same line in V H3, qL . So, there areHq3 - 1L ê Hq - 1L = q2 + q + 1 different lines through 0.

Similarly, a plane through 0 in V H3, qL can be described by a non-zero vector u :

(13.10) 8Ha1, a2, a3L œ V H3, qL » a1 u1 + a2 u2 + a3 u3 = 0< .

Again, non-zero scalar multiples of u will give rise to the same plane in V H3, qL , therefore, there
are Hq3 - 1L ê Hq - 1L = q2 + q + 1 different planes through 0. A different way to describe a plane
through 0 is 8la + mb » l œ GFHqL, m œ GFHqL< .

Each non-zero point on a plane through 0 defines a line through 0. As before, non-zero scalar
multiples of this point define the same line. We conclude that there are Hq2 - 1L ê Hq - 1L = q + 1
lines (through 0) on a plane (through 0).

Each line 8la » l œ GFHqL< can be embedded in a plane 8la + mb » l œ GFHqL, m œ GFHqL< by
selecting any of the q3 - q points not on the line. Of course, not all these planes are different. A
particular plane containing 8la » l œ GFHqL< can be obtained by any of the q2 - q points in the
plane not on the line. It follows that each line Hthrough 0L lies on exactly Hq3 - qL ê Hq2 - qL = q + 1
planes Hthrough 0L .

Theorem 13.7
Let  be the set of lines through 0 in V H3, qL , where q is prime power, and let  be the
set of planes through 0 in V H3, qL . Then H, L is a projective plane of order q .

Hash Codes & Authentication Techniques 299

Remark 1:

It is easy to get confused here. The projective points correspond to lines in V H3, qL (through 0) and
the projective lines correspond to planes in V H3, qL (through 0).

Remark 2:

Note that we have already verified the properties PP-4, PP5, and PP-6 mentioned in Theorem 13.6.

Proof:

Proof of PP-1:

The four lines through 0 and each of the points H1, 0, 0L , resp. H0, 1, 0L , H0, 0, 1L , H1, 1, 1L define
four projective points in , no three of which lie on a projective line. The reason is that no three of
these four points in V H3, qL lie on the same plane through 0.

Proof of PP-2:

Let P and Q be two different projective points, and let them be defined by the lines8la » l œ GFHqL< and 8lb » l œ GFHqL< in V H3, qL . There is exactly one plane containing these two
lines, namely 8la + mb » l œ GFHqL, m œ GFHqL< . This plane defines the unique projective line
through P and Q .

Proof of PP-3:

Let  and  be two different projective lines. They correspond to two planes in V H3, qL through 0.
The line of intersection of these two planes is a line through 0, which defines the unique
projective point on both  and .

Ñ

There are different techniques of generating a set of q2 + q + 1 non-zero points in V H3, qL that will
give rise to different lines and planes through 0 in V H3, qL (see (13.9) and (13.10)), i.e. to
q2 + q + 1 different projective points and projective planes.

A nice way, as we shall see in the following example, is to take a primitive element in GFHq3L , say
w, represent it as vector in V H3, qL , and take as points the elements 1, w, …, wq2+q . Indeed, let
a = wHq3-1LêHq-1L = wq2+q+1 . Since w has order q3 - 1, it follows that a has order q - 1. It also
follows that 80, 1, a, …, aq-2< = GFHqL (see Theorem B.29 and the Remark at the end of
Subsection B.4.6). This means that for each 1 § j § q - 2 the points wi and wi+ jHq3-1LêHq-1L in
V H3, qL give rise to the same projective point and thus we only have to consider 1, w, …, wq2+q .

Example 13.6

Take q = 3. To find a primitive polynomial of degree 3 over GFH3L , we first have to load the Mathematica
package Algebra`FiniteFields`. After that we can apply the function FieldIrreducible.

<< Algebra`FiniteFields`

300 FUNDAMENTALS OF CRYPTOLOGY

m = 3; p = 3;
FieldIrreducible@GF@p, mD, xD

1 + 2 x2 + x3

So, GFH33L can be described by the set of ternary polynomials modulo f HxL = x3 + 2 x2 + 1. Let
w œ GFH33L be a zero of f HxL . Since f HxL is a primitive polynomial, it follows that w has order 26.
This can be checked with

f27 = GF@3, 81, 0, 2, 1<D;
om = f27@80, 1, 0<D;
om2

om13

80, 0, 1<382, 0, 0<3
The element a = w Hq3-1LêHq-1L is w13 = 2 in this case. Indeed, 80, 1, a < = GFH3L .

So, the 32 + 3 + 1 = 13 projective points can be found by computing w i , 0 § i < 13. In this
example, we take the equivalent set 1 § i § 13 to keep the output uniform in appearance.

Do@Print@omiD, 8i, 1, 13<D80, 1, 0<380, 0, 1<382, 0, 1<382, 2, 1<382, 2, 0<380, 2, 2<381, 0, 1<382, 1, 1<382, 2, 2<381, 2, 1<382, 1, 0<380, 2, 1<3

Hash Codes & Authentication Techniques 301

82, 0, 0<3
To check if a projective point w i = Ha1, a2, a3L lies on the projective line defined by
w j = Hu1, u2, u3L (see (13.10)), we need to check if a1 u1 + a2 u2 + a3 u3 = 0. In Mathematica this
can be done as follows (the @@1DD removes the subscript in the presented output).

i = 5; j = 12;
a = omi@@1DD
b = omj@@1DD
Mod@a.b, 3D == 0

82, 2, 0<
80, 2, 1<
False

So, we are now ready to generate the projective plane of order 3. We present it by means of its
incidence matrix.

A = Table@If@Mod@Homi@@1DDL.Homj@@1DDL, 3D == 0, 1, 0D,
8i, 1, 13<, 8j, 1, 13<D;

MatrixForm@
AD

i

k

jj

0 1 1 0 0 0 1 0 0 0 0 0 1
1 0 0 0 1 0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 1 0 1 1 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 1 1 0 0
0 0 0 1 0 0 0 0 0 1 0 1 1
1 0 1 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 1 1 0
0 0 1 0 1 1 0 0 0 1 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0 1
1 1 0 0 0 1 0 0 0 0 0 1 0

y

{

zz
We can check the properties PP-2, PP3 and PP4, PP5 by computing (see (13.8))

MatrixForm@A.Transpose@ADD

302 FUNDAMENTALS OF CRYPTOLOGY

i

k

jj

4 1 1 1 1 1 1 1 1 1 1 1 1
1 4 1 1 1 1 1 1 1 1 1 1 1
1 1 4 1 1 1 1 1 1 1 1 1 1
1 1 1 4 1 1 1 1 1 1 1 1 1
1 1 1 1 4 1 1 1 1 1 1 1 1
1 1 1 1 1 4 1 1 1 1 1 1 1
1 1 1 1 1 1 4 1 1 1 1 1 1
1 1 1 1 1 1 1 4 1 1 1 1 1
1 1 1 1 1 1 1 1 4 1 1 1 1
1 1 1 1 1 1 1 1 1 4 1 1 1
1 1 1 1 1 1 1 1 1 1 4 1 1
1 1 1 1 1 1 1 1 1 1 1 4 1
1 1 1 1 1 1 1 1 1 1 1 1 4

y

{

zz
É The Projective Plane Authentication Code

Definition 13.6
Let H, L denote a projective plane. Let  be one of the projective lines.
The corresponding authentication code H,  , L is defined by  =  ,
 =  \ 8P » P on < ,  =  \ 8< and the mapping

fPHQL is the unique line  through P and Q , P œ  , Q œ  .

In words, the message set  consists of the points on , the key space  consists of all points not
on , the code set  consists of all lines in , except for  itself.

Finding the message back from the received codeword  is quite easy. Just intersect  = fPHQL with
. Their intersection point is the message.

That the above scheme defines an authentication code is easy to check. Its parameters are given in
the following theorem.

Theorem 13.8
The A-code defined by a projective plane of order n has parameters » » = n + 1, » » = n2 , »  » = n2 + n .

The probabilities of success for the impersonation and substitution attack are given by

PI = PS = 1ÅÅÅÅn .

The reader may want to check the above theorem on the Fano plane below. The four points not on
 form the key space , the three points on  the message space , and the other six lines the
codeword set .

Hash Codes & Authentication Techniques 303



Proof of Theorem 13.8:

The parameters in this theorem follow directly from Theorem 13.6.

To compute PI , we observe that an opponent can do no better than to select as a codeword a line 
(∫) that contains as many points outside  (these are the possible keys) as possible. However,
this number of points outside  is independent of the choice of . It is n by PP-4. So, by (13.2),

PI = nÅÅÅÅÅÅÅÅÅ» » = nÅÅÅÅÅÅÅn2 = 1ÅÅÅÅn .

Similarly, if the opponent has observed codeword  (not equal to ), there are still n keys (points
on  but not on ) possible. Let P be the intersection of  with . To replace it with another
message (point Q on ) the opponent can do no better than select a line  through such a point Q
with as many points on  as possible. But by PP-2 this number is 1, independent of the choice of 
and , namely the unique point of intersection of  and . So, by (13.3),

PS = 1ÅÅÅÅn .

Ñ

The authentication codes coming from projective planes, are perfect because PI , PS , and PD are
all 1 ê n , which is equal to 1 ëè!!!!!!!!!!» » .

Moreover, » » = n + 1 =
è!!!!!!!!!!» » + 1, so, Theorem 13.5, tells us that the message set is of

maximal size given this key set.

A construction of authentication codes by means of shift register sequences can be found in
[Joha94a]. Its implementation is simpler than the projective plane construction above. For large
message sets, e.g. data files, the codes discussed in Section 13.3.4 may be more practical.

304 FUNDAMENTALS OF CRYPTOLOGY

13.3.3 A-Codes From Orthogonal Arrays

Definition 13.7
An orthogonal array OAHn, k, lL is a k µ Hl.n2L matrix of n symbols, such that in any
two rows every possible pair of symbols occurs exactly l times.
The number l is called the index of the orthogonal array and k its depth.

Note that the above implies that each symbol occurs exactly l.n times in each row.

Example 13.7 (Part 1)

An example of an OAH4, 5, 1L is given by

U =

i

k

jjjjjjjjjjjjjjjjj

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0
0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2
0 1 2 3 3 2 1 0 1 0 3 2 2 3 0 1

y

{

zzzzzzzzzzzzzzzzz

;

The following theorem shows how orthogonal arrays define A-codes in a natural way.

Theorem 13.9
Let U be an orthogonal array OAHn, k, lL . Let the rows of U be indexed by the set 
and the columns by the set . Further, put  = 81, 2, …, n< . Define the mapping
g : µ Ø  by gkHmL = Um,k . Then g defines an A-code with parameters: » » = k ,» » = l.n2 , » » = n .
Further

PI = PS = 1 ên .

Proof: The parameters of this A-code follow from those of U .

The chance that an impersonation attack succeeds is 1 ên , because each symbol occurs equally
often in a row of U .

The probability of a successful substitution attack is also 1 ê n . The reason is that each intercepted
authenticator occurs l with each possible symbol, no matter which message was intercepted and
which message one wants it to be replaced with.

Ñ

Example 13.7 (Part 2)

For instance, in the matrix U defined above, message 4 under key 13 will be authenticated by

Hash Codes & Authentication Techniques 305

m = 4; k = 13;
U@@4, 13DD

1

When, message 4 is intercepted with authenticator 1, one knows that the key is among82, 8, 11, 13< . Mathematica can find these positions with the functions Flatten and Position.

l = Flatten@Position@U@@4DD, 1DD

82, 8, 11, 13<
Each other row has all four symbols on these four locations. This can be checked with the
functions MatrixForm and Transpose. The [[l]] below gives the restriction of the matrix to
the rows indexed by the elements of the list l.

SubU = Transpose@UD @@ l DD ;
MatrixForm@Transpose@SubUDD

i
k
jjjjjjjjjjjjjjjj
0 1 2 3
1 3 2 0
1 2 0 3
1 1 1 1
1 0 3 2

y
{
zzzzzzzzzzzzzzzz

There is a great deal of literature on orthogonal arrays. See [Hall67] or [BeJL86] for constructions,
bounds and existence results. For instance, it is known that an OAHq, q + 1, 1L exist for all prime
powers q , because orthogonal arrays with these parameters exist if and only if projective planes of
order q exist (see Theorem. 13.7 for a construction of a projective plane of order q) .

Below we give a sketch of the proof of this result.

Let H, L be a projective plane of order q . Pick any of the lines  in . Number the points on  by
P1, P2, …, Pq+1 and the other points by Q1, Q2, …, Qq2 .

Let i , 1 § i § q + 1, be the collection of all lines through Pi except for  itself. By PP-5, each i

has cardinality q . Number the lines in each i from 1 to q .

Define Ui, j , 1 § i § q + 1, 1 § j § q2 , as k , where k , 1 § k § q , is the index of the unique line in
i that meets Q j (which is the unique line in  through Pi and Q j). Then U is an OAHq, q + 1, 1L .

Example 13.8

Consider the incidence matrix A of the projective plane of order 3 in Example 13.6.

306 FUNDAMENTALS OF CRYPTOLOGY

A =

i

k

jj

0 1 1 0 0 0 1 0 0 0 0 0 1
1 0 0 0 1 0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 1 0 1 1 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 1 1 0 0
0 0 0 1 0 0 0 0 0 1 0 1 1
1 0 1 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 1 1 0
0 0 1 0 1 1 0 0 0 1 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0 1
1 1 0 0 0 1 0 0 0 0 0 1 0

y

{

zz

;

We define a function RowSwap to perform row exchanges in a matrix.

RowSwap@B_, i_, j_D :=

Module@8U, V<, U = B; V = U@@iDD; U@@iDD = U@@jDD; U@@jDD = V; UD

Next we perform some column permutations on A to get a line  as top row with all its points on
the left. We use the Transpose function.

B = Transpose@AD;
B = RowSwap@B, 1, 7D; B = RowSwap@B, 4, 13D;
B = Transpose@BD;
MatrixForm@BD

i

k

jj

1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0 1 1 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 1
0 1 0 0 0 0 0 1 0 1 1 0 0
0 0 0 1 0 0 0 0 0 1 0 1 1
0 0 1 0 0 0 1 1 0 0 0 0 1
1 0 0 0 1 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 1 1 0
0 0 1 0 1 1 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 1 1 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 1 0

y

{

zz
Next we perform a number of row exchanges to get the subsets i nicely aligned H1 will appear
in rows 2, 3, 4, 2 in rows 5, 6, 7, etc).

Hash Codes & Authentication Techniques 307

BB = B;
BB = RowSwap@BB, 2, 8D; BB = RowSwap@BB, 6, 11D;
BB = RowSwap@BB, 7, 13D;
BB = RowSwap@BB, 8, 13D;
MatrixForm@BBD

i

k

jj

1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 0 0 1 0
1 0 0 0 0 0 1 0 1 1 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 1
0 1 0 0 0 0 0 1 0 1 1 0 0
0 1 0 0 1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0 0 0 1 0
0 0 1 0 0 0 1 1 0 0 0 0 1
0 0 1 0 0 0 0 0 1 0 1 1 0
0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 1 1
0 0 0 1 0 1 0 1 1 0 0 0 0
0 0 0 1 1 0 1 0 0 0 1 0 0

y

{

zz
The last 9 columns define the orthogonal array OAH3, 4, 1L . For instance, column 5 minus its first
entry looks like H1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1L . This vector is the concatenation of four three-
tuples, each containing one 1. It will be mapped to four entries in 81, 2, 3< , depending on whether
the 1 is on the first coordinate, the second, or the third, therefore, column 5 will be mapped toH1, 2, 3, 3L .

In this way the last 9 columns are mapped with the Mathematica functions Table, If, and Do to
the 4 µ 9 matrix:

U = Table@0, 8i, 1, 4<, 8j, 1, 9<D;
Do@b = 8BB@@2 + Hi − 1L∗3, jDD,

BB@@3 + Hi − 1L∗3, jDD, BB@@4 + Hi − 1L∗3, jDD<;
U@@i, j − 4DD = If@b == 81, 0, 0<,

1, If@b == 80, 1, 0<, 2, 3DD,
8i, 1, 4<, 8j, 5, 13<D;

MatrixForm@UD

i
kjjjjjjjjjjj
1 3 2 1 2 2 3 1 3
2 3 3 1 2 1 1 3 2
3 3 1 1 2 3 2 2 1
3 2 3 2 2 1 3 1 1

y
{zzzzzzzzzzz

308 FUNDAMENTALS OF CRYPTOLOGY

This is indeed an OAH3, 4, 1L and hence it defines an A-code with » » = 4, » » = 9, » » = 3
and PI = PS = 1 ê3.

Note that the last 9 columns in U (or A) can be further permuted to get

i

k

jjjjjjjjjjjj

1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
1 3 2 3 2 1 2 1 3
2 3 1 1 2 3 3 1 2

y

{

zzzzzzzzzzzz
;

13.3.4 A-Codes From Error-Correcting Codes

In [JohKS93] it is shown how authentication codes can be constructed from error-correcting codes
(EC-codes) and vice versa. In this subsection we shall show how to convert an EC-code to an A-
code. Our description is slightly different from the original one.

Let C be any Hn, » C », dH) EC-code over GFHqL , i.e. C is a subset of V Hn, qL , the n-dimensional
vectorspace over GFHqL , with minimum Hamming distance dH . The latter means that all elements
in C , which are called codewords, differ in at least dH coordinates from each other. The
dimension n of V Hn, qL is also called the length of C .

Let C have the additional property that

(13.11) c œ C ï c + l1 œ C , for all l œ GFHqL ,

where 1 stands for the all-one vector.

For instance, any linear code containing the all-one vector satisfies (13.11). Note that (13.11)
implies that q divides the cardinality of C .

The relation ~ defined on C by

(13.12) c ~ c ' if and only if c - c ' = l1 for some l œ GFHqL ,

defines an equivalence relation on C . Let M be a subcode of C , containing one representative
from each equivalence class. So, M has cardinality » C » ê q and
C = 8m + l .1 » m œ M , l œ GFHqL< .

Let mi , 0 § i < » C » êq , be any enumeration of the codewords in M . As message set  for the
authentication code that we are constructing, we take  = 80, 1, …, H » C » êqL - 1< . This means
that we have a 1-1 correspondence between the subcode M and the index set . It is often
convenient not to distinguish between these two sets. So, from now on we shall speak of message
mi instead of message i .

Example 13.9 (Part 1)

Consider the binary linear code C with generator matrix

Hash Codes & Authentication Techniques 309

G =

i

k

jjjjjjjjjjjj

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

y

{

zzzzzzzzzzzz
;

This means that C consists of the 16 vectors in the (binary) linear span of the rows. It is easy to
check that different codewords in C differ in at least 3 coordinates. This makes C a H7, 16, 3L
code in V H7, 2L . Some readers may recognize C as a Hamming code.

That the all-one word is in C can easily be checked.

inf = 81, 1, 1, 1<;
Mod@inf.G, 2D

81, 1, 1, 1, 1, 1, 1<
It follows that C satisfies (13.11).

As subcode M of C we take all codewords in C with first coordinate equal to 0. So, M consists of
the linear span of the lower three rows of G. The message set  = 80, 1, …, 7< will be identified
with M .

The key set  of the authentication code that we are constructing, will consist of the pairs Hi, lL
with 1 § i § n and l œ GFHqL . So,  = 81, 2, …, n< µ GFHqL and » » = n.q .

The authenticator gk HmL of message m œ M under key k = Hi, lL is simply given by

(13.13) gk HmL = mi + l .

So, the authenticator set  is just GFHqL .

Theorem 13.10
Let C be an Hn, » C », dH L code satisfying (13.11). Let  be a subcode of C containing
one element of each equivalence class under relation (13.12).
Let  = 81, 2, …, n< µ GFHqL and  = GFHqL . Further, gk HmL : µ ö is defined
by (13.13).
Then H,  ,  L is an A-code with parameters

(13.14) » » = » C » êq , » » = n.q , » » = q .

310 FUNDAMENTALS OF CRYPTOLOGY

(13.15) PI = 1 êq , PS § 1 - dH ên .

Remark:

To make PS acceptably low, one needs EC-codes with dH close to n . For q-ary codes this is no
problem, as we shall see in Example 13.10. Of course, q also needs to be large.

Proof of Theorem 13.10:

The parameters in (13.14) follow immediately from the construction.

To compute PI , we note that an opponent who wants to impersonate the sender needs to find the
right authenticator for his message m ' . However, for each coordinate 1 § i § n the set8mi + l » l œ GFHqL< is equal to GFHqL . In other words, each symbol occurs equally often as
authenticator of m ' . So, the probability that the opponent will choose the correct authenticator is
1 êq , independent of the choice of the authenticator and independent of the message m ' that the
opponent tries to transmit. This proves that PI = 1 êq .

An opponent who wants to replace an authenticated message Hm, tL , (where t = gk HmL) by another
authenticated message, knows that the key in use is from a set of n possible keys Hi, lL . To be
more precise, for each coordinate 1 § i § n there is exactly one value of l such that mi + l = t .

The optimal strategy for the opponent who wants to substitute another authenticated message forHm, tL is to find a message m ' , m ' ∫ m , such that in gk Hm 'L = t ' for as many of those n keys as
possible. This symbol t ' is the authenticator for m ' that will be accepted most likely.

It remains to show that t ' will be accepted in at most n - dH cases, which implies that the
probability of a successful substitution is at most Hn - dHL ên = 1 - dH ên . This assertion follows
from » 8Hi, lL œ 81, 2, …n< µ GFHqL » HmLi + l = t & Hm 'Li + l = t ' < »

= » 81 § i § n » Hm - m 'Li = t - t ' < »

 = n - dH Hm - m ', Ht - t ' L 1L

 § n - dH ,

because m - m ' and Ht - t ' L 1 are different words in the code C (m and m ' are in different
equivalence classes).

Ñ

Example 13.9 (Part 2)

To illustrate the second part of the proof above, we continue with the code of Example 13.9. If
Alice wants to send message 7, she finds m with the Mathematica function IntegerDigits
from:

Hash Codes & Authentication Techniques 311

mes = 7;
inf = IntegerDigits@mes, 2, 4D
m = Mod@inf.G, 2D

80, 1, 1, 1<
80, 1, 1, 1, 0, 0, 1<

(Remember that all messages had their first coordinate equal to 0.)

Suppose, that Alice and Bob have agreed upon key H3, 1L, . Then Alice will append the
authenticator t = HmL3 + 1 ª 0 Hmod 2L to her message, therefore, Alice will send

i = 3; lam = 1;
8mes, Mod@m@@iDD + lam, 2D<

87, 0<
Opponent Eve, observing this codeword, can conclude that the key is in the set8Hi, lL » 1 § i § 7, mi + l ª t Hmod 2L< = 8H1, 0L, H2, 1L, H3, 1L, H4, 1L, H5, 0L, H6, 0L, H7, 1L< . To verify
this, we use the Mathematica functions Table and Mod.

t = 0;
T = Table@8i, Mod@t − m@@iDD, 2D<, 8i, 1, 7<D

881, 0<, 82, 1<, 83, 1<, 84, 1<, 85, 0<, 86, 0<, 87, 1<<
Suppose now that Alice wants to send message 5. The corresponding codeword m' is given by

mes' = 5;
inf' = IntegerDigits@mes', 2, 4D;
m' = Mod@inf'.G, 2D

80, 1, 0, 1, 0, 1, 0<
If Eve chooses t ' = 0 as authenticator she has a probability of 4 ê7 of getting her message
accepted, because exactly four of the possible keys would lead to this authenticator. With
authenticator t ' = 1 this probability is 3 ê7. (We use the Mathematica functions Length and
Intersection to test this.)

312 FUNDAMENTALS OF CRYPTOLOGY

t' = 0;
T' = Table@8i, Mod@t' − m'@@iDD, 2D<, 8i, 1, 7<D
Length@Intersection@T, T'DD

881, 0<, 82, 1<, 83, 0<, 84, 1<, 85, 0<, 86, 1<, 87, 0<<
4

Example 13.10

The q-ary Reed-Solomon code of dimension k (see [MacW77]) has length n = q - 1 and minimum distance
dH = n - k . By multiplying each coordinate with a suitable constant, one may assume that 1 œ C. Theorem
13.10 gives an A-code with parameters:» » = qk-1, » » = Hq - 1L q, » » = q.

PI = 1 êq , PS § k ê Hq - 1L .

The method explained in this section is certainly not the only way to make A-codes from EC-
codes. It does have the property that each impersonation attack has the same probability of success
(namely 1 ê q).

Since every message can have each symbol in  = GFHqL as authenticator, it follows that the
codeword set  has cardinality » » .q . This implies that Theorem 13.2 holds with equality.

In [JohKS93] the authors also show how to convert an A-code into an error-correcting code.

Hash Codes & Authentication Techniques 313

13.4 Problems

Problem 13.1
Prove that properties PP-1,PP2,PP3 in Definition 13.5 imply that a projective plane also contain four lines,
no three of which go through the same point.

Problem 13.2
Prove that the Fano plane is unique (apart from a relabelling of the points and lines) .

Problem 13.3
Compare the Projective Plane Authentication Code construction (see Definition 13.6) with the
authentication code with  =  =  = q defined by the one-time pad, i.e. möc with c ª m + k Hmod qL .
Also, answer this question when  is a random subset of q of size è!!!q .

Problem 13.4
Check that the rows of the incidence matrix in Example 13.6 can be permuted in such a way that the matrix
becomes a circulant (each row is cyclic shift to the right of the previous row).

Problem 13.5 M

Use the same technique as in Example 13.6, to determine the top row of an incidence matrix of a projective
plane of order 5.
Cycle this row around and check that it does define a projective plane of order 5.

Problem 13.6 M

Convert the orthogonal array OAH4, 5, 1L in Example 13.7 into a projective plane of order 4.

Problem 13.7
Show that condition (13.11) in Theorem 13.10 can be replaced by the requirement that C contains at least
one codeword of weight n .

Problem 13.8 M

Repeat Example 13.9 (both parts) for the ternary H11, 36, 5L code generated by

G =

i

k

jjjjjjjjjjjjjjjjjjjjjjj

2 0 1 2 1 1 0 0 0 0 0
0 2 0 1 2 1 1 0 0 0 0
0 0 2 0 1 2 1 1 0 0 0
0 0 0 2 0 1 2 1 1 0 0
0 0 0 0 2 0 1 2 1 1 0
0 0 0 0 0 2 0 1 2 1 1

y

{

zzzzzzzzzzzzzzzzzzzzzzz

;

314 FUNDAMENTALS OF CRYPTOLOGY

14 Zero Knowledge Protocols
Cryptographic protocols are exchanges of data between two or more parties following a precise
order and format with the goal of achieving a particular security. Of course, the above definition is
not very precise, but we have already seen some examples of cryptographic protocols. One is the
identity verification protocol in Subsection 4.1.2, another is the Diffie-Hellman key exchange
protocol in Subsection 8.1.2 and a few others are mentioned in Section 8.2.

A zero-knowledge proof is a technique to convince somebody else that one has certain knowledge,
without having to reveal even a single bit of information (or a fraction thereof) about that
knowledge. As a consequence, the verifier nor any passive eavesdropper gains any information
from taking part in any number of executions of the protocol.

One may think of using a zero-knowledge protocol in the situation that one wants to use an ATM
to withdraw money from a bank account. Instead of having to enter a PIN-code it should be
enough to convince the teller that one knows this PIN-code. One wants to do this in such a way
that no information about the PIN-code is released. In the next section, we shall give an example
of how this can be done. In Section 14.2, another identity verification will be presented.

14.1 The Fiat-Shamir Protocol
As in Subsection 4.1.2, we are again in the situation that a smart card wants to convince a smart
card reader that it is genuine. A trusted party that has to issue these cards selects a large composite
number n , for instance n is the product of two large primes p and q , just as in the RSA system.
The number n is a system parameter known to all parties.

The security of the Fiat-Shamir protocol [FiaS87] will be based on the assumption that taking
square roots modulo a large composite number n is, in general, intractable. This is the same
assumption that was made in the Rabin variant of the RSA system (Section 9.5). In Theorem 9.18,
it was shown that the problem of finding a square root modulo a composite number is as hard as
factoring it.

The trusted party computes an identity number ID for the smart card that should have the
additional property that

(14.1)ID ª s2 Hmod nL
for some integer s . The number ID may be computed from the name of the card holder and other
relevant data, but a few bits should be left open for the trusted party to complete in order to make
ID the square of an integer modulo n (ID has to be a quadratic residue mod p and mod q).

Zero Knowledge Protocols 315

The trusted party computes the square root s of ID (it can do this, because it knows the
factorization of n , see Subsection 9.5.3) and stores s in a segment of the memory of the smart card
that is not accessible from the outside world.

One round of the Fiat-Shamir Protocol is depicted in Figure 4.1 below.

Figure 14.1

Smart Card Card Reader

knows s, ID, n knows n

|
ID

generates a random r
computes t = Hr2 mod nL

|
t

selects random e from 80, 1<
{

e

computes u = Hr.se mod nL
|

u

checks if u2 ≡ t.IDe Hmod nL
Fiat-Shamir identification protocol (one round)

The smartcard or card holder makes the identity number ID known to the card reader. To prove
that the card was indeed issued by the trusted party, the card wants to convince the card reader that
it knows s , the square root of ID modulo n .

To this end, the card generates a random number r , computes its square

(14.2)t = Hr2 mod nL
and sends that to the card reader. In the jargon of this field, t is called a witness to the card's
knowledge of r .

The card reader selects a random number e from 80, 1< and presents that as a challenge to the card.

How the protocol responds to the challenge depends on the value of e .

If e = 0, the card simply sends the random number r back. The card reader then checks if its
square is indeed equal to the value t that it received earlier from the card.

If e = 1, the card computes u = r.s , the product of the random number r and the secret square root
s , and sends u to the card reader. The card reader checks if u2 is indeed equal to t µ ID modulo n ,
which should be the case, since t ª r2 Hmod nL and ID ª s2 Hmod nL .

In Figure 14.1, these two alternatives are combined in the response u = Hr.se mod nL . The card
reader checks if

(14.3) u2 ª t.IDe Hmod nL .

316 FUNDAMENTALS OF CRYPTOLOGY

It may be clear that if the card can supply r (when e = 0) and at the same time can supply r.s
(when e = 1L , it must know the square root s of ID. It is also clear that if the smart card fails the
test in (14.3), the card reader will reject the smart card.

If an unauthorized smart card knows beforehand the value of the challenge e , it can fool the card
reader. This is obvious in the e = 0 case. In this case, the smart card takes a random r , presents
t = Hr2 mod nL as witness and later presents r itself as response. The secret square root s never
played a role in these calculations.

If the illegitimate card knows that the challenge will be 1, it generates a random r , computes
t ª r2 ê ID Hmod nL and presents this value of t to the card reader. After having received the
challenge e = 1, the smart card will present u = r . The card reader checks (see (14.3)) if u2 is
congruent to t.ID modulo n . This is obviously the case with u = r and t ª r2 ê ID Hmod nL .

Note that the unauthorized card can not meet the challenge if he makes the wrong guess about the
challenge. So, it will be caught with probability 1/2, if the smart card selects its challenge at
random.

For this reason, smart card and card reader will run k times through the above protocol, where k is
a security parameter. A smart card that does not know the value of s can guess the k random
challenges with probability H1 ê2Lk , so it will be caught with probability 1 - H1 ê 2Lk .

The card should not use the same random number r twice, because as soon as the card reader
knows both r and r.s (through u), it can calculate the secret square root s .

The idea of proving certain things without revealing any information about it is counter-intuitive,
but very powerful. There is a growing field of applications of zero-knowledge proofs.

Examples are electronic voting schemes that make it possible to cast votes in an anonymous way.
On the other hand, the voter will be caught when attempting to vote twice. In these schemes, it can
be checked that all votes have been counted in the final tally.

Another application is a payment system that allows you to withdraw money from your account in
digital form and spend it anonymously. Even your own bank can no longer trace it to you.
However, if you try to double spend the money, your identity can be recovered.

14.2 Schnorr's Identification Protocol
Schnorr's identity verification protocol [Schn91] is based on the difficulty of the discrete
logarithm problem (Table 8.1). As in the Diffie-Hellman scheme, all participants share some
parameters. First of all there is a finite field GF HqL (this could be q , if q is prime) and a prime
divisor p of q - 1. Let w be a primitive element of GFHqL and take a = wHq-1Lêp . Then a is a
primitive p-th root of unity. This means that 1, a, …, ap-1 are all different and that ap = 1.

Zero Knowledge Protocols 317

Example 14.1 (Part 1)

Let p = 104729 and q = 8 p + 1 = 837833. Take w = 3 and a = w Hq-1Lêp = w8 = 6561. To check that q is
prime and that w = 3 is a primitive element in q (which makes a a primitive p-th root of unity), we use
the Mathematica functions Prime, PrimeQ, and the function MultiplicativeOrder (defined in Appendix D,
but standard in Mathematica 4) which computes the multiplicative order of an element..

MultiplicativeOrder@a_, n_D := If@GCD@a, nD == 1,
Divisors@ EulerPhi@nD D êê.

8x_, y___< −> If@PowerMod@a, x, nD == 1, x, 8y<D D;

p = Prime@10000D
q = 8 p + 1
PrimeQ@qD
om = 3; MultiplicativeOrder@om, qD
al = om8

104729

837833

True

837832

6561

Each participant P (P for prover) selects a random secret exponent xP , computes yP = axP , and
makes this value public. It is assumed that other participants are able to verify that yP is indeed
P 's public parameter. This can be realized if a trusted authority signs yP or if the public values are
posted on a trusted "bulletin board". If someone else, say V for Verifier, wants to check P 's
identity yP he does this by checking that P knows the corresponding xP . Of course, P does not
want release the secret value of xP to anyone. Therefore, he uses a cryptographic protocol to
convince V that he has knowledge of xP .

Example 14.1 (Part 2)

Prover P has identity number yP = 693 and secret exponent xP = 18126. Indeed,
a 18126 ª 693 Hmod qL .

318 FUNDAMENTALS OF CRYPTOLOGY

xP = 18126; yP = 693;
PowerMod@al, xP, qD == yP

True

Schnorr's identification protocol goes as follows. The verifier is presented with P 's identity
number yP . Next, prover P generates a random exponent r , 0 § r < p , computes · = ar and
presents this value · to the verifier V as a witness to his secret xP . The verifier selects a random
number s , 0 § s < p , and hands this to P as challenge. Prover P responds by computing
u = r + s.xP and gives this value to V . The verifier checks that au = ·.HyPLs . This relation should
hold, because au = ar+s.xP = ar.HaxPLs = ·.HyPLs . This scheme is depicted in the following diagram.

Figure 14.2

Prover Verifier

knows xP, yP, p, q, α knows p, q, α

|
yP

generates random r from P
computes ρ = αr

|
ρ

selects random s from P

{
s

computes u = r + s.xP
modulo p

|
u

checks if αu = ρ.HyPLs
Schnorr's identification protocol

Example 14.1 (Part 3)

In the input below, the above protocol is executed. The Mathematica functions Random, Mod, and
PowerMod are used

r = Random@Integer, pD; rho = PowerMod@al, r, qD;
Print@"witness is ", rD
s = Random@Integer, pD; Print@"challenge is ", sD
u = Mod@r + s∗xP, pD; Print@"response is ", uD
PowerMod@al, u, qD == Mod@rho∗PowerMod@yP, s, qD, qD

witness is 36431

Zero Knowledge Protocols 319

challenge is 29041

response is 65643

True

Of course, the prover will only be able to give the right response if he knows xP satisfying
axP = yP . If he does not know xP , he can guess the correct value of u with probability 1 ê p . The
value of p will be very large to make the discrete logarithm problem intractable (see Subsection
8.1.1).

Note that in the relation u = r + s.xP only the values u and s are known to V . In other words, the
random value r makes sure that no information on xP is leaked to V . This observation also shows
that the prover should not use the same random number r twice. Indeed, from two relations
u1 = r + s1.xP and u2 = r + s2.xP with known s1, s2, r1 , and r2 the verifier can easily determine r
and the secret xP . One has xP = Hu1 - u2L ê Hs1 - s2L .

Example 14.1 (Part 4)

For the same witness, we generate a second challenge and response.

ss = Random@Integer, pD; Print@"second challenge is ", ssD
uu = Mod@r + ss∗xP, pD; Print@"second response is ", uuD
PowerMod@al, u, qD == Mod@rho∗PowerMod@yP, s, qD, qD

second challenge is 62706

second response is 21550

True

To find xP we compute xP = Hu1 - u2L ê Hs1 - s2L:

Mod@Hu − uuL∗PowerMod@s − ss, −1, pD, pD

18126

The value 18126 is indeed the secret exponent xP of the prover.

14.3 Problems

Problem 14.1M

Duplicate Example 14.1 for p = 113. Find a suitable value for q .

320 FUNDAMENTALS OF CRYPTOLOGY

15 Secret Sharing Systems

15.1 Introduction
In this chapter we shall not introduce a new cryptosystem, but we shall discuss a related topic. We
start with an example from [Liu68].

''Eleven scientists are working on a secret project. They wish to lock up the documents in a
cabinet so that the cabinet can be opened if and only if six or more of the scientists are present.
What is the smallest number of locks needed? What is the smallest number of keys to the locks
each scientist must carry?''

Clearly, for each 5-tuple of scientists there has to be at least one lock, that can not be opened by
them. Also each of the six remaining scientists has a key of that lock. More than one such lock per

5-tuple is not needed. So, J11
5

N locks are needed and each scientist carries J11 - 1
5

N keys. These

numbers can be calculated with the Mathematica function Binomial.

Binomial@11, 5D
Binomial@11 − 1, 5D

462

252

The solution above is of course not very practical. Similarly, the described situation is not very
realistic. However, there exists very real situations where one wants to share some sensitive
information among a group of people, in such a way that only certain privileged coalitions are able
to recover the secret information. Examples are a masterkey of a payment system or a private key
that one does not want to store in a single place.

In a general setting, if P is a privileged group of people, meaning that they should be able to
recover the secret data, then any other group containing P as a subgroup, should also be
privileged. Also, if N is not privileged then any subset of N should not be privileged.

Secret Sharing Systems 321

Definition 15.1
An access structure HU , , L consists of finite set U (of users), and two disjoint
collections  and  of subsets of U ( for the privileged subsets and  for the non-
privileged) with the property that

P œ , P Õ B Õ U ï B œ  ,
N œ  , A Õ N ï A œ  .

In the example above, U = 81, 2, …, 11< ,  consists of all subsets of U of size at least 6 and  of
all the other subsets of U . It is a special case of what is generally called a threshold scheme.

It is often convenient to list only the set of the minimal elements of  , denoted by  - , which can
be obtained from  by leaving out each element of  that properly contains another element of .
Similarly, one often represents  by the subset  + consisting of its maximal elements.

An access structure is called complete or perfect if each subset of U is either in P or in N .

