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Preface
The  protection  of  sensitive  information  against  unauthorized  access  or  fraudulent  changes  has  been  of
prime  concern  throughout  the  centuries.  Modern  communication  techniques,  using  computers  connected
through  networks,  make all  data  even more  vulnerable  for  these  threats.  Also,  new issues  have  come up

that were not relevant before, e.g. how to add a (digital) signature to an electronic document in such a way
that the signer can not deny later on that the document was signed by him/her. 

Cryptology addresses  the above issues.  It  is  at  the foundation of all  information security.  The techniques

employed  to  this  end  have  become  increasingly  mathematical  of  nature.  This  book  serves  as  an
introduction  to  modern  cryptographic  methods.  After  a  brief  survey  of  classical  cryptosystems,  it
concentrates  on  three  main  areas.  First  of  all,  stream  ciphers  and  block  ciphers  are  discussed.  These

systems  have  extremely  fast  implementations,  but  sender  and  receiver  have  to  share  a  secret  key.  Public
key cryptosystems (the second main area) make it possible to protect data without a prearranged key. Their
security  is  based  on  intractable  mathematical  problems,  like  the  factorization  of  large  numbers.  The
remaining  chapters  cover  a  variety  of  topics,  such  as  zero-knowledge proofs,  secret  sharing schemes and

authentication  codes.  Two  appendices  explain  all  mathematical  prerequisites  in  great  detail.  One  is  on
elementary  number  theory  (Euclid's  Algorithm,  the  Chinese  Remainder  Theorem,  quadratic  residues,
inversion  formulas,  and  continued  fractions).  The  other  appendix  gives  a  thorough  introduction  to  finite

fields and their algebraic structure.

This  book differs  from its  1988 version in  two ways.  That  a  lot  of  new material  has  been added is to  be

expected in a field that is developing so fast. Apart from a revision of the existing material, there are many
new or greatly expanded sections, an entirely new chapter on elliptic curves and also one on authentication
codes. The second difference is even more significant. The whole manuscript is electronically available as

an  interactive  Mathematica  manuscript.  So,  there  are  hyperlinks  to  other  places  in  the  text,  but  more

importantly,  it  is  now  possible  to  work  out  non-trivial  examples.  Even  a  non-expert  can  easily  alter  the

parameters in the examples and try out new ones. It is our experience, based on teaching at the California
Institute  of  Technology  and  the  Eindhoven  University  of  Technology,  that  most  students  truly  enjoy  the
enormous possibilities of a computer algebra notebook. Throughout the book, it has been our intention to
make  all  Mathematica  statements  as  transparent  as  possible,  sometimes  sacrificing  elegant  or  smart

alternatives that are too dependent on this particular computer algebra package.  

There  are  several  people  that  have played  a  crucial  role  in  the  preparation  of  this  manuscript.  In
alphabetical  order  of  first  name,  I  would  like  to  thank  Fred  Simons  for  showing  me  the  full
potential  of  Mathematica  for  educational  purposes  and  for  enhancing  many  the  Mathematica

commands,  Gavin  Horn  for  the  many  typo's  that  he  has  found  as  well  as  his  compilation  of
solutions,  Lilian  Porter  for  her  feedback on my use of  English,  and Wil  Kortsmit  for  his  help in
getting  the  manuscript  camera-ready  and  for  solving  many  of  my  Mathematica  questions.  I  also
owe  great  debt  to  the  following  people  who  helped  me  with  their  feedback  on  various  chapters:



Berry Schoenmakers, Bram van Asch, Eric Verheul, Frans Willems, Mariska Sas, and Martin van
Dijk.

Henk van Tilborg
Dept. of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box  513
5600 MB Eindhoven
the Netherlands
email:  henkvt@win.tue.nl.
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1 Introduction

1.1 Introduction and Terminology
Cryptology,  the  study  of  cryptosystems,  can  be  subdivided  into  two  disciplines.  Cryptography
concerns  itself  with  the  design  of  cryptosystems,  while  cryptanalysis  studies  the  breaking of
cryptosystems. These two aspects are closely related; when setting up a cryptosystem the analysis
of  its  security  plays  an  important  role.  At  this  time  we  will  not  give  a  formal  definition  of  a
cryptosystem,  as  that  will  come  later  in  this  chapter.  We  assume  that  the  reader  has  the  right
intuitive idea of what a cryptosystem is.

Why would anybody use a cryptosystem? There are several possibilities:

Confidentiality:  When  transmitting  data,  one  does  not  want  an  eavesdropper  to  understand  the
contents  of  the  transmitted  messages.  The  same  is  true  for  stored  data  that  should  be  protected
against unauthorized access, for instance by hackers.

Authentication:  This  property  is  the  equivalent  of  a  signature.  The  receiver  of  a  message  wants
proof that a message comes from a certain party and not from somebody else (even if the original
party later wants to deny it).

Integrity:  This  means  that  the  receiver  of  certain  data  has  evidence  that  no  changes  have  been
made by a third party.

Throughout the centuries (see [Kahn67]) cryptosystems have been used by the military and by the
diplomatic  services.  The  nowadays  widespread  use  of  computer  controlled  communication
systems in industry or by civil services,  often asks for special  protection of the data by means of
cryptographic techniques.

Since the storage, and later recovery, of data can be viewed as transmission of this data in the time
domain, we shall always use the term transmission when discussing a situation when data is stored
and/or transmitted.



1.2 Shannon's Description of a Conventional Cryptosystem
Chapters  2,  3,  and 4  discuss  several  so-called  conventional  cryptosystems.  The formal definition
of a conventional cryptosystem as well as the mathematical foundation of the underlying theory is
due to C.E. Shannon [Shan49]. In Figure 1.1, the general outline of a conventional cryptosystem is
depicted.

In  the  next  section  we  shall  elaborate  on  concepts  like  language  and  text.  This  will  provide  a
cryptanalyst with useful models when describing the output of  the sender in the scheme.

Alice Encryption Decryption Bob

Key Source

Eve

Secure Channel

m EkHmL=c

m=

DkHcL
k k

Figure 1.1

The conventional cryptosystem

Let   be a finite  set,  which we will  call  alphabet.  With ||  we denote the cardinality of .  We
shall often use q = 80, 1, …, q - 1<  as alphabet, where we work with its elements modulo q  (see
the beginning of Subsection A.3.1 and Section B.2. The alphabet 26  can be identified with the set8a, b, …, z< . In most modern applications q  will often be 2 or a power of 2.

A  concatenation  of  n  letters  from    will  be  called  an  n-gram  and  denoted  by
a = Ha0, a1, …, an-1L .  Special cases are bi-grams  (n = 2) and tri-grams  (n = 3). The set of all  n-
grams from  will be denoted by n . 

A  text  is  an  element  from  * = ‹n¥0 n .  A  language  is  a  subset  of  * .  In  the  case of
programming languages this subset is precisely defined by means of recursion rules. In the case of
spoken languages these rules are very loose.

Let    and    be  two  finite  alphabets.   Any  one-to-one  mapping  E  of  *  to  *  is  called  a
cryptographic transformation.  In most practical  situations ||  will be equal to ||.  Also often the
cryptographic  transformation  E  will  map  n-grams  into  n-grams  (to  avoid  data  expansion  during
the encryption process).
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Let  m  be  the  message  (a  text  from * )  that  Alice  in  Figure  1.1  wants  to  transmit  in  secrecy  to
Bob. It is usually called the plaintext. Alice will first transform the plaintext into c = EHmL , the so-
called ciphertext. It will be the ciphertext that she will transmit to Bob. 

Definition 1.1
A symmetric (or conventional) cryptosystem  is a set of cryptographic transformations 
= 8Ek » k œ < . 
The index set  is called the key space, and its elements k  keys.

Since Ek  is  a one-to-one mapping, its  inverse must exist.  We shall  denote it  with Dk .  Of course,
the E  stands for encryption (or enciphering) and the D  for decryption (or deciphering). One has

Dk  HEk  HmLL = m ,    for all plaintexts m œ * and keys k œ  .

If  Alice wants  to send the plaintext  m  to  Bob by means of the cryptographic  transformation Ek ,
both Alice and Bob must  know the particular  choice of the key k .  They will  have agreed on the
value of k  by means of a so-called secure channel.  This channel  could be a courier,  but it  could
also be that Alice and Bob have, beforehand, agreed on the choice of k .

Bob can decipher c  by computing

Dk  HcL = Dk  HEk  HmLL = m .

Normally,  the  same  cryptosystem    will  be  used  for  a  long  time  and  by  many  people,  so  it  is
reasonable  to  assume  that  this  set  of  cryptographic  transformations    is  also  known  to  the
cryptanalyst. It is the frequent changing of the key that has to provide the security of the data. This
principle was already clearly stated by the Dutchman Auguste Kerckhoff (see [Kahn67]) in the 19-
th century.

The cryptanalyst (Eve) who is connected to the transmission line can be:

ä  passive  (eavesdropping):  The  cryptanalyst  tries  to  find  m  (or  even  better  k )  from  c  (and
whatever further knowledge he has). By determining k  more ciphertexts may be broken.

ä  active  (tampering):  The  cryptanalyst  tries  to  actively  manipulate  the  data  that  are  being
transmitted.  For  instance,  he  transmits  his  own  ciphertext,  retransmits  old  ciphertext,  substitutes
his own texts for transmitted ciphertexts, etc..

In general, one discerns three levels of cryptanalysis:

ä  Ciphertext  only  attack:  Only  a  piece  of  ciphertext  is  known to  the  cryptanalyst  (and  often  the
context of the message).

ä Known plaintext attack: A piece of ciphertext with corresponding plaintext is known. If a system
is  secure  against  this  kind  of  attack  the  legitimate  receiver  does  not  have  to  destroy  deciphered
messages.
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ä  Chosen  plaintext  attack:  The  cryptanalyst  can  choose  any  piece  of  plaintext  and  generate  the
corresponding  ciphertext.  The  public-key  cryptosystems  that  we  shall  discuss  in  Chapters  7-12
have to be secure against this kind of attack.

This concludes our general description of the conventional cryptosystem as depicted in Figure 1.1. 

1.3 Statistical Description of a Plaintext Source
In  cryptology,  especially  when  one  wants  to  break  a  particular  cryptosystem,  a  probabilistic
approach to describe a language is often already a powerful tool, as we shall see in Section 2.2.

The person Alice  in Figure  1.1  stands  for  a  finite  or  infinite  plaintext  source    of  text,  that  was
called plaintext, from an alphabet , e.g. q . It can be described as a finite resp. infinite sequence
of random variables Mi , so by sequences

M0, M1, … , Mn-1 for some fixed value of n ,

resp.

M0, M1, M2, … ,

each  described  by  probabilities  that  events  occur.  So,  for  each  letter  combination  (r-gram)Hm0, m1, … , mr-1L  over  and each starting point j  the probability

PrplainHM j = m0, M j+1 = m1, … , M j+r-1 = mr-1L
is well defined. In the case that j = 0, we shall simply write PrplainHm0, m1, … , mr-1L . Of course,
the  probabilities  that  describe  the  plaintext  source    should  satisfy  the  standard  statistical
properties, that we shall mention below but on which we shall not elaborate.

i) PrplainHm0, m1, … , mr-1L ¥ 0 for all texts Hm0, m1, … , mr-1L .

ii) ⁄Hm0, m1,… , mr-1L PrplainHm0, m1, … , mr-1L = 1.

iii) ⁄Hmr, mr+1,… , ml-1L PrplainHm0, m1, … , ml-1L = PrplainHm0, m1, …, mr-1L , for all l > r .

The third property is called Kolmogorov's consistency condition.

Example 1.1

The plaintext  source   (Alice  in  Figure  1.1)  generates  individual  letters  (1-grams)  from 8a, b, …, z<  with
an independent but identical distribution, say pHaL, pHbL, …, pHzL . So,

PrplainHm0, m1 , …, mn-1L = pHm0L pHm1L ∫ pHmn-1L , n ¥ 1.

The  distribution  of  the  letters  of  the  alphabet  in  normal  English  texts  is  given  in  Table  1.1  (see
Table 12-1 in [MeyM82]). In this model one has that

PrplainHrunL = pHrL pHuL pHnL = 0.0612 µ 0.0271 µ 0.0709 º 1.18 10-4 .
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Note that in this model also PrplainHnruL = pHnL pHrL pHuL , etc., so, unlike in a regular English texts,
all permutations of the three letters r , u, and n are equally likely in .

Table 1.1

a 0.0804 h 0.0549 o 0.0760 v 0.0099
b 0.0154 i 0.0726 p 0.0200 w 0.0192
c 0.0306 j 0.0016 q 0.0011 x 0.0019
d 0.0399 k 0.0067 r 0.0612 y 0.0173
e 0.1251 l 0.0414 s 0.0654 z 0.0009
f 0.0230 m 0.0253 t 0.0925
g 0.0196 n 0.0709 u 0.0271

Probability distributions of 1-grams in English.

Example 1.2

  generates  2-grams  over  the  alphabet  8a, b, , …, z<  with  an  independent  but  identical  distribution,  say
pHs, tL , with s, t œ 8a, b, …, z< . So, for n ¥ 1

PrplainHm0, m1, …, m2 n-1L = pHm0 m1L pHm2, m3L ∫  pHm2 n-2 m2 n-1L . 

The distribution of 2-grams in English texts can be found in the literature (see Table 2.3.4 in 
[Konh81]).

Of course, one can continue like this with tables of the distribution of 3-grams or more. A different
and more appealing approach is given in the following example.

ed@"a"D = 0.0723; ed@"j"D = 0.0006; ed@"s"D = 0.0715;
ed@"b"D = 0.0060; ed@"k"D = 0.0064; ed@"t"D = 0.0773;
ed@"c"D = 0.0282; ed@"l"D = 0.0396; ed@"u"D = 0.0272;
ed@"d"D = 0.0483; ed@"m"D = 0.0236; ed@"v"D = 0.0117;
ed@"e"D = 0.1566; ed@"n"D = 0.0814; ed@"w"D = 0.0078;
ed@"f"D = 0.0167; ed@"o"D = 0.0716; ed@"x"D = 0.0030;
ed@"g"D = 0.0216; ed@"p"D = 0.0161; ed@"y"D = 0.0168;
ed@"h"D = 0.0402; ed@"q"D = 0.0007; ed@"z"D = 0.0010;
ed@"i"D = 0.0787; ed@"r"D = 0.0751;