Definition 15.2
Let S be a random variable defined on a finite set . Assume that S is uniformly
distributed on .
Let U be a collection of n participants, each having obtained a particular element Si out
of  from some trustworthy authority. Further, let HU , , L be an access structure.
Then the collection 8Si<iœU is called a secret sharing scheme for HU , , L if it satisfies
the following two properties:

[SSS1] each privileged group P of participants (Pœ) can compute the secret S .
[SSS2] each non-privileged group N of participants (Nœ) can not compute any

information on S .

The value Si (to be called the share of i) should be interpreted as partial information of participant
i on the secret S . In information theoretical notation (see Chapter 5), SSS1 and SSS2 can be
reformulated as

[SSS1] H HS » 8Si<iœP L = 0 for any Pœ.

[SSS2] HHS » 8Si<iœN L = HHSL for any Nœ.

Note that in secret sharing schemes that are not perfect, there may be coalitions ,  – ‹ , of
participants that are able to recover some information on the secret S (so, HHS » 8Si<iœ L < HHSL)
without being privileged.

322 FUNDAMENTALS OF CRYPTOLOGY

15.2 Threshold Schemes
A secret sharing scheme 8Si<1§i§n is called an Hn, kL-threshold scheme, if  consists of all subsets
of U of cardinality ¥ k and  consists of all subsets of U of cardinality § k - 1. By definition, a
threshold scheme is a perfect secret sharing scheme. Properties SSS1 and SSS2 can be
reformulated as

[TS1] Knowledge of k or more different Si 's makes S computable.

[TS2] Knowledge of at most k - 1 different Si 's leaves the secret S completely undetermined,
more precisely all possible values in  are still equally likely.

Shamir describes (see [Sham79]) the following general construction of Hk, nL-threshold schemes
when  is a finite field GF HqL , where q has to be larger than n . Here, we shall assume that q is a
prime number, say q = p , in which case  is just p , the set of integers modulo p . The
generalization to GFHqL will be immediate.

This system is based on the well known fact that a line is uniquely defined by any two points on it,
that a parabola is uniquely defined by three points on it, etc. In general, a polynomial of degree
k - 1 is uniquely determined by any k points on it.

Construction 15.1
Let the participants be labeled from 1 to n and let S œ p , p > n , be the secret data.
Consider the polynomial

(15.1) f HxL = S + a1 x + a2 x2 + … + ak-1 xk-1 ,

of degree at most k - 1, of which the coefficients a j , 1 § j § k - 1, are selected by some
trustworthy authority in an independent, random way from p . Participant i , 1 § i § n ,
is given as his share Si the pair

(15.2) Si = Hi, f HiL mod pL .

Example 15.1 (Part 1)

In order to construct a (10,4)-threshold scheme for secret S = 17 in 19 , we hide the secret in the
polynomial f HxL (note the use of the Mathematica function Mod)

Clear@fD;
f@x_D := Mod@17 + 7 x + 12 x2 + 5 x3, 19D

Secret Sharing Systems 323

where the coefficients of x j ,1 § j § 3, are selected at random from 19 .

The values of the shares can be computed with the Mathematica function Table.

Table@8i, f@iD<, 8i, 1, 10<D

881, 3<, 82, 5<, 83, 15<, 84, 6<, 85, 8<,86, 13<, 87, 13<, 88, 0<, 89, 4<, 810, 17<<
To check that the values Si, 1 § i § n , given by (15.2), form a Hn, kL-threshold scheme, we have to
check the two conditions TS1 and TS2.

Ad TS1:

Suppose that participants i1 , i2 , …, ik combine their shares Si1 = Hi1, f Hi1LL , Si2 = Hi2, f Hi2LL , …,
Sik = Hik, f HikLL . With the LaGrange Interpolation Formula, it is quite easy to determine f HxL .
Indeed,

(15.3) f HxL = ‚
u=1

k
 f HiuL ‰l=1,l∫u

k
 x-ilÅÅÅÅÅÅÅÅÅÅÅÅiu-il

.

since the expression on the right hand side has degree k - 1, just as f HxL does by (15.1), and since
the right hand side takes on value Si j = f Hi jL for x = i j , 1 § j § k , just as f HxL does.

Note that by (15.1), the secret S is given by f H0L , therefore, in the calculation of the Lagrange
Interpolation Formula, one can take x = 0 right from the start.

Example 15.1 (Part 2)

Suppose that participants 1, 3, 6, and 9 want to retrieve the secret S . They pool their shares H1, 3L ,H3, 15L , H6, 13L , and H9, 4L .

The LaGrange Interpolation Formula can be performed with the Mathematica function
InterpolatingPolynomial. The function PolynomialMod is used for the reduction
modulo 19.

PolynomialMod@InterpolatingPolynomial@
881, 3<, 83, 15<, 86, 13<, 89, 4<<, xD, 19D

17 + 7 x + 12 x2 + 5 x3

The value of the secret S is the constant term in this expression. So, S = 17.

Ad TS2:

Suppose that shares Si1 , Si2 , …, Sil , are known for some l < k . It follows from (15.1) and (15.3)
that there are exactly qk-l-1 polynomials gHxL satisfying gHiuL = Siu , 1 § u § l , and with any fixed
value for gH0L .

324 FUNDAMENTALS OF CRYPTOLOGY

Indeed, for any fixed value of gH0L and any fixed group of k - l - 1other participants and any
given set of imaginary values of their shares, there is unique gHxL meeting all requirements. This is
a direct consequence of the LaGrange Interpolation Formula.

Example 15.1 (Part 3)

Suppose that participants 1, 3, and 9 attempt to retrieve secret S by pooling their shares H1, 3L ,H3, 15L and H9, 4L .

Then the secret S can still take on any value (and each of these values is still equally likely).
Indeed, adding the pair H0, SL to the above three shares leads to a unique polynomial throughH0, SL and the three shares. This follows from the LaGrange Interpolation formula and can be
checked as follows.

Clear@xD
Table@ 8S, PolynomialMod@ InterpolatingPolynomial@

880, S<, 81, 3<, 83, 15<, 89, 4<<, xD, 19D<,
8S, 0, 18< D êê TableForm

0 2 x + x2

1 1 + 9 x + 5 x2 + 7 x3

2 2 + 16 x + 9 x2 + 14 x3

3 3 + 4 x + 13 x2 + 2 x3

4 4 + 11 x + 17 x2 + 9 x3

5 5 + 18 x + 2 x2 + 16 x3

6 6 + 6 x + 6 x2 + 4 x3

7 7 + 13 x + 10 x2 + 11 x3

8 8 + x + 14 x2 + 18 x3

9 9 + 8 x + 18 x2 + 6 x3

10 10 + 15 x + 3 x2 + 13 x3

11 11 + 3 x + 7 x2 + x3

12 12 + 10 x + 11 x2 + 8 x3

13 13 + 17 x + 15 x2 + 15 x3

14 14 + 5 x + 3 x3

15 15 + 12 x + 4 x2 + 10 x3

16 16 + 8 x2 + 17 x3

17 17 + 7 x + 12 x2 + 5 x3

18 18 + 14 x + 16 x2 + 12 x3

Remark 1:

In the generalization to arbitrary fields GF HqL, the n participants are labeled by different non-zero
field elements ai , 1 § i § n, and the share Si of the i-th participant will be the pair Hai, f HaiLL .

Secret Sharing Systems 325

A way to realize this is to choose a primitive element (generator) a œ GFHqL , label the participants
from 1 to n and give the i-th participant as share the pair Hi, f HaiLL .

Remark 2:

The threshold scheme explained here assumes a trustworthy authority. It is also a system that can
be used only once. As soon as participants have exchanged their shares to retrieve the secret, these
shares are compromised. A new set of shares has to be set up for later use. In the literature one can
find proposals that relax these conditions.

15.3 Threshold Schemes with Liars
In [McEl81] a variant of the construction above is proposed, that can handle the situation that
some of the participants provide false information, so the share they provide does not have the
correct value. Some participants may want to do this to prevent others from getting access to the
secret data. It will turn out that it takes two extra shares to recover the secret for each incorrect
share that is contributed. So, if k + 2 t participants pool their shares to recover the secret, at most t
of the shares should be false.

Construction 15.2
Let S be a secret from GFHqL , for some prime power q , and let a1, a2, …, an , n § q - 1,
be a list of n different non-zero elements in GFHqL , e.g. ai = ai , 1 § i § n , for some
primitive element a in GFHqL .
Consider f HxL = S + a1 x + a2 x2 + … + ak-1 xk-1 , where the coefficients a j ,
1 § j § k - 1, are randomly selected from GFHqL .
The pair Hai, f HaiLL will be the share Si of the i-th participant. Suppose that k + 2 t
participants (k + 2 t § n) pool their shares and assume that at most t of these are incorrect.
Then each of these participants can efficiently compute f HxL and recover secret S .
Moreover the incorrect shares can be identified.

Proof: The polynomial f HxL , used to compute the shares, is of degree § k - 1 and has the
additional property that at least k + t of the correct shares lie on it. Could there be another
polynomial, say gHxL , with the same properties? The answer is no. Indeed, since there are only
k + 2 t shares, any two subsets of at least k + t correct shares must have an intersection of at least
k (honest) shares. These k shares lie on f HxL and on gHxL . Since both f HxL and gHxL have degree at
most k - 1, it follows that f HxL = gHxL .

To determine f HxL the participants can try out all possible functions of degree § k - 1 through k
of the shares until a function passes through ¥ k + t of them. Of course, this is not an efficient
way. For an efficient technique, the theory of error-correcting codes is needed (as in Chapter 11).
The shares that are defined above in fact define codewords H f Ha1L, f Ha2L, …, f HanLL in a so-called
shortened Reed-Solomon code with parameters @n, k, n - k + 1D .

We refer the reader, who is not familiar with this theory, to [MacWS77], Chapter 11. Both the

326 FUNDAMENTALS OF CRYPTOLOGY

Berlekamp-Massey algorithm or the Euclidean algorithm give efficient ways to decode this code.
In the context of our problem, where k + 2 t shares are known, one has to interpret the other
n - k - 2 t shares as erasures. If the number of erasures plus twice the number of errors is less than
the minimum distance of a code, one can still correct these errors and erasures. HereHn - k - 2 tL + 2. t is indeed less than n - k + 1. Efficient algorithms exists (see [Berl68], Section
10.4 and [SugK76]) to correct these errors and erasures for Reed-Solomon codes.

Ñ

Remark 1: By taking t = 0 Construction 15.2 reduces to Construction 15.1.

Remark 2: If only k + 2 t - 1 shares are available and t of them are incorrect, then f HxL is not
necessarily uniquely determined. For instance, it is possible that of k + 2 t - 1 shares all of them
except the first t lie on one polynomial of degree k - 1, while all these shares except the last t lie
on another polynomial of degree § k - 1 (the intersection of the shares sets has cardinality k - 1).

In this case, there is however partial information on the secret.

Example 15.2

Consider k = 3, t = 1 and p = 17.

Of the four shares H1, 4L, H2, 1L, H3, 5L, H4, 4L, each three define a parabola, leaving the other point as
incorrect value.

PolynomialMod@
InterpolatingPolynomial@881, 4<, 82, 1<, 83, 5<<, xD, 17D
PolynomialMod@InterpolatingPolynomial@
881, 4<, 82, 1<, 84, 4<<, xD, 17D

PolynomialMod@InterpolatingPolynomial@
881, 4<, 83, 5<, 84, 4<<, xD, 17D

PolynomialMod@InterpolatingPolynomial@
882, 1<, 83, 5<, 84, 4<<, xD, 17D

14 + 12 x + 12 x2

10 + x + 10 x2

2 + 11 x + 8 x2

12 + 8 x + 6 x2

Of the 17 possible secrets four are possible, all with equal probability.

Secret Sharing Systems 327

15.4 Secret Sharing Schemes
Although there is a lot of literature on secret sharing schemes, there are also many central
questions that still need to be answered. For this reason, we only discuss one example of a secret
sharing scheme. The reader is referred to [Bric89] and [Dijk97] to find a discussion of various
generalizations of the technique explained here. For a general introduction to secret sharing
schemes we refer to [Stin95].

Assume that we have as access structure the set HU , , L with U = 81, 2, 3, 4< ,
- = 881, 2<, 82, 3<, 83, 4<< and + = 881, 3<, 81, 4<, 82, 4<< . This means that any subset of U
containing both users 1 and 2, or users 2 and 3, or users 3 and 4 is a privileged set, while any other
combination of users is non-privileged. Figure 15.1 depicts this situation.

∅

81< 82< 83< 84<
81,2< 81,3< 81,4< 82,3< 82,4< 83,4<

81,2,3< 81,2,4< 81,3,4< 82,3,4<
81,2,3,4<Ê

Ê Ê Ê Ê

Ê Á Á Ê Á Ê

Á Á Á Á

Á

Figure 15.1

An Access Structure with Four Participants
è means privileged, é means non-privileged

The secret sharing scheme for this access structure will be set up in two steps. In the first step we
want to share one bit (or byte or string) of information among the four participants.

Let s be a secret bit that we want to share among the participants of our access structureHU , , L . The trusted authority selects two random bits a and b and gives the following shares
to the participants:

participant share
1 a
2 s + a, b
3 s + b
4 b

Figure 15.2

A Secret Sharing Scheme with One Secret Bit

328 FUNDAMENTALS OF CRYPTOLOGY

The + sign stands for addition modulo 2. The reader may easily verify that this scheme meets
requirements SSS1 and SSS2. For instance, participants 1 and 2 can compute s from a + Hs + aL ,
where a comes from 1 and s + a from 2.

Example 15.3

For instance, if the Trusted Authority wants to share secret s = 1 among the four participants, he may
choose a = 1 and b = 0. The shares of 1, 2, 3, 4 will be 1, resp. (0,0), 1, 0.

Participants 2 and 4 can not recover s, because they only know s + a and b (twice). Participants 3 and 4
can recover the secret s by adding their shares s + b and b: 1 + 0 = 1.

We see that in the scheme of Figure 15.2 participant 2 has to store twice as many bits as is the size
of the secret. This ratio can be improved by superimposing a permuted version of the scheme to
itself.

Hence, now we consider a secret consisting of two bits s1 and s2 . The trusted authority selects
four random bits a, b, c , and d . He gives the following shares to the participants:

Figure 15.3

participant share
1 a, c
2 s1 + a, s2 + c, b
3 s1 + b, s2 + d, c
4 b, d

A Secret Sharing Scheme with Two Secret Bits

In this scheme, the ratio between the size of the secret and the size of the longest share (this ratio
is called information rate) is 2 ê3. It can be shown that such a ratio is always at most 1. Secret
sharing schemes that have an efficiency rate equal to 1 are called ideal.

There is a general matrix description of constructions of the above type. We shall explain it again
for the example above.

The secret sharing system is described by the matrix GTA of the trusted authority and the matrices
Gi of the participants 1, 2, 3, and 4. The first two columns are labeled by the secret bits (s1 and
s2) and the next four columns by the random variables (a, b, c , and d). Each row of Gi represents
one entry of the share of participant i (expressed in terms of the secret bits and the random bits).
The same holds for GTA , where we view s1, s2 as his share.

Secret Sharing Systems 329

GTA = J 1 0 0 0 0 0
0 1 0 0 0 0

N;

Gp1 = J 0 0 1 0 0 0
0 0 0 0 1 0

N;

Gp2 =
i

k

jjjjjjj

1 0 1 0 0 0
0 1 0 0 1 0
0 0 0 1 0 0

y

{

zzzzzzz;

Gp3 =
i

k

jjjjjjj

1 0 0 1 0 0
0 1 0 0 0 1
0 0 0 0 1 0

y

{

zzzzzzz;

Gp4 = J 0 0 0 1 0 0
0 0 0 0 0 1

N;

To see that these matrices indeed represent the secret sharing scheme we multiply them with the
vector Hs1, s2, a, b, c, dL .

Clear@a, b, c, d, s1, s2D;
vec = 8s1, s2, a, b, c, d<;
GTA.vec
Gp1.vec
Gp2.vec
Gp3.vec
Gp4.vec

8s1, s2<
8a, c<
8a + s1, c + s2, b<
8b + s1, d + s2, c<
8b, d<

We get the secret of the trusted authority and the shares of all the participants, so this is exactly
the scheme that we had above.

The properties of a secret sharing scheme can now be translated as follows.

330 FUNDAMENTALS OF CRYPTOLOGY

Theorem 15.3
Full rank matrices GTA and Gi , i œ U , describe a secret sharing scheme for access
structure HU , , L if and only if
i) for each privileged set A œ  each row of GTA lies in the linear span of the rows of the
matrices Gi , i œ A ,
ii) for each non-privileged set B œ  no row of GTA lies in the linear span of the rows of
the matrices Gi , i œ B .

To check that the first row of GTA lies in the linear span of the rows of G1 and G2 we use the
Mathematica package LinearAlgebra`MatrixManipulation` and the functions
AppendColumns, MatrixForm, LinearSolve, and Transpose.

<< LinearAlgebra`MatrixManipulation`;

u = GTA@@1DD
M = AppendColumns@Gp1, Gp2D;
MatrixForm@MD
LinearSolve@Transpose@MD, u, Modulus −> 2D

81, 0, 0, 0, 0, 0<
i
k
jjjjjjjjjjjjjjjj
0 0 1 0 0 0
0 0 0 0 1 0
1 0 1 0 0 0
0 1 0 0 1 0
0 0 0 1 0 0

y
{
zzzzzzzzzzzzzzzz

81, 0, 1, 0, 0<
This shows that the first row of GTA is the modulo-2 sum of the first row of G1 and the first row of
G2 .

Similarly, one can verify that s2 can not be recovered by participants 1 and 3 in this way: the 2-nd
row (and also the 1-st) of GTA is not in the linear span of the rows of G1 and G3 .

u = GTA@@2DD
M = AppendColumns@Gp1, Gp3D;
MatrixForm@MD
LinearSolve@Transpose@MD, u, Modulus −> 2D

80, 1, 0, 0, 0, 0<

Secret Sharing Systems 331

i
k
jjjjjjjjjjjjjjjj
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 1 0 0
0 1 0 0 0 1
0 0 0 0 1 0

y
{
zzzzzzzzzzzzzzzz

LinearSolve::nosol :
Linear equation encountered which has no solution.

LinearSolve@880, 0, 1, 0, 0<, 80, 0, 0, 1, 0<, 81, 0, 0, 0, 0<, 80, 0, 1, 0, 0<,80, 1, 0, 0, 1<, 80, 0, 0, 1, 0<<, 80, 1, 0, 0, 0, 0<, Modulus → 2D
We conclude this section by remarking that it is not so much a problem to make a perfect secret
sharing scheme for a particular access structure, as it is to make an efficient one, i.e. with high
information rate. Indeed, an inefficient secret sharing scheme for a particular access
structure HU , , L goes as follows. Let s be the secret to be shared. For each A œ - , select
random bits ai

HAL , 1 § i § » A » , satisfying the binary congruence relation: ‚
i=1

»A»
ai

HAL ª s Hmod 2L , A œ - .

If u œ A , then participant u gets one of these ai
HAL .

In the example of U = 81, 2, 3, 4< , - = 881, 2<, 82, 3<, 83, 4<< and + = 881, 3<, 82, 4<, 81, 4<< we
get in this way as share for secret s:

participant share

1 a1
81,2<

2 a1
81,2< + s, a1

82,3<
3 a1

82,3< + s, a1
83,4<

4 a1
83,4< + s

A more compact way to denote this secret sharing scheme is

participant share
1 a
2 a + s, b
3 b + s, c
4 c + s

This scheme has efficiency rate 1/2 and uses three random variables, as opposed to the two
random variables in the scheme of Figure 15.2.

332 FUNDAMENTALS OF CRYPTOLOGY

15.5 Visual Secret Sharing Schemes
In visual secret sharing schemes the secret to be shared consists of an image consisting of black
and white (or of colored) pixels. Here we shall only discuss the black and white case, where
"white" should be understood as "transparent". For instance, the number 3 can be depicted as
follows.

3

The shares consist of transparencies of the same shape also with black and white pixels. The idea
of a visual secret sharing scheme for an access structure HU , , L is that privileged subsets of
participants should be able to determine the secret by putting their transparencies on top of each
other, while non-privileged subsets should obtain no information on the secret from their shares.

A visual secret sharing scheme can not be realized in a straightforward way. As soon as a pixel in
a particular share is black, the corresponding pixel in the secret will also be black. To solve this
problem, each pixel in the secret and in the shares will be subdivided in m subpixels, where m is
called the expansion factor of the scheme. The assumption will be that two visual threshold values
0 § a < b § 1exist such that:

è if at most a.m subpixels of a pixel are black, the pixel will be interpreted by the human eye as
white,

è if at least b.m subpixels of a pixel are black, the pixel will be interpreted as black.

If the number of black subpixels lies strictly between a.m and b.m , we assume that the human eye
will not decide. The difference b-a is an indication for the level of contrast that is still present in
an image if all pixels meet one of the above two requirements. There is biological evidence
supporting the assumption that it is the relative difference in light intensity that is of importance to
the human eye. See [VerT97] for a longer discussion.

In the context of visual secret sharing schemes, we have additional problems to face. For instance,
if the shares of a non-privileged set are put on top of each other and a pixel contains more than
a.m black subpixels, we know that the secret will be black at that place. Of course, such situations
have to be avoided.

It should be clear that once we have a visual secret sharing scheme for one pixel, we can use it for
the other pixels too, creating in this way a visual secret sharing scheme for the entire secret.

Here, we shall only explain a visual secret sharing scheme for a Hn, 2L-threshold scheme. This
means that any two participants should be able to recover the secret, while a single person should

Secret Sharing Systems 333

have no information at all about even one pixel. Before we do so, we describe the simple case
where there are just two participants. We make the expansion factor m = 2. Let us call the
following two subdivisions of a pixel L and R (for left black resp. right black):

L R
It is clear that L and R put atop each other gives a black pixel, while both L+L and R+R are still
half white and half black. Therefore, we can make a construction with threshold values a = 1 ê2
and b = 1.

Construction 15.4
To share a white pixel, the trusted authority gives with equal probability either to both
participants L or to both participants R.
To share a black pixel, the trusted authority gives with equal probability to one
participant L and to the other R.
This gives a H2, 2L-visual threshold scheme with expansion factor m = 2 and threshold
values a = 1 ê2 and b = 1.

Below we give an example of possible shares that participants 1 and 2 have for the secret number
3 above.

Share 1 Share 2

The reader can verify this by making transparencies of these two shares and putting them on top of
each other.

There are many constructions known of Hn, kL-visual threshold schemes. We shall describe a
general construction for k = 2. Each particular implementation of the construction will lead to its
own values for the expansion factor m and the threshold values a and b. It makes use of two
n µ m matrices, MW and MB , that will be used to distribute shares among the n participants for a
white resp. black pixel. These matrices are further characterized by two values r and l and have to
satisfy the following properties:

VTS1: Matrix MW consists of n identical copies of row 11 …1
õúúúúúúúù ûúúúúúr

 00 …00
õúúúúúúúúù ûúúúúúúm-r

.

VTS2: All row sums in MB are equal to r .

VTS3: Every pair of rows in MB has inner product l.

The numbers m, a, b, r , and l will be related. They can not take on any value.

334 FUNDAMENTALS OF CRYPTOLOGY

Example 15.4 (Part 1)

Take n = 4 and m = 6 . Let the matrices MW and MB be given by

MW =

i

k

jjjjjjjjjjjj

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

y

{

zzzzzzzzzzzz
;

MB =

i

k

jjjjjjjjjjjj

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

y

{

zzzzzzzzzzzz
;

Note that MW and MB satisfy properties VTS1-VTS3 for r = 3 and l = 1.

The matrices MW and MB define two classes of n µ m matrices:

 W = 8 MW .P » P is a m µ m permutation matrix< ,

 B = 8 MB.P » P is a m µ m permutation matrix< .

To distribute the shares for a particular pixel, the trusted authority takes either MW or MB ,
depending on whether the pixel is white or black, permutes the columns in a random way and
gives the i-th row to participant i , 1 § i § n .

Participant j makes the j-th subpixel white or black, depending on whether the j-th coordinate of
his share is 0 or 1.

Example 15.4 (Part 2)

Suppose that the pixel that needs to be shared is black. The trusted authority selects a random
permutation P with the Mathematica package DiscreteMath`Permutations` and the function
RandomPermutation as follows

<<DiscreteMath`Permutations`

RP = RandomPermutation@6D

83, 6, 4, 2, 1, 5<
This gives rise to the following permutation matrix (we use the functions Table, Do, and
MatrixForm):

Secret Sharing Systems 335

P = Table@0, 8i, 1, 6<, 8j, 1, 6<D;
Do@P@@j, RP@@jDDDD = 1, 8j, 1, 6<D;
MatrixForm@PD

i
k
jjjjjjjjjjjjjjjjjjjj
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0

y
{
zzzzzzzzzzzzzzzzzzzz

Multiplying MB on the right with P gives the matrix

PMB = MB.P;
MatrixForm@PMBD

i
kjjjjjjjjjjj
0 0 1 1 0 1
1 1 1 0 0 0
0 1 0 0 1 1
1 0 0 1 1 0

y
{zzzzzzzzzzz

Putting the six subpixels in a 3 µ 2 array in rowwise order, we get the following four shares for
this black pixel:

Share 1 Share 2 Share 3 Share 4

The reader can easily check that any two of these shares, when put atop of each other, will give
five black subpixels and one white.

If the original pixel would have been white, we would have had

PMW = MW.P;
MatrixForm@PMWD

336 FUNDAMENTALS OF CRYPTOLOGY

i
kjjjjjjjjjjj
0 0 1 1 0 1
0 0 1 1 0 1
0 0 1 1 0 1
0 0 1 1 0 1

y
{zzzzzzzzzzz

This means that all four shares would have looked like

Each Share

Since each row in both MW and MB has the same number of ones (namely r) and since W and
B are made from these by multiplying them on the right by all possible permutation matrices, it
follows that each vector of length m and weight r occurs equally likely as a share for a white pixel
as for a black pixel. This shows that our construction has as lower visual threshold value a = r êm .

Because MW is multiplied by a permutation matrix, it follows from VTS1 that when two
participants have shares of a white pixel and they combine them, they do not gain anything.

On the other hand, any two rows of MB have weight r by VTS2 and inner product l by VTS3.
This remains so if MB is multiplied by a permutation matrix. It follows that any two shares of a
black pixel have 2 r - l entries equal to one. In the example above r = 3 and l = 1, giving
2 r - l = 5 ones in any combination of two shares.We conclude that the construction by means of
W and B has a higher visual threshold value b = H2 r - lL êm .

We have proved the following general construction:

Construction 15.5
Let MB be an n µ m matrix satisfying properties VTS2 and VTS3 for certain values of r
and l. Let MW be of the form given by VTS1. Further, let W and B be the sets
obtained from MW resp. MB by multiplying them on the right with all possible
permutation matrices.
Then a random choice of a matrix from W in case of a white pixel and a random
choice of a matrix from B leads to Hn, 2L-visual threshold scheme with expansion
factor m and threshold values a = r êm and b = H2 r - lL êm .

Secret Sharing Systems 337

Corollary 15.6
Take any n and let u be some value in between 2 and n - 1. Let MB be the matrix

consisting of all columns of length n and weight u . Then MB has m = Jn
u
N columns.

Moreover, every row of MB has weight r = Jn - 1
u - 1

N and any two rows have inner product

l = Jn - 2
u - 2

N .

This defines a Hn, 2L-visual threshold scheme with expansion factor m = Jn
u
N and

threshold values a = u ên and b = H2 n - u + 1L ênHn - 1L .

By taking n = 4 and u = 2 in the above corollary, one gets the construction of Example 15.4.

Indeed, m = Jn
u
N = J4

2
N = 6, r = Jn - 1

u - 1
N = J3

1
N = 3 and l = Jn - 2

u - 2
N = J2

0
N = 1. The visual threshold

values are given by a = 2 ê4 = 1 ê2 and b = 5 ê 6.

A disadvantage of the family of constructions described in the Corollary above, is the high
expansion factor m .

A reader who is familiar with the theory of block designs and t -designs may have guessed from
conditions VTS2 and VTS3 that these notions often play a role in the construction of a visual
threshold scheme. We shall explain one particular construction.

Let p be any prime number. We recall from Definition A.9 that an integer u , 1 § u < p , is called a
quadratic residue (QR) if the congruence relation x2 ª u Hmod pL has a solution in p . How to
determine if a number u is a quadratic residue is explained in Section A.4. With Mathematica one
can do this with the function JacobiSymbol, which will output 1 if and only if u is a QR.

For instance, that x2 ª 12 Hmod 13L has a solution (namely ≤5L follows from

u = 12; m = 13; JacobiSymbol@u, mD

1

The Jacobi symbol is normally denoted by I uÅÅÅÅÅp M or just by cHuL , if there is no confusion about the
value of p . Actually, the value of cHuL is defined to be 0, when u = 0 and -1 when 1 § u < p and
u is not QR.

338 FUNDAMENTALS OF CRYPTOLOGY

Corollary 15.7
Let p be any prime that is congruent to 3 mod 4. Define the p µ p matrix MB byHMBLi, j = 9 1,

0,
if j - i is QR,

otherwise.

Then every row of MB has weight r = Hp - 1L ê2 and any two rows have inner product
l = Hp - 3L ê4.
This defines a Hn, 2L-visual threshold scheme with expansion factor m = n and threshold
values a = Hp - 1L ê 2 p and b = H3 p - 1L ê4 p .

Proof:

Fixing a row index i of MB we see that j - i , 0 § j < p , takes on all values in p . It follows from
Theorem A.20 that each row in MB has weight Hp - 1L ê 2.

Now consider the matrix C = HcH j - iLL0§i, j<p . Matrix MB can be obtained from C by replacing all
its -1-entries by 0. Consider two rows of C and let them be indexed by i1 and i2 . Note that

cHi1 - i2L =
Th.A .21

cH-1L cHi2 - i1L =
Cor.A .24

- cHi2 - i1L .

This means that the matrix C is skew-symmetric and that the i2 -th entry in row i1 is equal to
minus the i1 -th entry in row i2 . We conclude that, apart from a reordering of the coordinates, rows
i1 and i2 will look like

 0
ô1

-1
 +1
ô1

0
 +1 … + 1
õúúúúúúúúúúù ûúúúúúúúúúa

+1 … + 1
 +1 … + 1
õúúúúúúúúúúù ûúúúúúúúúúb

-1 … - 1
 -1 … - 1
õúúúúúúúúúúù ûúúúúúúúúúc

+1 … + 1
 -1 … - 1
õúúúúúúúúúúù ûúúúúúúúúúd

-1 … - 1

where the two rows may have been interchanged.

The inner product of rows i1 and i2 in MB is given by the value of a (since all -1's in C are
replaced by 0 to get MB). To find the values a, b, c, d we calculate first

(15.4) ⁄ j=0
p-1 cH j - i1L cH j - i2L = ‚

j=0

p-1
cH jL cI j - Ii2 - i1LM = -1.

The first equality follows from the substitution j - i1 Ø j , the second one follows from Theorem
A.22, since i1 T i2 mod p .

Hence, we have the following relations:

 2 + a + b + c + d = p , (C has p columns),
a - b - c + d = -1, (from (15.4)),
1 + a + b = Hp - 1L ê2, (apply Thm. A.20 to the first row),
a + c = Hp - 1L ê2, (apply Thm A.20 to the second row).

These equations have a unique solution: a = b = d = Hp - 3L ê 4 and c = Hp + 1L ê4. We conclude
that the inner product of two different rows in MB is Hp - 3L ê4.

The Corollary is now a direct consequence of Construction 15.5.

Ñ

Secret Sharing Systems 339

Example 15.5

Take p = 13. The matrix MB can be made with the Mathematica functions JacobiSymbol, If, and
Array as follows:

p = 11;
A@i_, j_D := If@JacobiSymbol@j − i, pD == 1, 1, 0D;
MB = Array@A, 8p, p<D;
MatrixForm@MBD

i

k

jj

0 1 0 1 1 1 0 0 0 1 0
0 0 1 0 1 1 1 0 0 0 1
1 0 0 1 0 1 1 1 0 0 0
0 1 0 0 1 0 1 1 1 0 0
0 0 1 0 0 1 0 1 1 1 0
0 0 0 1 0 0 1 0 1 1 1
1 0 0 0 1 0 0 1 0 1 1
1 1 0 0 0 1 0 0 1 0 1
1 1 1 0 0 0 1 0 0 1 0
0 1 1 1 0 0 0 1 0 0 1
1 0 1 1 1 0 0 0 1 0 0

y

{

zz
So, we have a H11, 2L-visual secret sharing scheme with expansion factor m = 11 and threshold
values a = Hp - 1L ê2 p = 5 ê11 and b = H3 p - 1L ê4 p = 8 ê11.

340 FUNDAMENTALS OF CRYPTOLOGY

15.6 Problems

Problem 15.1M

 Set up a Shamir H5, 3L-threshold scheme for the secret 15 in GFH17L .
Show how participants 1,2 and 3 can recover the secret.
Show that for participants 1 and 2 together each element in GFH17L is an equally likely candidate for the
secret.

Problem 15.2M

Consider a Shamir H7, 4L-threshold scheme in GFH23L , where the participants 1, 3, 4, and 6 pool their sharesH1, 13L , H3, 19L , H4, 19L , and H6, 6L to retrieve the secret S . What will this secret be?
Suppose that participant 5 shows his share H5, 3L . Why is one of these five people lying?
Let all also participants 1 and 8 contribute there share: H2, 4L and H8, 12L . Determine the liar and the real
secret.

Problem 15.3M

Construct a H7, 4L-threshold scheme over the finite field GFH16L = GFH2L@aD ê Ha4 + a + 1L (see Theorem
B.15).
What are the shares of the participants for secret S = H1, 0, 1, 1L which stands for the field element a13 ?
Show in detail how participants 2, 4, 5, 7 recover S .

Problem 15.4
Consider the following scheme over 3 :

participant share
1 a, b, c + s2
2 a + s1, b, c
3 b + s1, c − s2, d
4 b, d + s2

Give the matrix description of this scheme.
Prove that it is a secret sharing scheme for access structure HU , , L with U = 81, 2, 3, 4< ,
 = 881, 2<, 82, 3<, 83, 1<, 83, 4<< and  = 881, 4<, 82, 4<, 83<< .
What is the information rate of this scheme? Is it perfect? Is it ideal?

Problem 15.5
Make a visualization of a set of possible shares for a black pixel in H7, 2L-visual threshold scheme, as
constructed in Corollary 15.7.
What is the expansion factor of this scheme and what are its visual threshold values?

Secret Sharing Systems 341

342 FUNDAMENTALS OF CRYPTOLOGY

Appendix A Elementary Number Theory
A.1 Introduction
Let  denote the set of natural numbers,  the set of integers, and  the set of real numbers.

An integer d divides an integer n, if n = k d for some k œ  . We shall denote this by d » n . If such
an integer k does not exist, d does not divide n. This will be denoted by d I n .

To check if the integer d divides the integer n, the Mathematica function IntegerQ can be used
in the following way.

n = 16851; d = 123; IntegerQ@nêdD
True

The Mathematica function Divisor gives a list of all divisors of a number n. For instance:

n = 16851; Divisors@nD
81, 3, 41, 123, 137, 411, 5617, 16851<

An integer p, p > 1, is said to be prime, if 1 and p are its only positive divisors. With p1 = 2,
p2 = 3, p3 = 5, … we introduce a natural numbering of the set of prime numbers.

Valuable Mathematica functions in this context are Prime and PrimeQ:

k = 35; Prime@kD
149

generating the 35-th prime number.

n = 1234567; PrimeQ@nD
False

telling if the input (here 1234567) is prime.

Elementary Number Theory 343

Theorem A.1 Euclid

There are infinitely many prime numbers.

Proof: Suppose the contrary. Let p1, p2, …, pk be the set of all primes. Next, we observe that the
integer H¤i=1

k piL + 1 is not divisible by any of the primes p1, p2, …, pk . Let n be the smallest
integer n that is not divisible by any of the primes p1, p2, …, pk . It can not be a prime number,
because it is not in the list p1, p2, …, pk . It follows that n has a non-trivial factor d . But then this
factor d is divisible by at least of the primes p1, p2, …, pk and so does n . A contradiction.

Ñ

Between two consecutive primes there can be an arbitrary large gap of non-prime numbers. For
example, the n - 1 elements in the sequence n ! + 2, n! + 3, …, n! + n are divisible by respectively
2, 3, …, n . Therefore none of them is prime.

Definition A.1
The function p HnL counts the number of primes less than or equal to n.

In Mathematica, this function is denoted by PrimePi[n].

n = 100; PrimePi@nD
25

The next theorem [see [HarW45], p.91] , which we shall not prove, tells us something about the
relative frequency of the prime numbers in .

Theorem A.2 The Prime Number Theorem

limnØ¶
pHnLÅÅÅÅÅÅÅÅÅÅÅÅÅÅnêln n = 1.

n = 1000000; PrimePi@nDêHnêLog@nDL êê N

1.08449

Two important definitions are those of the greatest common divisor and least common multiple of
two integers.

Definition A.2
The greatest common divisor of two integers a and b , not both equal to zero, is the
uniquely determined, positive integer d , satisfying

344 APPENDICES

(A.1)d divides both a and b

and

(A.2)if f divides both a and b , then f also divides d .

The greatest common divisor of a and b is denoted by gcdHa, bL , or just Ha, bL .

Definition A.3
The least common multiple of two integers a and b is the uniquely determined, positive
integer m , satisfying

(A.3) m is divisible by both a and b

and

(A.4)if n is divisible by both a and b then n is a multiple of m .

The least common multiple of two integers a and b is denoted by lcm@a , bD or just @a, bD .

To show the existence of gcd, we introduce the set

U = 8x.a + y.b » x œ , y œ , x.a + y.b > 0< .

Let m denote the smallest element in U. We shall show that m satisfies (A.1) and (A.2). Clearly, if
f divides both a and b then f also divides m. So, m does satisfy (A.2). Now, write a = q m + r,
0 § r < m (subtract or add m sufficiently often from (resp. to) a until the remainder r lies in
between 0 and m - 1). If r ∫ 0, then r œ U (since both a and m are in U). This contradicts the
assumption on the minimality of m. So, r = 0, which means that m divides a. Similarly, m divides
b. So, m satisfies (A.1) too.

The uniqueness of gcdHa, bL follows from (A.1) and (A.2). Indeed, if d and d' both satisfy (A.1)
and (A.2), it follows that d » d ' and d ' » d . Since both d and d ' are positive, it follows that d = d ' .

In a similar way, the existence and uniqueness of lcm@a, bD can be proved.

Alternative definitions of gcdHa, bL and lcm@a, bD are:

gcdHa, bL is the largest integer dividing both a and b
lcm@a, bD is the smallest positive integer divisible by both a and b .

Elementary Number Theory 345

The functions GCD and LCM can be evaluated by Mathematica as follows:

a = 12345; b = 67890; GCD@a, bD
15

a = 12345; b = 67890; LCM@a, bD
55873470

If two integers have a gcd equal to 1, we say that they are coprime. A consequence of the above is
the following important theorem.