Table 1.2

Equilibrium distribution in English.
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a b c d e f g h i j k l m
a 0.0011 0.0193 0.0388 0.0469 0.002 0.01 0.0233 0.002 0.048 0.002 0.0103 0.1052 0.0281
b 0.0931 0.0057 0.0016 0.0008 0.3219 0 0 0 0.0605 0.0057 0 0.1242 0.0049
c 0.1202 0 0.0196 0.0004 0.1707 0 0 0.1277 0.0761 0 0.0324 0.0369 0.0015
d 0.1044 0.002 0.0026 0.0218 0.3778 0.0007 0.0132 0.0007 0.1803 0.0033 0 0.0125 0.0178
e 0.066 0.0036 0.0433 0.1194 0.0438 0.0142 0.0125 0.0021 0.0158 0.0005 0.0036 0.0456 0.034
f 0.0838 0 0 0 0.1283 0.0924 0 0 0.1608 0 0 0.0299 0.0009
g 0.1078 0 0 0.0018 0.2394 0 0.0177 0.1281 0.0839 0 0 0.0203 0.0027
h 0.1769 0.0005 0.0014 0.0008 0.5623 0 0 0.0005 0.1167 0 0 0.0016 0.0016
i 0.038 0.0082 0.0767 0.0459 0.0437 0.0129 0.028 0.0002 0.0016 0 0.005 0.0567 0.0297
j 0.1259 0 0 0 0.1818 0 0 0 0.035 0 0 0 0
k 0.0395 0.0028 0 0.0028 0.5282 0.0028 0 0.0198 0.1582 0 0.0113 0.0198 0.0028
l 0.1342 0.0019 0.0022 0.0736 0.1918 0.0105 0.0108 0 0.1521 0 0.0079 0.1413 0.0082
m 0.1822 0.0337 0.0026 0 0.2975 0.001 0 0 0.1345 0 0 0.001 0.0654
n 0.055 0.0004 0.0621 0.1681 0.1212 0.0102 0.1391 0.0013 0.0665 0.0009 0.0066 0.0073 0.0104
o 0.0085 0.0101 0.0162 0.0231 0.0037 0.1299 0.0082 0.0025 0.0092 0.0014 0.0078 0.0416 0.0706
p 0.1359 0 0.0006 0 0.1747 0 0 0.0237 0.0423 0 0 0.0812 0.0073
q 0 0 0 0 0 0 0 0 0 0 0 0 0
r 0.1026 0.0033 0.0172 0.0282 0.2795 0.0031 0.0175 0.0017 0.1181 0 0.0205 0.0164 0.0303
s 0.0604 0.0012 0.0284 0.0027 0.1795 0.0024 0 0.0561 0.1177 0 0.0091 0.0145 0.0112
t 0.0619 0.0003 0.0036 0.0002 0.1417 0.0007 0.0002 0.3512 0.1406 0 0 0.0101 0.0044
u 0.0344 0.0415 0.0491 0.0243 0.0434 0.0052 0.0382 0.001 0.0258 0 0.0014 0.1097 0.0329
v 0.0749 0 0 0.0023 0.6014 0 0 0 0.2569 0 0 0 0.0012
w 0.2291 0.0008 0 0.0032 0.1942 0 0 0.1422 0.2104 0 0 0.0041 0
x 0.0672 0 0.1119 0 0.1269 0 0 0.0075 0.1119 0 0 0 0.0075
y 0.0586 0.0034 0.0103 0.0069 0.2897 0 0 0 0.069 0 0.0034 0.0172 0.0379
z 0.2278 0 0 0 0.4557 0 0 0 0.2152 0 0 0.0127 0

n o p q r s t u v w x y z
a 0.1878 0.0008 0.0222 0 0.118 0.1001 0.1574 0.0137 0.0212 0.0057 0.0026 0.0312 0.0023
b 0 0.0964 0 0 0.0662 0.0229 0.0049 0.0727 0.0016 0 0 0.1168 0
c 0.0011 0.2283 0 0.0004 0.0426 0.0087 0.0893 0.0347 0 0 0 0.0094 0
d 0.0053 0.0733 0 0.0007 0.0324 0.0495 0.0013 0.0601 0.0099 0.004 0 0.0264 0
e 0.1381 0.004 0.0192 0.0034 0.1927 0.1231 0.0404 0.0048 0.0215 0.0205 0.0152 0.0121 0.0004
f 0.0009 0.2789 0 0 0.1215 0.0026 0.0496 0.0462 0 0 0 0.0043 0
g 0.0451 0.114 0 0 0.1325 0.0256 0.0247 0.0512 0 0 0 0.0053 0
h 0.0038 0.0786 0 0 0.0153 0.0027 0.0233 0.0085 0 0.0011 0 0.0041 0
i 0.2498 0.0893 0.01 0.0008 0.0342 0.1194 0.1135 0.0011 0.025 0 0.0023 0.0002 0.0079
j 0 0.3147 0 0 0.007 0 0 0.3357 0 0 0 0 0
k 0.0565 0.0198 0 0 0.0085 0.1102 0.0028 0.0028 0 0 0 0.0113 0
l 0.0004 0.0778 0.0041 0 0.0034 0.0389 0.0254 0.0269 0.0056 0.0011 0 0.0819 0
m 0.0042 0.1246 0.0722 0 0.0026 0.0244 0.0005 0.0337 0.0005 0 0 0.0192 0
n 0.0194 0.0528 0.0004 0.0007 0.0011 0.0751 0.1641 0.0124 0.0068 0.0018 0.0002 0.0157 0.0004
o 0.219 0.0222 0.0292 0 0.153 0.0357 0.0396 0.0947 0.0334 0.0345 0.0012 0.0041 0.0004
p 0.0006 0.1511 0.0581 0 0.2306 0.018 0.0287 0.0457 0 0 0 0.0017 0
q 0 0 0 0 0 0 0 1 0 0 0 0 0
r 0.0325 0.1114 0.0055 0 0.0212 0.0655 0.0596 0.0192 0.0142 0.0017 0.0002 0.0306 0
s 0.0021 0.0706 0.0386 0.0009 0.0027 0.0836 0.2483 0.0579 0 0.0039 0 0.0081 0
t 0.0015 0.1229 0.0003 0 0.0479 0.0418 0.0213 0.0195 0.0005 0.0088 0 0.0203 0.0005
u 0.1517 0.0019 0.0386 0 0.146 0.1221 0.1255 0.0029 0.0014 0 0.001 0.0014 0.0005
v 0 0.053 0 0 0 0.0023 0 0.0012 0.0012 0 0 0.0058 0
w 0.0357 0.1292 0 0 0.0106 0.0366 0.0016 0 0 0 0 0.0024 0
x 0 0.0075 0.3507 0 0 0 0.1716 0 0 0 0.0373 0 0
y 0.0172 0.2207 0.031 0 0.031 0.1517 0.0172 0.0138 0 0.0103 0 0.0069 0.0034
z 0 0.0506 0 0 0 0 0 0.0127 0 0 0 0 0.0253

Table 1.3

Transition probabilities pHt » sL , row s , column t , in English.

Example 1.3

In this model, the plaintext source  generates 1-grams by means of a Markov process. This process can be
described  by  a  transition  matrix  P = HpHt » sLLs,t  which  gives  the  probability  that  a  letter  s  in  the  text  is
followed by the letter t . It follows from the theory of Markov processes that P  has 1 as an eigenvalue. Let
p = HpHaL, pHbL, …, pHzLL , be the corresponding eigenvector (it is called the equilibrium distribution of the
process).

Assuming that the process is already in its equilibrium state at the beginning, one has
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PrplainHm0, m1, …, mn-1L = pHm0L pHm1 » m0L pHm2 » m1L ∫  pHmn-1 » mn-2L . 

Let p  and P  be given by Table 1.2 and Table 1.3  from [Konh81] (here they are denoted by "ed"
resp. "TrPr"). Then, one obtains the following, more realistic probabilities of occurrence:

PrplainHrunL = pHrL pHu » rL pHn » uL  = 0.0751× 0.0192 × 0.1517 º 2.19 10-4 ,

PrplainHurnL = pHuL pHr » uL pHn » rL  = 0.0272× 0.1460 × 0.0325 º 1.29 10-4 ,

PrplainHnruL = pHnL pHr » nL pHu » rL  = 0.0814× 0.0011 × 0.0192 º 1.72 10-6 ,

By  means  of  the  Mathematica  functions  StringTake,  ToCharacterCode,  and
StringLength, these probabilities can be computed in the following way (first enter the input
Table 1.2 and Table 1.3, by executing all initialization cells)

sourcetext = "run";
ed@StringTake@sourcetext, 81<DD ∗

‰
i=1

StringLength@sourcetextD−1

TrPr@@

ToCharacterCode@
StringTake@sourcetext, 8i<DD − 96,

ToCharacterCode@StringTake@sourcetext, 8i + 1<DD − 96DD

880.000218448<<
Better  approximations  of  a  language  can  be  made,  by  considering  transition  probabilities  that
depend on more than one letter in the past.

Note,  that  in  the  three  examples  above,  the  models  are  all  stationary,  which  means  that
PrplainHM j = m0, M j+1 = m1, …, M j+n-1 = mn-1L  is independent of the value of j . In the middle of
a  regular  text  one  may  expect  this  property  to  hold,  but  in  other  situations  this  is  not  the  case.
Think for instance of the date at the beginning of a letter.

1.4 Problems

Problem 1.1
What  is  the  probability  that  the  text  "apple''  occurs,  when  the  plaintext  source  generates  independent,
identically distributed 1-grams, as described in Example 1.1.
Answer the same question when the Markov model of Example 1.3 is used?

Problem 1.2 M

Use  the  Mathematica  function  Permutations  and  the  input  formula  at  the  end  of  Section  1.3  to
determine  for  each  of  the  24  orderings  of  the  four  letters  e, h, l, p  the  probability  that  it  occurs  in  a
language generated by the Markov model of Example 1.3.
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2 Classical Cryptosystems

2.1 Caesar, Simple Substitution, Vigenère
In this chapter we shall discuss a number of classical cryptosystems. For further reading we refer
the interested reader to ([BekP82], [Denn82], [Kahn67], [Konh81], or [MeyM82]). 

2.1.1 Caesar Cipher

One  of  the  oldest  cryptosystems  is  due  to  Julius  Caesar.  It  shifts  each  letter  in  the  text  cyclicly
over  k  places.  So,  with k = 7  one  gets  the  following encryption  of  the  word cleopatra  (note  that
the letter z  is mapped to a):

cleopatra  ö
+1

 dmfpqbusb  ö
+1

 engqrcvtc  ö
+1

 fohrsdwud  ö
+1

 gpistexve  ö
+1

 hqjtufywf  ö
+1

irkuvgzxg ö
+1

 jslvwhayh

By using  the  Mathematica  functions  ToCharacterCode  and  FromCharacterCode,  which
convert symbols to their ASCI code and back (letter a  has value 97, letter b  has value 98, etc.), the
Caesar cipher can be executed by the following function:

CaesarCipher@plaintext_, key_D :=

FromCharacterCode@
Mod@ ToCharacterCode@plaintextD − 97 + key, 26D + 97D

An example is given below.

plaintext = "typehereyourplaintextinsmallletters";
key = 24;
CaesarCipher@plaintext, keyD

rwncfcpcwmspnjyglrcvrglqkyjjjcrrcpq

In the terminology of Section 1.2, the Caesar cipher is defined over the alphabet 80, 1, …, 25<  by:

Ek HmL = HHm + kL mod 26L, 0 ≤ m < 26,

and
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 = 8Ek » 0 ≤ k < 26<,
where Hi mod nL  denotes the unique integer j  satisfying j ª i Hmod nL  and 0 § j < n .  In this case,
the key space  is the set 80, 1, …, 25<  and Dk = Eq-1-k . 

An easy way to break the system is to try out all possible keys. This method is called exhaustive
key search. In Table 2.1 one can find the cryptanalysis of the ciphertext "xyuysuyifvyxi".

Table 2.1

x y u y s u y i f v y x i
w x t x r t x h e u x w h
v w s w q s w g d t w v g
u v r v p r v f c s v u f
t u q u o q u e b r u t e

Cryptanalysis of the Caesar cipher 

To  decrypt  the  ciphertext  yhaklwpnw.,  one  can  easily  check  all  keys  with  the  caesar  function
defined above.

ciphertext = "yhaklwpnw";
Table@CaesarCipher@ciphertext, −keyD, 8key, 1, 26<D

8xgzjkvomv, wfyijunlu, vexhitmkt, udwghsljs, tcvfgrkir, sbuefqjhq,
ratdepigp, qzscdohfo, pyrbcngen, oxqabmfdm, nwpzalecl,
mvoyzkdbk, lunxyjcaj, ktmwxibzi, jslvwhayh, irkuvgzxg,
hqjtufywf, gpistexve, fohrsdwud, engqrcvtc, dmfpqbusb,
cleopatra, bkdnozsqz, ajcmnyrpy, ziblmxqox, yhaklwpnw<

2.1.2 Simple Substitution

É The System and its Main Weakness

With  the  method  of  a  simple  substitution  one  chooses  a  fixed  permutation  p  of  the  alphabet8a, b, …, z<  and applies that to all letters in the plaintext.

Example 2.1

In the following example we only give that part of the substitution p that is relevant for the given plaintext.
We use the Mathematica function StringReplace.
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StringReplace@"plaintext",
8"a" −> "k", "e" −> "z", "i" −> "b", "l" −> "r",

"n" −> "a", "p" −> "v", "t" −> "q", "x" −> "d"<D

vrkbaqzdq

A more formal description of the simple substitution system is as follows: the key space  is the
set Sq  of all permutations of 80, 1, …, q - 1<  and the cryptosystem  is given by

 = 8Eπ » π ∈ Sq<,
where

Eπ HmL = π HmL, 0 ≤ m < q.

The decryption function Dp  is given by Dp = Ep-1 , as follows from

Dπ HEπ HmLL = D Hπ HmLL = Eπ−1  Hπ HmLL = π−1 Hπ HmLL = m, 0 ≤ m < q.

Unlike  Caesar's  cipher,  this  system  does  not  have  the  drawback  of  a  small  key  space.  Indeed,» » = » S26 » = 26! º4.03  1026 .   This  system  however  does  demonstrate  very  well  that  a  large
key space  should not  fool one into believing that  a system is  secure!  On the contrary,  by simply
counting the letter frequencies in the ciphertexts and comparing these with the letter frequencies in
Table 1.1, one very quickly finds the images under p of the most frequent letters in the plaintext.
Indeed, the most frequent letter in the ciphertext will very likely be the image under p of the letter
e .  The next  one is  the image of the letter  n ,  etc.  After  having found the encryptions of the most
frequent letters in the plaintext, it is not difficult to fill in the rest. Of course, the longer the cipher
text, the easier the cryptanalysis becomes. In Chapter 5, we come back to the cryptanalysis of the
system, in particular how long the same key can be used safely.

É Cryptanalysis by The Method of a Probable Word

In the following example we have knowledge of a very long ciphertext. This is not necessary at all
for the cryptanalysis of the ciphertext,  but it takes that long to know the full key. Indeed, as long
as  two  letters  are  missing  in  the  plaintext,  one  does  not  know the  full  key,  but  the  system is of
course broken much earlier than that.