Theorem A.3
Let a and b be in . Then there exist integers u and v , such that

gcdHa, bL = u.a + v.b .

In particular, if a and b are coprime, there exist integers u and v , such that

u.a + v.b = 1.

The following lemma seems too obvious to need a proof.

Lemma A.4
Let d divide a product a b and let the gcd of d and a be 1. Then d divides b .

Proof: Since gcdHd, aL = 1, Theorem A.3 implies that x d + y a = 1, for some integers x and y .
So, x d b + y a b = b . Since d divides a b , it follows that d also divides x d b + y a b which equals
b .

Ñ

Corollary A.5
Let p be prime and let p divide ¤i=1

k ai , where ai in  , 1 § i § k .
Then p divides at least one of the factors ai , 1 § i § k .

Proof: Use Lemma A.4 and induction on k .

Ñ

With an induction argument the following theorem can now easily be proved.

346 APPENDICES

Theorem A.6 Fundamental Theorem of Number Theory
Any positive integer has a unique factorization of the form¤i pi

e
i , ei œ  .

Let a = ¤i pi
ei , ei in  and b = ¤i HpiL fi , fi in . Then one easily checks that

(A.5)gcdHa, bL = ¤i pi
min 8ei, fi<

(A.6)lcm@a, bD = ¤i pi
max 8ei, fi<

(A.7)gcdHa, bL lcm@a, bD = a b .

The Mathematica expression FactorInteger@nD gives the factorization of an integer n . The
outcome is a list of pairs. Each pair contains a prime divisor of n and its exponent.

FactorInteger@123456789D
883, 2<, 83607, 1<, 83803, 1<<
a = 21375; b = 89775;
FactorInteger@aD
FactorInteger@bD
FactorInteger@GCD@a, bDD
FactorInteger@LCM@a, bDD
GCD@a, bD LCM@a, bD == a b

883, 2<, 85, 3<, 819, 1<<
883, 3<, 85, 2<, 87, 1<, 819, 1<<
883, 2<, 85, 2<, 819, 1<<
883, 3<, 85, 3<, 87, 1<, 819, 1<<
True

Elementary Number Theory 347

A.2 Euclid's Algorithm
Let a and b be two positive integers with b ¥ a . Clearly, any divisor of a and b is a divisor of a
and b - a and vice versa. So, gcdHa, bL = gcdHa, b - aL . Writing b = q.a + r , 0 § r < a , one has for
the same reason that gcdHa, bL = gcdHr, aL . If r = 0 (and b = q.a), we may conclude that
gcdHa, bL = a , otherwise we continue in the same way with a and r . So, we write a = q '.r + r ' ,
0 § r ' < r , have gcdHa, bL = gcdHr ', rL , etc., until one of the arguments indeed divides the other.
This algorithm is an extremely fast way of computing the gcd of two integers and it is known as
Euclid's Algorithm.

Algorithm A.7 Simple Version of Euclid's Algorithm
input a, b positive integers
while b > 0 do begin

put r as the remainder of the a after division by b .
(So, write a = q.b + r , 0 § r < b .)
put a = b
put b = r
end

output a

With the Mathematica functions While, Floor, and Print, the above algorithm runs like this

a = 1645; b = 861;
While@b ≠ 0, r = a − Floor@aê bD∗ b; 8a, b< = 8b, r<; Print@8a, b<DD8861, 784<8784, 77<877, 14<814, 7<87, 0<

If one also wants to find the coefficients u and v satisfying Theorem A.3, this algorithm can be
adapted as described below. Note that by leaving out the lines involving the integers ui and vi , this
(extended) algorithm reduces to the simple version above.

348 APPENDICES

Algorithm A.8 Extended Version of Euclid's Algorithm
input b ¥ a > 0
initialize s0 = b ; s1 = a ;

u0 = 0; u1 = 1; v0 = 1 ; v1 = 0; n = 1
while sn > 0 do begin

put n = n + 1;
write sn-2 = qn sn-1 + sn , 0 § sn < sn-1
put un = qn un-1 + un-2 ;

put vn = qn vn-1 + vn-2 ;
end

put u = H-1Ln un-1 ; v = H-1Ln-1 vn-1 ;

(A.8)gcdHa, bL = sn-1 = u.a + v.b

Again Mathematica knows this extended version of Euclid's Algorithm as a standard function. It is
called ExtendedGCD.

a = 861; b = 1645; ExtendedGCD@a, bD
87, 8107, −56<<

Note that in the example above one indeed has that

7 = gcd(861,1645) = 107×861 - 56×1645

Proof of Algorithm A.8:

First observe that the elements sn , n ¥ 1, form a strictly decreasing sequence of non-negative
integers. So the algorithm will terminate after at most b iterations. Later in this paragraph we shall
analyze how fast Euclid's Algorithm really is.

From the recurrence relation sk = sk-2 - qk sk-1 the algorithm it follows that

gcdHa, bL = gcdHs0, s1L = gcdHs1, s2L = … = gcdHsn-1, snL = gcdHsn-1, 0L = sn-1 .

This proves the first equality in (A.8). We shall now prove that for all k , 0 § k § n ,H-1Lk-1 uk a + H-1Lk vk b = sk .

Note that substitution of k = n - 1 in this relation proves the second equality in (A.8).

For k = 0 and k = 1 the above relation holds by our choice of the initialization values for u0 , u1 ,
v0 and v1 . We now proceed by induction. It follows from the recurrence relations in the algorithm
and from the induction hypothesis, that

Elementary Number Theory 349

sk = sk-2 - qk sk-1 = 8H-1Lk-3 uk-2 a + H-1Lk-2 vk-2 b< - qk 8H-1Lk-2 uk-1 a + H-1Lk-1 vk-2 b< =

=H-1Lk-1 Huk-2 + qk uk-1L a + H-1Lk H vk-2 + qk vk-1L b = H-1Lk-1 uk a + H-1Lk vk b.

Ñ

Of course there is no need to keep all the previously calculated values of sk , uk and vk stored in
the program. Only the last two of each together with qk will suffice. The reason for introducing
them in the algorithm was only to facilitate the readability of the proof above.

With the Mathematica functions While, Floor, and Print, the above algorithm runs like this:

b = 1645; a = 861;
n = 1;
so = b; sn = a;
uo = 0; un = 1;
vo = 1; vn = 0;
While@sn ≠ 0,
Print@H−1Ln−1, "×", un, "×", a, " + ", H−1Ln, "×",
vn, "×", b, "=", snD; q = Floor@soêsnD;
n = n + 1; 8so, sn, uo, un, vo, vn< =8sn, so − q ∗sn, un, q ∗un + uo, vn, q ∗vn + vo<D
1×1×861 + −1×0×1645=861

−1×1×861 + 1×1×1645=784

1×2×861 + −1×1×1645=77

−1×21×861 + 1×11×1645=14

1×107×861 + −1×56×1645=7

We would like to conclude this section by saying something about the complexity of Euclid's
Algorithm. It may be clear that this algorithm is at it slowest if at each step the quotient qk has
value 1 (if possible). This is the case if sk-2 = sk-1 + sk for all 2 § k § n - 1 and that sn-2 = 2 sn-1 ,
sn = 0. In other words, the smallest value of b (and arbitrary 0 < a < b) such that the evaluation of
gcdHa, bL takes n - 1 steps is given by b = Fn and a = Fn-1 , where the 8Fi<i¥0 sequence is the
famous sequence of Fibonacci numbers defined by F0 = 0, F1 = 1, Fi+2 = Fi+1 + Fi for i ¥ 0.

By letting Mathematica operate repeatedly on a list of two consecutive Fibonnacci numbers (the
function Nest is used for this), one gets the following method to evaluate these numbers (in the
example F100 and F101 are computed):

350 APPENDICES

f@8u_, v_<D := 8v, u + v<
n = 100; Nest@f, 80, 1<, nD
8354224848179261915075, 573147844013817084101<

This could also have been done directly with the function Fibonacci.

Fibonacci@100D
354224848179261915075

The reader may check the above analysis in the following way.

GCDiterations@n_Integer?Positive, m_Integer?PositiveD :=

Block@ 8 a = n, b = m, r, t = 0<,
While@ b > 0, r = Mod@a, bD;8a, b, t< = 8b, r, t + 1<D; tD

n = 100;
GCDiterations@Fibonacci@nD, Fibonacci@n − 1DD
98

Table@ GCDiterations@ Fibonacci@nD, Fibonacci@n − 1D D,8n, 2, 100< D
81, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98<

Note that the GCDiterations algorithm above does not affect the values of a and b (contrary to our
implementation of the simple version of Euclid's algorithm). It also makes use of the Mathematica
function Mod that will be discussed in the next section.

Plugging in Fn = c f n in the defining recurrence relation of the Fibonacci numbers, so in
Fi+2 = Fi+1 + Fi , leads to the quadratic equation f 2 = f + 1, which has as zero's: 1≤

è!!!!5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 . Without

Elementary Number Theory 351

proof we state the following upperbound on the complexity of Euclid's Algorithm. The reader may
prove it with induction on b (distinguish the cases a § bÅÅÅÅÅf and bÅÅÅÅÅf < a § b).

Theorem A.9 Complexity of Euclid's Algorithm
Let a and b be positive integers, b ¥ a , b ∫ 1, and let f = 1 +

è!!!!5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 . Then the number of
iterations, that Euclid's Algorithm will need to compute gcdHa, bL is at most log f b .

a = Fibonacci@100D; b = Fibonacci@99D;
GCDiterations@a, bD
Ceiling@Log@H1 + Sqrt@5DLê 2 , bDD
98

98

A.3 Congruences, Fermat, Euler, Chinese Remainder Theorem

A.3.1 Congruences

Definition A.4
Two integers a and b are said to be congruent to each other modulo m , if their difference
b - a is divisible by m . This is denoted by

a ª b Hmod mL .

The Mathematica function Mod@a, m] gives the unique integer r, 0 § r < m , such that
a ª r Hmod mL .

a = 12345; m = 13; Mod@a, mD
8

An easy test if the integers a and b are congruent of each other modulo m is given by the
following example:

m = 13; a = 12345; b = 103579; Mod@a − b, mD == 0

352 APPENDICES

True

Definition A.5
A set of m integers a1, a2, …, am is called a complete residue system modulo m , if each
integer is congruent to (exactly) one of the elements ai , 1 § i § m , modulo m .

The most commonly used complete residue systems modulo m are the sets 80, 1, … , m - 1< and81, 2, …, m< . With the Mathematica functions Range and Table one can generate these systems.

m = 10;
Table@i, 8i, 0, m − 1<D
Range@mD
80, 1, 2, 3, 4, 5, 6, 7, 8, 9<
81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

Clearly the m integers ai , 1 § i § m , form a complete residue system modulo m if and only if for
each pair 1 § i , j § m one has that

(A.9)ai ª a j Hmod mL ï i = j

The congruence relation ª modulo defines an equivalence relation (see Definition B.5) on . A
complete residue system is just a set of representatives of the m equivalence classes.

Lemma A.10
Let k a ª k b Hmod mL and gcdHk, mL = d . Then

 a ª b Hmod m êdL .

Proof: Write k = k ' d and m = m ' d with gcdHk ', m 'L = 1. It follows from k a - k b = x m , for some
x œ  , that k ' Ha - bL = x m ' . Since gcdHm ', k 'L = 1, it follows from Lemma A.4 that m ' » Ha - bL ,
i.e. a ª b Hmod m 'L .

Ñ

Lemma A.11
Let a1, a2, …, am be a complete residue system modulo m and let gcdHk, mL = 1.
Then k a1, k a2, …, k am is also a complete residue system modulo m .

Proof: We use criterion (A.9). By Lemma A.10, k ai ª k a j Hmod mL implies that ai ª a j Hmod mL .
This in turn implies that i = j .

Ñ

Elementary Number Theory 353

A.3.2 Euler and Fermat

Often we shall only be interested in representatives of those residue classes modulo m , whose
elements have coprime with m . The number of these classes is denoted by the following function.

Definition A.6
The Euler's Totient Function f (see Euler) is defined by

fHmL = » 8 0 § i < m » gcdHi, mL = 1 < » .
In words, fHmL is the number of integers in between 0 and m - 1 that are coprime with
m .

In Mathematica, this function can be evaluated with the EulerPhi@nD function. For instance

m = 15; EulerPhi@mD
8

corresponding to the eight elements: 1, 2, ,4, 7, 8, 11, 13, and 14. Later on in this section, we see
how the function f(m) can be efficiently computed.

Theorem A.12
For all positive integers m ⁄d»m jHdL = m .

It is quite easy to see in an example which of the m integers in between 1 and m are contributing
to which term fHdL with d » m . When m = 15, we have the divisors 1, 3, 5 and 15 of m. The eight
elements 1, 2, ,4, 7, 8, 11, 13, 14 all have gcd 1 with 15 (note that fH15L = 8) , the four (= fH5L)
elements 3, 6, 9, 12 have gcd = 3 with 15, the two (= fH3L) elements 5, 10 have gcd = 5 and the
single (= fH1L) element 0 has gcd = 15.

Proof of Theorem A.12:

Let d divide m . By writing r = i d one sees immediately that the number of elements r , 0 § r < m ,
with gcdHr, mL = d is equal to the number of integers i with 0 § i < mÅÅÅÅÅd and gcdHi, mÅÅÅÅÅd L = 1,
therefore, this number is fH mÅÅÅÅÅd L .

On the other hand, gcdHr, mL divides n for each integer r , 0 § r < m . It follows that„d»m fH mÅÅÅÅÅd L = m . This statement is equivalent to what needs to be proved.

Ñ

354 APPENDICES

The following non-standard Mathematica statement evaluates sums of function values f @dD over
all divisors d of a given integer m .

DivisorSum@f_, m_D := Plus @@ Hf ê@ Divisors@mDL
One can use this function to check Theorem A.12.

m = 15; DivisorSum@EulerPhi, mD
15

Definition A.7
A set of fHmL integers r1, r2, …, rfHmL is called a reduced residue system modulo m if
each integer j with gcdH j, mL = 1, is congruent to (exactly) one of the elements ri ,
1 § i § fHmL .

A reduced residue system can be quite easily generated by means of the following newly defined
functions.

CoPrimeQ@n_Integer, m_IntegerD := GCD@n, mD == 1

CoPrimeQ@35, 91D
CoPrimeQ@36, 91D
False

True

CoPrimes@n_Integer?PositiveD :=

Select@ Range@nD, CoPrimeQ@n, #D & D
CoPrimes@15D
81, 2, 4, 7, 8, 11, 13, 14<

Analogously to Lemma A.11 one has the following lemma.

Elementary Number Theory 355

Lemma A.13
Let r1, r2, …, rfHmL be a reduced residue system modulo m and let gcdHa, mL = 1.
Then a r1, a r2, …, a rfHmL is also a reduced residue system modulo m .

With the above lemma one can easily prove that the classes in a reduced residue system form a
multiplicative group (see Subsection B.1.1).

Theorem A.14 (see Euler)
Let a and m be two integers that are coprime. Then

ajHmL ª 1 Hmod mL .

It is quite easy to check this theorem in concrete cases.

m = 12345; a = 11111; GCD@m, aD
EulerPhi@mD
Mod@a^EulerPhi@mD, mD
1

6576

1

Exponentiations modulo some integer can be performed much faster in Mathematica with the
PowerMod@a, b, mD function, which reduces all intermediate results in the computation of ab

modulo m .:

m = 123456789; a = 1111111111; GCD@m, aD
PowerMod@a, EulerPhi@mD, mD
1

1

Proof: Let r1, r2, …, rfHmL be a reduced residue system modulo m . By Lemma A.13

‰
i=1

f HmL
ri ª ‰

i=1

fHmL Ha riL ª afHmL ‰
i=1

f HmL
ri Hmod mL.

356 APPENDICES

Since each factor ri is coprime with m, one can divide both hands by ¤i=1
fHmL ri by Lemma A.10.

This results in 1ª afHmL (mod m).

Ñ

Let p be a prime number. Since every integer i, 1 § i < p , is coprime with p, it follows that
fHpL = p - 1. Euler's Theorem implies the next theorem for all values of a except for a 's that are a
multiple of p. For these values, the statement in the next theorem is trivially satisfied.

Theorem A.15 Fermat's Little Theorem
Let p be a prime number and let a be any integer. Then

ap ª a Hmod pL .

This can easily be checked in individual cases with the Mathematica function PowerMod.

p = 98947; a = 12345; PrimeQ@pD
PowerMod@a, p, pD == a

True

True

As we have just observed, fHpL = p - 1 for prime. Because exactly one of every p consecutive
integers is divisible by p, we have the following stronger result:

(A.10)fHpeL = pe - Hpe ê pL = pe-1Hp - 1L = peikjj1 -
1
ÅÅÅÅÅÅ
p

y{zz .

Definition A.8
A function f : ö is said to be multiplicative, if for every pair of positive integers m
and n

gcdHm, nL = 1 ï f Hm.nL = f HmL f HnL .

Lemma A.16
Euler's Totient function fHmL is multiplicative.

Proof: Let m and n be coprime and let a1, a2, … , afHmL and b1, b2, … , bfHnL be reduced residue
systems modulo m resp. n . It suffices to show that the fHmL fHnL integers n.ai + m.b j , 1 § i § fHmL
and 1 § j § fHnL , form a reduced residue system modulo m n . It is quite easy to check that the
integers n.ai + m.b j , 1 § i § fHmL and 1 § j § fHnL , are all distinct modulo m n and that they are
coprime with m n . (Use Lemma A.15 and formula (A.9)).

Elementary Number Theory 357

It remains to verify that any integer k with gcdHk, m.nL = 1, is congruent to n.ai + m.b j modulo
m n for some 1 § i § fHmL and 1 § j § fHnL .

From Lemma A.13 we know that integers i and j , 1 § i § fHmL and 1 § j § fHnL , exist for which

k ª n.ai Hmod mL and k ª b j Hmod nL.
This implies that both m and n divide k - n.ai - m .b j . Since gcdHm, nL = 1, it follows from (A.4)
and (A.7), that also m.n divides k - n.ai - m.b j .

Ñ

Theorem A.17
fHmL = m ‰

p prime, p»m I1 - 1ÅÅÅÅÅp M .

Proof: Combine (A.10) and Lemma A.16.

Ñ

In Section A.5 we shall see how a direct counting argument also proves Theorem A.17.

With the Mathematica functions Length and EulerPhi and the function CoPrimes (which
makes use of CoPrimeQ) defined above one can check Theorem A.17 as follows:

m = 15;
Length@CoPrimes@mDD
EulerPhi@mD
8

8

A.3.3 Solving Linear Congruence Relations

The simplest congruence relation, that one may have to solve, is the single, linear congruence
relation

(A.11)a x ª b Hmod mL
Theorem A.18
The linear congruence relation a x ª b Hmod mL has a solution x if and only if gcdHa, mL
divides b .
In this case the number of different solutions modulo m is gcdHa, mL .

358 APPENDICES

Proof: That gcdHa, mL » b is a necessary condition for (A.11) to have a solution x is trivial. We
shall now prove that it is also a sufficient condition.

Let d = gcdHa, mL and write a = a ' d , m = m ' d and b = b ' d , where gcdHa ', m 'L = 1. By Lemma
A.11, the congruence relation a ' x ª b ' Hmod m 'L has a unique solution x ' modulo m ' . Clearly, a
solution x of a x ª b Hmod mL satisfies x ª x ' Hmod m 'L . So, each solution x modulo m can be
written as x ' + i m ' , 0 § i < d . Write a ' x ' = b ' + u m ' , u œ  . Then for each 0 § i < d ,

aHx ' + i m 'L = d a ' x ' + i d a ' m ' = d b ' + u d m ' + i a ' m = b + Hu + ia 'L m.

Hence, the numbers x ' + i m ' , 0 § i < d , represent all the solutions modulo m of a x ª b Hmod mL .

Ñ

The solution of a x ª b Hmod mL , gcdHa, mL = 1, can easily be found with the extended version of
Euclid's Algorithm. Indeed, from u a + v m = 1 (see Theorem A.3), it follows that u a ª 1 Hmod mL .
So, the solution x is given by b u Hmod mL . If gcdHa, mL = 1, one often writes a-1 for the unique
element u satisfying u a ª 1 Hmod mL .

Example A.1 (Method 1)

To solve 14 x ª 26 Hmod 34L , we note that gcdH14, 34L = 2, which indeed divides 26.

We first solve 7 x' ª 13 Hmod 17L . With the extended version of Euclid's Algorithm we find
5 ÿ 7 + H-2L 17 = gcdH7, 17L = 1. So, 7 ÿ 5 ª 1 Hmod 17L and x' can be computed from
x' ª 7-1 ÿ 13 ª 5 ÿ 13 ª 14 Hmod 17L .

By the theorem above, 14 x ª 26 Hmod 34L has the numbers 14 and 14+17=31 as solutions modulo 34.

ExtendedGCD@7, 17D
Mod@5∗13, 17D
81, 85, −2<<
14

Example A.2 (Method 2)

To solve 123456789 x ª 135798642 (mod 179424673), we first check if gcd(123456789, 179424673)
divides 135798642. Next, we compute 123456789-1 mod 179424673 and then compute
123456789-1 ÿ 135798642 which gives 21562478 as solution .

Instead of using Euclid's Algorithm to compute 123456789-1 mod 179424673, we can also use
Euler's Theorem. Indeed, af HmL ª 1 Hmod mL implies that a afHmL-1 ª 1 Hmod mL and thus that
a-1 ª afHmL-1 Hmod mL .

Elementary Number Theory 359

GCD@148953050, 179424673D
PowerMod@123456789, EulerPhi@179424673D − 1, 179424673D
1

172609538

So, the number 172609538 is the multiplicative inverse of 123456789 modulo 179424673. The
solution x of the congruence relation 123456789 x ª 135798642 Hmod 179424673L is given by:

Mod@135798642 ∗172609538, 179424673D
21562478

We can check this:

Mod@123456789∗21562478, 179424673D
135798642

The Mathematica function PowerMod computes the multiplicative inverse of a number very
efficiently in the following way:

PowerMod@123456789, −1, 179424673D
172609538

The Mathematica function Solve gives all the solutions of the congruence relation
a x ª b Hmod mL , if they do exist.

Clear@xD;
Solve@ 812 x == 8, Modulus == 16<, xD
88Modulus → 16, x → 2<, 8Modulus → 16, x → 6<,8Modulus → 16, x → 10<, 8Modulus → 16, x → 14<<

To get only the solutions, one can execute

360 APPENDICES

x ê. Solve@ 812 x == 8, Modulus == 16<, xD
82, 6, 10, 14<

The reader is invited to try

x ê. Solve@ 813 x == 1, Modulus == 16<, xD
Solve@ 812 x == 7, Modulus == 16<, xD

A.3.4 The Chinese Remainder Theorem

We shall now discuss the case that x has to satisfy several, linear congruence relations
simultaneously, say ai x ª bi Hmod miL with gcdHai, miL » bi for 1 § i § k . Dividing the i-th relation
by di = gcdHai, miL , 1 § i § k , one gets as before the congruence relation ai ' x ' ª bi ' Hmod m 'L , with
gcdHai

', mi
'L = 1. By the proof of Theorem A.18, a solution of this congruence relation is

equivalent to a solution of one of the d congruence relations ai ' x ª bi ' + jmi ' Hmod miL , 0 § j < d .
In view of this, we restrict our attention to the case that gcdHai, miL = 1 for all i , 1 § i § k .

Theorem A.19 The Chinese Remainder Theorem
Let mi , 1 § i § k , be k pairwise coprime integers. Further, let ai , 1 § i § k , be integers
with gcdHai, miL = 1. Then the system of k simultaneous congruence relations

(A.12)ai x ª bi Hmod miL, 1 § i § k,

has a unique solution modulo ¤i=1
k mi for all possible k-tuples of integers b1, b2, …, bk .

Proof: Suppose that x ' and x ' ' both form a solution. Then ai Hx ' - x ' 'L ª 0 Hmod miL , 1 § i § k . By
Lemma A.4, mi divides x ' - x ' ' for all 1 § i § k . It follows that x ' ª x ' ' Hmod ¤i=1

k miL . Hence, if
the k congruence relations have a simultaneous solution, it will be unique modulo ¤i=1

k mi .

On the other hand, since there are as many different values for x modulo ¤i=1
k mi as there are

possible k-tuples of reduced right hand sides b1, b2, …, bk there must be a one-to-one
correspondence between them.

Ñ

Elementary Number Theory 361

The proof above does not give an efficient algorithm to determine the solution of (A.12). We shall
now explain how this can be done.

Let 1 § i § k and let ui be the unique solution modulo ¤i=1
k mi of

(A.13)ai ui ª 1 Hmod miL ,

(A.14)a j ui ª 0 Hmod miL , 1 § j § k , j ∫ i .

With Euclid's Algorithm ui is easy to determine. Indeed from (A.14) it follows that ui is a multiple
of mHiL defined by ¤ j, j ∫ i m j , say ui = r mHiL for some 0 § r < mi . The value of r follows from
(A.13). Indeed, r is the solution of ai r mHiL ª 1 Hmod miL . Hence

ui = 9Hai mHiLL-1 Hmod miL= mHiL.
The numbers ui , 1 § i § k , can be stored using at most k log2 m bits of memory space.

The solution of (A.12) is now given by

x = u1 b1 + u2 b2 + … + uk bk.

Example A.3

To solve

3 x ª 7 Hmod 11L 2 x ª 9 Hmod 13L 12 x ª 5 Hmod 17L
we rewrite these congruences as

x ª 3-1 ÿ 7 Hmod 11L x ª 2-1 ÿ 9 Hmod 13L x ª 12-1 ÿ 5 Hmod 17L
which reduces to

x ª 4 ÿ 7 Hmod 11L x ª 7 ÿ 9 Hmod 13L x ª 10 ÿ 5 Hmod 17L
i.e.

x ª 6 Hmod 11L x ª 11 Hmod 13L x ª 16 Hmod 17L .

Next we compute the solutions of

u1 ª 1 Hmod 11L u1 ª 0 Hmod 13L u1 ª 0 Hmod 17L
u2 ª 0 Hmod 11L u2 ª 1 Hmod 13L u2 ª 0 Hmod 17L
u3 ª 0 Hmod 11L u3 ª 0 Hmod 13L u3 ª 1 Hmod 17L .

Writing u1 = l1 ÿ 13 ÿ 17, u2 = l2 ÿ 11 ÿ 17, u3 = l3 ÿ 11 ÿ 13, we find with Theorem A.18, (or the
Solve function) that l1 ª 1 Hmod 11L , l2 ª 8 Hmod 13L , l3 ª 5 Hmod 17L and thus that
u1 ª 221 Hmod 11 ÿ 13 ÿ 17L , u2 ª 1496 Hmod 11 ÿ 13 ÿ 17L , u3 ª 715 Hmod 11 ÿ 13 ÿ 17L .

We conclude that x ª 6 ÿ 221 + 11 ÿ 1496 + 16 ÿ 715 ª 50 Hmod 11 ÿ 13 ÿ 17L .

362 APPENDICES

To solve congruence relations xi ª bi Hmod miL , 1 § i § k , with all the mi 's mutually prime with the
Chinese Remainder Theorem with Mathematica, we first read the package
NumberTheory`NumberTheoryFunctions`

<<NumberTheory`NumberTheoryFunctions`

Such a system can now be solved with the Mathematica function
ChineseRemainderTheorem that is available in the above package. We demonstrate this by
determining u1 , u2 , and u3 in the above example.

ChineseRemainderTheorem@81, 0, 0<, 811, 13, 17<D
ChineseRemainderTheorem@80, 1, 0<, 811, 13, 17<D
ChineseRemainderTheorem@80, 0, 1<, 811, 13, 17<D
221

1496

715

When considering the system of congruence relations ai xi ª bi Hmod miL , 1 § i § k , where the mi 's
are relatively prime and where gcdHai, miL = 1 for 1 § i § k , it is quite easy for Mathematica to
reduce this system to the equivalent system xi ª ai

-1 bi Hmod miL , 1 § i § k , which can be solved
with the Chinese Remainder Theorem function. We use the functions PowerMod and Mod for this
reduction. They operate equally well on vectors (coordinatewise) as on numbers.

We demonstrate this with the parameters of the example above.

a = 83, 2, 12<; b = 87, 9, 5<; m = 811, 13, 17<;
b = Mod@b∗PowerMod@a, −1, mD, mD
ChineseRemainderTheorem@b, mD
86, 11, 16<
50

Elementary Number Theory 363

A.4 Quadratic Residues
Let p be an odd prime. The quadratic congruence relation a x2 + b x + c ª 0 Hmod pL ,
a T 0 Hmod pL , can be simplified by dividing the congruence relation by a followed by the
substitution x Ø x - b ê H2 aL . In this way, a x2 + b x + c ª 0 Hmod pL reduces to a quadratic
congruence relation of the type:

(A.15)x2 ª u Hmod pL
Definition A.9
Let p be an odd prime and u an integer not divisible by p . Then u is called a quadratic
residue (QR), if (A.15) has an integer solution, and quadratic non-residue (NQR), if
(A.15) does not have an integer solution.

Definition A.10
Let p be an odd prime and u an integer. The Legendre symbol I uÅÅÅÅp M is defined byI uÅÅÅÅÅp M =

looomnooo +1
-1

0

if u is a quadratic residue mod p,
if u is a quadratic nonresidue mod p,
if p divides u.

If there is no confusion about the actual choice of the prime number p , one often writes c
(u) instead of I uÅÅÅÅÅp M .

The Legendre symbol is a special case of the following function.

Definition A.11
Let m = Pi HpiLei be an odd integer and let u be an integer with gcdHu, mL = 1.
Then the Jacobi symbol (uÅÅÅÅÅÅm) is defined byI uÅÅÅÅÅÅm M = ‰

i
I uÅÅÅÅÅÅÅpi

Mei

where I uÅÅÅÅÅp M denotes the Legendre symbol.

The Jacobi symbol (and a fortiori the Legendre symbol) can be evaluated with the standard
Mathematica function JacobiSymbol@u, m]. So, we can check if 12 is a quadratic residue
modulo 13 (indeed 52 ª 12 Hmod 13L) by means of the Jacobi Symbol[12, 13] which should give
value 1.

u = 12; m = 13; JacobiSymbol@u, mD
1

We want to derive some properties of the Legendre symbol.

Let a2 ª u Hmod pL . Then, also Hp - aL2 ª u Hmod pL . The polynomial x2 - u has at most two zeros

364 APPENDICES

in GFHpL (see Theorem B.15), so modulo p there can not be more than two different solutions to
x2 ª u Hmod pL . It follows that the quadratic residues modulo p are given by the integers

 i2 Hmod pL , 1 § i § p-1ÅÅÅÅÅÅÅÅÅÅÅ2 ,

or, alternatively, by the integers Hp - iL2 Hmod pL , 1 § i § p-1ÅÅÅÅÅÅÅÅÅÅÅ2 . We conclude that there are exactly
p-1ÅÅÅÅÅÅÅÅÅÅÅ2 QR's and p-1ÅÅÅÅÅÅÅÅÅÅÅ2 NQR's. This proves the first of the following two theorems.

Theorem A.20
Let p be an odd prime. Then, exactly p-1ÅÅÅÅÅÅÅÅÅÅÅ2 of the integers 0, 1, …, p - 1 are quadratic
residue and p-1ÅÅÅÅÅÅÅÅÅÅÅ2 are quadratic non-residue. In formula⁄u=0

p-1 cHuL = 0.

The reader can check the above theorem in concrete examples by means of the following two
Mathematica functions.

p = 17;‚
i=0

p−1

JacobiSymbol@i, pD
0

ListQuadRes@p_D :=

Select@Range@pD, JacobiSymbol@#1, pD == 1 &D
p = 17;
ListQuadRes@pD
81, 2, 4, 8, 9, 13, 15, 16<

Theorem A.21
Let p be an odd prime. Then for all integers u and v

cHu.vL = cHuL. cHvL .

Proof: This theorem will be a trivial consequence of Theorem A.23 later on. We shall present here
a more elementary proof.

If p divides u or v the assertion is trivial, because both hands are equal to zero. The proof in case
that p does not divide u or v is split up in three cases.

Case 1: u and v are both QR.

Elementary Number Theory 365

Then u ª a2 Hmod pL and v ª b2 Hmod pL , for some integers a and b . It follows that
u.v ª Ha.bL2 Hmod pL . So u.v is QR.

Case 2: Exactly one of u and v is QR, say u is QR and v is NQR.

Suppose that also u.v is QR. Then there exist integers a and b such that u ª a2 Hmod pL and
u.v ª b2 Hmod pL . Since a T 0 Hmod pL , it follows that v ª Hb ê aL2 Hmod pL . A contradiction!

Case 3: Both u and v are NQR.

From Lemma A.11 we know that i ÿ u , i = 1, 2, … , p - 1, runs through all non-zero elements
modulo p . For the p-1ÅÅÅÅÅÅÅÅÅÅÅ2 values of i for which i is QR, we have by Case 2 that i.u is NQR. So, for
the p-1ÅÅÅÅÅÅÅÅÅÅÅ2 values of i for which i is NQR, it follows that i.u is QR. So u.v is QR.

Ñ

Although the next theorem will never be used in this textbook, we do mention it, because it is
often needed in related areas in Discrete Mathematics.

Theorem A.22
Let p be an odd prime. Then, for every integer v⁄u=0

p-1 cHuL. cHu + vL = 9 p - 1,
-1,

if p divides v,
otherwise.

Proof: If p divides v , the statement is trivial. When p does not divide v , one has by Theorem
A.21 and Theorem A.20 that⁄u=0

p-1 cHuL cHu + vL = ⁄u=1
p-1 cHuL cHu + vL = ⁄u=1

p-1 cHuL cHuL cH1 + v êuL =⁄u=1
p-1 cH1 + v êuL = ⁄w∫1 cHwL = –1 + ⁄w=0

p-1 cHwL = –1

Ñ

Let u be QR, say u ª a2 Hmod pL . By Fermat's Theorem u
p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ª ap-1 ª 1 Hmod pL . So, the p - 1ÅÅÅÅÅÅÅÅÅÅÅÅ2

QR's are zero of the polynomial x
p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 - 1 over GFHpL . Since a polynomial of degree p – 1ÅÅÅÅÅÅÅÅÅÅÅÅ2 over

GF(p) has at most p - 1ÅÅÅÅÅÅÅÅÅÅÅÅ2 different zeros in GFHpL (see Theorem B.15), one has in GFHpL:

(A.16)xHp-1Lê2 - 1 = ¤u is QR Hx - uL.
It also follows that u

p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ∫ 1, if u is NQR. Since Iu p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 M2
ª 1 Hmod pL by Fermat's Theorem and

since y2 ª 1 Hmod pL has only 1 and –1 as roots, it follows that u
p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ª –1 Hmod pL , if u is NQR.

This proves the following theorem for all u coprime with p . For p » u the theorem is trivially true.

Theorem A.23
Let p be an odd prime. Then for all integers u ,I uÅÅÅÅÅp M ª uHp-1Lê2 Hmod pL .

366 APPENDICES

Corollary A.24
Let p be an odd prime. ThenI -1ÅÅÅÅÅÅÅÅp M = 9 +1,

-1,
if p ª 1 Hmod 4L,
if p ª 3 Hmod 4L.

Proof: H-1L p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 = 1 if and only if p ª 1 Hmod 4L .

Ñ

Another value of the Legendre symbol that we shall need later on is I 2ÅÅÅÅÅp M .
Theorem A.25
Let p be an odd prime. ThenI 2ÅÅÅÅÅp M = 9 +1,

-1,
if p ª ≤1 Hmod 8L,
if p ª ≤3 Hmod 8L.

Proof:

2
p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ¤k=1

p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 k ª ¤k=1

p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 H2 kL ª
ikjjj¤k=1

e p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 u H2 kLy{zzz ÿ
ikjjj¤k=1+e p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 up-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 H2 kLy{zzz ª

H–1L p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 - e p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 u.ikjjj¤k=1
e p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 u H2 kLy{zzz.ikjjj¤k=1+e p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 up-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Hp–2kLy{zzz ª H–1L p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 - e p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 u. ikjjj¤k=1

p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ky{zzz Hmod pL .

Dividing both hands in the above relation by ¤k=1

p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 k yields

2
p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ª H–1L p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 - e p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 u Hmod pL .

The assertion now follows from Theorem A.23.

Ñ

We recall the definition of the Jacobi symbol in terms of the Legendre symbol

(A.17)J u
ÅÅÅÅÅÅÅ
m

N = ‰
i
ikjj u

ÅÅÅÅÅÅÅÅ
pi

y{zzei
, where m = ‰

i
 pi

ei .

Elementary Number Theory 367

Theorem A.26
Let m and n be odd integers. Then the following relations hold for the Jacobi symbol

i) I uÅÅÅÅÅÅm M = I u-mÅÅÅÅÅÅÅÅÅÅÅm M ,

ii) I u vÅÅÅÅÅÅÅÅm M = I uÅÅÅÅÅÅm M I vÅÅÅÅÅÅm M ,

iii) I uÅÅÅÅÅÅÅÅÅm n M = I uÅÅÅÅÅÅm M I uÅÅÅÅn M ,

iv) I -1ÅÅÅÅÅÅÅÅm M = 1 if and only if m ª 1 Hmod 4L ,

v) I 2ÅÅÅÅÅÅm M = 1 if and only if m ª ≤1 Hmod 8L .

Proof: The first two relations hold for the Legendre symbol and, by (A.17), also for the Jacobi
symbol. The third relation is a direct consequence of (A.17).

To see that the fourth relation is a direct consequence of (A.17) and Corollary A.24, it suffices to
observe that a product of an odd number of integers, each congruent to 3 modulo 4, is also
congruent to 3 modulo 4, while for an even number the product will be 1 modulo 4. The proof of
the last relation goes analogously (now use Theorem A.25).

Ñ

One more relation is needed to be able to compute H uÅÅÅÅÅm L fast. We shall not give its proof, because
the theory goes beyond the scope of this book. The interested reader is referred to Theorem 99 in
[HarW45] or Theorem 7.2.1 in [Shap83].

Theorem A.27 (Quadratic Reciprocity Law by Gauss)
Let m and n be odd coprime integers. ThenI mÅÅÅÅÅn M I nÅÅÅÅÅm M = H–1L Hm-1L Hn-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4

With the relations in Theorem A.25, Theorem A.26, and Theorem A.27 one can evaluate the
Jacobi symbol very quickly.

Example A.4I 12703ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ16361 M =A .27 I 16361ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ12703 M =
A .26 iL

 I 3658ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ12703 M =
A .26 iiL

 I 2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ12703 M ÿ I 1829ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ12703 M =
A .26 vL & A .27

= I 12703ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1829 M =
A .26 iL

 I 1729ÅÅÅÅÅÅÅÅÅÅÅÅ1829 M =A .27 I 1829ÅÅÅÅÅÅÅÅÅÅÅÅ1729 M =
A .26 iL

 I 100ÅÅÅÅÅÅÅÅÅÅÅÅ1729 M =
A .26 iiL

 I 2ÅÅÅÅÅÅÅÅÅÅÅÅ1729 M2 ÿ I 25ÅÅÅÅÅÅÅÅÅÅÅÅ1729 M
= I 25ÅÅÅÅÅÅÅÅÅÅÅÅ1729 M =A .27 I 1729ÅÅÅÅÅÅÅÅÅÅÅÅ25 M =

A .26 iL
 I 4ÅÅÅÅÅÅÅ25 M =

A .26 iiL
 I 2ÅÅÅÅÅÅÅ25 M2 = 1.