Apart  from the ciphertext,  given in Table 2.2,  we shall  assume in this  example that  the plaintext
discusses  the  concept  of  ''bidirectional  communication  theory''.  Cryptanalysis  will  turn  out  to  be
very easy. 
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Table 2.2

zhjeo ndize hicle osiol digic lmhzq zolyi zehdp zhjeo ndize
hycdh hlpvs uczyc dhzhj eondi zehge moylk zhjpm lhylg gidiz
gizyd ppsdo lylzr losye nnmhz ydize hicle osceu lrloq lgyoz
vlgic lneol flhlo dpydg lzhuc zyciu eeone olzhj eondi zehge
moylg zhjpm lhyll dycei clogi dizgi zydpp siclq zolyi zehej
iczgz hjpml hylzg lkaol gglqv sqzol yilqi odhgj eondi zehxm
dhizi zlguc zycyd hehps vlqlo zrlqz jiclp duejy dmgdp ziszg
evglo rlqqz gizhf mzgcz hficl ldopz loydm gljoe niclp dilol
jjlyi zhvze pefsd hqgey zepef syenn mhzyd izehi cleos gllng
iecdr luzql daapz ydize hgqml ieicl jdyii cdipz rzhfv lzhfg
dolvs iclzo dyize hggem oylge jzhje ondiz ehucz yczhj pmlhy
lldyc eiclo zhdpp aeggz vplqz olyiz ehgic laolg lhiad aloql
gyzvl gicly dglej vzqzo lyize hdpye nnmhz ydize hicle osdaa
pzlqi eiclg eyzdp vlcdr zemoe jneht lsg…

Ciphertext obtained with a simple substitution

Assuming  that  the  word  "communication''  will  occur  in  the  plaintext,  we  look  for  strings  of  13
consecutive  letters,  in  which  letter  1  =  letter  8,  letter  2  =  letter  12,  letter  3  =  letter  4,  letter  6  =
letter 13 and letter 7 = letter 11. 

Indeed, we find the string "yennmhzydizeh'' three times in the ciphertext. This gives the following
information about p.

c o m u n i a t
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
y e n m h z d i

Assuming that the word "direction'' does also occur in the plaintext, we need to look for strings of
the form "*z**yizeh''  in the ciphertext,  because of the information that we already have on p.   It
turns out that "qzolyizeh'' appears four times, giving:

d r e
∞ ∞ ∞
q o l

If we substitute all this information in the ciphertext one easily obtains p completely. For instance,
the text begins like

in*ormationt*eor*treat*t*eunid…,

which obviously comes from

information theory treats the unid(irectional) …,

This gives the p-image of the letters f , h, y  and s .

Continuing like this, one readily obtains p completely.
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a b c d e f g h i j k l m n o p q r s t u v w x y z
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
d v y q l j f c z w t p n h e a x o g i m r u k s b

Example 2.2

Mathematica makes is quite easy to find a substring with a certain pattern.For instance, to test where in a
text one can find a substring of length 6 with letters 1 and 4 equal and also letters 2 and 5 (as in the Latin
word  "quoque"),  one  can  use  the  Mathematica  functions  If,  StringTake,  StringLength,  Do,
Print and the following:

ciphertext = "xyuysuyifvyxi";
Do@
If@StringTake@ciphertext, 8i + 1<D == StringTake@ciphertext,

8i + 4<D fl StringTake@ciphertext, 8i + 2<D ==

StringTake@ciphertext, 8i + 5<D,
Print@i + 1, " ", StringTake@ciphertext, 8i + 1, i + 6<DDD,
8i, 0, StringLength@ciphertextD − 6<D

3 uysuyi

This example was taken from Table 2.1.

2.1.3 Vigenère Cryptosystem 

The  Vigenère  cryptosystem  (named  after  the  Frenchman  B.  de  Vigenère  who  in  1586  wrote  his
Traicté  des  Chiffres,  describing  a  more  difficult  version  of  this  system)  consists  of  r  Caesar
ciphers  applied  periodically.  In  the  example  below,  the  key  is  a  word  of  length  r = 7.  The  i-th
letter  in  the  key defines  the  particular  Caesar  cipher  that  is  used for  the encryption of the letters
i, i + r, i + 2 r, … in the plaintext.

Example 2.3

We identify  80, 1, …, 25<  with 8a, b, …, z< .  The so-called Vigenère Table  (see Table 2.3) is a very helpful
tool when encrypting or decrypting. With the key "michael'' one gets the following encipherment:

plaintext a c r y p t o s y s t e m o f t e n i s a c
key m i c h a e l m i c h a e l m i c h a e l m

ciphertext m k t f p x z e g u a e q z r b g u i w l o
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Table 2.3

0 a b c d e f g h i j k l m n o p q r s t u v w x y z
1 b c d e f g h i j k l m n o p q r s t u v w x y z a
2 c d e f g h i j k l m n o p q r s t u v w x y z a b
3 d e f g h i j k l m n o p q r s t u v w x y z a b c
4 e f g h i j k l m n o p q r s t u v w x y z a b c d
5 f g h i j k l m n o p q r s t u v w x y z a b c d e
6 g h i j k l m n o p q r s t u v w x y z a b c d e f
7 h i j k l m n o p q r s t u v w x y z a b c d e f g
8 i j k l m n o p q r s t u v w x y z a b c d e f g h
9 j k l m n o p q r s t u v w x y z a b c d e f g h i
10 k l m n o p q r s t u v w x y z a b c d e f g h i j
11 l m n o p q r s t u v w x y z a b c d e f g h i j k
12 m n o p q r s t u v w x y z a b c d e f g h i j k l
13 n o p q r s t u v w x y z a b c d e f g h i j k l m
14 o p q r s t u v w x y z a b c d e f g h i j k l m n
15 p q r s t u v w x y z a b c d e f g h i j k l m n o
16 q r s t u v w x y z a b c d e f g h i j k l m n o p
17 r s t u v w x y z a b c d e f g h i j k l m n o p q
18 s t u v w x y z a b c d e f g h i j k l m n o p q r
19 t u v w x y z a b c d e f g h i j k l m n o p q r s
20 u v w x y z a b c d e f g h i j k l m n o p q r s t
21 v w x y z a b c d e f g h i j k l m n o p q r s t u
22 w x y z a b c d e f g h i j k l m n o p q r s t u v
23 x y z a b c d e f g h i j k l m n o p q r s t u v w
24 y z a b c d e f g h i j k l m n o p q r s t u v w x
25 z a b c d e f g h i j k l m n o p q r s t u v w x y

The Vigenère Table.

Because of the redundancy in the English language one reduces the effective size of the key space
tremendously by choosing an existing word as the key. Taking the name of a relative, as we have
done above, reduces the security of the encryption more or less to zero.

In  Mathematica,  addition  of  two  letters  as  defined  by  the  Vigenère  Table  can  be  realized  in  a
similar way, as our earlier implementation of the Caesar cipher:

AddTwoLetters@a_, b_D :=

FromCharacterCode@Mod@HToCharacterCode@aD − 97L +

HToCharacterCode@bD − 97L, 26D + 97D

By means  of  the  Mathematica  functions  StringTake  and StringLength  ,  and the  function
AddTwoLetters,  defined  above,  encryption  with  the  Vigenère  cryptosystem  can  be  realized  as
follows:
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plaintext = "typehereyourplaintextinsmallletters";
key = "keyword";
ciphertext = "";
Do@ciphertext = ciphertext <>

AddTwoLetters@StringTake@plaintext, 8i<D,

StringTake@
key, 8Mod@i − 1, StringLength@keyDD + 1<DD,

8i, 1, StringLength@plaintextD<D;
ciphertext

dcnavvuocmqfgokmlpsowsrqiocovirpsiv

A more formal description of the Vigenère cryptosystem is as follows

 = 8EHk0,k1,…,kr−1L » Hk0, k1, …, kr−1L ∈  = 26
r <

and

EHk0,k1,…,kr-1LHm0, m1, m2, ……L = Hc0, c1, c2, ……L
with

(2.1)  ci = HHmi + kHi mod rLL mod 26L.
Instead  of  using  r  Caesar  ciphers  periodically  in  the  Vigenère  cryptosystem,  one  can  of  course
also  use  r  simple  substitutions.  Such  a  system  is  an  example  of  a  so-called  polyalphabetic
substitution.  For centuries,  no one had an effective way of breaking this system, mainly because
one did not have a technique of determining the key length r . Once one knows r , one can find the
r  simple substitutions by grouping together the letters i, i + r, i + 2 r, …,  for each i, 0 § i < r,  and
break each  of  these r  simple  substitutions  individually.  In  1863,  the  Prussian  army officer,  F.W.
Kasiski,  solved the problem of finding the key length  r  by statistical  means.  In the next  section,
we shall discuss this method.
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2.2 The Incidence of Coincidences, Kasiski's Method

2.2.1 The Incidence of Coincidences

Consider a ciphertext c = c0, c1, …, cn-1 which is the result of a Vigenère encryption of an English
plaintext  m = m0, m1, …, mn-1 under  the  key  k = k0, k1, …, kr-1 (see  also  (2.1)).  As  explained  at
the end of the previous section,  the key to breaking the Vigenère system is  to determine the key
length r .

In  our  analysis  we  are  going  to  assume  the  very  simple  model  of  a  plaintext  source  outputting
independent, individual letters, each with probability distribution given by Table 1.1 (see Example
1.1).  We  further  assume  that  the  letters  ki  in  the  key  are  chosen  with  independent  and  uniform
distribution from 8a, b, …, z<  (so, with probability 1/26).

Let cleft
HiL and cright

HiL  the substrings of c  consisting of the i  left most resp. right most symbols of c, so:

cleft
HiL = c0, c1, …, ci-1 and cright

HiL = cn-i, cn-i+1, …, cn-1 .

Let us now count the number of agreements between cleft
HiL and cright

HiL , i.e. the number of coordinates
j  where  Hcleft

HiL L j = Hcright
HiL L j .  We  shall  show  in  Lemma  2.1  that  the  expected  value  of  this  number

divided  by  the  string  length  i  will  be  0.06875  or  1 ê 26 º 0.03846,  depending  on  whether  the
(unknown) key length r  divides n - i  or does not divide n - i .

Let  us  show  by  example  how  this  difference  in  expected  values  can  be  used  to  determine  the
unknown key length r .

Example 2.4

In this example we consider the ciphertext 

"glrtnhklttbrxbxwnnhshjwkcjmsmrwnxqmvehuimnfxbzcwixbrnhxqhhclgcipcgimglrtnhklttbrshvil
gwcmwyejqbxbmlywimbkhhjwkcjmsmrwnxqmplceiwkcjmehtpslmmlxowmylxbxflxeebrahjwkcjms
mrwnxqm".

By  means  of  the  Mathematica  functions  StringTake,  StringLength,  Characters,  and
Table, we can easily compute the number of agreements between  cleft

HiL and cright
HiL  in any range of

values of i:

16 FUNDAMENTALS OF CRYPTOLOGY



ciphertext =

"ubsyvkmhvyrrtsbbcrdsndwrtshxmbufrmxgabnvmircewerucamlyzg

brvfwivvmlyzwapspyogsslechbgcubsvyczqrcwrmhvcxgooyvcyg

dspomtqfpyqkgbcmerucadlcaflrsuqjrbhceqesfcehuoqmdstorg

cdoymeqqwaglgovggsmdabbigztbbqyfwbxwmgfpowgztyeilosrkg

gfahuovqfogswruqnvpwfvrnmpqqgsslatgrmqubsvyczqrswcjdeg

owqqroihqdspdibffnxwgztbbqyfwbxus";
L = StringLength@ciphertextD;
Table@ N@ Count@ Characters@ StringTake@ ciphertext, iDD −

Characters@ StringTake@ ciphertext, −iDD, 0Dêi,
1D, 8i, L − 20, L − 1< D

80.03, 0.04, 0.08, 0.02, 0.05, 0.04, 0.04, 0.03, 0.06, 0.07,
0.06, 0.04, 0.02, 0.05, 0.08, 0.04, 0.05, 0.02, 0.01, 0.05<

The (relative) higher values in this listing at places -6  and -18 indicate that the key length r  is 6.
Indeed,  the  key  that  has  been  used  to  generate  this  example  is  the  word  "monkey'',  which  has  6
letters.

This can be checked with the following analogue of the Vigenère encryption of Example 2.3.

SubTwoLetters@a_, b_D :=

FromCharacterCode@
Mod@HToCharacterCode@aD − 97L − HToCharacterCode@bD − 97L,
26D + 97D
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ciphertext =

"ubsyvkmhvyrrtsbbcrdsndwrtshxmbufrmxgabnvmircewerucamlyzg

brvfwivvmlyzwapspyogsslechbgcubsvyczqrcwrmhvcxgooyvcyg

dspomtqfpyqkgbcmerucadlcaflrsuqjrbhceqesfcehuoqmdstorg

cdoymeqqwaglgovggsmdabbigztbbqyfwbxwmgfpowgztyeilosrkg

gfahuovqfogswruqnvpwfvrnmpqqgsslatgrmqubsvyczqrswcjdeg

owqqroihqdspdibffnxwgztbbqyfwbxus";
key = "monkey";
plaintext = "";
Do@plaintext = plaintext <>

SubTwoLetters@StringTake@ciphertext, 8i<D,

StringTake@
key, 8Mod@i − 1, StringLength@keyDD + 1<DD,
8i, 1, StringLength@ciphertextD<D

plaintext

informationtheorytreatstheunidirectionalikformationchannelbywhichaninfo
rmationsourceinfluencesstatisticallyareceivercommunpcationtheoryhowe
verdescribesthemoregeneralcaseinwhichtwoormoreinformationsourcesinfl
uenceeachotherstatisticallythedirectionofthisinfluenceisexpressedbyd
srectedtransinformationqu

Lemma 2.1
Let  c  be  a  ciphertext  which  is  the  result  of  a  Vigenère  encryption  of  a  plaintext  m  of
length n  with key k  of length r . 
Suppose that m is generated by the plaintext source of Example 1.1. So, all the letters in
m  are  generated  independently  of  each  other,  all  with  the  frequency  distribution  pHmL
given  by  Table  1.1.  Suppose  further  that  the  letters  ki  in  the  key  are  chosen  with
independent and uniform distribution from 8a, b, …, z<  (so, with probability 1/26).
Then, for each 1 § i < j § n ,

Pr@ci = c jD = 9 ⁄m pHmL2 º 0.06875,
1 ê26 º 0.03846,

if r divides j - i,
if r does not divide j - i.