It should be easy for the reader to verify that the above method has roughly the same complexity
as Euclid's Algorithm.

Of course we could have evaluated H 12703ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ16361 L directly with Mathematica, as we have seen before.

368 APPENDICES

JacobiSymbol@12703, 16361D
1

A.5 Continued Fractions
Quite often one wants to approximate a real number by means of a rational number. For instance,
many people use 22/7 as an approximation of p. A better approximation of p is already given by
333/106 and again better is 355/113. One has to increase the denominator to 33102 to get the next
improvement.

NAPi −
22
ccccccc
7

E
NAPi −

333
cccccccccc
106

E
NAPi −

355
cccccccccc
113

E
NAPi −

103993
cccccccccccccccccc
33102

E
−0.00126449

0.0000832196

−2.66764× 10−7

5.77891×10−10

It is the theory of continued fractions that explains how to get such good approximations.

Definition A.12
A finite continued fraction is an expression of the form

(A.18)
a0 + 1ÅÅÅ

a1+ 1ÅÅ
a2+ 1ÅÅÅ… + …ÅÅÅ

am-1+ 1ÅÅÅÅÅÅÅÅÅÅÅÅam

Elementary Number Theory 369

where a0 œ  and ai œ  , 1 § i § m .
It will often be denoted by the sequence @a0, a1, …, amD .

If m Ø ¶ in (A.18), we speak of an infinite continued fraction. It has the form

a0 + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a1+ 1ÅÅÅ

a2+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a3 + 1ÅÅÅÅÅÅÅÅÅÅ…

and will be shortened to @a0, a1, a2, …D .

Clearly, each finite continued fraction represents a rational number. One can find it by simplifying
the continued fraction step by step, starting with am-1 + 1ÅÅÅÅÅÅÅÅam

= am-1 am+amÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅam
, 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

am-1+ 1ÅÅÅÅÅÅÅÅÅÅam
= amÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅam-1 am+am

,

etc.

In Mathematica this can be achieved with the function Normal.

NormalA3 +
1

ccccccccccccccccccccccccccccc
7 + 1ccccccccccccccccccc

15+ 1cccccccccccccccc
1+ 1ccccccccccc292

E
103993
cccccccccccccccccc
33102

We shall now show that the opposite is also true: each rational number has a finite continued
fraction.

Lemma A.28
Each rational number has a finite continued fraction.

Proof: Let a êb , b > 0, represent a rational number. We apply the simple version of Euclid's
Algorithm (Alg. A.7) to the pair Ha, bL , so we put s0 = a , s1 = b , and compute recursively
si = qi si+1 + si+2 , with 0 § si+2 < si+1 , until sm+2 = 0 (and thus sm = qm sm+1) for some integer m .
Then

aÅÅÅÅb = s0ÅÅÅÅÅÅs1
= q0 s1+s2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅs1

= q0 + 1ÅÅÅÅÅÅÅÅÅÅÅÅs1ês2
= q0 + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅq1 s2+s3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅs2

= q0 + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
q1+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅs2ês3

=…

… = q0 + 1ÅÅ
q1+ 1ÅÅÅ…+ …ÅÅÅ

qm-1+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅsmêsm+1

= q0 + 1ÅÅ
q1+ 1ÅÅÅ…+ …ÅÅÅ

qm-1+ 1ÅÅÅÅÅÅÅÅÅÅÅÅqm

.

We conclude that a ê b has @q0, q1, …, qmD as continued fraction.

Ñ

It is important to observe that the representation of a rational number as a finite simple continued
fraction, where all the qi 's (i ¥ 1) are positive, is not completely unique. Although the manner in

370 APPENDICES

which the qi ' s are calculated with the simple version of Euclid's Algorithm (see proof above)
gives a unique value of the qi 's, it is clear that in the last step we have qm ¥ 2, since sm+1 < sm .

As the last term in the expansion is a positive integer, and not equal to one, we can therefore
rewrite the last term as follows:

1
cccccc
qm

=
1

ccccccccccccccccccccccccccccccccHqm − 1L + 1ccc1 .

This shows that @q0, q1, ..., qmD has the same value as @q0, q1 ..., qm - 1, 1D.
The last term in a continued fraction can be chosen in such a way as to make the number of terms
in the expansion either even or odd, if that would be convenient.

Formula (A.18) suggests the following way of computing a continued fraction of a number a.

Algorithm A.29
The continued fraction of a number a can be computed by

initialize a0 = a
compute recursively ai = dait and

ai+1 = 1 ê Hai - aiL , for i ¥ 0,
output @a0, a1, a2, …D .

Example A.5

Consider a = 11 ê9. Then we get

Clear@aD;
alpha = 11ê9; α@0D = alpha;
a@0D = dα@0Dt
α@1D = 1êHα@0D − a@0DL;
1

To get the next term, we compute

a@1D = dα@1Dt
α@2D = 1êHα@1D − a@1DL;
4

We continue with

Elementary Number Theory 371

a@2D = dα@2Dt
α@3D = 1êHα@2D − a@2DL;
2

Power::infy : Infinite expression 1
cccc
0

encountered.

We conclude that a2 = a2 and thus that the continued fraction is given by @1, 4, 2D . We can check
this quite easily:

NormalA1 +
1

cccccccccccccc
4 + 1ccc

2

E
11
ccccccc
9

To let Mathematica compute the continued fraction of a number, first the package
NumberTheory`ContinuedFractions` has to be loaded.

<<NumberTheory`ContinuedFractions`

To find the continued fraction of a rational number, one can use the function
ContinuedFraction.

ContinuedFraction[135/159]

0 +
1

cc
1 + 1cccccccccccccccccccccccccccccccccccccc

5+ 1ccccccccccccccccccccccccccccc
1+ 1ccccccccccccccccccccc

1+ 1ccccccccccccc
1+ 1cccc2

If a is not rational, one has to include the number of terms that one wants to see.

ContinuedFraction[Pi, 11]

372 APPENDICES

3 +
1

cc
7 + 1cc

15+ 1ccc
1+ 1cc

292+ 1cc
1+ 1cccccccccccccccccccccccccccccccccccccc

1+ 1ccccccccccccccccccccccccccccc
1+ 1ccccccccccccccccccccc

2+ 1ccccccccccccc
1+ 1cccc3

To express such a continued fraction as a regular fraction, one can use the Mathematica function
Normal again.

Normal[ContinuedFraction[Pi, 11]]

4272943
ccccccccccccccccccccc
1360120

If a continued fraction is given in the form @a0, a1, …, amD , one gets the regular continued fraction
by means of the function ContinuedFractionForm. The reader should know that in
Mathematica the numbering of the indices starts with 1, 2, etc.

AA={3,7,15,1,292};
ContinuedFractionForm[AA]

3 +
1

cc
7 + 1ccccccccccccccccccccccccccccc

15+ 1cccccccccccccccccc
1+ 1cccccccccc292

To obtain the continued fraction of a number a in the form @a0, a1, …, amD , one can just appends
[[1]] to the function ContinuedFraction@a, nD .

ContinuedFraction[Pi, 11][[1]]

83, 7, 15, 1, 292, 1, 1, 1, 2, 1<
Definition A.13
The k -th convergent Ck of a continued fraction @a0, a1, …, amD , 0 § k § m , is defined by @a0, a1, …, akD .

These convergents can be quite easily evaluated with the functions Table, Normal, Take,
ContinuedFractionForm, and Length.

Elementary Number Theory 373

AA={3,7,15,1,292};
Table[Normal[ContinuedFractionForm[Take[AA,i]]],{i,1,Length
[AA]}]

93, 22
ccccccc
7

, 333
cccccccccc
106

, 355
cccccccccc
113

, 103993
cccccccccccccccccc
33102

=
Each convergent, being a rational number, can be written as pk ê qk . The values of pk and qk can
be found with the Mathematica functions Numerator and Denominator.

C5=Normal[ContinuedFraction[Pi,5]]
p5=Numerator[C5]
q5=Denominator[C5]

103993
cccccccccccccccccc
33102

103993

33102

The next theorem gives a nice relation between a continued fraction and its convergents. To be
able to shorten the proof, we shall relax our usual restriction of the integrality of the ai 's.

Theorem A.30
Let 8ai<i¥0 be a finite or infinite sequence of reals, all positive with the possible
exception of a0 .
Let Ck = pk êqk be defined by @a0, a1, …, akD as in (A.18). Then, the numbers pk and
qk satisfy the recurrence relation

p0 = a0 , p1 = a0 a1 + 1,
q0 = 1, q1 = a1 ,
pk = ak pk-1 + pk-2 , k ¥ 2,
qk = ak qk-1 + qk-2 , k ¥ 2.

Proof: The proof is by induction on k .

For k = 0, we have p0ÅÅÅÅÅÅÅq0
= C0 = a0 = a0ÅÅÅÅÅÅÅ1 , so indeed p0 = a0 and q0 = 1.

For k = 1, we have p1ÅÅÅÅÅÅÅq1
= C1 = @a0, a1D = a0 + 1ÅÅÅÅÅÅÅa1

= a0 a1+1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa1
, so indeed p1 = a0 a1 + 1 and q1 = a1 .

Assume that the theorem has been proved up to a certain value of k . So,

Ck = @a0, a1, …, akD = pkÅÅÅÅÅÅÅqk
= ak pk-1+pk-2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅak qk-1+qk-2

.

374 APPENDICES

Now substitute ak Ø ak + 1 êak+1 above. Then

Ck+1 =
def.

 @a0, a1, …, ak, ak+1D =
Def. A .12

 Aa0, a1, …, ak + 1ÅÅÅÅÅÅÅÅÅÅÅÅak+1
E

=
induct. Jak+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅak+1

N pk-1+pk-2
ÅÅÅJak+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅak+1

N qk-1+qk-2
 = ak+1Hak pk-1+pk-2L+pk-1ÅÅak+1Hak qk-1+qk-2L+qk-1

=
rec.rel. ak+1 pk+pk-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅak+1 qk+qk-1

=
rec.rel. pk+1ÅÅÅÅÅÅÅÅÅÅÅÅÅqk+1

.

Ñ

A small result, that we need later, is the inequality

(A.19)qk ¥ Fk ,

where Fk is the k -th Fibonnaci number, defined by F0 = 0, F1 = 1, and the recurrence relation
Fk = Fk-1 + Fk-2 , k ¥ 2. The inequality qk ¥ Fk follows with an easy induction argument from
q0 > 0, q1 ¥ 1, and the recurrence relation qk = ak qk-1 + qk-2 in which ak ¥ 1 (use
qk ¥ qk-1 + qk-2).

Lemma A.31
Let Ck = pk êqk be the k -th convergent of a continued fraction. Then

pk qk-1 - pk-1 qk = H-1Lk-1

Proof: The proof is again by induction on k . For k = 1 we have by Theorem A.30 that
p1 q0 - p0 q1 = Ha0 a1 + 1L µ 1 - a0 µ a1 = 1.

To prove the step from k to k + 1 we use the recurrence relation in Theorem A.30:

pk+1 qk - pk qk+1 =
Thm. A .30 Hak+1 pk + pk-1L qk - pkHak+1 qk + qk-1L =

pk-1 qk - pk qk-1 =
ind. H-1L H-1Lk-1 = H-1Lk.

Ñ

Corollary A.32
Let Ck = pk êqk be the k -th convergent of a continued fraction. Then

gcdHpk, qkL = 1,

Proof: This is an immediate consequence of pk-1 qk - pk qk-1 = H-1Lk-1 . Indeed, each number
dividing pk and qk must also divide -1.

Ñ

Elementary Number Theory 375

Theorem A.33
Let Ck = pk êqk be the k -th convergent of a finite or infinite continued fraction @a0, a1, …D . Then

(A.20)Ck - Ck-1 = H-1Lk-1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk-1 qk

, k ¥ 1,

(A.21)Ck - Ck-2 = ak H-1LkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk-2 qk
, k ¥ 2.

(A.22)C0 < C2 < C4 < …… < C5 < C3 < C1 .

For an infinite continued fraction, the strictly increasing bounded sequence of the even
convergents has the same limit as the strictly decreasing bounded sequence of the odd
convergents.

Proof: By Lemma A.31 and Theorem A.30

Ck - Ck-1 = pkÅÅÅÅÅÅÅqk
- pk-1ÅÅÅÅÅÅÅÅÅÅÅÅÅqk-1

= pk qk-1-pk-1 qkÅÅqk-1 qk
= H-1Lk-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk qk-1

Ck - Ck-2 = pkÅÅÅÅÅÅÅqk
- pk-2ÅÅÅÅÅÅÅÅÅÅÅÅÅqk-2

= pk qk-2-pk-2 qkÅÅqk-2 qk

 = Hak pk-1+pk-2L qk-2-pk-2Hak qk-1+qk-2LÅÅqk-2 qk

= ak pk-1 qk-2-ak pk-2 qk-1ÅÅÅqk-2 qk

= ak H-1LkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk-2 qk
.

This proves (A.20) and (A.21). That the even convergents form a strictly increasing sequence
follows from (A.21), which implies that C2 k - C2 k-2 > 0 (the ai 's are positive). For the same
reason, the odd convergents are strictly decreasing.

To show that each even convergent, say C2 i , is less that any odd convergent, say C2 j+1 , we first
observe that C2 k+1 - C2 k > 0 by (A.20). We combine this with the above to get

C2 i < C2 i+2 j < C2 i+2 j+1 < C2 j+1 .

Finally, by (A.19) and (A.20), for k ¥ 2

 H » CLk - Ck-1 » = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk-1 qk
§ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅFk-1 Fk

§ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHk-1L2
thus, the difference between two consecutive convergents tends to zero as k tends to infinity. This
shows that the limit of the even convergents must be the same as the limit of the odd convergents.

Ñ

Example A.6

Below we have listed the first 10 convergents of p in their natural ordering.

376 APPENDICES

<<NumberTheory`ContinuedFractions`

Do@Print@k − 1, " ",
N@Normal@ContinuedFraction@Pi, kDD, 16DD, 8k, 1, 9, 2<D

Print@π, " ", N@Pi, 16DD
Do@Print@k − 1, " ",
N@Normal@ContinuedFraction@Pi, kDD, 16DD, 8k, 10, 2, −2<D

0 3.

2 3.141509433962264

4 3.141592653011902

6 3.141592653467437

8 3.141592653581078

π 3.141592653589793

9 3.141592653591404

7 3.141592653618936

5 3.141592653921421

3 3.141592920353983

1 3.142857142857143

The next two theorems will be stated without their proofs. These can be found in any introduction
to continued fractions, e.g. [Rose84], but the arguments are too technical for our purposes.

Theorem A.34
Let Ck = pk êqk be the k -th convergent of a finite or infinite continued fraction
a = @a0, a1, …D and suppose that » a - r ê s » < » a - pk êqk » .
Then s > qk .

For instance, since 355ccccccc113 is a convergent of p, we now know that only rationals with a denominator
greater than 113 may lie closer to p than 355ccccccc113 does.

Theorem A.35
Let a œ  and let r ê s (with gcdHr, sL = 1) be a rational such that » a - r ê s » < 1 ê2 s2 .
Then r ê s is a convergent of the continued fraction expansion of a.

This theorem says that a rational number r ê s that lies at distance at most 1 ê 2 s2 from a number a
will appear as convergent in the continued fraction of that number.

Elementary Number Theory 377

A.6 Möbius Inversion Formula, the Principle of Inclusion and
Exclusion

A.6.1 Möbius Inversion Formula

Often in Discrete Mathematics a function f is defined in terms of another function, say g . The
question is, how g can be expressed in terms of f . With the theory of partially ordered sets and
the (generalized) Möbius Inversion Formula one can frequently solve this problem (see Chapter
IV in [Aign79]). In this section we shall discuss two important special cases.They both follow
from the theory, mentioned above, but it turns out that they can also be proved directly.

Often we shall need an explicit factorization of an integer n. We no longer want the strict ordering
of the prime numbers given by p1 = 2, p2 = 3, etc.. However, different subscripts will still denote
different prime numbers.

Definition A.14
Let n = ¤i=1

k HpiLei , ei > 0, 1 § i § k , where the pi 's are different primes. Then the
Möbius function m HnL (Möbius) is defined by

m(n) =
looomnooo 1 if n = 1,

0 if ei ≥ 2 for some 1 ≤ i ≤ k,H−1Lk if all ei are equal to 1.

In other words, mHnL is the multiplicative function satisfying m H1L = 1, m HpL = –1, and m HpiL = 0,
i ¥ 2, for any prime p . Mathematica has the standard function MoebiusMu@n] to evaluate m HnL .

n = 30; MoebiusMu@nD
−1

The Möbius function is defined in this peculiar way to have the following property.

Lemma A.36
Let n be a positive integer. Then⁄d»n mHdL = : 1 if n = 1,

0 if n > 1.

Proof: For n = 1 the assertion is trivial. For n > 1 we write as above n = ¤i=1
k pi

ei , ei > 0,
1 § i § k . Then k > 0 and thus⁄d»n mHdL = ⁄d » p1

e
1 p2

e
2. . . pk

e
k

m HdL = ⁄d » p1 p2. . . pk
 m HdL =

 = 1 + ⁄l=1
k ⁄1§i1<i2< . . . < il§k m Hpi1 pi2 ÿ ÿ ÿ pil L

378 APPENDICES

 = „
l=1

k
 Jk

l
N H-1Ll = H1 – H1LLk = 0.

Ñ

The reader may want to check the above lemma by means of:

DivisorSum@f_, m_D := Plus @@ Hf ê@ Divisors@mDL
m = 100; DivisorSum@MoebiusMu, mD
0

Lemma A.37
Let m and n be two positive integers such that m divides n . Then⁄d, m»d»n mHn êdL = : 1 if m = n,

0 if otherwise.

Proof: Let n = n ' m . For each d with m » d » n , we write d = d ' m . Then⁄d, m»d»n m Hn ê dL = ⁄d ' » n' m Hn ' ê d 'L , which by Lemma A.36 is 1 for n ' = 1, (i.e. m = n), and is 0
for n ' > 1.

Ñ

Theorem A.38 Möbius Inversion Formula
Let f be a function defined on  and let the function g on  be defined by

gHnL = ⁄d»n f HdL, n œ  ,

Then, for all n œ 

f HnL = ⁄d»n mHdL gHn êdL = ⁄d»n mHn êdL gHdL .

Proof: By the definition of gHnL and Lemma A.37⁄d»n m Hn êdL gHdL = ⁄d»n m Hn êdL ⁄e»d f HeL = ⁄e»n f HeL ⁄d, e»d»n m Hn êdL = f HnL.
Ñ

Elementary Number Theory 379

Corollary A.39 Multiplicative Möbius Inversion Formula
Let F be a function defined on  and let the function G on  be defined by

gHnL = ¤d»n f HdL, n œ  ,

Then for all n in 

f HnL = ¤d»n mHdL gHn êdL = ¤d»n mHn êdL gHdL .

Proof: Substitute gHnL = log HGHnLL and f HnL = log HFHnLL in the Möbius Inversion Formula.

Example A.7

From Theorem A.12 we know that Euler's Totient Function satisfies⁄d»n fHdL = n.

It follows from the Möbius Inversion Formula (Thm. A.38) that for n = ¤i=1
k HpiLei , ei > 0,

1 § i § k ,

fHnL = ‚
d»n m HdL nÅÅÅÅÅd =

= nÅÅÅÅ1 – ‚
1§ i§k

 nÅÅÅÅÅÅÅpi
+ ‚

1§ i< j§k
 nÅÅÅÅÅÅÅÅÅÅÅÅÅpi p j

– … + H–1Lk nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp1 p2ÿÿÿ pk
=

= n I1 - 1ÅÅÅÅÅÅÅpi
M I1 - 1ÅÅÅÅÅÅÅÅp2

M ÿ ÿ ÿ I1 - 1ÅÅÅÅÅÅÅpk
M.

This proves Theorem A.17 in a different way.

Theorem B.17 in Section B.3 will show a nice application of the Multiplicative Möbius Inversion
Formula.

A.6.2 The Principle of Inclusion and Exclusion

We shall conclude this section with another useful principle. To develop some intuition, consider
the integers in between 0 and p.q - 1, where p and q are different primes. We want to evaluate
f Hp.qL directly, i.e. we want to count the number of integers i , 0 § i < p.q , that are coprime with
p.q . Of course, this number is p q minus the number of integers i , 0 § i < p.q , that have a
nontrivial factor in common with p.q , i.e. that are divisible by p or q . There are q multiples of p
in the range 0, 1, …, p.q - 1 and similarly p multiples of q . However, one of the multiples of p is
also a multiple of q , namely 0 itself. We conclude that

fHp.qL = p.q – p – q + 1 = Hp - 1L Hq - 1L = p.q I1 - 1ÅÅÅÅÅp M I1 - 1ÅÅÅÅq M ,

as it should be according to Theorem A.17.

380 APPENDICES

Theorem A.40 The Principle of Inclusion and Exclusion
Let S be a finite set with N elements. Suppose that the elements in S can satisfy certain
properties PHiL , 1 § i § k .
Let NHi1, i2, … , isL be the number of elements in S that satisfy properties
PHi1L, PHi2L, … , PHisL , where 1 § i1 < i2 < ÿ ÿ ÿ < is § k , 1 § s § k , (and possibly also
some of the other properties).
Let NHØL denote the number of elements in S that satisfy none of the properties PHiL ,
1 § i § k .
Then

NHØL = N - ⁄1§i§k NHiL + ⁄1§i< j§k NHi, jL - … + H-1Lk NH1, 2, …, kL .

Proof: An element s in S that satisfies exactly r of the k properties is counted

1 – J r
1
N + J r

2
N – … + H–1Lr Jr

r
N = H1 –1Lr = 9 1

0
if r = 0,
if r ∫ 0.

times in the right hand side, just as in the left hand side.

Ñ

We leave it as an exercise to the reader to prove Theorem A.17 directly from the definition of the
Euler Totient Function and the above principle (Hint: Let pi , 1 § i § k , denote the prime numbers
that divide n , take S = 80, 1, …, n–1< , and say that element s œ S has property PHiL , 1 § i § k , if s
is divisible by pi .)

Elementary Number Theory 381

A.7 Problems

Problem A.1M

Let ¤i=1
k pi

ai be the prime factorization of an integer n. How many different divisors does n have?
For n = 1000, check your answer with the Mathematica function DivisorSigma@k, nD which computes ⁄d»n dk (use k = 0).

Problem A.2M

Compute u and v such that gcd H455, 559L = 455 u + 599 v .

Problem A.3
Prove that gcd Ham - 1, an - 1L = agcdHm,nL - 1 for every positive integer a . (Hint: reduce the pair 8m, n< ,
m ¥ n, to 8m - n, n< and then follow the simple version of Euclid's Algorithm).

Problem A.4M

a) Check that 563 is a prime number.
b) Use Euclid's algorithm to compute 11-1 (mod 563).
c) Solve 11 x ª 85 (mod 563).

Problem A.5
Find the solutions of 33 x ª 255 (mod 1689). Note that 1689 = 3×563 and use the results of Problem A.4.

Problem A.6
a) Determine f(100). Check the result with the EulerPhi function.
b) Compute the two least significant digits of 20042004 without using the computer.

Problem A.7M

Solve the system of congruence relations (hint: use Theorem A.19):
3 x ª 2 (mod 11), 7 x ª 9 (mod 13), 4 x ª 14 (mod 15).

Problem A.8M

Determine the Jacobi Symbol (7531, 3465).

Problem A.9
Use the Chinese Remainder Theorem to solve x2 ª 56 (mod 143). (Hint: first reduce it to several
systems of linear congruence relations).
How many different solutions are there modulo 143?

Problem A.10
Determine the first five terms of the continued fraction of f , the largest zero of f 2 = f + 1. Determine
also the first five convergents.
What do you conjecture about the other terms in the continued fraction of f ? Prove this conjecture (hint:
use Algorithm A.29 and the definition of f).

Problem A.11
Prove Theorem A.17 with the Principle of Inclusion and Exclusion (Thm. A.40) and the definition of
the Euler function jHnL .

382 APPENDICES

Appendix B Finite Fields
Introductory Remarks

Most readers will be familiar with the algebraic structure of the sets of rational, real, and complex
numbers. These sets have all the properties with respect to addition and multiplication that one
may want them to have. They are called fields.

In discrete mathematics, in particular in the context of cryptology and coding theory, fields of
finite cardinality play a crucial role. In this chapter, an introduction will be given to the theory of
finite fields.

The outline of this is as follows:

In Section B.1, we recapitulate the basic definitions and properties of abstract algebra and of linear
algebra. In particular, we shall show that the set of integers modulo a prime number from a finite
field. In Section B.2, a general construction of finite fields will be given. In Section B.3 a formula
is derived for the number of irreducible polynomials over a given finite field. This shows that
finite fields exist whenever the size is a power of a prime. An analysis of the structure of finite
fields will be given in Section B.4. In particular, it will be shown that a finite field of size q exists
if and only if q is a prime power. Moreover, such a field is unique, its additive group has the
structure of a vector space and its multiplicative group has a cyclic structure.

B.1 Algebra
Although we assume that the reader is already familiar with all notions discussed in this and the
next subsection. we offer this summary as a service to the reader.

B.1.1 Abstract Algebra

É Set operations

Let S be a nonempty set. An operation * defined on S is a mapping from S µ S into S. The image
of the pair Hs, tL under * is denoted by s * t . Examples of operations are the addition + in  and
the multiplication µ in . The operation * is called commutative if for all s and t in S:

S.1 s * t = t * s for all s and t in S .

An element e in S that satisfies

S.2 s * e = e * s for all s in S .

Finite Fields 383

will be called a unit-element of HS, *L .
If HS, *L has a unit-element, it will be unique. Indeed, suppose that e and e ' both satisfy S.1. Then,
by using S.2 twice one gets

e = e * e ' = e '.

Example B.1

Take S as the set of integers  and + (i.e. addition) as operation. This operation is commutative and H , +L has 0 as unit-element.

Example B.2

Let S be the set of 2 µ 2 real matrices with matrix multiplication as operation. This operation is not
commutative, e.g.

J 1 1
0 1

N.J 0 1
1 1

N == J 0 1
1 1

N.J 1 1
0 1

N
False

On the other hand, this set S does have a unit-element, namely J 1 0
0 1

N . Compute for instance:

MatrixFormAJ a b
c d

N.J 1 0
0 1

NE
J a b
c d

N
É Group

Definition B.1
Let G be a non-empty set and * an operation defined on G. Then, the pair HG, *L is called
a group, if
G1: Hg * hL * k = g * Hh * kL for all g, h, k œ G (associativity),
G2: G contains a unit element, say e ,
G3: for each g in G an element h in G exists such that g * h = h * g = e .

This element is called the inverse of g and often denoted by g-1.

Property G1 tells us that there is no need to write brackets in strings like g * h * k . The element h
in Property G3 is unique. Indeed, if h and h ' both satisfy G3, then
h = h * e = h * Hg * h 'L = Hh * gL * h ' = e * h ' = h '. In the same way one can show that for each
a, b œ G the equations

384 APPENDICES

a.x = b and x.a = b

have a unique solution in G , namely

x = a-1 b , resp. x = b.a-1 .

The reader easily checks that H, +L in Example B.1 shows a commutative group. Other well-
known examples of commutative groups are: H, +L , H \ 80<, ÿL , and H, +L .

Example B.2 does not yield a group because not all matrices have an inverse (e.g. the all-zero
matrix).

Let HG, *L be a group and H a subset of G with the property that HH , *L is also a group, then H
will be called a subgroup of G . It can be shown (see Problem B.3) that H is a subgroup of G if
and only if

h1 h2
-1 œ H , for every h1, h2 œ H .

Let m œ  ê 80< and define m  = 8m k » k œ < . Then Hm , +L is a commutative subgroup ofH, +L , as one can easily check.

Example B.3

Let m œ  ê 80< and define m
* as the reduced residue system

m
* = 80 § i < m » gcdHi, mL = 1< .

The cardinality of set m
* is j HmL by Definition A.6.

It follows from Lemma A.13 that the product of two elements in m
* can again be represented by an

element in m
* . Clearly, 1 is en element of m

* which is the unit element under this multiplication. That
each element in m

* has a multiplicative inverse follows from Theorem A.18 (note that with a œ m
* one

has that gcdHa, mL = 1 and thus the equivalence relation a x ª 1 Hmod mL has a unique solution).

We conclude that the multiplicative group Hm
* , µL is a commutative group of cardinality j HmL .

Commutative groups are also called Abelian groups. Quite often, Abelian groups are represented
in an additive way: the operation is denoted by a plus sign and the unit-element is called the zero
element (denoted with a zero). An abelian group in this notation is called an additive group.

The most commonly used additive group in this introduction will be Hm, 0L , but in Chapter 10,
we shall see another example (see Theorem 10.2).

We shall now consider the more interesting situation that two operations are defined on a set. The
first will be denoted by g + h , the second by g ÿ h .

Finite Fields 385

É Ring

Definition B.2
The triple HR, +, ÿ L is called a ring, if
R1: (R, +) is a commutative group.

Its unit-element will be denoted by 0.
R2: The operation · is associative.
R3: Distributivity holds, i.e. for all r, s, t œ R

r ÿ Hs + tL = r ÿ s + r ÿ t and Hr + sL ÿ t = r ÿ t + s ÿ t .

From now on we shall often simply write g h instead of g ÿ h . The (additive) inverse of an element
g in the group HR, +L will simply be denoted by -g , just as we write 2 g for g + g , and 3 g for
g + g + g , etc. Note that 0 really behaves like a zero-element, because for every r œ R one has
that 0 r = Hr - rL r = r2 - r2 = 0 and similarly that r 0 = 0.

Suppose that the operation · is commutative on R \ 80< . Then the ring HR, + , ÿ L is called
commutative. Examples of commutative rings are H, + , ÿ L, H, + , ÿ L , H, + , ÿ L , but alsoHm , + , ÿ L , when m ∫ 0.

Let HR, +, ÿ L be a ring and S a subset of R with the property that HS, + , ÿ L is itself a ring, then S
will be called a subring of R . Note that H6 , + , ÿ L is a subring of H2 , + , ÿ L , which in turn is a
subring of H, + , ÿ L .

É Ideal

Definition B.3
A subring HS, + , ÿ L of a ring HR, + , ÿ L is called an ideal if
I: for all r œ R and s œ S [r s œ S and s r œ S].

Let m œ  \ 80< . It is easy to check that any integer multiple of an m-tuple, is also an m-tuple. It
follows that Hm , +, ÿ L is an ideal in H, +, ÿ L .

Now suppose that HR, ÿ L has a unit-element, say e , then some elements in R may have an inverse
in R i.e. an element b such that a b = b a = e . This inverse, which is again unique, is called the
multiplicative inverse of a and will be denoted by a-1 . Clearly, the element 0 will not have a
multiplicative inverse. Indeed, suppose that r 0 = e for some r œ R. Then for each a œ R one has
that a = a e = aHr 0L = Ha rL 0 = 0, i.e. R = 0.

It follows from the above that HR, ÿ L, when R ∫ 80< , can not be a group. However, HR \ 80<, ÿ L may
very well have the structure of a group.

386 APPENDICES

É Field

Definition B.4
A triple HF, + , ÿ L is called a field, if
F1: HF, +L is a commutative group. Its unit-element is denoted by 0.
F2: HF, ÿ L is a group. The multiplicative unit-element is denoted by e.
F3: Distributivity holds.

Unlike some rings, a field can not have so-called zero-divisors, i.e. elements f and g, both
unequal to 0, whose product f g is equal to 0. Indeed, suppose that f g = 0 and f ∫ 0. Then,
g = e g = H f -1 f L g = f -1H f gL = f -1 0 = 0, so every element in F is zero.

If a subring HK, + , ÿ L of a field HF, + , ÿ L has the structure of a field, we shall call it a subfield ofHF, + , ÿ L.
Examples of fields are the rationals H, + , ÿ L , the reals H, + , ÿ L , and the complex numbersH, + , ÿ L , each one being a subfield of the next one.

We speak of a finite group HG, * L , ring HR, + , ÿ L , or field HF, + , ÿ L of order n , if G , resp. R, and
F are finite sets of cardinality n. For finite fields it is customary to denote the cardinality by q.

In this chapter, we shall study the structure of finite fields. It will turn out that finite fields of order
q only exist when q is a prime power. Moreover, these finite fields are essentially unique for a
fixed prime power q. This justifies the widely accepted notation q or GFHqL (where GF stands
for Galois Field after the Frenchman Galois) for a finite field of order q. Examples of finite fields
will follow in Section B.2.

Analogously to commutative rings, we define a commutative field HF, + , ÿ L to be a field, for
which HF \ 80 », ⋅ L is commutative. The following theorem will not be proved, but is very
important [Cohn77, p. 196].

Theorem B.1 Wedderburn
Every finite field is commutative.

É Equivalence Relations

Definition B.5
Let U be a set. Corresponding to any subset P of UxU, one can define a relation ~ on
U by

for all u, v œ U @ u ~ v ó Hu, vL œ P D.
An equivalence relation is a relation with the additional properties:
E1: for all u œ U @ u ~ u D (reflexivity),
E2: for all u, v œ U @ u ~ v ï v ~ u D (symmetry),
E3: for all u, v, w œ U @ Hu ~ v fl v ~ wL ï u ~ w D (transitivity).

Finite Fields 387

Let U be the set of straight lines in the (Euclidean) plane. Then "being parallel or equal" defines
an equivalence relation.

In Section A.3 we have seen another example. There U =  and for a fixed m, m ∫ 0, the
relation ª was defined by a ª b Hmod mL if and only if m divides a - b.

Let ~ be an equivalence relation defined on a set U . A non-empty subset W of U is called an
equivalence class, if

E1L ∀v,w∈W @ v ∼ w D,
E2L ∀w∈W ∀u∈U\W @ ¬ Hu ∼ wLD.

It follows from the properties above, that an equivalence class consists of all elements in U , that
are in relation ~ with a fixed element in U . Clearly, the various equivalence classes of U form a
partition of U . The equivalence class containing a particular element w, will be denoted by < w > .

Let HR, + , ÿ L be a commutative ring with (multiplicative) unit-element e and let HS, + , ÿ L be an
ideal in HR, + , ÿ L . We define a relation ª on R by

(B.1)a ª b Hmod SL ó Ha - b œ SL
The reader can easily verify that (B.1) defines an equivalence relation. Let R ê S (read: R modulo
S) denote the set of equivalence classes. On R êS we define two operations by:

< a > + < b > := < a + b > , a, b ∈ R,

< a > ⋅ < b > := < a b > , a, b ∈ R.

It is easy to verify that these definitions are independent of the particular choice of the elements a
and b in the equivalence class < a > and < b > . We leave it as an exercise to the reader to prove
the following theorem.

Theorem B.2
Let HR, + , ÿ L be a commutative ring and let HS, + , ÿ L be an ideal in HR, + , ÿ L . With the
above definitions HR êS, + , ÿ L is a commutative ring with unit-element.

The ring HR ê S, + , ÿ L is called a residue class ring of R modulo S. In the next section we will see
applications of Theorem B.2.

388 APPENDICES

É Cyclic Groups

Before we conclude this section, there is one more topic that needs to be discussed. Let HG, L be a
finite group and let a be an element in G \ 8e<. Let a2, a3, …, denote a a , a a a , etc. Consider the
sequence of elements e, a, a2, …, in G . Since G is finite, there exists a unique integer n such that
the elements e, a, a2, … , an-1 are all different, while an = a j for some j, 0 § j < n . It follows
that an+1 = a j+1, etc.. We shall now show that j = 0, i.e. that an = e. Suppose that j > 0. Then it
would follow from an = a j that an-1 = a j-1 . However, this contradicts our definition of n. We
conclude that the n elements ai, 0 § i < n, are all distinct and that an = e.

It is now clear that the elements e, a, a2, … , an-1 form a subgroup H in G. Such a (sub)group H
is called a cyclic subgroup of order n. We say that the element a generates H and that a has
(multiplicative) order n .

Since all elements in a cyclic group are a power of the same element, it follows that a cyclic group
is commutative.

Lemma B.3
Let HG, L be a group and a an element in G of order n. Then, for all mœ

am = e ó n » m .

Proof:

Write m = q n + r , 0 § r < n.Then, am = e, iff ar = e, i.e. iff r = 0, i.e. iff n » m.

Ñ

It follows that an element a in G has order d if and only if ad = e and adêp ∫ e for every prime
divisor p of d .

To find the multiplicative order of an integer a in m
* (so gcdHa, mL = 1), it follows from Euler's

Theorem (Thm. A.14) and Lemma B.3 that one only has to check the divisors of jHmL . The
following module does this in an efficient way. It makes use of the Mathematica functions GCD,
Divisors, EulerPhi, and PowerMod. In Mathematica 4, MultiplicativeOrder is a
standard function.

MultiplicativeOrder@a_, m_D :=

If@GCD@a, mD == 1, Divisors@ EulerPhi@mD D êê.8x_, y___< −> If@PowerMod@a, x, mD == 1, x, 8y<D D;
a = 2; m = 123456789;
n = MultiplicativeOrder@a, mD

Finite Fields 389

6855006

Lemma B.4
Let HG, ÿ L be a group and a an element in G of order n. For k > 0, element ak has order

nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅgcdHk, nL .

Proof:

Let m be the order of a. Since k ê gcdHk, nL is an integer, it follows thatHakLnêgcdHk, nL = HanLkêgcdHk, nL = ekêgcdHk, nL = e.

From Lemma B.3, we conclude that m divides n êgcdHk, nL. To prove the converse, we observe
that HakLm = e . Lemma B.3 implies that n divides k m. Hence, n êgcdHk, nL divides m.

Ñ

Continuing with the same parameters as above, we have for instance:

k = 3;
MultiplicativeOrder@ak, mD
n ê GCD@k, nD
2285002

2285002

Analogous to (B.1), one can define for every subgroup HH , ÿ L of a finite group HG, ÿ L an
equivalence relation ~ by

a ~ b iff ab-1 œ H .

The equivalence classes are of the form 8 h a » h œ H <
as one can easily check. They all have the same cardinality as H . It follows that the number of
equivalence classes is »G»ÅÅÅÅÅÅÅÅ»H » . As a consequence » H » divides » G » . This proves the following
theorem.

Theorem B.5
Let HG, ÿ L be a finite group of order n . Then every subgroup HH , ÿ L of HG, ÿ L has an
order dividing n . Also every element a, a ∫ e , in G has an order dividing n.

390 APPENDICES

B.1.2 Linear Algebra

É Vector Spaces and Subspaces

Let  denote an arbitrary field.

Definition B.6
A vector space over  is a set V of objects which can be added and multiplied by
elements of  such that the result is again in V . Besides, the following properties must be
satisfied:
1. Hu + vL + w = u + Hv + wL for all u, v, w œ V ,
2. there is a zero-element in V , i.e. an element o such that v + o = o + v = v for all v œ V ,
3. for every v e V there is an element -v in V such that v + H-vL = H-vL + v = o ,
4. u + v = v + u for all u, v œ V ,
5. aHu + vL = a u + a v for all u, v œ V and a œ  ,
6. Ha + bL v = a v + b v for all a, b œ  and v œ V ,
7. Ha bL v = aHb vL for all a, b œ F and v œ V ,
8. 1. v = v for all v œ V , where 1 denotes the unit-element of the field .

It is customary to call the elements of a vector space vectors although they need not be vectors in
the heuristic sense.

Examples of vector spaces over  are:

i) n , the set of n-tuples over 

ii) 8 f HxL œ @xD » degH f HxLL < n< , the set of polynomials over  of degree less than n .

Often, it is clear from the context over which field a vector space is defined. In that case, the field
will no longer be mentioned.

Definition B.7
A subset W of a given vector space V is called a linear subspace of V if W itself is a
vector space with the operations already defined in V.

In order to determine whether a given subset of a vector space is a subspace, it is not necessary to
check all eight vector space properties. For instance property 1 holds for all u, v, w œ W because it
is satisfied a fortiori by all elements in V . We have

Theorem B.6
A subset W of a vector space V is a linear subspace of V if and only if
(i) o œ W ,
(ii) u + v œ W for all u, v œ W ,
(iii) a u œ W for all u œ W and a œ  .

Every vector space V has two so-called trivial subspaces: 8o< and V .

Finite Fields 391

Let V be a vector space and let v1, v2, … , vn be elements of V . An expression of the type

a1 v1 + a2 v2 + … + an vn with ai œ 

is called a linear combination of v1, v2, … , vn .

The set of all linear combinations of v1, v2, … , vn is a subspace of V , which is called the subspace
spanned by v1, v2, … , vn , and will be denoted by < v1, v2, … , vn > .

É Linear Independence, Basis and Dimension

Probably the most important concept when dealing with vector spaces is the concept of linear
(in)dependency.

Definition B.8
A set of vectors v1, v2, … , vn in a vector space V is linearly independent if the equation
a1 v1 + a2 v2 + … + an vn = o has only the trivial solution a1 = 0, a2 = 0, … , an = 0. If
the set of vectors is not linearly independent it is linearly dependent.

Suppose that the set of vectors v1, v2, … , vn is linearly dependent. Then, there is a linear
combination a1 v1 + … + an vn = o where at least one ai ∫ 0. This enables us to write

vi = ai
-1 Ha1 v1 + … + ai-1 vi-1 + ai+1 vi+1 + … + an vnL . Thus, we get a different description of

linear dependency.

Theorem B.7
A set of vectors v1, v2, … , vn in a vector space V is linearly dependent if and only if at
least one of these vectors can be expressed as a linear combination of the other vectors.

This implies in particular that any set of vectors that includes the zero-vector o is linearly
dependent.

Theorem B.8
Suppose that the vectors v1, v2, … , vn are linearly independent. If we replace one of
these vectors by the sum of this vector and a linear combination of the other vectors, the
resulting set of vectors is again linearly independent.

Now let W be a subspace of a vector space V , and let 8w1, w2, … , wn< Õ W .

Definition B.9
The set 8w1, w2, … , wn< is a basis for W if
(i) this set of vectors is linearly independent,
(ii) < w1,, wn > = W , i.e. any w œ W is a linear combination of w1, w2, … , wn .

In particular, if W = V we have a basis for the vector space V itself.

For instance, if V = n the following set of vectors is a basis for V :

392 APPENDICES

 e1 = H1, 0, … , 0L, e2 = H0, 1, 0, … , 0L, … , en = H0, … , 0, 1L .

This basis is usually called the standard basis.

In the definition we considered only a finite basis. Not every vector space is spanned by a finite
number of vectors. Take for example  =  , and V is the vector space of all real-valued functions
on .

It can be proved that in every vector space a basis exists. Here we will be concerned only with
vector spaces which are spanned by a finite number of vectors. The following theorem is very
important.

Theorem B.9
Suppose one basis of a subspace W of a vector space V has n vectors, and another basis
has m vectors. Then n = m .

A basis for a vector space is not uniquely determined; however, in the case of a finite basis the
number of vectors in a basis is uniquely determined.

Definition B.10
If a vector space has a basis with n vectors we call n the dimension of this vector space.
The dimension of the zero vector space 8o< is defined to be 0.

É Inner Product, Orthogonality

Let V be a vector space over the field .

Definition B.11
An inner product on V is a bilinear map V×V Ø . It is denoted by (u,v), where u and v
are vectors in V .

Bilinear means that the following properties should hold for all u,v,w œ V and a œ .

(u+v,w) = (u,w)+(v,w) and (u,v+w) = (u,v)+(u,w)

(au,v) = a(u,v) = (u,av)

This is a very general definition of an inner product. If in particular  =  or  =  usually
additional properties are required. For instance, in real vector spaces one wants Hu, uL to be
positive definite, i.e. Hu, uL > 0 for all vectors u ∫ o . In this case, the length or norm of u is
defined by è!!!!!!!!!!!Hu, uL and often denoted by »» u »» .
If V = n then the standard inner product is defined by

(B.2)(u,v) = u1 v1 + u2 v2 + … + un vn .

Finite Fields 393

Definition B.12
(i) Two vectors u and v in V are called orthogonal if (u,v) = 0.
(ii) Two subspaces U and W of V are called orthogonal if (u,w) = 0 for all u œ U and w œ
W.

If the field  is finite then there may exist nonzero vectors u such that (u,u) = 0. For instance, in
the vector space n , where  = 80, 1< , with standard inner product, any vector u with an even
number of nonzero coordinates is orthogonal to itself.

Let U be a subspace of V. In many applications it is useful to consider the set of all vectors
orthogonal to U.

Definition B.13
The orthogonal complement of a subspace U of V, denoted by U¦ , is the set of all
vectors which are orthogonal to all vectors of U.

In formula:

U¦ = 8v œ U » Hu, vL = 0 for all u œ U< .

The following properties hold for subspaces U and W of a finite dimensional vector space V.

Theorem B.10
i) The orthogonal complement of a subspace is a subspace itself, i.e. HU¦L¦ = U
ii) dimHU¦L = dimHV L - dimHU L .
iii) If U Õ W, then W¦ Õ U¦

iv) HU › V L¦ = U¦ + V¦ .

In the case where V = n , with standard inner product, we have a simple representation of U¦ . Let8u1, u2, …, um< be a basis for U, and let A be the m µ n-matrix with rows u1 ,......, um . Then we
have:

 v œ U¦ ó AvT = oT ,

where the superscript T denotes the transpose of a vector, i.e. the column vector with the same
coordinates as v has.

Definition B.14
A basis 8v1, v2, ..., vm< of a vector space V is called self-orthogonal if all the inner
products Hvi, v jL , i ∫ j , are zero.
It is called self-orthonormal, if in addition H »» vLi »» = 0 for 1 § i § m .

394 APPENDICES

B.2 Constructions
The set of integers modulo m, m œ  \ 80<, that was introduced in Section A.3, can also be
described as the residue class ring H êm , + , ÿ L (see Theorem B.2), since Hm , + , ÿ L is an
ideal in the commutative ring H, + , ÿ L . This residue class ring is commutative and has < 1 > as
multiplicative unit-element. The ring H ê m , + , ÿ L is often denoted by Hm, + , ÿ L .

Theorem B.11
Let m be a positive integer. The ring Hm, + , ÿ L is a finite field with m elements if and
only if m is prime.

Proof:

fl Suppose that m is composite, say m = a b, a > 1, and b > 1. Then
< 0 > = < a b > = < a > < b > , while < a > ∫ < 0 > and < b > ∫ < 0 > . So the ringHm, + , ÿ L has zero-divisors and thus it can not be a field.

› Now suppose that m is prime (See also the Example B.3). We have to prove that for every
equivalence class < a >, < a > ∫ < 0 >, there exists an equivalence class < b > , such that
< a > < b > = < 1 > . For this it is sufficient to show that for any a with m I a , there exists an

element b , such that a b ª 1 Hmod mL .This however follows from Lemma A.13 or Theorem A.18.

Ñ

For convenience, one often leaves out the brackets around the representatives of equivalence
classes, therefore with a one really means < a > .

Later we shall see that for p prime, Hp, + , ÿ L is essentially the only finite field with p elements.
We shall denote it by Hp, + , ÿ L . In information and communication theory one often works with
2 , which just consists of the elements 0 and 1.

We are now going to construct finite fields q for q = pm , p prime.

Let HF, +, ÿ L be a commutative field (not necessarily finite) and let F@xD be the set of polynomials
over F , i.e. the set of expressions

f HxL = f0 + f1 x + f2 x2 + … + fn xn .

where fi œ F , 0 § 0 § n, and n œ  . The largest value of i for which fi ∫ 0 is called the degree of
f HxL .

Addition and multiplication of polynomials is defined in the natural way.

(B.3)⁄i fi xi + ⁄i gi xi = ⁄i H fi + giL xi .

(B.4)H⁄i fi xi L H ⁄ j g j x jL = ⁄k H⁄i+ j=k fi g jL xk .

Finite Fields 395

Example B.4

Let F = 2 and consider f HxL = 1 + x2 + x3 and gHxL = 1 + x + x3 . Then f HxL + gHxL = x + x2 and
f HxL gHxL = 1 + x + x2 + x3 + x4 + x5 + x6 .

In Mathematica we can perform these calculations the function PolynomialMod as follows

p = 2; f = 1 + x2 + x3; g = 1 + x + x3; PolynomialMod@f + g, pD
PolynomialMod@f∗g, pD
x + x2

1 + x + x2 + x3 + x4 + x5 + x6

It is now straightforward to verify the next theorem.

Theorem B.12
Let HF, + , ÿ L be a commutative field. Then HF@xD, + , ÿ L is a commutative ring with
unit-element.

Analogously to the concepts defined in Appendix A for the set of integers, one can define the
following notions in HF@xD, + , ÿ L: divisibility, reducibility (if a polynomial can be written as the
product of two polynomials of lower degree), irreducibility (which is the analog of primality), gcd,
lcm, the unique factorization theorem (the analog of the fundamental theorem in number theory),
Euclid's Algorithm, congruence relations, etc. We leave the details to the reader.

The following Mathematica functions can be helpful here: PolynomialMod (which also
reduces one polynomial modulo another), Factor, PolynomialGCD, PolynomialLCM.
Their usage is demonstrated in the following examples:

p = 2; f = 1 + x + x2 + x7; g = 1 + x + x3;
PolynomialMod@f, g, Modulus −> 2D
x + x2

Factor@x11 − 1, Modulus −> 3D
H2 + xL H2 + 2 x + x2 + 2 x3 + x5L H2 + x2 + 2 x3 + x4 + x5L

396 APPENDICES

PolynomialGCD@1 + x3, 1 + x2, Modulus −> 2D
1 + x

PolynomialLCM@1 + x3, 1 + x2, Modulus −> 2D
H1 + x2L H1 + x + x2L

With the package Algebra`PolynomialExtendedGCD` one can use the Mathematica function
PolynomialExtendedGCD:

<< Algebra`PolynomialExtendedGCD`

PolynomialExtendedGCD@1 + x3, 1 + x2, Modulus −> 2D
81 + x, 81, Mod@x, 2D<<

One particular consequence of Theorem B.12 is stated in the following theorem and its corollary.

Theorem B.13
Let aHxL and bHxL be two polynomials in F@xD . Then there exists polynomials uHxL and
vHxL in FHxL such that

uHxL aHxL + vHxL bHxL = gcdHaHxL, bHxLL.
Corollary B.14
Let aHxL and f HxL be two polynomials in F@xD , such that gcdHaHxL, f HxLL = 1. Then, the
congruence relation

aHxL uHxL ª 1 (mod fHxLL
has a unique solution modulo f HxL .

The solution of the above congruence relation can again be found with
PolynomialExtendedGCD. Indeed, from

PolynomialExtendedGCD@1 + x2, 1 + x + x4, Modulus −> 2D
81, 81 + x + x3, x<<

we can conclude that the congruence relation H1 + x2L uHxL ª 1 Hmod 1 + x + x4L has the solution
1 + x + x3 , as one can easily check with:

Finite Fields 397

PolynomialMod@H1 + x2L H1 + x + x3L, 1 + x + x4, Modulus −> 2D
1

Another important property of F@xD is given in the following theorem.

Theorem B.15
Any polynomial of degree n, n > 0, in F@xD has at most n zeros in F.

Proof: For n = 1 the statement is trivial. We proceed by induction on n .

Let u œ F be a zero of a polynomial f HxL of degree n over F (if no such u exists, there is nothing
to prove). Write f HxL = Hx - uL qHxL + rHxL , degreeHrHxLL < degreeHx - uL = 1. It follows that rHxL is a
constant, say r . Substitution of x = u in the relation above shows that t = 0. We conclude that
f HxL = Hx - uL qHxL .

Now qHxL has degree n - 1, thus, by the induction hypothesis, qHxL has at most n - 1 zeros in F .
Since a field can not have zero-divisors, we know that each zero of f HxL is either a divisor of x - u
or a zero of qHxL . It follows that f HxL has at most n zeros in F .

Ñ

Let sHxL be a non-zero polynomial in F@xD . It is easy to check that the set

 8 aHxL sHxL » aHxL œ F <.
forms an ideal in the ring HF@xD, +, ÿ L . We denote this ideal by HsHxLL and say that sHxL generates
the ideal HsHxLL .

Conversely, let HS, +, ÿ L be any ideal in HF@xD, +, ÿ L , with S ∫ F@xD . Further, let sHxL be a
polynomial of lowest degree in S . Take any other polynomial f HxL in S and write
f HxL = qHxL sHxL + rHxL , degreeHrHxLL < degreeHsHxLL . With properties I and R1, we then have that
also rHxL is also an element of S . From our assumption on sHxL we conclude that rHxL = 0 and thus
that sHxL divides f HxL .

It follows from the above discussion that any ideal in the ring HF@xD, +, ÿ L is generated by a single
element! A ring with this property is called a principal ideal ring.

From now on we shall restrict ourselves to finite fields. Up to now we have only seen examples of
finite fields p , with p prime.

Let f HxL œ p@xD of degree n . We shall say that f is a p-ary polynomial. Let f HxL be the ideal
generated by f HxL . From Theorem B.2 we know that Hp@xD ê H f HxLL, + , ÿ L is a commutative ring
with unit-element < 1 > . It contains pn elements, represented by the p-ary polynomials of degree
< n .

398 APPENDICES

Theorem B.16
Let Hp, + , ÿ L be a finite field with p elements. Let f HxL be a polynomial of degree n
over p . Then, the commutative ring Hp@xD ê H f HxLL, + , ÿ L is a finite field with
pn elements if and only if f HxL is irreducible in p@xD .

Proof: (Compare with Theorem B.11 and its proof.)

ï Suppose that f HxL = aHxL bHxL , with degreeHaHxLL > 0 and degreeHbHxLL > 0. Then
< aHxL > < bHxL > = < aHxL bHxL > = < f HxL > = < 0 > , while < aHxL > ∫ < 0 > and
< bHxL > ∫ < 0 > . So, Hp@xD ê H f HxLL, + , ÿ L is a ring with zero-divisors. Hence it can not be a

field.

ì On the other hand, if f HxL is irreducible, any non-zero polynomial aHxL of degree < n will
have a multiplicative inverse uHxL modulo f HxL by Corollary B.14. For this uHxL one has
< aHxL > < uHxL > = < 1 > . It follows that Hp@xD ê H f HxLL, + , ÿ L is a field. We know already that
it contains pn elements.

Ñ

Example B.5

Let q = 2. The field 2 consists of the two elements 0 and 1. Let f HxL = 1 + x + x3 . Then H2@xD ê H1 + x + x3L, + , ÿ L is a finite field with 23 = 8 elements. These eight elements can be represented by
the eight binary polynomials of degree < 3. Addition and multiplication have to be performed modulo
1 + x + x3 . For instance

 H1 + x + x2L x2 ª x2 + x3 + x4 ª Hx + 1L H 1 + x + x3L + 1 ª 1 Hmod 1 + x + x3L .

Thus, x2 is the multiplicative inverse of 1 + x + x2 in the field H2@xD ê H1 + x + x3L, + , ÿ L .

In Mathematica one can find an irreducible polynomial over p , p
prime, with the function IrreduciblePolynomial for which the package
Algebra`FiniteFields` needs to be loaded first.

<< Algebra`FiniteFields`

p = 3; deg = 11; IrreduciblePolynomial@x, p, degD
1 + x9 + 2 x10 + x11

In Mathematica the field defined by the p-ary polynomial f HxL of degree can be described by
GF@p, 8 f0, f1, … , fm<D . Addition, subtraction, multiplication, and division can be performed as
follows:

Finite Fields 399

f32 = GF@2, 81, 0, 1, 0, 0, 1<D;
f32@81, 0, 1, 0, 0<D + f32@80, 1, 1, 0, 1<D
f32@81, 0, 1, 0, 0<D − f32@80, 1, 1, 0, 1<D
f32@81, 0, 1, 0, 0<D ∗f32@80, 1, 1, 0, 1<D
f32@81, 0, 1, 0, 0<Dê f32@80, 1, 1, 0, 1<D
81, 1, 0, 0, 1<281, 1, 0, 0, 1<280, 0, 1, 0, 0<281, 0, 1, 1, 0<2

or as follows:

f32 = GF@2, 81, 0, 1, 0, 0, 1<D;
x = f32@80, 1, 0, 0, 0<D;
x5

x6 + x10

x16 ∗x16

x25 êx22
81, 0, 1, 0, 0<281, 1, 0, 1, 1<280, 1, 0, 0, 0<280, 0, 0, 1, 0<2

Two questions that arise naturally at this moment are:

1) Does an irreducible, p-ary polynomial f HxL of degree n exist for every prime number p and
every integer n? If so, then we have proved the existence of finite fields q for all prime powers q

2) Do other finite fields exist?

The first question gets an affirmative answer in the next section. The second question gets a
negative answer in Section B.4.

400 APPENDICES

B.3 The Number of Irreducible Polynomials over GF(q)
In this section we want to count the number of irreducible polynomials over a finite field q .
Clearly, if f HxL is irreducible, then so is a f HxL , for a œ q \ 80< . Also the ideals (f(x)) and (a f(x))
are the same, when a œ q \ 80< , therefore, we shall only count so-called monic polynomials of
degree n , i.e. polynomials, whose leading coefficient (the coefficient of xn) is equal to 1.

Definition B.15
IqHnL = # q-ary, irreducible, monic polynomials of degree n ,

IHnL =I2HnL = # binary, irreducible polynomials of degree n .

To develop some intuition for our counting problem, we start with a brute force attack for the
special case that q = 2. We shall try therefore to determine IHnL .

There are only two binary polynomials of degree 1, namely

x and x + 1.

By definition, both are irreducible. Thus, IH1L = 2.

By taking all possible products of x and x + 1, one finds three reducible polynomials of degree 2:

x ÿ x = x2 , x ÿ Hx + 1L = x2 + x, and Hx + 1L2 = x2 + x .

Since there are 22 = 4 binary polynomials of degree 2, it follows that there exists only one
irreducible

polynomial of degree 2, namely

x2 + x + 1.

So, IH2L = 1.

Each 3-rd degree, reducible, binary polynomial can be written as a product of the lower degree
irreducible polynomials x, x + 1 and x2 + x + 1. In this way, one gets xiHx + 1L3-i, 0 § i § 3,Hx2 + x + 1L x , and Hx2 + x + 1L Hx + 1L .Since there are 23 = 8 binary polynomials of degree 3, we
conclude that there are

8 - 4 - 2=2 irreducible, binary polynomials of degree 3. So, IH3L = 2.

The two binary, irreducible polynomials of degree 3 are:

x3 + x + 1 and x3 + x2 + 1.

At this moment it is important to note that for the counting arguments above, we do not have to
know the actual form of the lower degree, irreducible polynomials. We only have to know how
many there are of a

certain degree.

Finite Fields 401

Indeed, to find IH4L we can count the number of reducible, 4-th degree polynomials as follows:
number

− product of four 1 − st degree polynomials 5
− product of one 2 − nd degree polynomial and

two 1 − st degree polynomials
1 x3 = 3

− product of two 2 − nd degree polynomials 1
− product of one 3 − rd degree polynomial and

one 1 − st degree polynomial
2 x2 = 4

total = 13

It follows that there are 24 - 13 = 3 irreducible, binary polynomials of degree 4. So, IH4L = 3.

With some additional work one can find these three irreducible, 4-th degree polynomials:

x4 + x + 1, x4 + x3 + 1, and x4 + x3 + x2 + x + 1.

Continuing in this way one finds with the necessary perseverance and precision that IH5L = 6 and
IH6L = 9, etc.

The above method does not lead to a proof that IHnL > 0 for all n œ  , let alone to an
approximation of the actual value of IHnL .

We start all over again.

Let piHxL, i = 1, 2, …, be an enumeration of all q-ary, irreducible, monic polynomials, such that
the degrees form a non-decreasing sequence. So, the first IqH1L polynomials have degree 1, the
next IqH2L polynomials have degree 2, etc..

Any q-ary, monic polynomial f HxL has a unique factorization of the form¤i=1
¶ HpiHxLLei , ei œ , i ¥ 1.

where only finitely many ei 's are unequal to zero. It follows that f HxL can uniquely be represented
by the sequence He1, e2, … L . Let ai be the degree of pi (x) and let n be the degree of f HxL . Then

e1 a1 + e2 a2 + … = n.

So, the polynomial f HxL is in a unique correspondence with the termHza1Le1 Hza2Le2 …

in the expressionH1 + za1 + z2 a1 + … L H1 + za2 + z2 a2 + … L …
i.e. in ¤i=1

¶ H1 - zaiL-1 .

402 APPENDICES

Since there are exactly qn q-ary, monic polynomials of degree n , the above proves that¤i=1
¶ H1 - zaiL-1 = 1 + q z + q2 z2 + … = H1 - q zL-1 ,

or equivalently¤i=1
¶ H1 - zaiL = H1 - q zL .

From our particular ordering we know that ai = k for exactly IqHkLvalues of i , thus, the above
relation can be rewritten as:‰

i=1

¶ H1 - zkLIqHkL = H1 - q zL .

Now take the logarithm of both sides and differentiate the outcome. One obtains:

qH1 - q zL-1 = ‚
k=1

¶
k IqHkL zk-1H1 - zkL-1 .

Multiplying both sides with z yields⁄n=1
¶ qn zn = q zH1 - q zL-1 = ‚

k=1

¶
k IqHzL zkH1 - zkL-1 =

= ⁄k=1
¶ k IqHkL ⁄l=1

¶ zkl = ⁄n=1
¶ ⁄k»n k IqHkL zn .

Comparing the coefficients of z on both sides gives the relation

(B.5)⁄k»n k IqHkL = qn .

Theorem B.17
IqHnL = 1ÅÅÅÅn ⁄d»n mHdL qnêd .

Proof: Apply the Möbius Inversion Formula (Thm. A.38) to (B.5).

Ñ

We can evaluate IqHnL quite easily in Mathematica (see DivisorSum and MoebiusMu)

DivisorSum@f_, n_D := Plus @@ Hf ê@ Divisors@nDL
q = 2; m = 4; DSM@d_D = MoebiusMu@dD∗ qmêd;HDivisorSum@DSM, mDLê m
3

It is now quite easy to determine the asymptotic behavior of IqHnL and to prove that its value is
always positive.

Finite Fields 403

First of all, IqH1L = q , since all monic, polynomials of degree one are irreducible by definition. It
follows from (B.5) that

q + n IqHnL § ⁄k»n k IqHkL = qn .

Hence

(B.6)IqHnL § qn-qÅÅÅÅÅÅÅÅÅÅÅÅÅn .

On the other hand (B.5) and (B.6) imply that

qn = ⁄k»n k IqHkL § n IqHnL + ⁄k=0
dnê2t qk < n IqHnL + q1+nê2 .

Together with (B.6) this proves the first statement in the following theorem.

Theorem B.18
For all n the number IqHnL of monic, irreducible, n-th degree polynomials in q@xD
satisfies

qn
ÅÅÅÅÅÅÅn I1 - 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqnê2-1 M § IqHnL § qn

ÅÅÅÅÅÅÅn I1 - 1ÅÅÅÅÅÅÅÅÅÅÅÅqn-1 M ,
and

IqHnL > 0.

Proof: That IqHnL > 0 follows directly for n ¥ 3. For n = 1 and 2, this follows from Theorem

B.17, but also directly from IqH1L = q > 0 and IqH2L = q2 - Jq + 1
2

N = Jq
2
N > 0. as one can easily

prove directly.

Ñ

Corollary B.19
IqHnL º qn

ÅÅÅÅÅÅÅn .

The reader may want to verify this approximation for some particular cases with the following
Mathematica input:

q = 2; m = 100; DSM@d_D = MoebiusMu@dD∗ qmêd;
N@HDivisorSum@DSM, mDLê qm, 40D
0.999999999999999111821579473501948675013

It follows from this corollary that a randomly selected, monic polynomial of degree n is
irreducible with a probability of about 1 ên . With the Mathematica function Factor one can
easily check if a particular polynomial is irreducible or not.

404 APPENDICES

Factor@1 + x + x2 + x3 + x4, Modulus −> 2D
1 + x + x2 + x3 + x4

B.4 The Structure of Finite Fields

B.4.1 The Cyclic Structure of a Finite Field

It follows from Theorem B.11, Theorem B.16 and Theorem B.18, that finite fields Hq, +, ÿ L exist
for all prime powers q . If q is a prime number q can be represented by the integers modulo p . If
q is a power of a prime, say q = pm , q can be represented by p-ary polynomials modulo an
irreducible polynomial of degree m. We state the above as a theorem.

Theorem B.20
Let p be a prime and q = pm , m ¥ 1.Then a finite field of order q exists.

Later in this section we shall see that every finite field can be described by the construction of
Theorem B.16. But first we shall prove an extremely nice property of finite fields, namely that
their multiplicative group is cyclic! By Theorem B.5, we know that every non-zero element in q

has a multiplicative order dividing q - 1.

Definition B.16
An element w in a finite field of order q is called an n-th root of unity if wn = e .
An element w is called a primitive n-th root of unity if it has order n .
If w is a primitive Hq - 1L-st root of unity, then w is called a primitive element or
generator of q .

Theorem B.21
Let Hq, +, ÿ Lbe a finite field and let d be an integer dividing q - 1. Then q contains
exactly fHdL elements of order d .
In particular, Hq \ 80<, ÿ L is a cyclic group of order q - 1, which contains fHq - 1L
primitive elements.

Proof: By Theorem B.5, every non-zero element in q has a multiplicative order d , which divides
q - 1. On the other hand, suppose that q contains an element of order d , d » Hq - 1L , say w . Then
all d distinct powers of w are a zero of xd - e . It follows from Theorem B.15 that every d -th root
of unity in q is a power of w . It follows from Lemma B.4 that under the assumption that q

contains an element of order d, q will contain exactly fHdL elements of order d , namely wi , with
GCD@i, dD = 1.

Finite Fields 405

Let aHdL be the number of elements of order d in q . Then the above implies that

i) aHdL = 0 or aHdL = fHdL
and also that

ii) ⁄d»Hq-1L aHdL = q - 1.

On the other hand, Theorem A.12 states that ⁄d»Hq-1L fHdL = q - 1. So, we conclude that
aHdL = fHdL for all d » Hq - 1L .

In particular, aHq - 1L = fHq - 1Lwhich means that q contains fHq - 1L primitive elements and that
q \ 80< is a cyclic group.

Ñ

To check if a particular element w in GFHqL has order d , d » Hq - 1L , it suffices to check that
wd = 1 and that wdêp ∫ 1for every prime divisor of d . See also the discussion below Lemma B.3.

To find a primitive element in p , p prime, the Mathematica function PowerList can be used.
It finds a primitive element in p and generates all its powers (starting with the 0-th). The second
element in this list is the primitive element itself. First, the package Algebra`FiniteFields`
needs to be loaded.

<< Algebra`FiniteFields`

p = 17; PrimeQ@pD
PowerList@GF@p, 1DD@@2DD
True

83<
Problems B.6 and B.10 indicate an efficient way (due to Gauss) to find a primitive element in a
finite field.

Corollary B.22
Every element w in q satisfies

wqn
= w , n ¥ 1.

Proof: For w = 0 the statement is trivially true. By Theorem B.5 or Theorem B.21, any w, w ∫ 0,
has an order dividing q - 1. So, it satisfies wq-1 = e and thus also wq = w . Since wqn

= HwqLqn-1 ,
the proof now follows with an easy induction argument.

406 APPENDICES

Ñ

Corollary B.23
Let q be a finite field. Then

xq - x = ¤wœq Hx - wL .

Proof: Every element w in q is a zero of xq - x by Corollary B.22, therefore, the right hand side
above divides the left hand side. Equality now follows because the expressions on both sides are
monic and of the same degree.

Ñ

Corollary B.23 will be used later as a tool to check if a certain element in fields containing q is
actually in q itself.

Example B.6

Consider the finite field H2@xD ê H f HxLL, + , ÿ L with f HxL = x4 + x3 + x2 + x + 1. It contains 24 = 16 elements,
which can be represented by binary polynomials of degree <4. The element x, representing the class
< x > , is not a primitive element, since x5 ª Hx + 1L f HxL + 1 ª 1 Hmod f HxLL . So x has order 5 instead of
15. With Mathematica this can be checked as follows:

f = 1 + x + x2 + x3 + x4;
PolynomialMod@x2, f, Modulus −> 2D
PolynomialMod@x3, f, Modulus −> 2D
PolynomialMod@x4, f, Modulus −> 2D
PolynomialMod@x5, f, Modulus −> 2D
x2

x3

1 + x + x2 + x3

1

The element x + 1 is primitive element (its order is 15), as one can see in Table B.1. It is also easy
to verify. Indeed, x + 1 has an order dividing 15. So, one only has to check that Hx + 1L raised to
the power 3 or 5 does not reduce to 1 modulo f HxL .

Finite Fields 407

f := 1 + x + x2 + x3 + x4;
PolynomialMod@Hx + 1L3, f, Modulus −> 2D
PolynomialMod@Hx + 1L5, f, Modulus −> 2D
PolynomialMod@Hx + 1L15, f, Modulus −> 2D
1 + x + x2 + x3

1 + x2 + x3

1

 Multiplication is easy to perform with Table B.1. For instanceH1 + x + x2 + x3L Hx + x3L ª Hx + 1L3 Hx + 1L14 ªHx + 1L17 ª Hx + 1L2 ª x2 + 1 Hmod f HxLL .

The element x + 1 is a zero of the irreducible polynomial y4 + y3 + 1 sinceHx + 1L4 + Hx + 1L3 + 1 ª 0 Hmod f HxLL .

f := 1 + x + x2 + x3 + x4;
PolynomialMod@Hx + 1L4 + Hx + 1L3 + 1, f, Modulus −> 2D
0

Therefore, in H2@xD ê HgHxL, + , ÿ L with gHxL = x4 + x3 + 1, the element x is a primitive element. See
Table B.2.

1 x x2 x3

0 0 0 0 0H1 + xL0 1 0 0 0H1 + xL1 1 1 0 0H1 + xL2 1 0 1 0H1 + xL3 1 1 1 1H1 + xL4 0 1 1 1H1 + xL5 1 0 1 1H1 + xL6 0 0 0 1H1 + xL7 1 1 1 0H1 + xL8 1 0 0 1H1 + xL9 0 0 1 0H1 + xL10 0 0 1 1

408 APPENDICES

H1 + xL11 1 1 0 1H1 + xL12 0 1 0 0H1 + xL13 0 1 1 0H1 + xL14 0 1 0 1

Table B.1 H2@xD ê H1 + x + x2 + x3 + x4L, + , ÿ L with primitive element 1 + x .

1 x x2 x3

0 0 0 0 0
1 1 0 0 0
x 0 1 0 0
x2 0 0 1 0

x3 0 0 0 1

x4 1 0 0 1

x5 1 1 0 1

x6 1 1 1 1
x7 1 1 1 0

x8 0 1 1 1

x9 1 0 1 0

x10 0 1 0 1

x11 1 0 1 1

x12 1 1 0 0

x13 0 1 1 0

x14 0 0 1 1

Table B .2 H2@xD ê H1 + x3 + x4L, +, ÿL with primitive element x

B.4.2 The Cardinality of a Finite Field

Consider the elements e, 2 e, 3 e, etc. in q . Since q is finite, not all these elements can be
different. Also, if i e = j e , with i < j , also H j - iL e = 0.These observations justify the following
definition.

Definition B.17
The characteristic of a finite field q with unit-element e , is the smallest positive integer
c such that c e = 0.

Theorem B.24
The characteristic of a finite field q is a prime.

Finite Fields 409

Proof: Suppose that the characteristic c can be written as c ' c ' ' , where c ' > 1 and c ' ' > 1. Then
0 = c e = Hc ' eL Hc ' ' eL , while c ' ∫ 0 and c ' ' e ∫ 0. So, c ' e and c ' ' e are zero-divisors. This
contradicts the assumption that q is a field.

Ñ

Definition B.18
Two finite fields Hq, +, µL and Hq', ∆, ≈L are said to be isomorphic, if there exists a
one-to-one mapping y from q onto q' (so q = q '), such that for all w1 and w2 in q :
i) yHw1 + w2L = yHw1L ∆ yHw2L ,
ii) yHw1 µ w2L = yHw1L ≈ yHw2L .

In words, two fields are isomorphic if after renaming the elements in them they behave exactly the
same with respect to the operations addition and multiplication.

Lemma B.25
Let Hq, +, ÿ L be a finite field with characteristic p . Then Hq +, ÿ L contains a subfield
which is isomorphic to Hp, +, L , i.e. to the integers modulo p .

Proof: The subset 8i e » i = 0, 1, …, p - 1< forms a subfield of Hq, +, ÿ L which is isomorphic toHq, +, ÿ L under the isomorphism yHi eL = i , 0 § i < p .

Ñ

In view of the lemma above, we can and shall from now on identify the subfield in Hq, +, ÿ L of
order p with the field Hp, +, ÿ L . The subfield p is often called the ground field of q .
Conversely, the field q is called an extension field of p .

Theorem B.26
Let q be a finite field of characteristic p . Then q can be viewed as a vectorspace over
p and q = pm for some integer m , m ¥ 1.

Proof: Let u1, u2, …, um be a basis of q over p , i.e. every element w in q can be written as

w = a1 u1 + a2 u2 + … + am um ,

where ai œ p , 1 § i § m , and there is no dependency of the field elements ui over p . It follows
that this representation is unique and thus q = H » Lq » = pm .

Ñ

At this moment we know that finite fields q can only exist for prime powers q . Theorem B .20
states that q indeed does exist for prime powers q . That all finite fields with the same value of q
are isomorphic to each other will be proved later.

410 APPENDICES

B.4.3 Some Calculus Rules over Finite Fields; Conjugates

Theorem B.27
Let w be an element in a finite field q of characteristic p . Then in q@xDHx - wLp = xp - wp .

Proof: Let 0 < i < p . Then gcdHp, i!L = 1, soJ p
i
N ª pHp-1L …Hp-i+1LÅÅÅi! ª 0 Hmod pL

and with the binomial theorem, we have that Hx - wLp = xp + H-wLp = xp - wp.

where the last equality is obvious for odd p , while for p = 2 this equality follows from +1 = -1.

Ñ

To demonstrate this we use again the Mathematica function PolynomialMod.

Clear@a, xD;
p = 2; m = 3;
PolynomialMod@Hx − aLpm, pD
a8 + x8

Corollary B.28
Let ai , 1 § i § k , be elements in a finite field q of characteristic p . Then for every nH⁄i=1

k aiLpn
= ‚

i=1

k
ai

pn
.

a =.; b =.; c =.
p = 3; m = 3; PolynomialMod@Ha + b + cLpm, pD
a27 + b27 + c27

Proof: Use an induction argument on k and on n . Start with Ha1 + a2Lp = a1
p + a2

p .

Ñ

Finite Fields 411

The following theorem often gives a powerful criterion to determine, whether an element in a field
q of characteristic p , actually lies in the ground field p .

Theorem B.29
Let q be a finite field of characteristic p . So, q = pm , m > 0, and q contains p as a
subfield. Let w be an element in q . Then

w œ p ó wp = w .

Proof: The p elements in the subfield p satisfy xp = x by Corollary B.23. On the other hand, the
polynomial xp - x has at most p zeros in q by Theorem B.15.

Ñ

Let w be an element in q , a field of characteristic p , but w not in p . Then wp ∫ w by the
previous theorem. Still there is relation between wp and w.

Theorem B.30
Let w be an element in a finite field q of characteristic p . Let f HxL be a polynomial over
p , such that f HwL = 0. Then for all n œ 

f HwpnL = 0.

Proof: Write f HxL = ⁄i=0
m fi xi , Since fi œ p , o § i § m , one has by Corollary B.22 and Theorem

B.29 that

0 = H f HwLLpn
= H⁄i=0

m fi wiLpn
= ‚

i=0

m H fi wiLpn
=

= ‚
i=0

m
fi

pn
 wi pn

= ‚
i=0

m
fi HwpnLi = f HwpnL.

Ñ

In  and  a similar thing happens. If f HxL is a polynomial over the reals and f HwL = 0, w œ  ,
then also f HwêêêL = 0, where wêêê is the complex conjugate of w.

The following theorem states that the number of different elements wpi , i = 0, 1, …, only depends
on p and the (multiplicative) order of w.

Theorem B.31
Let w be an element of order n in a finite field of characteristic p . Let m be the
multiplicative order of p modulo n , i.e. pm ª 1 Hmod nL , with m > 0. Then, the m
elements

w, wp, wp2 , … , wpm-1

are all different and wpm
= w .

The m elements wpi , 0 § i § m - 1, are called the conjugates of w.

412 APPENDICES

Proof: By Lemma B.3 (twice), one has that wpi
= wp j if and only if pi ª p j Hmod nL , and thus if

and only if pi- j ª 1 Hmod nL , i.e. if and only if i ª j Hmod mL .