Proof:

If  j - i  is  divisible  by r ,  then  ci = c j  if  and  only  if  mi = m j .  This  follows  directly  from formula
(2.1), since H j mod rL  equals Hi mod rL . So, 

Pr@ci = c jD = Pr@mi = m jD = ⁄m Pr@mi = m j = mD =⁄m Pr@mi = mD Pr@m j = mD = ⁄m pHmL2 º 0.06875.
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If  j - i  is not divisible by r , then by (2.1) ci = c j  if and only if mi + kHi mod rL = m j + kH j mod rL . SinceH j mod rL ∫  Hi mod rL , it follows that kH j mod rL  takes on the value mi + kHi mod rL - m j  with probability
1/26. We conclude that

Pr@ci = c jD = 1 ê26 º 0.03846.

Ñ

It may be clear that with increasing length of the ciphertext, it is easier to determine the key length
from the relative number of agreements between cleft

HiL and cright
HiL .

2.2.2 Kasiski's Method

Kasiski  based  his  cryptanalysis  of  the  Vigenère  cryptosystem  on  the  fact  that  when  a  certain
combination of letters (a frequent plaintext fragment) is encrypted more than once with the same
segment of the key (because they occur at a multiple of the key length r), one will see a repetition
of the corresponding ciphertext at those places.  

We quote an example from [Baue97]:

Example 2.5

Consider the following plaintext and ciphertext pair (where the key "comet" has been used): 

plaintext t h e r e i s a n o t h e r f a m o u s p i a n o p l a y .
key c o m e t c o m e t c o m e t c o m e t c o m e t c o m e .

ciphertext v v q v x k g m r h v v q v y c a a y l r w m r h r z m c .

In the ciphertext one can find the substring  "vvqv" (of length 4) repeated twice, namely starting at
positions 1 and 11. This indicates that r  divides 10. The substring "mrh" (of length 3) also occurs
twice: at positions 8 and 23. So, it seems likely that r  also divides 15. Combining these results, we
conclude that r = 5, which is indeed the case.

See [Baue97] for a further analysis of the Vigenère cryptosystem.
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2.3 Vernam, Playfair, Transpositions, Hagelin, Enigma
In this section, we shall briefly discuss a few more cryptosystems, without going deep into their 
structure.

2.3.1 The One-Time Pad

The one-time pad, also called the Vernam cipher (after the American A.T. & T. employee G.S. 
Vernam, who introduced the system in 1917), is a Vigenère cipher with key length equal to the 
length of the plaintext. Also, the key must be chosen in a completely random way and can only be 
used once. In this way the system is unconditionally secure, as is intuitively clear and will be 
proved in Chapter 5.  The ''hot line'' between Washington and Moscow uses this system. The 
major drawback of this system is the length of the key, which makes this system impractical for 
most applications.

2.3.2 The Playfair Cipher

The Playfair cipher (1854, named after the Englishman L. Playfair) was used by the British in 
World War I. It operates on 2-grams. First of all, one has to identify the letters i  and j . The 
remaining 25 letters of the alphabet are put rowwise in a 5 µ 5 matrix K , as follows. Put the first 
letter of a keyword in the top-left position. Continue rowwise from left to right. If a letter occurs 
more than once in the keyword, use it only once. The remaining letters of the alphabet are put into 
K  in their natural order. For instance, the keyword "hieronymus'' gives rise toi

k
jjjjjjjjjjjjjjjj
h i e r o
n y m u s
a b c d f
g k l p q
t v w x z

y
{
zzzzzzzzzzzzzzzz

The 2-gram Hx, yL = HKi, j, Km,nL  with x ∫ y  will be encrypted intoHKi,n, Km,jL, if i ≠ m and j ≠ n,HKi,j+1, Ki,n+1L, if i = m and j ≠ n,HKi+1,j, Km+1,jL, if i ≠ m and j = n,

where the indices are taken modulo 5. If the symbols x  and y  in the 2-gram Hx, yL  are the same, 
one first inserts the letter q  and enciphers the text … x q y … .
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2.3.3 Transposition Ciphers

A completely different way of enciphering is called transposition. This system breaks the text up 
into blocks of fixed length, say n , and applies a fixed permutation s to the coordinates. For 
instance, with n = 5 and s = (1, 4, 5, 2, 3), one gets the following encryption:

crypt ograp hical … |
σ
 ytrcp rpgoa cliha …

Often the permutation is of a geometrical nature, as is the case with the so-called column 
transposition. The plaintext is written rowwise in a matrix of given size, but will be read out 
columnwise in a specific order depending on a keyword. For instance, after having identified 
letters a, b, …, z  with the numbers 1, 2, …, 26 the keyword "right'' will dictate you to read out 
column 3 first (being the alphabetically first of the 5 letters in "right''), followed by columns 4, 2, 1 
and 5. So, the plaintext

computing science has had very little influence on computing 
practice

when encrypted with a 5 µ 5 matrix and keyword ''right'' will first be filled in rowwise as depicted 
below

4 3 1 2 5
c o m p u
t i n g s
c i e n c
e h a s h
a d v e r

 

4 3 1 2 5
y l i t t
l e i n f
l u e n c
e o n c o
m p u t i

4 3 1 2 5
n g p r a
c t i c e
. . .

and then read out (columnwise in the indicated order) to give the ciphertext:

mneav pgnse oiihd ctcea uschr iienu tnnct leuop yllem tfcoi … .

Since transpositions do not change letter frequencies, but destroy dependencies between 
consecutive letters in the plaintext, while Vigenère etc. do the opposite, one often combines such 
systems. Such a combined system is called a product cipher. Shannon used the words confusion 
and diffusion in this context.

Ciphersystems that encrypt the plaintext symbol for symbol in a way that depends on previous 
input symbols are often called stream ciphers (they will discussed in Chapter 3). Cryptosystems 
that encrypt blocks of symbols (of a fixed length) simultaneously but independent of previous 
encryptions, they are called block ciphers (see Chapter 4).

During World War II both sides used so called rotor machines for their encryption. Several 
variations of the machines described in the next two subsections were in use at that time. We shall 
give a rough idea of each one.
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2.3.4 Hagelin

Figure 2.1

The Hagelin

The Hagelin, invented by the Swede B. Hagelin and used by the U.S. Army, has 6 rotors with 26, 
resp. 25, 23, 21, 19 and 17 pins. Each of these pins can be put into an active or passive position by 
letting it stick out to the left or right of the rotor. After encryption of a letter (depending on the 
setting of these pins and a rotating cylinder), the 6 rotors all turn one position. So, after 26 
encryptions the first rotor is back in its original position. For the sixth rotor this takes only 17 
encryptions.
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26 25 23 21 19 17

Figure 2.2

The six rotors in the Hagelin machine, 
each with its own number of positions.

Since the number of pins on the rotors are coprime, the Hagelin can be viewed as a mechanical 
Vigenère cryptosystem with period 26 µ 25 µ 23 µ 21 µ 19 µ 17 = 101,405,850. We refer the reader 
who is interested in the cryptanalysis of the Hagelin to Section 2.3 in [BekP82].
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2.3.5 Enigma

Figure 2.3

The Enigma

Keyboard

Indicator Light

Three Rotors

{ Reflector

Figure 2.4

A Schematic Description of the Enigma
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The electro-mechanical Enigma, used by Germany and Japan, was invented by A. Scherbius in 
1923. It consists of three rotors and a reflector. See Figure 2.4. When punching in a letter, an 
electronic current will enter the first rotor at the place corresponding with that letter, but will leave 
it somewhere else depending on the internal wiring of that rotor. The second and third rotors do 
the same, but have a different wiring. The reflector returns the current at a different place and the 
current will go through rotors 1, 2 and 3 again but in reverse order. The current will light up a 
letter, which gives the encryption of the original letter.