Ñ

Example B.7

Consider Hq@xD ê H f HxLL, + , ÿ L with f HxL = x4 + x3 + x2 + x + 1 (see Example B.6). The field element x has
order 5. The multiplicative order of 2 modulo 5 is 4. So, x, x2, x22 , and x23 are all different, while x24 = x.
Indeed, x4 ª x3 + x2 + x + 1 Hmod f HxLL , x8 ª x3 Hmod f HxLL , while x16 ª x Hmod f HxLL , as can be checked
with the Mathematica functions Table and PolynomialMod:

p = 2; m = 4; f = 1 + x + x2 + x3 + x4;

TableA PolynomialModAxpi, f, Modulus −> pE, 8i, 0, m< E êê
TableForm

x
x2

1 + x + x2 + x3

x3

x

B.4.4 Minimal Polynomials, Primitive Polynomials

Theorem B.32
Let q be a finite field of characteristic p . Take n » Hq - 1L and let w be an element of
order n in q . Further, let m be the multiplicative order of p modulo n .
Then the polynomial

(B.7)mHxL = ‰
i=0

m-1 Ix - wpiM
has its coefficients in p and it is irreducible over p . It is called the minimal
polynomial of w over p

Proof: Clearly, mHxL is a polynomial over q . Write mHxL = ⁄i=0
m mi xi . We have to show that the

coefficients mi are in the ground field p . To this end we shall use the powerful criterion of
Theorem B.29.

It follows from Theorem B.27 and Corollary B.22 (with n = 1) that

Finite Fields 413

HmHxLLp = ‰
i=0

m-1 Ix - wpiMp
= ‰

i=0

m-1 Ixp - wpi+1M =

=‰
i=1

m Ixp - wpiM = ‰
i=0

m-1 Ixp - wpiM = mHxpL .

Hence ⁄i=0
m mi xp i = mHxpL = HmHxLLp = H⁄i=0

m mi xiLp = ⁄i=0
m mi

p xp i .

Comparing the coefficients of xp i on both hands yields mi = mi
p . It follows from Theorem B.29

that mi œ p , 0 § i § m . So, mHxL is a polynomial in p@xD .

From Theorem B.30 and Theorem B.31 it follows that no polynomial in p@xD of degree less than
m can have w as a zero. So, mHxL is irreducible over p .

Ñ

Corollary B.33
Let w be an element of order n in a finite field of characteristic p . Let mHxL be defined
as in Theorem B.32 and let f HxL be any p-ary polynomial that has w as zero.
Then f HxL is divisible by mHxL .

Proof: Combine Theorem B.30, Theorem B.31, and Theorem B.32.

Ñ

So, mHxL , as defined in Theorem B.32, is the monic polynomial of lowest degree over p , having w
as a zero. That is the reason why mHxL is called the minimal polynomial of w over p . It has w and
all the conjugates of w as zeros. The degree of the minimal polynomial mHxL of an element w is
often simply called the degree of w over p .

If mHxL is the minimal polynomial of a primitive element, then mHxL is called a primitive
polynomial. Mathematica finds a primitive polynomial of degree m over p in the variable z by
means of the FieldIrreducible function.

<< Algebra`FiniteFields`

m = 6; p = 2;
FieldIrreducible@GF@p, mD, zD
1 + z5 + z6

Let f HxL be a primitive polynomial over p of degree m . A table (like Table B.2) in which each
non-zero element in the finite field Hp@xD ê H f HxL, +, ÿ L is represented as a polynomial in x of
degree < m and as a power of x is called a log table of that field. These tables are very practical to
have when extensive calculations need to be done in the field.

414 APPENDICES

These logarithm tables can be made quite easily by Mathematica. Depending on whether one
wants Mathematica to select a suitable primitive polynomial or enter one's own, one can type :

p = 2;
TableForm@PowerList@GF@p, 4DDD
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1
1 1 0 1
1 1 1 1
1 1 1 0
0 1 1 1
1 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0
0 1 1 0
0 0 1 1

or

p = 2;
TableForm@PowerList@GF@p, 81, 1, 0, 0, 1<DDD
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
1 1 0 1
1 0 1 0
0 1 0 1
1 1 1 0
0 1 1 1
1 1 1 1
1 0 1 1
1 0 0 1

To determine xi in a field GF@p, mD or, conversely, to find i such that xi is equal to a particular
element in GF@p, mD , one can use the Mathematica functions FieldExp@GF@p, mD, iD , resp.
FieldInd[GF@p, mD @8list<D] (essential for this calculation is the assignment True to PowerListQ).

Finite Fields 415

PowerListQ@GF@2, 81, 1, 0, 0, 1<DD = True;
f16 = GF@2, 81, 1, 0, 0, 1<D;
FieldExp@f16, 5D
FieldInd@f16@80, 1, 1, 0<DD
80, 1, 1, 0<2
5

There are several ways to find the minimal polynomial of a field element. We shall demonstrate
two methods.

Method 1:

Let a be a zero of the binary primitive polynomial x5 + x2 + 1. So, a has order 31 and the
conjugates of a3 are a6 , a12 , a24 , and a17 . Then the minimal polynomial of a3 can be found
by:

f := 1 + a2 + a5;
PolynomialMod@Hx − a3L Hx − a6L Hx − a12L Hx − a24L Hx − a17L, f, Modulus −> 2D
1 + x2 + x3 + x4 + x5

Method 2:

Let a be a zero of the binary primitive polynomial x5 + x2 + 1. To find the minimal
polynomial of b = a3 , we first compute 1,b , b2 , b3 , b4 , and b5 , using a5 + a2 + 1 = 0.

f := 1 + a2 + a5; b = a3;
u0 = PolynomialMod@1, f, Modulus −> 2D
u1 = PolynomialMod@b, f, Modulus −> 2D
u2 = PolynomialMod@b2, f, Modulus −> 2D
u3 = PolynomialMod@b3, f, Modulus −> 2D
u4 = PolynomialMod@b4, f, Modulus −> 2D
u5 = PolynomialMod@b5, f, Modulus −> 2D
1

a3

416 APPENDICES

a + a3

a + a3 + a4

a + a2 + a3

1 + a + a2 + a3 + a4

We use the Mathematica function CoefficientList to convert the coefficients into
vectors. Note that we use the Join function to pad the output with zeros to make all vectors
of length 5.

M = 8Join@CoefficientList@u0, aD, 80, 0, 0, 0<D,
Join@CoefficientList@u1, aD, 80<D,
Join@CoefficientList@u2, aD, 80<D,
CoefficientList@u3, aD, Join@CoefficientList@u4, aD, 80<D,
CoefficientList@u5, aD<;

MatrixForm@
MD

i
k
jjjjjjjjjjjjjjjjjjjj
1 0 0 0 0
0 0 0 1 0
0 1 0 1 0
0 1 0 1 1
0 1 1 1 0
1 1 1 1 1

y
{
zzzzzzzzzzzzzzzzzzzz

We need to find a linear dependency between 1, b, b2, b3, b4 , and b5 , say ⁄i=0
5 gi bi =0 with

gi Œ GFH2L . To this end we use the Mathematica functions NullSpace and Transpose.
This leads to the minimal polynomial gHxL of b.

NullSpace@Transpose@MD, Modulus −> 2D
881, 0, 1, 1, 1, 1<<

We conclude that b has minimal polynomial 1 + x2 + x3 + x4 + x5 .

Finite Fields 417

B.4.5 Further Properties

Let mHxL be the minimal polynomial of an element w of degree m . It follows from Corollary B.33
that the pm expressions ⁄i=0

m-1 fi wi , fi œ p , 0 § i § m , take on pm different values. For these
expressions addition and multiplication can be performed just as in (B.3) and (B.4), where the
relation mHwL = 0 has to be used to reduce the degree of the outcome to a value less than m .It is
quite easy to check that one obtains a field, that is isomorphic to (q@xDêHmHxLL, +, ⋅ L .

If mHxL is primitive, one has that the elements 1, x, … , xHpm-2L are all different modulo mHxL , just
as the elements 1, w, … , wHpm-2L are all different. See for instance, Example B.6, where the
primitive element w = 1 + x has minimal polynomial mHyL = 1 + y3 + y4 . Table B.2 shows the
field (q@xDêHmHxLL, +, L .

Lemma B.34
Let mHxL be an irreducible polynomial of degree m over a field with p elements and let n
be a multiple of m .
Then mHxL divides xpn

- x .

Proof: Consider the residue class ring Hp@xD ê HmHxLL, +, ÿ L . This ring is a field with q = pm

elements by Theorem B.16. The field element < x > is a zero of mHxL , since
mH < x >L = < mHxL > = < 0 > . It follows from Corollary B.22 (n = 1L that < x > is a zero of
xpn

- x , n ¥ 1. By Corollary B.33 we conclude that mHxL divides xpn
- x .

Ñ

Also the converse of Lemma B.34 is true.

Theorem B.35
The polynomial xpn

- x is the product of all irreducible, monic, p-ary polynomials of a
degree dividing n .

Proof: Let m » n . There are IpHmL irreducible polynomials of degree m over p , all of which divide
xpn

- x by Lemma B.34. The sum of their degrees is m IpHmL . Since⁄m»n m IpHmL = pn = degreeHxpn
- xL by (B.5), it follows that the irreducible, monic, p-ary

polynomials of degree m , m » n , form the complete factorization of xpn
- x .

Ñ

Example B.8

p = 2, n = 4,

I2H1L = 2, I2H2L = 1, I2H4L = 3 (see Section B.3).

x16 - x = xHx + 1L Hx2 + x + 1L Hx4 + x3 + x2 + x + 1L Hx4 + x3 + 1L Hx4 + x + 1L

418 APPENDICES

p = 2; m = 4;
Factor@xpm − x, Modulus −> pD
x H1 + xL H1 + x + x2L H1 + x + x4L H1 + x3 + x4L H1 + x + x2 + x3 + x4L

Corollary B.36
Let f HxL be an irreducible polynomial in p@xD of degree m . Let m » n .Then, a finite field
with pn elements contains m roots of f HxL .

Proof: By Theorem B.35, f HxL divides xq - x , q = pn . On the other hand, xq - x = ¤wœq Hx - wL
by Corollary B.23.

Ñ

Theorem B.37
Let p be a prime and m œ  . Then, the finite field pn is unique, up to isomorphism.

Proof: Write q = pm and let q be any finite field of order q .Let f HxL be any irreducible, p-ary
polynomial of degree m . We shall show that q is isomorphic to p@xD ê H f HxLL . By Corollary B.36,
q contains m zeros of f HxL . Let w be one of these m zeros. Since f HxL is irreducible in p@xD ,
there is no lower degree polynomial over p with w as zero. This implies that the m elements
1, w, … , wm-1 are independent over p , thus, any element in q can be written as ⁄i=o

m-1 fi wi ,
fi œ p , 0 § i § m - 1.

The isomorphism between q and p@xD ê H f HxLL is now obvious.

Ñ

Corollary B.38
pm is (isomorphic to) a subfield of pn if and only if m divides n .

Proof: The following assertions are all equivalent;

i) m » n ,
ii) Hpm - 1L divides Hpn - 1L ,
iii) Hxpm

- xL divides Hxpn
- xL ,

iv) ¤wœpm Hx - wL divides ¤wœpn Hx - wL ,
v) pm is a subfield of pn .

Ñ

Finite Fields 419

Example B.9

It follows from Corollary B.38 that 24 contains 22 as a subfield, while it does not contain 23 as a
subfield. From Table B.2 one can easily verify that the elements 0, 1, x5 and x10 form a subfield of
cardinality 22 in H2@xD ê Hx4 + x3 + 1L, + , ÿ L .

B.4.6 Cyclotomic Polynomials

Consider a finite field q of characteristic p . So, q = pm for some m > 0. By Theorem B.5, every
element in q has an order dividing q - 1. Let n » Hq - 1L and let w be a primitive n-th root of
unity in q . For instance, w = aHq-1Lên , where a is a primitive element in q . Let d » n and put
h = wnêd . Then h is a primitive d -root of unity. Clearly, the d elements 1, h, … , hd-1 are a zero of
xd - 1. By Theorem B.15, no other element in q is a zero of xd - 1.

Definition B.19
Let q = pm , p prime. For any d » Hq - 1L the p-ary cyclotomic polynomial QHdLHxL is
defined by

QHdLHxL = ¤xœGFHqL of order q Hx - xL .

If x had order d , d » Hq - 1L , then by Lemma B.4 also x p has order d . So, with x a zero of QHdLHxL
also its conjugates are zeros of QHdLHxL . It follows from Theorem B.32 that QHdLHxL is the product of
some minimal polynomials over p and thus that QHdLHxL is a polynomial over p .

By Theorem B.21, QHdLHxL has degree fHdL . Since w is a primitive n-th root of unity, it follows that

(B.8)
xn - 1 = ¤i=1

n-1 Hx - wiL = ¤xœq, x has order n Hx - xL =

= ¤d»n ¤xœq, x has order d Hx - xL = ¤d»n QHdLHxL .

Theorem B.39

QHnLHxL = ‰
d»n Hxd - 1LmHnêdL .

Proof: Apply the Multiplicative Möbius Inversion Formula (Corollary A.39) to (B.8).

Ñ

Example B.10

QH36LHxL = ‰
d»36

Hxd - 1Lm H36êdL =
Ix36-1M Ix6-1M

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx18-1L Hx12-1L = x18+1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx6+1 = x12 - x6 + 1.

This can also be evaluated with Mathematica:

DivisorProduct@f_, n_D := Times @@ Hf ê@ Divisors@nDL

420 APPENDICES

n = 36; Clear@f, xD;
f@d_D := Hxd − 1LMoebiusMu@nêdD
DivisorProduct@f, nD êê Simplify

1 − x6 + x12

or directly with the Mathematica function Cyclotomic:

Cyclotomic@36, xD
1 − x6 + x12

If p = 2, one can write QH36LHxL = x12 + x6 + 1.

The expression for QHnLHxL in Theorem B.39 seems to be independent of the finite field. This is not
really true, because in the evaluation of that expression the characteristic does play a role.

All the irreducible factors of QHdLHxL have the same degree, because all the zeros of QHdLHxL have
the same order d . Indeed, by Theorem B.32, each irreducible factor of QHdLHxL has as degree the
multiplicative order of p modulo d .

In particular we have the following theorem.

Theorem B.40
The number of primitive, p-ary, monic polynomials of degree m is

fHpm-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm .

Proof: A primitive, p-ary polynomial of degree m divides QHpm-1LHxL and this cyclotomic
polynomial has only factors of this type. The degree of QHpm-1LHxL is fHpm - 1L .

Ñ

Example B.11: p = 2

x16 - x = xHx15 - 1L = x QH1LHxLQH3LHxLQH5LHxLQH15LHxL
where

QH1LHxL = x+1,
QH3LHxL = x2 + x + 1,
QH5LHxL = x4 + x3 + x2 + x + 1,
QH15LHxL = (x4 + x + 1L Hx4 + x3 + 1L .

Indeed, there are f H15L ê4 = 2 primitive polynomials of degree 4. See also Example B.6.

Finite Fields 421

A way to find all primitive polynomials of degree m over p is to factor QHpm-1LHxL .

Example B.12

p = 2; m = 6; n = pm − 1;
Factor@Cyclotomic@n, xD, Modulus → pD
H1 + x + x6L H1 + x + x3 + x4 + x6L H1 + x5 + x6LH1 + x + x2 + x5 + x6L H1 + x2 + x3 + x5 + x6L H1 + x + x4 + x5 + x6L

Remark:

In this chapter we have viewed q , q = pm and p prime, as an extension field of p , however all
the concepts defined in this chapter can also be generalized to q@xD . So, one may want to count
the number of irreducible polynomials of degree n in q@xD or discuss primitive polynomials over
q , etc. We leave it to the reader to verify that all the theorems in this appendix can indeed be
generalized from p and pm to q resp. qm simply by replacing p by q and q by qm.

Example B.13

The field 16 can be viewed as the residue class ring 4@xD ê Hx2 + x + a L , where a is an element in 4
satisfying a 2 + a + 1.

422 APPENDICES

B.5 Problems

Problem B.1
Prove that H 8 x œ  » x2 œ , x ∫ 0<, ÿ L is a group.

Problem B.2
Prove that the elements of a reduced residue class system modulo m form a multiplicative group.

Problem B.3
Let HG, *L be a group and H a non-empty subset of G . Then HH , *L is a subgroup of HG, *L if and only if
h1 * h2

-1 œ H for every h1, h2 œ H .

Problem B.4
Prove that there are essentially two different groups of order 4 (hint: each element has an order dividing 4).

Problem B.5
Find an element of order 12 in the group H13

* , µ L . Which powers of this element have order 12. Answer
the same question for elements of order 6, 4, 3, 2 and 1.

Problem B.6
Let HG, ÿL denote a commutative group. Let a and b be two elements in G of order m resp. n .
a) Assume that gcdHm, nL = 1. Show that a ÿ b has order m µ n .
b) Assume no longer that gcdHm, nL = 1. Determine integers s and t such that s » m , t » n , gcdHs, tL = 1, and
lcm@s, tD = lcm@m, nD .
c) Construct an element in G of order lcm@m, nD .

Problem B.7M

Find the multiplicative inverse of 1 + x2 + x3 Hmod 1 + x2 + x5L over GFH2L (hint1: Thm. B.13; hint2).

Problem B.8M

How many binary, irreducible polynomials (hint1: Def.B.15; hint2: Thm. B.17) are there of degree 7 and
8?

Problem B.9
Make a log table of GFH2L@xD ê H1 + x2 + x5L (hint: x is a primitive element). Use this table to express
x10 + x20 as power of x .

Problem B.10
Let a œ GFHqL have order m , m < q - 1. What is the probability that a random non-zero element b œ GFHqL
has an order n dividing m? Give an upperbound on this probability.
Construct an element of order lcm@m, nD (hint: see Problem B.6).
(In fact, this method leads to an efficient to find a primitive element in a finite field. It is due to Gauss.)

Problem B.11
Which subfields are contained in GF(625)? Let a be a primitive element in GF(625). Which powers of a
constitute the various subfields of GF(625)? (Hint: Cor. B.38.)

Problem B.12
Prove that over GF(2): Hx + yL2k+1 = x2k+1 + x2k .y + x.y2k

+ y2k+1.
(Hint: use Cor. B.28.)

Finite Fields 423

Problem B.13
How many binary, primitive polynomials are there of degree 10? (Hint: Thm. B.40.)

Problem B.14
Determine the binary, cyclotomic polynomial QH21LHxL (hint: Thm. B.39). What is the degree of the binary
factors of QH21LHxL .

Problem B.15
What is the degree of a binary, minimal polynomial of a primitive 17-th root of unity (hint: Thm. B.32)?
How many such polynomials do exist? Prove that each is its own reciprocal. Determine these polynomials
explicitly.

Problem B.16
The trace mapping Tr is defined on GFHpL , p prime, by

TrHxL = x + xp + xp2
+ … + xpm-1.

a) Prove that TrHxL œ GFHpL , for every x œ GFHpmL (hint: Thm. B.29). So, Tr is a mapping from GFHpmL to
GFHpL .
b) Prove that Tr is a linear mapping (hint: Cor. B.28).
c) Prove that Tr takes on every value in GFHpL equally often (hint: use Theorem B.15).
d) Replace p by q in this problem, where q is a prime power, and verify the same statements.

424 APPENDICES

Appendix C Relevant Famous Mathematicians
Euclid of Alexandria

Born: about 365 BC in Alexandria, Egypt

Died: about 300 BC

Euclid is the most prominent mathematician of antiquity best known for his treatise on geometry
The Elements. The long lasting nature of The Elements must make Euclid the leading mathematics
teacher of all time.

Little is known of Euclid's life except that he taught at Alexandria in Egypt. The picture of Euclid
above is from the 18th Century and must be regarded as entirely fanciful.

Euclid's most famous work is his treatise on geometry The Elements. The book was a compilation
of geometrical knowledge that became the centre of mathematical teaching for 2000 years.
Probably no results in The Elements were first proved by Euclid but the organization of the
material and its exposition are certainly due to him.

The Elements begins with definitions and axioms, including the famous fifth, or parallel, postulate
that one and only one line can be drawn through a point parallel to a given line. Euclid's decision
to make this an axiom led to Euclidean geometry. It was not until the 19th century that this axiom
was dropped and non-euclidean geometries were studied.

Zeno of Sidon, about 250 years after Euclid wrote: ,,The Elements, seems to have been the first to
show that Euclid's propositions were not deduced from the axioms alone, and Euclid does make
other subtle assumptions.”

The Elements is divided into 13 books. Books 1-6, plane geometry: books 7-9, number theory:
book 10, 's theory of irrational numbers: books 11-13, solid geometry. The book ends with a

Relevant Famous Mathematicians 425

discussion of the properties of the five regular polyhedra and a proof that there are precisely five.
Euclid's Elements is remarkable for the clarity with which the theorems are stated and proved. The
standard of rigour was to become a goal for the inventors of the calculus centuries later.

More than one thousand editions of The Elements have been published since it was first printed in
1482.

Euclid also wrote Data (with 94 propositions), On Divisions, Optics and Phaenomena which have
survived. His other books Surface Loci, Porisms, Conics, Book of Fallacies and Elements of Music
have all been lost.

Euclid may not have been a first class mathematician but the long lasting nature ofThe Elements
must make him the leading mathematics teacher of antiquity.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Euclid.html

Leonhard Euler

Born: 15 April 1707 in Basel, Switzerland

Died: 18 Sept 1783 in St Petersburg, Russia

Euler made large bounds in modern analytic geometry and trigonometry. He made decisive and
formative contributions to geometry, calculus and number theory.

Euler's father wanted his son to follow him into the church and sent him to the University of Basel
to prepare for the ministry. However geometry soon became his favorite subject. Euler obtained
his father's consent to change to mathematics after Johann Bernoulli had used his persuasion.
Johann Bernoulli became his teacher.

He joined the St. Petersburg Academy of Science in 1727, two years after it was founded by
Catherine I the wife of Peter the Great. Euler served as a medical lieutenant in the Russian navy
from 1727 to 1730. In St Petersburg he lived with Daniel Bernoulli. He became professor of
physics at the academy in 1730 and professor of mathematics in 1733. He married and left Johann
Bernoulli's house in 1733. He had 13 children altogether of which 5 survived their infancy. He
claimed that he made some of his greatest discoveries while holding a baby on his arm with other
children playing round his feet.

426 APPENDICES

The publication of many articles and his book Mechanica (1736-37), which extensively presented
Newtonian dynamics in the form of mathematical analysis for the first time, started Euler on the
way to major mathematical work.

In 1741, at the invitation of Frederick the Great, Euler joined the Berlin Academy of Science,
where he remained for 25 years. Even while in Berlin he received part of his salary from Russia
and never got on well with Frederick. During his time in Berlin, he wrote over 200 articles, three
books on mathematical analysis, and a popular scientific publication Letters to a Princess of
Germany (3 vols., 1768-72).

In 1766 Euler returned to Russia. He had been arguing with Frederick the Great over academic
freedom and Frederick was greatly angered at his departure. Euler lost the sight of his right eye at
the age of 31 and soon after his return to St Petersburg he became almost entirely blind after a
cataract operation. Because of his remarkable memory was able to continue with his work on
optics, algebra, and lunar motion. Amazingly after 1765 (when Euler was 58) he produced almost
half his works despite being totally blind.

After his death in 1783 the St. Petersburg Academy continued to publish Euler's unpublished work
for nearly 50 more years.

Euler made large bounds in modern analytic geometry and trigonometry. He made decisive and
formative contributions to geometry, calculus and number theory. In number theory he did much
work in correspondence with Goldbach. He integrated Leibniz's differential calculus and Newton's
method of fluxions into mathematical analysis. In number theory he stated the prime number
theorem and the law of biquadratic reciprocity.

He was the most prolific writer of mathematics of all time. His complete works contains 886
books and papers.

We owe to him the notations f(x) (1734), e for the base of natural logs (1727), i for the square root
of -1 (1777), p for pi, ⁄for summation (1755) etc. He also introduced beta and gamma functions,
integrating factors for differential equations etc.

He studied continuum mechanics, lunar theory with Clairaut, the three body problem, elasticity,

Relevant Famous Mathematicians 427

acoustics, the wave theory of light, hydraulics, music etc. He laid the foundation of analytical
mechanics, especially in his Theory of the Motions of Rigid Bodies (1765).

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Euler.html

Pierre de Fermat

Born: 17 Aug 1601 in Beaumont-de-Lomagne, France

Died: 12 Jan 1665 in Castres, France

Pierre Fermat's father was a wealthy leather merchant and second consul of Beaumont-de-
Lomagne. Pierre had a brother and two sisters and was almost certainly brought up in the town of
his birth. Although there is little evidence concerning his school education it must have been at the
local Franciscan monastery.

He attended the University of Toulouse before moving to Bordeau in the second half of the 1620s.
In Bordeau he began his first serious mathematical researches and in 1629 he gave a copy of his
restoration of Apollonius's Plane loci to one of the mathematicians there. Certainly in Bordeau he
was in contact with Beaugrand and during this time he produced important work on maxima and
minima which he gave to Etienne d'Espagnet who clearly shared mathematical interests with
Fermat.

From Bordeau Fermat went to Orléans where he studied law at the University. He received a
degree in civil law and he purchased the offices of councillor at the parliament in Toulouse. So by
1631 Fermat was a lawyer and government official in Toulouse and because of the office he now
held he became entitled to change his name from Pierre Fermat to Pierre de Fermat.

For the remainder of his life he lived in Toulouse but as well as working there he also worked in
his home town of Beaumont-de-Lomagne and a nearby town of Castres. From his appointment on
14 May 1631 Fermat worked in the lower chamber of the parliament but on 16 January 1638 he
was appointed to a higher chamber, then in 1652 he was promoted to the highest level at the
criminal court. Still further promotions seem to indicate a fairly meteoric rise through the
profession but promotion was done mostly on seniority and the plague struck the region in the
early 1650s meaning that many of the older men died. Fermat himself was struck down by the

428 APPENDICES

plague and in 1653 his death was wrongly reported, then corrected:

I informed you earlier of the death of Fermat. He is alive, and we no longer fear for his health,
even though we had counted him among the dead a short time ago.

The following report, made to Colbert the leading figure in France at the time, has a ring of truth:

Fermat, a man of great erudition, has contact with men of learning everywhere. But he is rather
preoccupied, he does not report cases well and is confused.

Of course Fermat was preoccupied with mathematics. He kept his mathematical friendship with
Beaugrand after he moved to Toulouse but there he gained a new mathematical friend in Carcavi.
Fermat met Carcavi in a professional capacity since both were councillors in Toulouse but they
both shared a love of mathematics and Fermat told Carcavi about his mathematical discoveries.

In 1636 Carcavi went to Paris as royal librarian and made contact with Mersenne and his group.
Mersenne's interest was aroused by Carcavi's descriptions of Fermat's discoveries on falling
bodies, and he wrote to Fermat. Fermat replied on 26 April 1636 and, in addition to telling
Mersenne about errors which he believed that Galileo had made in his description of free fall, he
also told Mersenne about his work on spirals and his restoration of Apollonius's Plane loci. His
work on spirals had been motivated by considering the path of free falling bodies and he had used
methods generalised from Archimedes' work On spirals to compute areas under the spirals. In
addition Fermat wrote:

I have also found many sorts of analyses for diverse problems, numerical as well as geometrical,
for the solution of which Viète's analysis could not have sufficed. I will share all of this with you
whenever you wish and do so without any ambition, from which I am more exempt and more
distant than any man in the world.

It is somewhat ironical that this initial contact with Fermat and the scientific community came
through his study of free fall since Fermat had little interest in physical applications of
mathematics. Even with his results on free fall he was much more interested in proving
geometrical theorems than in their relation to the real world. This first letter did however contain
two problems on maxima which Fermat asked Mersenne to pass on to the Paris mathematicians
and this was to be the typical style of Fermat's letters, he would challenge others to find results
which he had already obtained.

Relevant Famous Mathematicians 429

Roberval and Mersenne found that Fermat's problems in this first, and subsequent, letters were
extremely difficult and usually not soluble using current techniques. They asked him to divulge
his methods and Fermat sent Method for determining Maxima and Minima and Tangents to
Curved Lines, his restored text of Apollonius's Plane loci and his algebraic approach to geometry
Introduction to Plane and Solid Loci to the Paris mathematicians.

His reputation as one of the leading mathematicians in the world came quickly but attempts to get
his work published failed mainly because Fermat never really wanted to put his work into a
polished form. However some of his methods were published, for example Hérigone added a
supplement containing Fermat's methods of maxima and minima to his major work Cursus
mathematicus. The widening correspondence between Fermat and other mathematicians did not
find universal praise. Frenicle de Bessy became annoyed at Fermat's problems which to him were
impossible. He wrote angrily to Fermat but although Fermat gave more details in his reply,
Frenicle de Bessy felt that Fermat was almost teasing him.

However Fermat soon became engaged in a controversy with a more major mathematician than
Frenicle de Bessy. Having been sent a copy of Descartes' La Dioptrique by Beaugrand, Fermat
paid it little attention since he was in the middle of a correspondence with Roberval and Etienne
Pascal over methods of integration and using them to find centres of gravity. Mersenne asked him
to give an opinion on La Dioptrique which Fermat did describing it as

groping about in the shadows.

He claimed that Descartes had not correctly deduced his law of refraction since it was inherent in
his assumptions. To say that Descartes was not pleased is an understatement. Descartes soon
found reason to feel even more angry since he viewed Fermat's work on maxima, minima and
tangents as reducing the importance of his own work La Géométrie which Descartes was most
proud of and which he sought to show that his Discours de la méthod alone could give.

Descartes attacked Fermat's method of maxima, minima and tangents. Roberval and Etienne
Pascal became involved in the argument and eventually so did Desargues who Descartes asked to
act as a referee. Fermat proved correct and eventually Descartes admitted this writing:-

… seeing the last method that you use for finding tangents to curved lines, I can reply to it in no
other way than to say that it is very good and that, if you had explained it in this manner at the
outset, I would have not contradicted it at all.

430 APPENDICES

Did this end the matter and increase Fermat's standing? Not at all since Descartes tried to damage
Fermat's reputation. For example, although he wrote to Fermat praising his work on determining
the tangent to a cycloid (which is indeed correct), Descartes wrote to Mersenne claiming that it
was incorrect and saying that Fermat was inadequate as a mathematician and a thinker. Descartes
was important and respected and thus was able to severely damage Fermat's reputation.

The period from 1643 to 1654 was one when Fermat was out of touch with his scientific
colleagues in Paris. There are a number of reasons for this. Firstly pressure of work kept him from
devoting so much time to mathematics. Secondly the Fronde, a civil war in France, took place and
from 1648 Toulouse was greatly affected. Finally there was the plague of 1651 which must have
had great consequences both on life in Toulouse and of course its near fatal consequences on
Fermat himself. However it was during this time that Fermat worked on number theory.

Fermat is best remembered for this work in number theory, in particular for Fermat's Last
Theorem. This theorem states that xn + yn = zn has no non-zero integer solutions for x, y and z
when n > 2. Fermat wrote, in the margin of Bachet's translation of Diophantus's Arithmetica

I have discovered a truly remarkable proof which this margin is too small to contain.

These marginal notes only became known after Fermat's son Samuel published an edition of
Bachet's translation of Diophantus's Arithmetica with his father's notes in 1670.

It is now believed that Fermat's 'proof' was wrong although it is impossible to be completely
certain. The truth of Fermat's assertion was proved in June 1993 by the British mathematician
Andrew Wiles, but Wiles withdrew the claim to have a proof when problems emerged later in
1993. In November 1994 Wiles again claimed to have a correct proof which has now been
accepted.

Unsuccessful attempts to prove the theorem over a 300 year period led to the discovery of
commutative ring theory and a wealth of other mathematical discoveries.

Fermat's correspondence with the Paris mathematicians restarted in 1654 when Blaise Pascal,
Etienne Pascal's son, wrote to him to ask for confirmation about his ideas on probability. Blaise
Pascal knew of Fermat through his father, who had died three years before, and was well aware of
Fermat's outstanding mathematical abilities. Their short correspondence set up the theory of
probability and from this they are now regarded as joint founders of the subject. Fermat however,

Relevant Famous Mathematicians 431

feeling his isolation and still wanting to adopt his old style of challenging mathematicians, tried to
change the topic from probability to number theory. Pascal was not interested but Fermat, not
realising this, wrote to Carcavi saying:

I am delighted to have had opinions conforming to those of M Pascal, for I have infinite esteem
for his genius... the two of you may undertake that publication, of which I consent to your being
the masters, you may clarify or supplement whatever seems too concise and relieve me of a
burden that my duties prevent me from taking on.

However Pascal was certainly not going to edit Fermat's work and after this flash of desire to have
his work published Fermat again gave up the idea. He went further than ever with his challenge
problems however:

Two mathematical problems posed as insoluble to French, English, Dutch and all mathematicians
of Europe by Monsieur de Fermat, Councillor of the King in the Parliament of Toulouse.

His problems did not prompt too much interest as most mathematicians seemed to think that
number theory was not an important topic. The second of the two problems, namely to find all
solutions of N x2 + 1 = y2 for N not a square, was however solved by Wallis and Brouncker and
they developed continued fractions in their solution. Brouncker produced rational solutions which
led to arguments. Frenicle de Bessy was perhaps the only mathematician at that time who was
really interested in number theory but he did not have sufficient mathematical talents to allow him
to make a significant contribution.

Fermat posed further problems, namely that the sum of two cubes cannot be a cube (a special case
of Fermat's Last Theorem which may indicate that by this time Fermat realised that his proof of
the general result was incorrect), that there are exactly two integer solutions of x2 + 4 = y and
that the equation x2 + 2 = y3 has only one integer solution. He posed problems directly to the
English. Everyone failed to see that Fermat had been hoping his specific problems would lead
them to discover, as he had done, deeper theoretical results.

Around this time one of Descartes' students was collecting his correspondence for publication and
he turned to Fermat for help with the Fermat - Descartes correspondence. This led Fermat to look
again at the arguments he had used 20 years before and he looked again at his objections to
Descartes' optics. In particular he had been unhappy with Descartes' description of refraction of
light and he now settled on a principle which did in fact yield the sine law of refraction that Snell
and Descartes had proposed. However Fermat had now deduced it from a fundamental property
that he proposed, namely that light always follows the shortest possible path. Fermat's principle,

432 APPENDICES

now one of the most basic properties of optics, did not find favour with mathematicians at the
time.

In 1656 Fermat had started a correspondence with Huygens. This grew out of Huygens interest in
probability and the correspondence was soon manipulated by Fermat onto topics of number
theory. This topic did not interest Huygens but Fermat tried hard and in New Account of
Discoveries in the Science of Numbers sent to Huygens via Carcavi in 1659, he revealed more of
his methods than he had done to others.

Fermat described his method of infinite descent and gave an example on how it could be used to
prove that every number of the form 4 k + 1 could be written as the sum of two squares. For
suppose some number of the form 4 k + 1 could not be written as the sum of two squares. Then
there is a smaller number of the form 4 k + 1 which cannot be written as the sum of two squares.
Continuing the argument will lead to a contradiction. What Fermat failed to explain in this letter is
how the smaller number is constructed from the larger. One assumes that Fermat did know how to
make this step but again his failure to disclose the method made mathematicians lose interest. It
was not until Euler took up these problems that the missing steps were filled in.

Fermat is described as

Secretive and taciturn, he did not like to talk about himself and was loath to reveal too much
about his thinking. ... His thought, however original or novel, operated within a range of
possibilities limited by that [1600-1650] time and that [France] place.

Carl B Boyer says:

Recognition of the significance of Fermat's work in analysis was tardy, in part because he
adhered to the system of mathematical symbols devised by Francois Viète, notations that
Descartes's Géométrie had rendered largely obsolete. The handicap imposed by the awkward
notations operated less severely in Fermat's favourite field of study, the theory of numbers, but
here, unfortunately, he found no correspondent to share his enthusiasm.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Fermat.html

Relevant Famous Mathematicians 433

Evariste Galois

Born: 25 Oct 1811 in Bourg La Reine (near Paris), France

Died: 31 May 1832 in Paris, France

Famous for his contributions to group theory, Evariste Galois produced a method of determining
when a general equation could be solved by radicals.

Galois' father Nicholas Gabriel Galois and his mother Adelaide Marie Demante were both
intelligent and well educated in philosophy, classical literature and religion. However there is no
sign of any mathematical ability in any of Galois' family. His mother served as Galois' sole teacher
until he was 12 years old. She taught him Greek, Latin and religion where she imparted her own
scepticism to her son. Galois' father was an important man in the community and in 1815 he was
elected mayor of Bourg-la-Reine.

The starting point of the historical events which were to play a major role in Galois' life is surely
the storming of the Bastille on 14 July 1789. From this point the monarchy of Louis 16th was in
major difficulties as the majority of Frenchmen composed their differences and united behind an
attempt to destroy the privileged establishment of the church and the state.

Despite attempts at compromise Louis 16th was tried after attempting to flee the country.
Following the execution of the King on 21 January 1793 there followed a reign of terror with
many political trials. By the end of 1793 there were 4595 political prisoners held in Paris.
However France began to have better times as their armies, under the command of Napoleon
Bonaparte, won victory after victory.

Napoleon became 1st Consul in 1800 and then Emperor in 1804. The French armies continued a
conquest of Europe while Napoleon's power became more and more secure. In 1811 Napoleon
was at the height of his power. By 1815 Napoleon's rule was over. The failed Russian campaign of
1812 was followed by defeats, the Allies entering Paris on 31 March 1814. Napoleon abdicated on
6 April and Louis XVIII was installed as King by the Allies. The year 1815 saw the famous one
hundred days. Napoleon entered Paris on March 20, was defeated at Waterloo on 18 June and
abdicated for the second time on 22 June. Louis XVIII was reinstated as King but died in

434 APPENDICES

September 1824, Charles X becoming the new King.

Galois was by this time at school. He had enrolled at the Lycée of Louis-le-Grand as a boarder in
the 4 th class on 6 October 1823. Even during his first term there was a minor rebellion and 40
pupils were expelled from the school. Galois was not involved and during 1824-25 his school
record is good and he received several prizes. However in 1826 Galois was asked to repeat the
year because his work in rhetoric was not up to the required standard.

February 1827 was a turning point in Galois' life. He enrolled in his first mathematics class, the
class of M. Vernier. He quickly became absorbed in mathematics and his director of studies wrote:

It is the passion for mathematics which dominates him, I think it would be best for him if his
parents would allow him to study nothing but this, he is wasting his time here and does nothing
but torment his teachers and overwhelm himself with punishments.

Galois' school reports began to describe him as singular, bizarre, original and closed . It is
interesting that perhaps the most original mathematician who ever lived should be criticised for
being original. M. Vernier reported however

Intelligence, marked progress but not enough method.

In 1828 Galois took the examination of the Ecole Polytechnique but failed. It was the leading
University of Paris and Galois must have wished to enter it for academic reasons. However, he
also wished to enter the this school because of the strong political movements that existed among
its students, since Galois followed his parents example in being an ardent republican.

Back at Louis-le-Grand, Galois enrolled in the mathematics class of Louis Richard. However he
worked more and more on his own researches and less and less on his schoolwork. He studied
Legendre's Géométrie and the treatises of Lagrange. As Richard was to report

This student works only in the highest realms of mathematics.

In April 1829 Galois had his first mathematics paper published on continued fractions in the
Annales de mathématiques . On 25 May and 1 June he submitted articles on the algebraic solution
of equations to the Académie des Sciences. Cauchy was appointed as referee of Galois' paper.

Relevant Famous Mathematicians 435

Tragedy was to strike Galois for on 2 July 1829 his father committed suicide. The priest of Bourg-
la-Reine forged Mayor Galois' name on malicious forged epigrams directed at Galois' own
relatives. Galois' father was a good natured man and the scandal that ensued was more than he
could stand. He hanged himself in his Paris apartment only a few steps from Louis-le-Grand
where his son was studying. Galois was deeply affected by his father's death and it greatly
influenced the direction his life was to take.

A few weeks after his father's death, Galois presented himself for examination for entry to the
Ecole Polytechnique for the second time. For the second time he failed, perhaps partly because he
took it under the worst possible circumstances so soon after his father's death, partly because he
was never good at communicating his deep mathematical ideas. Galois therefore resigned himself
to enter the Ecole Normale, which was an annex to Louis-le-Grand, and to do so he had to take his
Baccalaureate examinations, something he could have avoided by entering the Ecole
Polytechnique.

He passed, receiving his degree on 29 December 1829. His examiner in mathematics reported:

This pupil is sometimes obscure in expressing his ideas, but he is intelligent and shows a
remarkable spirit of research.

His literature examiner reported:

This is the only student who has answered me poorly, he knows absolutely nothing. I was told that
this student has an extraordinary capacity for mathematics. This astonishes me greatly, for, after
his examination, I believed him to have but little intelligence.

Galois sent Cauchy further work on the theory of equations, but then learned from Bulletin de
Férussac of a posthumous article by Abel which overlapped with a part of his work. Galois then
took Cauchy's advice and submitted a new article On the condition that an equation be soluble by
radicals in February 1830. The paper was sent to Fourier, the secretary of the Academy, to be
considered for the Grand Prize in mathematics. Fourier died in April 1830 and Galois' paper was
never subsequently found and so never considered for the prize.

Galois, after reading Abel and Jacobi's work, worked on the theory of elliptic functions and
abelian integrals. With support from Jacques Sturm, he published three papers in Bulletin de

436 APPENDICES

Férussac in April 1830. However, he learnt in June that the prize of the Academy would be
awarded the Prize jointly to Abel (posthumously) and to Jacobi, his own work never having been
considered.

July 1830 saw a revolution. Charles 10th fled France. There was rioting in the streets of Paris and
the director of École Normale, M. Guigniault, locked the students in to avoid them taking part.
Galois tried to scale the wall to join the rioting but failed. In December 1830 M. Guigniault wrote
newspaper articles attacking the students and Galois wrote a reply in the Gazette des Écoles ,
attacking M. Guigniault for his actions in locking the students into the school. For this letter
Galois was expelled and he joined the Artillery of the National Guard, a Republican branch of the
militia. On 31 December 1830 the Artillery of the National Guard was abolished by Royal Decree
since the new King Louis-Phillipe felt it was a threat to the throne.

Two minor publications, an abstract in Annales de Gergonne (December 1830) and a letter on the
teaching of science in the Gazette des Écoles (2 January 1831) were the last publications during
his life. In January 1831 Galois attempted to return to mathematics. He organised some
mathematics classes in higher algebra which attracted 40 students to the first meeting but after that
the numbers quickly fell off. Galois was invited by Poisson to submit a third version of his
memoir on equation to the Academy and he did so on 17 January.

On 18 April Sophie Germain wrote a letter to her friend the mathematician Libri which describes
Galois' situation.

… the death of M. Fourier, have been too much for this student Galois who, in spite of his
impertinence, showed signs of a clever disposition. All this has done so much that he has been
expelled form École Normale. He is without money... They say he will go completely mad. I fear
this is true.

Late in 1830 19 officers from the Artillery of the National Guard were arrested and charged with
conspiracy to overthrow the government. They were acquitted and on 9 May 1831 200 republicans
gathered for a dinner to celebrate the acquittal. During the dinner Galois raised his glass and with
an open dagger in his hand appeared to make threats against the King, Louis-Phillipe. After the
dinner Galois was arrested and held in Sainte-Pélagie prison. At his trial on 15 June his defence
lawyer claimed that Galois had said

To Louis-Phillipe, if he betrays

Relevant Famous Mathematicians 437

but the last words had been drowned by the noise. Galois, rather surprisingly since he essentially
repeated the threat from the dock, was acquitted.

The 14th July was Bastille Day and Galois was arrested again. He was wearing the uniform of the
Artillery of the National Guard, which was illegal. He was also carrying a loaded rifle, several
pistols and a dagger. Galois was sent back to Sainte-Pélagie prison. While in prison he received a
rejection of his memoir. Poisson had reported that:-

His argument is neither sufficiently clear nor sufficiently developed to allow us to judge its rigour.

He did, however, encourage Galois to publish a more complete account of his work. While in
Sainte-Pélagie prison Galois attempted to commit suicide by stabbing himself with a dagger but
the other prisoners prevented him. While drunk in prison he poured out his soul

Do you know what I lack my friend? I confide it only to you: it is someone whom I can love and
love only in spirit. I have lost my father and no one has ever replaced him, do you hear me...?

In March 1832 a cholera epidemic swept Paris and prisoners, including Galois, were transferred to
the pension Sieur Faultrier. There he apparently fell in love with Stephanie-Felice du Motel, the
daughter of the resident physician. After he was released on 29 April Galois exchanged letters
with Stephanie, and it is clear that she tried to distance herself from the affair.

The name Stephanie appears several times as a marginal note in one of Galois' manuscripts.

Galois fought a duel with Perscheux d'Herbinville on 30 May, the reason for the duel not being
clear but certainly linked with Stephanie.

You can see a note in the margin of the manuscript that Galois wrote the night before the duel. It
reads

There is something to complete in this demonstration. I do not have the time. (Author's note).

It is this which has led to the legend that he spent his last night writing out all he knew about
group theory. This story appears to have been exaggerated.

438 APPENDICES

Galois was wounded in the duel and was abandoned by d'Herbinville and his own seconds and
found by a peasant. He died in Cochin hospital on 31 May and his funeral was held on 2 June. It
was the focus for a Republican rally and riots followed which lasted for several days.

Galois' brother and his friend Chevalier copied his mathematical papers and sent them to Gauss,
Jacobi and others. It had been Galois' wish that Jacobi and Gauss should give their opinions on his
work. No record exists of any comment these men made. However the papers reached Liouville
who, in September 1843, announced to the Academy that he had found in Galois' papers a concise
solution

...as correct as it is deep of this lovely problem: Given an irreducible equation of prime degree,
decide whether or not it is soluble by radicals.

Liouville published these papers of Galois in his Journal in 1846.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Galois.html

Johann Carl Friedrich Gauss

Born: 30 April 1777 in Brunswick, Duchy of Brunswick (now Germany)

Died: 23 Feb 1855 in Göttingen, Hanover (now Germany)

Carl Friedrich Gauss worked in a wide variety of fields in both mathematics and physics
incuding number theory, analysis, differential geometry, geodesy, magnetism, astronomy and
optics. His work has had an immense influence in many areas.

At the age of seven, Carl Friedrich started elementary school, and his potential was noticed almost
immediately. His teacher, Büttner, and his assistant, Martin Bartels, were amazed when Gauss
summed the integers from 1 to 100 instantly by spotting that the sum was 50 pairs of numbers
each pair summing to 101.

Relevant Famous Mathematicians 439

In 1788 Gauss began his education at the Gymnasium with the help of Büttner and Bartels, where
he learnt High German and Latin. After receiving a stipend from the Duke of Brunswick-
Wolfenbüttel, Gauss entered Brunswick Collegium Carolinum in 1792. At the academy Gauss
independently discovered Bode's law, the binomial theorem and the arithmetic- geometric mean,
as well as the law of quadratic reciprocity and the prime number theorem.

In 1795 Gauss left Brunswick to study at Göttingen University. Gauss's teacher there was
Kaestner, whom Gauss often ridiculed. His only known friend amongst the students was Farkas
Bolyai. They met in 1799 and corresponded with each other for many years.

Gauss left Göttingen in 1798 without a diploma, but by this time he had made one of his most
important discoveries - the construction of a regular 17-gon by ruler and compasses This was the
most major advance in this field since the time of Greek mathematics and was published as
Section VII of Gauss's famous work, Disquisitiones Arithmeticae.

Gauss returned to Brunswick where he received a degree in 1799. After the Duke of Brunswick
had agreed to continue Gauss's stipend, he requested that Gauss submit a doctoral dissertation to
the University of Helmstedt. He already knew Pfaff, who was chosen to be his advisor. Gauss's
dissertation was a discussion of the fundamental theorem of algebra.

With his stipend to support him, Gauss did not need to find a job so devoted himself to research.
He published the book Disquisitiones Arithmeticae in the summer of 1801. There were seven
sections, all but the last section, referred to above, being devoted to number theory.

In June 1801, Zach, an astronomer whom Gauss had come to know two or three years previously,
published the orbital positions of Ceres, a new 'small planet' which was discovered by G Piazzi, an
Italian astronomer on 1 January, 1801. Unfortunately, Piazzi had only been able to observe 9
degrees of its orbit before it disappeared behind the Sun. Zach published several predictions of its
position, including one by Gauss which differed greatly from the others. When Ceres was
rediscovered by Zach on 7 December 1801 it was almost exactly where Gauss had predicted.
Although he did not disclose his methods at the time, Gauss had used his least squares
approximation method.

In June 1802 Gauss visited Olbers who had discovered Pallas in March of that year and Gauss
investigated its orbit. Olbers requested that Gauss be made director of the proposed new
observatory in Göttingen, but no action was taken. Gauss began corresponding with Bessel, whom
he did not meet until 1825, and with Sophie Germain.

440 APPENDICES

Gauss married Johanna Ostoff on 9 October, 1805. Despite having a happy personal life for the
first time, his benefactor, the Duke of Brunswick, was killed fighting for the Prussian army. In
1807 Gauss left Brunswick to take up the position of director of the Göttingen observatory.

Gauss arrived in Göttingen in late 1807. In 1808 his father died, and a year later Gauss's wife
Johanna died after giving birth to their second son, who was to die soon after her. Gauss was
shattered and wrote to Olbers asking him give him a home for a few weeks,

to gather new strength in the arms of your friendship - strength for a life which is only valuable
because it belongs to my three small children.

Gauss was married for a second time the next year, to Minna the best friend of Johanna, and
although they had three children, this marriage seemed to be one of convenience for Gauss.

Gauss's work never seemed to suffer from his personal tragedy. He published his second book,
Theoria motus corporum coelestium in sectionibus conicis Solem ambientium, in 1809, a major
two volume treatise on the motion of celestial bodies. In the first volume he discussed differential
equations, conic sections and elliptic orbits, while in the second volume, the main part of the
work, he showed how to estimate and then to refine the estimation of a planet's orbit. Gauss's
contributions to theoretical astronomy stopped after 1817, although he went on making
observations until the age of 70.

Much of Gauss's time was spent on a new observatory, completed in 1816, but he still found the
time to work on other subjects. His publications during this time include Disquisitiones generales
circa seriem infinitam, a rigorous treatment of series and an introduction of the hypergeometric
function, Methodus nova integralium valores per approximationem inveniendi, a practical essay
on approximate integration, Bestimmung der Genauigkeit der Beobachtungen, a discussion of
statistical estimators, and Theoria attractionis corporum sphaeroidicorum ellipticorum
homogeneorum methodus nova tractata. The latter work was inspired by geodesic problems and
was principally concerned with potential theory. In fact, Gauss found himself more and more
interested in geodesy in the 1820's.

Gauss had been asked in 1818 to carry out a geodesic survey of the state of Hanover to link up
with the existing Danish grid. Gauss was pleased to accept and took personal charge of the survey,
making measurements during the day and reducing them at night, using his extraordinary mental
capacity for calculations. He regularly wrote to Schumacher, Olbers and Bessel, reporting on his

Relevant Famous Mathematicians 441

progress and discussing problems.

Because of the survey, Gauss invented the heliotrope which worked by reflecting the Sun's rays
using a design of mirrors and a small telescope. However, inaccurate base lines were used for the
survey and an unsatisfactory network of triangles. Gauss often wondered if he would have been
better advised to have pursued some other occupation but he published over 70 papers between
1820 and 1830.

In 1822 Gauss won the Copenhagen University Prize with Theoria attractionis... together with the
idea of mapping one surface onto another so that the two are similar in their smallest parts . This
paper was published in 1825 and led to the much later publication of Untersuchungen über
Gegenstände der Höheren Geodäsie (1843 and 1846). The paper Theoria combinationis
observationum erroribus minimis obnoxiae (1823), with its supplement (1828), was devoted to
mathematical statistics, in particular to the least squares method.

From the early 1800's Gauss had an interest in the question of the possible existence of a non-
Euclidean geometry. He discussed this topic at length with Farkas Bolyai and in his
correspondence with Gerling and Schumacher. In a book review in 1816 he discussed proofs
which deduced the axiom of parallels from the other Euclidean axioms, suggesting that he
believed in the existence of non-Euclidean geometry, although he was rather vague. Gauss
confided in Schumacher, telling him that he believed his reputation would suffer if he admitted in
public that he believed in the existence of such a geometry.

In 1831 Farkas Bolyai sent to Gauss his son János Bolyai's work on the subject. Gauss replied

to praise it would mean to praise myself.

Again, a decade later, when he was informed of Lobachevsky's work on the subject, he praised its
"genuinely geometric" character, while in a letter to Schumacher in 1846, states that he

had the same convictions for 54 years

indicating that he had known of the existence of a non-Euclidean geometry since he was 15 years
of age (this seems unlikely).

442 APPENDICES

Gauss had a major interest in differential geometry, and published many papers on the subject.
Disquisitiones generales circa superficies curva (1828) was his most renowned work in this field.
In fact, this paper rose from his geodesic interests, but it contained such geometrical ideas as
Gaussian curvature. The paper also includes Gauss's famous theorema egregrium:

If an area in E3 can be developed (i.e. mapped isometrically) into another area of E3 , the values of
the Gaussian curvatures are identical in corresponding points.

The period 1817-1832 was a particularly distressing time for Gauss. He took in his sick mother in
1817, who stayed until her death in 1839, while he was arguing with his wife and her family about
whether they should go to Berlin. He had been offered a position at Berlin University and Minna
and her family were keen to move there. Gauss, however, never liked change and decided to stay
in Göttingen. In 1831 Gauss's second wife died after a long illness.

In 1831, Wilhelm Weber arrived in Göttingen as physics professor filling Tobias Mayer's chair.
Gauss had known Weber since 1828 and supported his appointment. Gauss had worked on physics
before 1831, publishing Uber ein neues allgemeines Grundgesetz der Mechanik, which contained
the principle of least constraint, and Principia generalia theoriae figurae fluidorum in statu
aequilibrii which discussed forces of attraction. These papers were based on Gauss's potential
theory, which proved of great importance in his work on physics. He later came to believe his
potential theory and his method of least squares provided vital links between science and nature.

In 1832, Gauss and Weber began investigating the theory of terrestrial magnetism after Alexander
von Humboldt attempted to obtain Gauss's assistance in making a grid of magnetic observation
points around the Earth. Gauss was excited by this prospect and by 1840 he had written three
important papers on the subject: Intensitas vis magneticae terrestris ad mensuram absolutam
revocata (1832), Allgemeine Theorie des Erdmagnetismus (1839) and Allgemeine Lehrsätze in
Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden
Anziehungs- und Abstossungskräfte (1840). These papers all dealt with the current theories on
terrestrial magnetism, including Poisson's ideas, absolute measure for magnetic force and an
empirical definition of terrestrial magnetism. Dirichlet's principal was mentioned without proof.

Allgemeine Theorie... showed that there can only be two poles in the globe and went on to prove
an important theorem, which concerned the determination of the intensity of the horizontal
component of the magnetic force along with the angle of inclination. Gauss used the Laplace
equation to aid him with his calculations, and ended up specifying a location for the magnetic
South pole.

Relevant Famous Mathematicians 443

Humboldt had devised a calendar for observations of magnetic declination. However, once
Gauss's new magnetic observatory (completed in 1833 - free of all magnetic metals) had been
built, he proceeded to alter many of Humboldt's procedures, not pleasing Humboldt greatly.
However, Gauss's changes obtained more accurate results with less effort.

Gauss and Weber achieved much in their six years together. They discovered Kirchhoff's laws, as
well as building a primitive telegraph device which could send messages over a distance of 5000
ft. However, this was just an enjoyable pastime for Gauss. He was more interested in the task of
establishing a world-wide net of magnetic observation points. This occupation produced many
concrete results. The Magnetischer Verein and its journal were founded, and the atlas of
geomagnetism was published, while Gauss and Weber's own journal in which their results were
published ran from 1836 to 1841.

In 1837, Weber was forced to leave Göttingen when he became involved in a political dispute and,
from this time, Gauss's activity gradually decreased. He still produced letters in response to fellow
scientists' discoveries usually remarking that he had known the methods for years but had never
felt the need to publish. Sometimes he seemed extremely pleased with advances made by other
mathematicians, particularly that of Eisenstein and of Lobachevsky.

Gauss spent the years from 1845 to 1851 updating the Göttingen University widow's fund. This
work gave him practical experience in financial matters, and he went on to make his fortune
through shrewd investments in bonds issued by private companies.

Two of Gauss's last doctoral students were Moritz Cantor and Dedekind. Dedekind wrote a fine
description of his supervisor

... usually he sat in a comfortable attitude, looking down, slightly stooped, with hands folded
above his lap. He spoke quite freely, very clearly, simply and plainly: but when he wanted to
emphasise a new viewpoint ... then he lifted his head, turned to one of those sitting next to him,
and gazed at him with his beautiful, penetrating blue eyes during the emphatic speech. ... If he
proceeded from an explanation of principles to the development of mathematical formulas, then he
got up, and in a stately very upright posture he wrote on a blackboard beside him in his peculiarly
beautiful handwriting: he always succeeded through economy and deliberate arrangement in
making do with a rather small space. For numerical examples, on whose careful completion he
placed special value, he brought along the requisite data on little slips of paper.

Gauss presented his golden jubilee lecture in 1849, fifty years after his diploma had been granted

444 APPENDICES

by Hemstedt University. It was appropriately a variation on his dissertation of 1799. From the
mathematical community only Jacobi and Dirichlet were present, but Gauss received many
messages and honours.

From 1850 onwards Gauss's work was again of nearly all of a practical nature although he did
approve Riemann's doctoral thesis and heard his probationary lecture. His last known scientific
exchange was with Gerling. He discussed a modified Foucalt pendulum in 1854. He was also able
to attend the opening of the new railway link between Hanover and Göttingen, but this proved to
be his last outing. His health deteriorated slowly, and Gauss died in his sleep early in the morning
of 23 February, 1855.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Gauss.html

Karl Gustav Jacob Jacobi

Born: 10 Dec 1804 in Potsdam, Prussia (now Germany)

Died: 18 Feb 1851 in Berlin, Germany

Karl Jacobi founded the theory of elliptic functions.

Jacobi's father was a banker and his family were prosperous so he received a good education at the
University of Berlin. He obtained his Ph.D. in 1825 and taught mathematics at the University of
Königsberg from 1826 until his death, being appointed to a chair in 1832.

He founded the theory of elliptic functions based on four theta functions. His Fundamenta nova
theoria functionum ellipticarum in 1829 and its later supplements made basic contributions to the
theory of elliptic functions.

In 1834 Jacobi proved that if a single-valued function of one variable is doubly periodic then the
ratio of the periods is imaginary. This result prompted much further work in this area, in particular
by Liouville and Cauchy.

Relevant Famous Mathematicians 445

Jacobi carried out important research in partial differential equations of the first order and applied
them to the differential equations of dynamics.

He also worked on determinants and studied the functional determinant now called the Jacobian.
Jacobi was not the first to study the functional determinant which now bears his name, it appears
first in a 1815 paper of Cauchy. However Jacobi wrote a long memoir De determinantibus
functionalibus in 1841 devoted to the this determinant. He proves, among many other things, that
if a set of n functions in n variables are functionally related then the Jacobian is identically zero,
while if the functions are independent the Jacobian cannot be identically zero.

Jacobi's reputation as an excellent teacher attracted many students. He introduced the seminar
method to teach students the latest advances in mathematics.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Jacobi.html

Adrien-Marie Legendre

Born: 18 Sept 1752 in Paris, France

Died: 10 Jan 1833 in Paris, France

Legendre's major work on elliptic integrals provided basic analytical tools for mathematical
physics.

Legendre was educated at Collège Mazarin in Paris. From 1775 to 1780 he taught with Laplace at
École Militaire where his appointment was made on the advice of d'Alembert. Legendre was
appointed to the Académie des Sciences in 1783 and remained there until it closed in 1793.

In 1782 Legendre determined the attractive force for certain solids of revolution by introducing an
infinite series of polynomials Pn which are now called Legendre polynomials.

446 APPENDICES

His major work on elliptic functions in Exercises du Calcul Intégral (1811,1817,1819) and elliptic
integrals in Traité des Fonctions Elliptiques (1825,1826,1830) provided basic analytical tools for
mathematical physics.

In his famous textbook Éléments de géométrie (1794) he gave a simple proof that p is irrational as
well as the first proof that p2 is irrational and conjectured that is not the root of any algebraic
equation of finite degree with rational coefficients i.e. is not algebraic.

His attempt to prove the parallel postulate extended over 40 years.

In 1824 Legendre refused to vote for the government's candidate for Institut National. Because of
this his pension was stopped and he died in poverty. Abel wrote in October 1826

Legendre is an extremely amiable man, but unfortunately as old as the stones.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Legendre.html

August Ferdinand Möbius

Born: 17 Nov 1790 in Schulpforta, Saxony (now Germany)

Died: 26 Sept 1868 in Leipzig, Germany

August Möbius is best known for his work in topology, especially for his conception of the
Möbius strip, a two dimensional surface with only one side.

August was the only child of Johann Heinrich Möbius, a dancing teacher, who died when August
was three years old. His mother was a descendant of Martin Luther. Möbius was educated at home
until he was 13 years old when, already showing an interest in mathematics, he went to the
College in Schulpforta in 1803.

In 1809 Möbius graduated from his College and he became a student at the University of Leipzig.
His family had wanted him study law and indeed he started to study this topic. However he soon

Relevant Famous Mathematicians 447

discovered that it was not a subject that gave him satisfaction and in the middle of his first year of
study he decided to follow him own preferences rather than those of his family. He therefore took
up the study of mathematics, astronomy and physics.

The teacher who influenced Möbius most during his time at Leipzig was his astronomy teacher
Karl Mollweide. Although an astronomer, Mollweide is well known for a number of mathematical
discoveries in particular the Mollweide trigonometric relations he discovered in 1807-09 and the
Mollweide map projection which preserves angles and so is a conformal projection.

In 1813 Möbius travelled to Göttingen where he studied astronomy under Gauss. Now Gauss was
the director of the Observatory in Göttingen but of course the greatest mathematician of his day,
so again Möbius studied under an astronomer whose interests were mathematical. From Göttingen
Möbius went to Halle where he studied under Johann Pfaff, Gauss's teacher. Under Pfaff he
studied mathematics rather than astronomy so by this stage Möbius was very firmly working in
both fields.

In 1815 Möbius wrote his doctoral thesis on The occultation of fixed stars and began work on his
Habilitation thesis. In fact while he was writing this thesis there was an attempt to draft him into
the Prussian army. Möbius wrote

This is the most horrible idea I have heard of, and anyone who shall venture, dare, hazard, make
bold and have the audacity to propose it will not be safe from my dagger.

He avoided the army and completed his Habilitation thesis on Trigonometrical equations.
Mollweide's interest in mathematics was such that he had moved from astronomy to the chair of
mathematics at Leipzig so Möbius had high hopes that he might be appointed to a professorship in
astronomy at Leipzig. Indeed he was appointed to the chair of astronomy and higher mechanics at
the University of Leipzig in 1816. His initial appointment was as Extraordinary Professor and it
was an appointment which came early in his career.

However Möbius did not receive quick promotion to full professor. It would appear that he was
not a particularly good lecturer and this made his life difficult since he did not attract fee paying
students to his lectures. He was forced to advertise his lecture courses as being free of charge
before students thought his courses worth taking.

He was offered a post as an astronomer in Greifswald in 1916 and then a post as a mathematician
at Dorpat in 1819. He refused both, partly through his belief in the high quality of Leipzig

448 APPENDICES

University, partly through his loyalty to Saxony. In 1825 Mollweide died and Möbius hoped to
transfer to his chair of mathematics taking the route Mollweide had taken earlier. However it was
not to be and another mathematician was preferred for the post.

By 1844 Möbius's reputation as a researcher led to an invitation from the University of Jena and at
this stage the University of Leipzig gave him the Full Professorship in astronomy which he clearly
deserved.

From the time of his first appointment at Leipzig Möbius had also held the post of Observer at the
Observatory at Leipzig. He was involved the rebuilding of the Observatory and, from 1818 until
1821, he supervised the project. He visited several other observatories in Germany before making
his recommendations for the new Observatory. In 1820 he married and he was to have one
daughter and two sons. In 1848 he became director of the Observatory.

In 1844 Grassmann visited Möbius. He asked Möbius to review his major work Die lineale
Ausdehnundslehre, ein neuer Zweig der Mathematik (1844) which contained many results similar
to Möbius's work. However Möbius did not understand the significance of Grassmann's work and
did not review it. He did however persuade Grassmann to submit work for a prize and, after
Grassmann won the prize, Möbius did write a review of his winning entry in 1847.

Although his most famous work is in mathematics, Möbius did publish important work on
astronomy. He wrote De Computandis Occultationibus Fixarum per Planetas (1815) concerning
occultations of the planets. He also wrote on the principles of astronomy, Die Hauptsätze der
Astronomie (1836) and on celestial mechanics Die Elemente der Mechanik des Himmels (1843).

Möbius's mathematical publications, although not always original, were effective and clear
presentations. His contributions to mathematics are described by his biographer Richard Baltzer in
as follows:

The inspirations for his research he found mostly in the rich well of his own original mind. His
intuition, the problems he set himself, and the solutions that he found, all exhibit something
extraordinarily ingenious, something original in an uncontrived way. He worked without
hurrying, quietly on his own. His work remained almost locked away until everything had been
put into its proper place. Without rushing, without pomposity and without arrogance, he waited
until the fruits of his mind matured. Only after such a wait did he publish his perfected works...

Almost all Möbius's work was published in Crelle's Journal, the first journal devoted exclusively

Relevant Famous Mathematicians 449

to publishing mathematics. Möbius's 1827 work Der barycentrische Calkul, on analytical
geometry, became a classic and includes many of his results on projective and affine geometry. In
it he introduced homogeneous coordinates and also discussed geometric transformations, in
particular projective transformations. He introduced a configuration now called a Möbius net,
which was to play an important role in the development of projective geometry.

Möbius's name is attached to many important mathematical objects such as the Möbius function
which he introduced in the 1831 paper Uber eine besondere Art von Umkehrung der Reihen and
the Möbius inversion formula.

In 1837 he published Lehrbuch der Statik which gives a geometric treatment of statics. It led to the
study of systems of lines in space.

Before the question on the four colouring of maps had been asked by Francis Guthrie, Möbius had
posed the following, rather easy, problem in 1840.

There was once a king with five sons. In his will he stated that on his death his kingdom should be
divided by his sons into five regions in such a way that each region should have a common
boundary with the other four. Can the terms of the will be satisfied?

The answer, of course, is negative and easy to show. However it does illustrate Möbius's interest
in topological ideas, an area in which he most remembered as a pioneer. In a memoir, presented to
the Académie des Sciences and only discovered after his death, he discussed the properties of one-
sided surfaces including the Möbius strip which he had discovered in 1858. This discovery was
made as Möbius worked on a question on the geometric theory of polyhedra posed by the Paris
Academy.

Although we know this as a Möbius strip today it was not Möbius who first described this object,
rather by any criterion, either publication date or date of first discovery, precedence goes to
Listing.

A Möbius strip is a two-dimensional surface with only one side. It can be constructed in three
dimensions as follows. Take a rectangular strip of paper and join the two ends of the strip together
so that it has a 180 degree twist. It is now possible to start at a point A on the surface and trace out
a path that passes through the point which is apparently on the other side of the surface from A.

450 APPENDICES

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Mobius.html

Joseph Henry Maclagen Wedderburn

Born: 2 Feb 1882 in Forfar, Angus, Scotland

Died: 9 Oct 1948 in Princeton, New Jersey, USA

Joseph Wedderburn made important advances in the theory of rings, algebras and matrix theory.

He entered Edinburgh University in 1898, obtaining a degree in mathematics in 1903. Wedderburn
then pursued postgraduate studies in Germany spending 1903-1904 at the University of Leipzig
and then a semester at the University of Berlin.

He was awarded a Carnegie Scholarship to study in the USA and he spent 1904-1905 at the
University of Chicago where he did joint work with Veblen. Returning to Scotland he worked for
4 years at Edinburgh as assistant to George Chrystal. From 1906 to 1908 he served as editor of the
Proceedings of the Edinburgh Mathematical Society.

In 1909 Wedderburn was appointed a Preceptor in Mathematics at Princeton where he joined
Veblen. However World War I saw Wedderburn volunteer for the British Army and he served,
partly in France, until the end of the war.

On his return to Princeton he was soon promoted obtaining permanent tenure in 1921. He served
as Editor of the Annals of Mathematics from 1912 to 1928. From about the end of this period
Wedderburn seemed to suffer a mild nervous breakdown and became an increasingly solitary
figure. By 1945 the Priceton gave him early retirement in his own best interests.

Wedderburn's best mathematical work was done before his war service. In 1905 he showed that a
non-commutatiove finite field could not exist. This had as a corollary the complete structure of all
finite projective geometries, showing that in all these geometries Pascal's theorem is a
consequence of Desargues' theorem.

Relevant Famous Mathematicians 451

In 1907 he published what is perhaps his most famous paper on the classification of semisimple
algebras. He showed that every semisimple algebra is a direct sum of simple algebras and that a
simple algebra was a matrix algebra over a division ring.

In total he published around 40 works mostly on rings and matrices. His most famous book is
Lectures on Matrices (1934).

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Wedderburn.html

452 APPENDICES

Appendix D New Functions

É AddTwoLetters

AddTwoLetters adds two letters modulo 26, where a = 0, b = 1, …, z = 25.

AddTwoLetters@a_, b_D := FromCharacterCode@
Mod@HToCharacterCode@aD − 97L +HToCharacterCode@bD − 97L, 26D + 97D

Example:

AddTwoLetters@"b", "c"D
d

É CaesarCipher

Applies the Caesar cipher with a given key to a given plaintext of small letters.

CaesarCipher@plaintext_, key_D := FromCharacterCode@
Mod@ ToCharacterCode@plaintextD − 97 + key, 26D + 97D

Example:

plaintext = "typehereyourplaintextinsmallletters";
key = 24;
CaesarCipher@plaintext, keyD
rwncfcpcwmspnjyglrcvrglqkyjjjcrrcpq

É ColumnSwap

ColumnSwap interchanges columns i and j in matrix B .

New Functions 453

ColumnSwap@B_, i_, j_D := Module@8U, V<, U = Transpose@BD;
V = U@@iDD; U@@iDD = U@@jDD; U@@jDD = V; Transpose@UDD

Example:

Clear@a, b, c, d, e, f, g, h, i, j, k, lD; A =
ikjjjjjjj a b c d
e f g h
i j k l

y{zzzzzzz;
AA = ColumnSwap@A, 1, 4D; MatrixForm@AAD
ikjjjjjj d b c a
h f g e
l j k i

y{zzzzzz
É CoPrimeQ

CoPrime test if two integers are coprime, i.e. have gcd 1.

CoPrimeQ@n_Integer, m_IntegerD := GCD@n, mD == 1

Example:

CoPrimeQ@35, 91D
CoPrimeQ@36, 91D
False

True

É CoPrimes

CoPrimes generates a list of all integers in between 1 and n that are coprime with n . In other
words, it generates a reduced residue system modulo n .

Coprimes makes use of the function CoPrimeQ defined earlier.

454 APPENDICES

CoPrimes@n_Integer?PositiveD :=

Select@ Range@nD, CoPrimeQ@n, #D & D
Example:

CoPrimes@15D
81, 2, 4, 7, 8, 11, 13, 14<

É DivisorProduct

DivisorProduct calculates ¤d»n f @dD .

DivisorProduct@f_, n_D := Times @@ Hf ê@ Divisors@nDL
Example:

f@n_D := n
DivisorProduct@f, 25D
125

É DivisorSum

DivisorSum calculates ⁄d»n f @dD .

DivisorSum@f_, n_D := Plus @@ Hf ê@ Divisors@nDL
Example:

f@n_D := n
DivisorSum@f, 15D
24

New Functions 455

É EllipticAdd

EllipticAdd evaluates the sum of the points P and Q on an elliptic curve over p given by the
equation y2 = x3 + a.x2 + b.x + c . Here p is prime, p > 2.

EllipticAdd@p_, a_, b_, c_, P_List, Q_ListD :=

Module@8lam, x3, y3, P3<,
If@P == 8O<, R = Q, If@Q == 8O<, R = P, If@P@@1DD !=

Q@@1DD, 8lam = Mod@HQ@@2DD − P@@2DDL∗PowerMod@Q@@1DD − P@@1DD, p − 2, pD,
pD; x3 = Mod@lam2 − a −

P@@1DD − Q@@1DD, pD;
y3 = Mod@−Hlam Hx3 − P@@1DDL + P@@2DDL,

pD; R = 8x3, y3<<,
If@HP == QL fl HP != 8O<L,8lam = Mod@H3∗P@@1DD2 + 2 a∗P@@1DD + bL∗PowerMod@

2 P@@2DD, p − 2, pD, pD;
x3 = Mod@lam2 − a − P@@1DD − Q@@1DD,

pD;
y3 = Mod@−Hlam Hx3 − P@@1DDL + P@@2DDL,

pD; R = 8x3, y3<<, If@HP@@1DD == Q@@1DDL fl HP@@2DD != Q@@2DDL, R = 8O<DDDDD; RD
Example:

p = 11; a = 0; b = 6; c = 3;
EllipticAdd@p, a, b, c, 84, 6<, 89, 4<D
83, 9<

456 APPENDICES

É Entropy

Computes the entropy - p.log2 p - H1 - pL.log2H1 - pL function.

Entropy@p_D = −p∗Log@2, pD − H1 − pL Log@2, 1 − pD;
Example:

Entropy@1ê2D
1

É ListQuadRes

ListQuadRes gives a listing of all the quadratic residues modulo p .

ListQuadRes@p_D :=

Select@Range@pD, JacobiSymbol@#1, pD == 1 &D
Example:

p = 17;
ListQuadRes@pD
81, 2, 4, 8, 9, 13, 15, 16<

É MultiEntropy

MultiEntropy evaluates -⁄i=1
n pi log2 pi for a list 8p1, p2, …, pn< .

MultiEntropy@p_ListD := − ‚
i=1

Length@pD
p@@iDD ∗Log@2, p@@iDDD

Example:

p = 81ê4, 1ê4, 1 ê4, 1 ê4<;
MultiEntropy@pD

New Functions 457

2

É MultiplicativeOrder

MultiplicativeOrder computes the multiplicative order of an integer a modulo n , assuming that
they are coprime. So, it outputs the smallest positive integer m such that am ª 1 Hmod nL .

MultiplicativeOrder@a_, n_D :=

If@GCD@a, nD == 1, Divisors@ EulerPhi@nD D êê.8x_, y___< −> If@PowerMod@a, x, nD == 1, x, 8y<D D;
Example:

MultiplicativeOrder@2, 123456789123D
1285901112

É KnapsackForSuperIncreasingSequence

KnapsackForSuperIncreasingSequence finds the 80, 1<-solution of the knapsack problem⁄i=1
n xi.ai = S , where 8ai<i=1

n is a superincreasing sequence.

KnapsackForSuperIncreasingSequence@a_List, S_D :=

Module@8n, x, X, T<, n = Length@aD; X = 8<;
T = S; While@n ≥ 1,
If@T ≥ a@@nDD, x = 1, x = 0D;
T = T − x∗a@@nDD; X = Join@8x<, XD;
n = n − 1D; If@T != 0, Print@"No solution"D, XDD

Example:

a = 822, 89, 345, 987, 4567, 45678<; S = 5665;
X = KnapsackForSuperIncreasingSequence@a, SD
81, 1, 0, 1, 1, 0<

É RowSwap

RowSwaps interchanges rows i and j in matrix B .

458 APPENDICES

RowSwap@B_, i_, j_D :=

Module@8U, V<, U = B; V = U@@iDD; U@@iDD = U@@jDD; U@@jDD = V; UD
Example:

Clear@a, b, c, d, e, f, g, h, i, j, k, lD; A =

i
k
jjjjjjjjjjjj
a b c
d e f
g h i
j k l

y
{
zzzzzzzzzzzz;

AA = RowSwap@A, 1, 4D; MatrixForm@AAD
i
kjjjjjjjjjjj
j k l
d e f
g h i
a b c

y
{zzzzzzzzzzz

New Functions 459

460 APPENDICES

References
[Adle79] Adleman, L.M., A subexponential algorithm for the discrete logarithm problem with
applications to cryptography, in Proc. IEEE 20-th Annual Symp. on Found. of Comp. Science, pp.
55-60, 1979.

[Adle83] Adleman, L.M., On breaking the iterated Merkle-Hellman public key cryptosystem, in
Proc. 15-th Annual ACM Symp. Theory of Computing, pp. 402-412, 1983.

[Adle94] Adleman, L.M., The function field sieve, Lecture Notes in Computer Science 877,
Springer Verlag, Berlin, etc., pp. 108-121, 1995.

[AdDM93] Adleman, L.M. and J. DeMarrais, A subexponential algorithm for discrete logarithms
over all finite fields, Mathematics of Computation, 61, pp. 1-15, 1993.

[AdPR83] Adleman, L.M., C. Pomerance, and R. Rumely, On distinguishing prime numbers from
composite numbers, Annals of Math. 17, pp. 173-206, 1983.

[Aign79] Aigner, M., Combinatorial Theory, Springer Verlag, Berlin, etc., 1979.

[BaKT99] Barg, A., E. Korzhik and H.C.A. van Tilborg, On the complexity of minimum distance
decoding of long linear codes, to appear in the IEEE Transactions on Information Theory.

[Baue97] Bauer, F.L., Decrypted Secrets; Methods and Maxims of Cryptology, Springer Verlag,
Berlin, etc., 1997.

[BekP82] Beker, H. and F. Piper, Cipher Systems, the Protection of Communications, Northwood
Books, London, 1982.

[Berl68] Berlekamp, E.R., Algebraic Coding Theory, McGraw-Hill Book Company, New York,
etc., 1968

[BeMT78] Berlekamp, E.R., R.J. McEliece and H.C.A. van Tilborg, On the inherent intractability
of certain coding problems, IEEE Transactions on Information Theory, IT-24, pp. 384-386, May
1978.

[BeJL86] Beth, T., D. Jungnickel, and H. Lenz, Design Theory, Cambridge University Press,
Cambridge, etc., 1986.

[BihS93], Biham E. and A. Shamir, Differential Cryptanalysis of the Data Encryption Standard,
Spinger Verlag, New York etc., 1993.

[BoDML97] Boneh, D., R.A. DeMillo, and R.J. Lipton, On the importance of checking
cryptographic protocols for faults, Advances in Cryptology: Proc. of Eurocrypt'97, W. Fumy,
Ed., Lecture Notes in Computer Science 1233, Springer Verlag, Berlin, etc., pp. 37-51, 1997.

461

[Bos92] Bos, J.N.E., Practical privacy, Ph.D. Thesis, Eindhoven University of Technology, the
Netherlands, 1992.

[Bric85] Brickell, E.F., Breaking iterated knapsacks, in Advances in Cryptography: Proc. of
Crypto '84, G.R. Blakley and D. Chaum, Eds., Lecture Notes in Computer Science 196, Springer
Verlag, Berlin etc., pp. 342-358, 1985.

[Bric89] Brickell, E.F., Some ideal secret sharing schemes, The Journal of Combinatorial
Mathematics and Combinatorial Computing, Vol. 6, pp. 105-113, 1989.

[CanS98] Canteaut, A. and N. Sendrier, Cryptanalysis of the original McEliecese cryptosystem,
Advances in Cryptology: Proc. AsiaCrypt'98, K. Ohta and D. Pei, Eds., Lecture Notes in
Computer Science 1514, Springer, Berlin etc., pp. 187-199, 1998.

[ChoR85] Chor, B. and R.L. Rivest, A knapsack type public key cryptosystem based on arithmetic
in finite fields, in Advances in Cryptography: Proc. of Crypto '84, G.R. Blakley and D. Chaum,
Eds., Lecture Notes in Computer Science 196, Springer Verlag, Berlin etc., pp. 54-65, 1985.

[CohL82] Cohen, H. and H.W. Lenstra Jr., Primality testing and Jacobi sums, Report 82-18,
Math. Inst., Univ. of Amsterdam, Oct. 1982.

[Cohn77] Cohn, P.M., Algebra Vol.2, John Wiley & Sons, London, etc., 1977.

[Copp84] Coppersmith, D., Fast evaluation of logarithms in fields of characteristic two, IEEE
Transactions on Infprmation Theory, IT-30, pp. 587-594, July 1984.

[CopFPR96] Coppersmith, D., M. Franklin, J. Patarin, and M. Reiter, Low-exponent RSA with
Related Messages, Advances in Cryptology: Proc. of Eurocrypt'96, U. Maurer, Ed., Lecture Notes
in Computer Science 1070, Springer Verlag, Berlin, etc., pp. 1-9, 1996.

[CovM67] Coveyou, R.R. and R.D. McPherson, Fourier analysis of uniform random number
generators, J. Assoc. Comput. Mach., 14, pp. 100-119, 1967.

[Demy94] Demytko, N., A new elliptic curve based analogue of RSA, Advances in Cryptology:
Proc. of Eurocrypt'93, T. Helleseth, Ed., Lecture Notes in Computer Science 765, Springer
Verlag, Berlin, etc., pp. 40-49, 1994.

[Denn82] Denning, D.E.R., Cryptography and Data Security, Addison-Wesley publ. Comp.,
Reading Ma, etc., 1982.

[DifH76] Diffie, W. and M.E. Hellman, New directions in cryptography, IEEE Transactions on
Information Theory, IT-22, pp. 644-654, Nov. 1976.

[Dijk97] Dijk, M. van, Secret Key Sharing and Secret Key Generation, Ph.D. Thesis, Eindhoven
University of Technology, the Netherlands, 1997.

[ElGa85] ElGamal, T., A public-key cryptosystem and a signature scheme based on discrete
logarithms, Advances in Cryptology: Proc. of Crypto'84, G.R. Blakley and D. Chaum, Eds.,
Lecture Notes in Computer Science 196, Springer Verlag, Berlin, etc., pp. 10-18, 1985.

462 APPENDICES

[FiaS87] Fiat, A. and A. Shamir, How to prove yourself: Practical solutions to identification and
signature problems, Advances in Cryptology: Proc. of Crypto'86, A.M. Odlyzko, Ed., Lecture
Notes in Computer Science 263, Springer Verlag, Berlin, etc., pp. 186-194, 1987.

[FIPS94] FIPS 186, Digital Signature Standard, Federal Information Processing Standards
Publication 186, U.S. Department of Commerce/N.I.S.T., National Technical Information Service,
Springfield, Virginia, 1994.

[Frie73] Friedman, W.F., Cryptology, in Encyclopedia Brittanica, p. 848, 1973.

[GarJ79] Garey, M.R. and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman and Co., San Fransisco, 1979.

[GilMS74] Gilbert, E.N., F.J. MacWilliams, and N.J.A. Sloane, Codes which detect deception,
Bell System Technical Journal, Vol. 53, pp. 405-424, 1974.

[Golo67] Golomb, S.W., Shift Register Sequences, Holden-Day, San Fransisco, 1967.

[Hall67] Hall, Jr., M., Combinatorial Theory, Blaisdell Publishing Company, Waltham, Ma., 1967

[HarW45] Hardy, G.H. and E.M. Wright, An Introduction to the Theory of Numbers, Clarendon
Press, Oxford, 1945.

[Håst88] Håstad, J., Solving simultaneous modular equations of low degree, SIAM Journal on
Computing, 17, pp. 336-341, 1988.

[HelR83] Hellman, M.E. and J.M. Reyneri, Fast computation of discrete logarithms over GF(q),
in Advances in Cryptography: Proc. of Crypto '82, D. Chaum, R. Rivest and A. Sherman, Eds.,
Plenum Publ. Comp., New York, pp. 3-13, 1983.

[Huff52] Huffman, D.A., A method for the construction of minimum-redundancy codes, Proc. IRE,
14, pp. 1098-1101, 1952.

[Joha94a] Johansson, T., A shift register of unconditionally secure authentication codes, Designs,
Codes and Cryptography, 4, pp. 69-81, 1994.

[Joha94b] Johansson, T., Contributions to Unconditionally Secure Authentication, KF Sigma,
Lund, 1994.

[JohKS93] Johansson, T., G. Kabatianskii, and B. Smeets, On the relation between A-codes and
codes correcting independent errors, Advances in Cryptography: Proc. of Eurocrypt '93, T.
Helleseth, Edt., Lecture Notes in Computer Science 765, Springer Verlag, Berlin etc., pp. 1-10,
1993.

[Kahn67] Kahn, D., The Codebreakers, the Story of Secret Writing, Macmillan Company, New
York, 1967.

[Khin57] Khinchin. A.I., Mathematical Foundations of Information Theory, Dover Publications,
New York, 1957.

463

[Knud94] Knudsen, L.R., Block Ciphers-Analysis, Designs and Applications, PhD Thesis,
Computer Science Department, Aarhus University, Denmark, 1994.

[Knut69] Knuth, D.E., The Art of Computer Programming, Vol.2, Semi-numerical Algorithms,
Addison-Wesley, Reading, MA., 1969.

[Knut73] Knuth, D.E., The Art of Computer Programming, Vol.3, Sorting and searching, Addison-
Wesley, Reading, M.A., 1973.

[Knut81] Knuth, D.E., The Art of Computer Programming, Vol.2, Semi-Numerical Algorithms,
Second Edition, Addison-Wesley, Reading, MA., 1981.

[Koch96] Kocher, P.C., Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
Other Systems, Advances in Cryptology: Proc. of Crypto'96, N. Koblitz, Ed., Lecture Notes in
Computer Science 1109, Springer Verlag, Berlin etc., pp. 104-113 , 1996.

[Konh81] Konheim, A.G., Cryptography, a Primer, John Wiley & Sons, New York, etc., 1981.

[Kraf49] Kraft, L.G., A Device for Quantizing, Grouping and Coding Amplitude Modulated
Pulses, MS Thesis, Dept. of EE, MIT, Cambridge, Mass., 1949.

[LagO83] Lagarias, J.C. and A.M. Odlyzko, Solving low-density subset problems, Proc. 24th
Annual IEEE Symp. on Found. of Comp. Science, pp. 1-10, 1983.

[Lai92] Lai, X., On the design and security of block ciphers, ETH Series in Information
Processing, J.J. Massey, Ed., vol. 1, Hartung-Gorre Verlag, Konstantz, 1992)

[LeeB88] Lee, P.J. and E.F. Brickell, An observation on the security of McEliece's public-key
cryptosystem, in Advances in Cryptography: Proc. of Eurocrypt'88, C.G. Günther, Ed., Lecture
Notes in Computer Science 330, Springer Verlag, Berlin etc., pp. 275-280, 1988.

[Lehm76] Lehmer, D.H., Strong Carmichael numbers, J. Austral. Math. Soc., Ser. A 21, pp.
508-510, 1976.

[LensA96] Lenstra, A.K., Memo on RSA signature generation in the presence of faults, Sept. 1996.

[LenLL82] Lenstra, A.K., H.W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational
coefficients, Math. Annalen, 261, pp. 515-534, 1982.

[LensH83] Lenstra, H.W. Jr., Fast prime number tests, Nieuw Archief voor Wiskunde (4) 1, pp.
133-144, 1983.

[LensH86] Lenstra, H.W. Jr., Factoring integers with elliptic curves, Report 86-16, Dept. of
Mathematics, University of Amsterdam, Amsterdam, the Netherlands.

[Liu68] Liu, C.L., Introduction to combinatorial mathematics, McGraw-Hill, New York, 1968.

[Lüne87] Lüneberg H., On the Rational Normal Form of Endomorphisms; a Primer to
Constructive Algebra, BI Wissenschaftsverlag, Mannheim etc., 1987.

464 APPENDICES

[MacWS77] MacWilliams, F.J. and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-
Holland Publ. Comp., Amsterdam, etc., 1977.

[Mass69] Massey, J.L., Shift-register synthesis and BCH decoding, IEEE Transactions on
Information Theory, IT-15, pp. 122-127, Jan. 1969.

[MatY93] Matsui, M. and A. Yamagishi, A new method for known plaintext attack of FEAL
cipher, Advances in Cryptology: Proc. Eurocrypt'92, R.A. Rueppel, Ed., Lecture Notes in
Computer Science 658, Springer, Berlin etc., pp. 81-91, 1993.

[Maur92] Maurer, U., A universal statistical test for random bit generators, Journal of
Cryptology, 5, pp. 89-105, 1992.

[McEl78] McEliece, R.J., A public-key cryptosystem based on algebraic coding theory, JPL DSN
Progress Report 42-44, pp. 114-116, Jan-Febr. 1978.

[McEl81] McEliece, R.J. and D.V. Sarwate, On sharing secrets and Reed-Solomon codes, Comm.
ACM, vol. 24, pp. 583-584, Sept. 1981.

[McMi56] McMillan, B., Two inequalities implied by unique decipherability, IEEE Trans. Inf.
Theory, IT-56, pp. 115-116, Dec. 1956.

[Mene93] Menezes, A.J., Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers,
Boston etc., MA, 1993.

[MeOkV93] Menezes, A.J., T. Okamoto, and S.A. Vanstone, Reducing elliptic curve logarithms to
logarithms in a finite filed, IEEE Transactions on Information Theory, IT-39, 1639-1646, 1993.

[MeOoV97] Menezes, A.J., P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied
Cryptography, CRC Press, Boca Raton, etc. 1997.

[MerH78] Merkle, R.C. and M.E. Hellman, Hiding information and signatures in trapdoor
knapsacks, IEEE Transactions on Information Theory, IT-24, pp. 525-530, Sept. 1978.

[MeyM82] Meyer, C.H. and S.M. Matyas, Cryptography: a New Dimension in Computer Data
Security, John Wiley & Sons, New York, etc., 1982

[Mill76] Miller, G.L., Riemann's hypothesis and tests for primality, Journal of Computer and
System Sciences, 13, pp. 300-317, 1976.

[Mill86] Miller, G.L., Use of elliptic curves in cryptography, Advances in Cryptology: Proc.
Crypto'85, H.C. Williams, Ed., Lecture Notes in Computer Science 218, Springer, Berlin etc., pp.
417-426, 1986.

[Moni80] Monier, L., Evaluation and comparison of two efficient probabilistic primality testing
algorithms, Theoretical Computer Science, 12, pp. 97-108, 1980

[MorB75] Morrison, M.A. and J. Brillhart, A method of factoring and the factorization of F7 ,
Math. Comp. 29, pp. 183-205, 1975.

465

[Nied86] Niederreiter, H., Knapsack type cryptosystems and algebraic coding theory, Problems of
Control and Information Theory, 15, pp. 159-166, 1986.

[NybR93] Nyberg, K. and R.A. Rueppel, A new signature scheme based on the DSA giving
message recovery, 1st ACM Conference on Computer and Communications Security, ACM Press,
1993, pp. 58-61.

[Odly85] Odlyzko, A.M., Discrete logarithms in finite fields and their cryptographic significance,
Advances in Cryptology: Proc. Eurocrypt '84, T. Beth, N. Cot and I. Ingemarsson, Eds., Lecture
Notes in Computer Science 209, Springer, Berlin etc., pp. 224-314, 1985.

[Patt75] Patterson N.J., The algebraic decoding of Goppa codes, IEEE Transactions on
Information Theory, IT-21, pp. 203-207, Mar. 1975.

[Pera86] Peralta, R., A simple and fast probablistic algorithm for computing square roots modulo
a prime number, presented at Eurocrypt'86, J.L. Massey, Ed., no proceedings published.

[PohH78] Pohlig, S.C. and M.E. Hellman, An improved algorithm for computing logarithms over
GFHpL and its cryptographic significance, IEEE Transactions on Information Theory, IT-24, pp.
106-110, Jan. 1978.

[Poll75] Pollard, J.M., A Monte Carlo method for factoring, BIT-15, pp. 331-334, 1975.

[Poll78] Pollard, J.M., Monte Carlo methods for index computations (mod p), Mathematics of
Computations 32, pp. 918-924, 1978.

[Rabi79] Rabin, M.O., Digitalized signatures and public-key functions as intractable as
factorization, MIT/LCS/TR-212, MIT Lab. for Comp. Science, Cambridge, Mass., Jan. 1979.

[Rabi80a] Rabin, M.O., Probabilistic algorithms for testing primality, Journal of Number Theory,
12, pp. 128-138, 1980.

[Rabi80b] Rabin, M.O., Probabilistic algorithms in finite fields, SIAM J. Comput. 80, pp.
273-280, 1980.

[RisL79] Rissanen, J. and G. Langdon, Arithmetic coding, IBM Journal of Research and
Development, 23, pp. 149-162, 1979.

[RivSA78] Rivest, R.L., A. Shamir and L. Adleman, A method for obtaining digital signatures
and public-key cryptosystems, Comm. ACM, Vol. 21, pp. 120-126, Febr. 1978.

[Rose84] Rosen, K.H., Elementary Number Theory, Addison-Wesley Publ. Comp., Reading,
Mass, 1984.

[Ruep86] Rueppel, R.A., Analysis and Design of Streamciphers, Springer-Verlag, Berlin etc.,
1986.

466 APPENDICES

[SatA98] T. Satoh and K. Araki, Fermat quotients and the polynomial time discrete log
algorithm for anomalous elliptic curves, Commentarii Mathematici Universitatis Sancti Pauli
47, pp. 81-92, 1998.

[Schne96] Schneier, B., Applied Cryptography, 2nd Edition, John Wiley & Sons, New York, etc.,
1996.

[Schno90] Schnorr, C.P., Efficient identification and signatures for smart cards, In: Advances in
Cryptology-Crypto'89, Ed. G. Brassard, Lecture Notes in Computer Science 435, Springer Verlag,
Berlin, etc., pp.239-252, 1990.

[Schno91] Schnorr, C.P., Efficient signature generation by smart cards, Journal of Cryptology 4,
pp. 161-174, 1991.

[Scho95] Schoof, R., Counting points on elliptic curves over finite fields, Journal de Théorie des
Nombres de Bordeaux, 7, pp. 219-254, 1995.

[Sham79] Shamir, A., How to share a secret, Communications of the A.C.M., Vol. 22, pp.
612-613, Nov. 1979.

[Sham82] Shamir, A., A polynomial time algorithm for breaking the basic Merkle-Hellman
cryptosystem, in Proc. 23-rd IEEE Symp. Found. Computer Sci., pp. 145-152, 1982.

[Sham49] Shannon, C.E., Communication Theory and Secrecy Systems, B.S.T.J. 28, pp. 656-715,
Oct. 1949.

[Shap83] Shapiro, H.N., Introduction to the Theory of Numbers, John Wiley & Sons, New York,
etc., 1983.

[Silv86] Silverman, J.H., The Arithmetic of Elliptic Curves, Springer Verlag, Berlin, etc., 1986.

[Silv98] Silverman, J.H., The XEDNI calculus and the elliptic curve discrete logarithm problem,
preprint.

[SilT92] Silverman J.H. and J. Tate, Rational Points on Elliptic Curves, Undergraduate Texts in
Mathematics, Springer-Verlag New York Inc.,1992.

[Simm92] Simmons, G.J., A survey of information authentication, in Contemporary Cryptology:
the Science of Information Integrity, G.J. Simmons, Ed., IEEE Press, New York, pp. 379-419,
1992.

[Smar98] N. Smart, The discrete logarithm problem on elliptic curves of trace one, Journal of
Cryptology, to appear.

[SolS77] Solovay, R. and V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput 6,
pp. 84-85, March 1977.

[Stin95] Stinson, D.R., Cryptography: Theory and Practice, CRC Press, Inc., Boca Raton, 1995.

467

[SugK76] Sugiyama, Y., M. Kashara, S. Hirasawa and T. Namekawa, An erasures-and-errors
decoding algorithm for Goppa codes, IEEE Transactions on Information Theory, IT-22, pp.
238-241, Mar. 1976.

[vTbu88] van Tilburg, H., On the McEliece public-key cryptosystem, Advances in Cryptography:
Proc. of Crypto '88, S. Goldwasser, Ed., Lecture Notes in Computer Science 403, Springer Verlag,
Berlin etc., pp. 119-131, 1989.

[Vaud98] Vaudenay, S., Cryptanalysis of the Chor-Rivest cryptosystem, Advances in
Cryptography: Proc. of Crypto '98, H. Krawczyk, Ed., Lecture Notes in Computer Science 1462,
Springer Verlag, Berlin etc., pp. 243-256, 1998.

[VerT97] Verheul, E.R. and H.C.A. van Tilborg, Constructions and properties of k out of n visual
secret sharing shemes, Designs, Codes and Cryptography, Vol. 11, No. 2, pp.179-196, May 1997.

[Well99] Wells, R.B., Applied Coding and Information Theory, Prentice Hall, Upper Saddle River
NJ, 1999.

[Wien90] Wiener, M.J., Cryptanalysis of Short RSA Secret Exponents, IEEE Transactions on
Information Theory, IT-36, pp. 553-558, May 1990.

[ZivL77] Ziv, J. and A. Lempel, A universal algorithm for sequential data compression, IEEE
Transactions on Information Theory, IT-23, pp. 337-343, 1977.

[ZivL78] Ziv, J. and A. Lempel, Compression of individual sequences by variable rate coding,
IEEE Transactions on Information Theory, IT-24, pp. 530-536, 1978.

468 APPENDICES

Symbols and Notations
�a, b� greatest common divisor, 344, 345

�a, b� least common multiple, 345

� u

m
� Jacobi symbol, 364

R 	 S residue class ring, 388

�s�x�� ideal generated by s�x�, 398

� congruent, 352

�� v �� length of vector, 393

U� orthogonal complement, 394

%�pU �x�, GF�2m�� Goppa code, 236

� Möbius function, 378

��x� number of primes � x, 344

� Euler totient function, 354

� Legendre symbol, 364

(f) output space of LFSR, 35

AC(k) auto-correlation, 28

Dn redundancy, 79

d(u) density of a knapsack, 269

� elliptic curve, 213

gcd greatest common divisor, 344, 345

f
 minimal characteristic polynomial, 36

f +k/ linear complexity, 52

F[x] ring of polynomials over F, 395

�q finite field of q elements, 387

GF Galois field, 387

Symbols and Notations 469

h+p/ entropy, 76

H(X) entropy, 76

H+X « Y/ conditional entropy, 81

Iq+n/ number of irreducible polynomials of degree n over ¬q, 401

I +n/ number of binary, irreducible polynomials of degree n, 401

I(X,Y) mutual information, 82

lcm least common multiple , 345, 344

Lk linear complexity, 52

5 non-privileged set (of an access system), 322

NQR quadratic non-residue , 364

PD probability of a successful deception, 293

PI probability of a successful impersonation attack, 293

PS probability of a successful substitution attack, 293

7 privileged set (of an access system), 322

Q+d/ cyclotomic polynomial, 420

QR quadratic residue , 364

Tr trace function, 424

V(n,q) n-dimensional vectorspace over GF+q/, 309

w(x) weight of a vector, 242

Àp integers modulo p, 395

470 APPENDICES

Index

A

Abelian group, 385
access structure, 322

complete, 322
perfect , 322

A-code (for message authentication), 292
Johansson's construction of A-code from EC-code, 309
from orthogonal array, 305

active cryptanalist, 3
addition of points on an elliptic curve, 225
addition chain, 113
additive group, 385
address, 98
alphabet, 2
algorithm

addition of points on an elliptic curve , 225
Baby-step Giant-step (for taking discrete logarithms), 130
Berlekamp-Massey, 56
bit swapping, 255
Cohen and Lenstra (deterministic primality test 1), 194
continued fraction, 371
conversion from integer to binary weight k vector, 283
decryption of Chor-Rivest, 284
Euclid (simple version), 348

(extended version), 349
factoring algorithms

Pollard p-1, 159
Pollard-�, 161
quadratic sieve, 167
random squares method, 163
Gauss (to find a primitive element), 423

Gram-Schmidt (for orthogonalization process), 272
Huffman (for data compression), 93
index-calculus (for taking discrete logarithms), 135
Floyd's cycle-finding algorithm, 133
knapsack problem for superincreasing sequences, 264

Index 471

L3 (for a lattice basis reduction), 277
Lempel-Ziv (for data compression) , 97
message authentication code based on DES, 290
Miller-Rabin primality test, 189
Pohlig-Hellman, 121
Pollard p-1 (for factoring), 159
Pollard-� (for factoring), 161
Pollard-U (for taking discrete logarithms), 131

 primality tests
Cohen and Lenstra (deterministic primality test 1), 194
Miller-Rabin (probabilistic primality test), 189
Solovay and Strassen (probabilistic primality test), 188

quadratic sieve factoring algorithm, 167
Secure Hash (SHA), 119
Solovay and Strassen (probabilistic primality test), 188
taking square roots modulo a prime number, 200

anomalous curve, 235
associative (operation), 384
attack

chosen plaintext, 4
ciphertext only, 3
Coppersmith (on RSA with related messages), 171
exhaustive key search, 10
impersonation, 292
incidence of coincidences (of Vigenère cryptosystem), 16
known plaintext, 3
Kasiski's method (of Vigenère cryptosystem), 19
known plaintext, 3
L3 (on the knapsack system), 275
Lagarias and Odlyzko, 270
microwave attack (physical attack of RSA), 181
substitution, 292
timing (physical attack of RSA), 180
Wiener (of RSA with small d), 176

authentication, 1
code, 291

from error-correcting codes, 309
from orthogonal array, 305
from projective plane, 303

matrix, 291
message authentication code, 289

472 APPENDICES

authenticator, 292
auto-correlation, 28

in-phase, 29
out-of-phase, 29

B

Baby-step Giant-step (for taking discrete logarithms), 130
basis, 392

lattice, 272
self-orthogonal, 394
self-orthonormal, 394
standard, 393
y-reduced (of a lattice), 274

Berlekamp-Massey algorithm, 56
bi-gram, 2
binary symmetric channel, 83
bit (unit of information), 75
bit swapping algorithm, 255
block, 28
block cipher, 63

Data Encryption Standard, 67
DES, 67
IDEA, 70
RC5, 72
Triple DES, 69

bound (square root), 294
branch point, 58
buffer

look-ahead, 98
search, 98

Index 473

C

Caesar cipher, 9
Carmichael number, 192
chain rule for conditional entropy, 81
challenge in

Fiat-Shamir protocol, 316
block cipher based identity verification protocol, 67

channel (secure), 3
characteristic (of a field), 409
characteristic polynomial, 35
Chinese Remainder Theorem, 361
Chor-Rivest cryptosytem, 279
chosen plaintext attack, 4
cipher (see cryptosystem)

block, 63
stream, 21

cipher block chaining, 64
cipher feedback mode, 65
ciphertext, 3
ciphertext only attack, 3
code

A- (for message authentication), 292
authentication, 291
Goppa, 237
hash, 288
instantaneous, 88
message authentication, 289
prefix, 88
source, 87
uniquely decodable, 87
U.D., 87

codebook mode, 63
codeword, 237
Cohen and Lenstra (deterministic primality test; version1), 194
collision resistant

strong, 288
weak, 288

column transposition (cipher), 21
commutative (operation), 383
complete

474 APPENDICES

access structure, 322
residue system, 353

computationally secure, 287
conditional

entropy, 81
probability, 80

confidentiality, 1
congruence relation

linear, 358
quadratic, 364

congruent, 352
conjugate, 412
consistency condition (of Kolmogorov), 4
continued fraction, 369
conventional cryptosystem, 3
convergent, 373
Coppersmith's attack on RSA with related messages, 171
coprime, 346
cryptanalist, 3

active, 3
passive, 3

cryptanalysis , 1
differential (for block ciphers), 72
incidence of coincidences, 16
Kasiski's method, 19
linear (for block ciphers), 72
the method of the probable world, 11

cryptographic transformation, 2
cryptography, 1
cryptology, 1
cryptosystem

Caesar, 9
Chor-Rivest, 279
column transposition , 21
conventional, 3
Data Encryption Standard, 67
DES, 67
Diffie-Hellman key exchange protocol, 115
Diffie-Hellman key exchange protocol over elliptic curves, 232
ElGamal public key cryptosystems, 116

secrecy scheme, 116

Index 475

signature scheme, 118
Enigma, 24
Hagelin, 22
IDEA, 70
knapsack, 268
LFSR, 32
linear feedback shift register, 32
logarithm system (key exchange), 115
McEliece (secrecy scheme), 243
Niederreiter (secrecy scheme, 261
one-time pad, 20
Playfair, 20
polyalphabetic substitution, 15
product, 21
public key, 105
Rabin (variant to RSA), 198
RC5
RSA, 72

secrecy, 150
signature, 153
signature and privacy, 155

simple substitution, 10
symmetric, 3
transposition, 21
Triple DES, 69
unconditionally secure, 84
Vernam, 20
Vigenère, 13

curve
anomalous, 235
elliptic, 213
singular, 235
supersingular, 235

cyclic group, 389
cyclotomic polynomial, 420

D

data compression, 87
Huffman, 93
Lempel-Ziv, 97
universal data compression, 97

476 APPENDICES

Data Encryption Standard, 67
deception, 293
decoding

algorithm, 237
information set, 255

decryption, 3
degree of

 field element, 414
polynomial, 395

density of a knapsack, 271
dependent (linearly), 392
depth (of an orthogonal array), 305
derivative, 222
DES, 67
dictionary, 98
differential cryptanalysis (for block ciphers), 72
Diffie-Hellman key exchange protocol, 115
Diffie-Hellman key exchange protocol over elliptic curves, 232
digital signature schemes

Digital Signature Standard, 119
ElGamal, 118
Nyberg-Rueppel, 120
RSA, 153
Schnorr, 120

Digital Signature Standard, 119
dimension of

linear code, 237
vector space, 393

discrete logarithm problem, 113
discrete logarithm problem over elliptic curves, 231
distance

Hamming (between codewords), 237
minimum (of a code), 237
unicity (of a cryptosystem), 80

distributive, 386
divide

integer, 343
polynomial, 396

Index 477

E

ElGamal public key cryptosystems, 116
secrecy scheme, 116
signature scheme, 118

elliptic curve, 213
encryption, 3
Enigma, 24
entropy, 76

conditional, 81
equivalence

class, 388
relation, 387

equivocation (conditional entropy), 81
error-correcting capability, 237
Euclid

algorithm (simple version), 348
algorithm (extended version), 349
person, 425
theorem of, 344

Euler
person, 426
theorem of, 356
totient function, 354

exhaustive key search, 10
expansion factor (of a visual secret sharing scheme), 333
extension field, 410

478 APPENDICES

F

factorization algorithms
Pollard p-1, 159
Pollard-�, 161
quadratic sieve, 167
random squares method, 163

Fano plane, 297
feedback

coefficients, 33
function, 31
mode, 66
shift register, 31

Fermat
person, 428
theorem of, 357

Fibonacci numbers, 350
field, 387

extension, 410
ground, 410
sub-, 387

finite, 387
Floyd's cycle-finding algorithm, 133
function

feedback, 31
generating, 35
hash, 288
Möbius, 378
multiplicative, 357
one-way, 107

one-way function for hash functions, 288
trapdoor, 107

Fundamental Theorem of Number Theory, 347

Index 479

G

Galois
field, 387
person, 434

gap, 28
Gauss

algorithm (to find a primitive element), 423
person, 439
quadratic reciprocity law, 368

gcd, see greatest common divisor
generate a

group, 389
ideal, 398

generating function, 35
generator of finite field, 405
generator matrix of a linear code, 237
GF, 387
Golomb's randomness postulates, 29
Goppa code, 237
Gram-Schmidt algorithm (for orthogonalization process), 272
greatest common divisor of

integers, 344
polynomials, 396

ground field, 410
group, 384

Abelian, 385
additive, 385
cyclic, 389
multiplicative, 385
sub-, 385

H

Hagelin rotor machine, 22
Hamming distance (between codewords), 237
hash code/function, 288
Hasse (theorem on the number of points on a curve), 215
homogenize, 235
Huffman algorithm (for data compression), 93

480 APPENDICES

I

IDEA, 70
ideal, 386
ideal secret sharing scheme, 329
identity verification protocol

based on a block cipher, 67
Fiat-Shamir, 316
Schnorr, 319

impersonation attack, 292
incidence matrix, 298
incidence of coincidences, 16
inclusion and exclusion, principle of, 381
independent (linearly), 392
index (of an orthogonal array), 305
index-calculus method (for taking discrete logarithms), 135
inequality

Kraft, 89
MacMillan, 88

information, 75
mutual, 82
rate (of a secret sharing scheme), 329
set decoding (of a linear code), 255

inner product, 393
standard, 393

in-phase autocorrelation, 29
instantaneous code, 88
integrity, 1
inverse (in general), 384

multiplicative, 386
inversion formula of Möbius, 379
irreducible (polynomial), 396
isomorphic (of two fields), 410

Index 481

J

Jacobi
person, 445
symbol, 364

joint distribution, 80
Johansson construction of A-code from EC-code, 309

K

Kasiski's method, 19
key, 3

exhaustive search , 10
space, 3
exchange system, 114

Diffie-Hellman (modular arithmetic), 115
Diffie-Hellman over elliptic curves, 232

knapsack
cryptosystem, 268
problem, 263

known plaintext attack, 3
Kolmogorov's consistency condition, 4
Kraft inequality, 89

L

L3 � algorithm (for a lattice basis reduction), 277
L3 � attack (on the knapsack system), 275
Lagarias and Odlyzko attack, 270
LaGrange interpolation formula, 324
language, 2
lattice, 271
lcm, see least common multiple
least common multiple

for integers, 345
for polynomials, 396

Legendre
person, 446
symbol, 364

Lempel-Ziv data compression technique, 97
length of

addition chain, 113
code, 237

482 APPENDICES

feedback shift register, 31
vector, 393

LFSR, 32
line (in projective plane), 295
linear

combination, 392
complexity, 49
congruence relation, 358
cryptanalysis (for block ciphers), 72
equivalence, 49
feedback shift register, 32
(sub-)space, 391

linearly
dependent, 392
independent, 392

linked list, 98
logarithm system, 115
log table, 414
look-ahead buffer, 98

M

MAC (message authentication code), 289
MacMillan inequality, 88
Markov process, 6
matrix

authentication, 291
incidence, 298
generator, 237
parity check, 241

maximal element (of an access structure), 322
message authentication code, 289
microwave attack (physical attack of RSA), 181
Miller-Rabin (probabilistic primality test), 189
minimal

characteristic polynomial, 51
distance (of a code), 237
element (of an access structure), 322
polynomial, 413

minimum distance (of a code), 237
Möbius

function, 378

Index 483

inversion formula, 379
multiplicative inversion formula, 380
person, 447

modes of encryption of a block cipher
cipher block chaining, 64
cipher feedback mode, 65
codebook, 63

modulo, 352
monic (polynomial), 401
multiplicative

function, 357
group, 385
inverse, 386
inversion formula of Möbius, 380
order of a group element, 389

mutual information, 82

N

n-gram, 2
Niederreiter encryption scheme, 261
non-privileged subset of an access structure, 322
non-singular curve, 235
NP-complete problem, 244
NQR, 364
n-th root of unity, 405

 primitive, 405
Nyberg-Rueppel signature scheme, 120

O

one-time pad, 20
one-way function for

hash codes, 288
public key cryptosystem, 107

operation(s), 383
Abelian, 385
associative, 384
commutative,383
distributive, 386

order of
cyclic group, 389
element in a group, 389

484 APPENDICES

finite field, 387
multiplicative (of a group element), 389
projective plane, 296

orthogonal, 394
array, 305
complement, 394
self-, 394

out-of-phase autocorrelation, 29

P

parity check matrix of a linear code, 241
passive cryptanalist, 3
perfect

access structure, 322
authentication code, 294
secrecy, 84

period of
polynomial, 38
sequence, 28

periodic sequence, 28
plaintext, 3

source, 4
plane

Fano, 297
projective, 295

Playfair cipher, 20
PN sequence, 34
Pohlig-Hellman algorithm, 121
point (in projective plane), 295
point at infinity, 213
Pollard p-1 method for factoring integers, 159
Pollard-� method for factoring integers, 161
Pollard-U method for taking discrete logarithms, 131
polyalphabetic substitution, 15
polynomial, 395

characteristic, 35
cyclotomic, 420
minimal, 413
minimal characteristic, 51
monic, 401
primitive, 414

Index 485

reciprocal, 35
positive definite, 393
power series, 35
prefix code, 88
prime, 343

number theorem, 344
safe, 161

primality test
Cohen and Lenstra (deterministic; version1), 194
Miller-Rabin (probabilistic test), 189
Solovay and Strassen (probabilistic), 188

primitive
element, 405
n-th root of unity, 405
polynomial, 414

principal ideal ring, 398
Principle of inclusion and exclusion, 381
privacy, 1
privileged subset of an access structure, 322
product cipher, 21
projective plane, 295

authentication code, 303
protocol, 315

Diffie-Hellman key exchange, 115
Diffie-Hellman key exchange over elliptic curves, 232
identity verification (based on a block cipher), 67
Fiat-Shamir identity verification, 316
Schnorr's identification, 319
zero-knowledge, 315

pseudo-random, 28
public key cryptosystem, 105

Q

QR, 364
quadratic

congruence relation, 364
 non-residue, 364
 reciprocity law of Gauss, 368
 residue, 364
 sieve factoring algorithm, 167

486 APPENDICES

R

Rabin cryptosystem, 198
randomness postulates of Golomb, 29
random squares method for factoring, 163
RC5, 72
reciprocal polynomial, 35
reduced

basis (of a lattice), 274
residue system, 355

reducible (polynomial), 396
reduction process (in Huffman's algorithm), 93
redundancy (in plaintext), 79
reflexivity (of a relation), 387
relation, 387

equivalence, 387
residue
 class ring, 388
 complete, 353
 quadratic, 364

quadratic non, 364
response in, 355

Fiat-Shamir protocol, 316
block cipher based identity verification protocol, 67

ring, (in general), 386
principal ideal, 398
residue class, 388
sub-, 386

root of unity
RSA, 405

privacy, 150
signature, 153
signature and privacy, 155

run, 28

Index 487

S

safe prime, 161
scalar multiple of point on an elliptic curve, 229
scheme

 secrecy, 106
ElGamal, 116
McEliece, 243
RSA, 150

secret sharing, 322
signature (ElGamal), 118
threshold, 323

Schnorr's identification protocol, 319
search buffer, 98
secret sharing scheme, 322

ideal, 329
visual, 333

secure channel, 3
Secure Hash Algorithm, 119
security

computational, 287
unconditional, 287

self-orthogonal (basis), 394
self-orthonormal (basis), 394
Schnorr signature scheme, 120
Schnorr's Idenitification Protocol, 319
SHA (Secure Hash Algorithm), 119
share, 322
signature equation, 119
signature scheme, 108

Digital Signature Standard, 119
ElGamal, 118
Nyberg-Rueppel, 120
RSA, 153
Schnorr, 120

simple substitution, 10
singular

curve, 235
point, 235

sliding window, 98
smooth number, 135

488 APPENDICES

Solovay and Strassen probabilistic primality test, 188
source (of plaintext), 4
source coding, 87
space
 linear sub-, 391
 trivial, 391
 vector, 391
span, 392
splitting process (in Huffman's algorithm), 93
square root (taking them modulo a prime number), 200
square root bound, 294
standard basis, 393
standard inner product, 393
state, 31
stationary, 7
stream cipher, 21
strong

collision resistant, 288
liar (for primality), 189
witness (for compositeness), 189

subfield, 387
subgroup, 385
subring, 386
subspace (linear), 391
substitution

attack, 292
polyalphabetic, 15
simple, 10

superincreasing (sequence), 263
supersingular curve, 235
symbol

Jacobi, 364
Legendre, 364

symmetric cryptosystem, 3
symmetry (of a relation), 387
syndrome (of a received vector), 241

T

table
log, 414
Vigenère, 14

Index 489

tangent, 221
text, 2
theorem

Chinese Remainder, 361
Euclid, 344
Euler, 356
Fermat, 357
fundamental (in number theory), 347
Wedderburn, 387

threshold scheme, 323
timing attack (physical attack of RSA), 180
trace, 424
transitivity (of a relation), 387
transposition cipher, 21
trapdoor function, 107
tri-gram, 2
Triple DES, 69
trivial vectorspace, 391

U

U.D. code, 87
unconditionally secure

cryptosystem, 84
signature scheme, 287

unicity distance, 80
unique factorization theorem, 396
uniquely decodable code, 87
unit-element, 384
universal data compression, 97

V

vector, 391
space, 391

Vernam cipher, 20
Vigenère

cryptosystem, 13
table, 14

visual
secret sharing scheme, 333
threshold value, 333

490 APPENDICES

W

weak collision resistant, 288
Wedderburn

person, 451
theorem, 387

Weierstrass equation, 213
weight, 242
Wiener attack, 176
witness (in Fiat-Shamir protocol), 316

X

Xedni (method to solve the elliptic curve discrete logarithm problem), 234

Y

 y-reduced basis (of a lattice), 274

Z

zero element of
additive group, 385
vector space, 391

zero-divisors, 387
zero-knowledge protocol, 315

Index 491