Simultaneously, the first rotor will turn position. After 26 rotations of the first rotor the second 
will turn one position. When the second rotor has made a full cycle, the third rotor will rotate over 
one position. 

The key of the Enigma consists of 

i) the choice and order of the rotors,
ii) their initial position and 
iii) a fixed initial permutation of the alphabet. 

For an idea about the cryptanalysis of the Enigma the reader is referred to Chapter 5 in [Konh81].

2.4 Problems

Problem 2.1
The following  ciphertext  about  president  Kennedy  has  been made with  a  simple substitution.  What  is  the
corresponding
plaintext?

"rgjjg mvkto tzpgt stbgp catjw pgocm gjs"

Problem 2.2
Decrypt  the following ciphertext,  which is made with the Playfair  cipher  and the key ''hieronymus''  (as in
Subsection 2.3.2).

"erohh mfimf ienfa bsesn pdwar gbhah ro"

Problem 2.3
Encrypt the following plaintext using the Vigenère system with the key ''vigenere''.

"who is afraid of virginia woolf"

Problem 2.4M  
Consider  a  ciphertext  obtained  through  a  Caesar  encryption.  Write  a  Mathematica  program  to  find  all
substrings of length 5 in the ciphertext that could have been obtained from the word "Brute".
Test this program on the text "xyuysuyifvyxi" from Table 2.1. (See also the input in Example 2.2)

Classical Cryptosystems 25



26 FUNDAMENTALS OF CRYPTOLOGY



3 Shift Register Sequences

3.1 Pseudo-Random Sequences
During  and  after  World  War  II,  the  introduction  of  logical  circuits  made  completely  electronic
cryptosystems  possible.  These  turned  out  to  be  very  practical  in  the  sense  of  being  easy  to
implement  and  very  fast.  The  analysis  of  their  security  is  not  so  easy!  Working  with  logical
circuits often leads to the alphabet 80, 1< . There are only two possible permutations (substitutions)
of the set 80, 1< . One action interchanges the two symbols. This can also be described by adding 1
(modulo 2) to the two elements. The other permutation leaves the two symbols invariant, which is
the same as adding 0 (modulo 2) to these two elements. 

Since  the  Vernam cipher  is  unconditionally  secure  but  not  very  practical,  it  is  only  natural  that
people came up with the following scheme.

Algorithm Same
Algorithm

Key Same
Key

ciphertext

plaintext

⊕ ⊕

si si

mi mi

ci ci

Figure 3.1

A binary cryptosystem with pseudo-random 8si<i¥0 -sequence.

Of course one would like the sequence 8si<i¥0  to be random, but with a finite state machine and a
deterministic algorithm one can not generate a random sequence. Indeed, one will always generate
a  sequence,  which  is  ultimately  periodic.  This  observation  shows  that  (apart  from  a  beginning
segment)  the scheme is  a special  case of the Vigenère cryptosystem. On the other  hand, one can
try  to  generate  sequences  that  appear  to  be  random,  have  long  periods  and  have  the  right
cryptographic  properties.  Good  reference  books  for  this  theory  are  [Bek82],  [Gol67],  and
[Ruep86].
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In  [Gol67],  S.W.  Golomb  formulated  three  postulates  that  a  binary,  periodic  sequence  8si<i¥0

should satisfy to be called pseudo-random. Before we can give these, we have to introduce some
terminology. 

Definition 3.1
A sequence 8si<i¥0  is  called periodic  with period  p ,  if  p  is  the smallest positive  integer
for which

si+p = si  for all i ¥ 0.

A  run  of  length  k  is  a  subsequence  of  8si<i¥0  consisting  of  k  identical  symbols,  bordered  by
different symbols. If the run starts at moment t , one has in formula: 

st-1 ∫ st = st+1 = … = st+k-1 ∫ st+k . 

One makes the following distinction:

a block of length k : 0 11 …1
ô öøøøø

k

 0

a gap of length k : 1 00 …0
ô öøøøø

k

 1

The autocorrelation ACHkL  of a periodic sequence 8si<i¥0  with period p  is defined by:

(3.1)  ACHkL =
AHkL - DHkL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

p
,

where  AHkL  and  DHkL  denote  the  number  of  agreements  resp.  disagreements  over  a  full  period
between 8si<i¥0  and 8si+k<i¥0 , which is 8si<i¥0  shifted over k  positions to the left. So

AHkL = » 8 0 § i < p » si = si+k < » ,
DHkL = » 8 0 § i < p » si ∫ si+k < » .

Note that one can also write ACHkL = H2. AHkL - pL ê p .

Example 3.1

Consider a sequence that is periodic with period p given by its first p elements.

With the Mathematica  functions Count,  Length,  Mod,  RotateLeft,  and Table  one easily computes
all values of the autocorrelation function ACHkL , 0 § k § p - 1.

segment = 81, 1, 0, 1, 0, 0, 0, 0<;
p = Length@segmentD;
Table@
H2∗Count@Mod@segment − RotateLeft@segment, kD, 2D, 0D − pLê p,
8k, 0, p − 1<D

91, 0, 0, 0, −
1
cccc
2
, 0, 0, 0=
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If  k  is  a  multiple  of  p  one  has  that  AHkL = p ,  DHkL = 0,  so  AC = 1.  One  speaks  of  the  in-phase
autocorrelation. 

If p  does not divide k ,  one speaks of the out-of-phase  autocorrelation.The  value of AC now lies
between -1 and +1.

Definition 3.2 Golombs Randomness Postulates
G1:  The number of zeros and the number of ones are as equal as possible per period, i.e.
both are p ê2  if p  is even and they are Hp ≤ 1L ê2 if p  is odd.
G2:  Half of the runs in a cycle have length 1, one quarter of the runs have length 2, one
eight of the runs have length 3, and so forth. Moreover half of the runs of a certain length
are gaps, the other half are blocks.
G3: The out-of-phase autocorrelation AC(k ) has the same value for all values of k .

G1  states  that  zeros  and  ones  occur  with  roughly  the  same  probability.  One  can  count  these
occurrences quite easily with the Mathematica function Count.

segment = 81, 1, 0, 1, 0, 0, 0, 0<;
Count@segment, 0D
Count@segment, 1D

5

3

G2 implies that after 011 the symbol 0 (leading to a block of length 2) has the same probability as
the symbol 1 (leading to a block of length ¥3), etc. So, G2  says that  certain n-grams occur with
the right frequencies. These frequencies can be computed by means of the Mathematica  functions
Count, Length, RotateLeft, Table, and Take. 

segment = 80, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1<;
p = Length@segmentD;
ngram = 81, 0, 1<; k = Length@ngramD;
Count@
Table@Take@RotateLeft@segment, iD, kD == ngram, 8i, p<D, TrueD

3

The  interpretation  of  G3  is  more  difficult.  It  does  say  that  counting  the  number  of  agreements
between a sequence and a shifted version of that sequence does not give any information about the
period  of  that  sequence,  unless  one  shifts  over  a  multiple  of  the  period.  A  related  situation  is
described in Lemma 2.1, where such a comparison made it possible to determine the length of the
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key  used  in  the  Vigenère  cipher.  In  cryptographic  applications  p  will  be  too  large  for  such  an
approach. 

Lemma 3.1
Let  8si<i¥0  be  a  binary  sequence  with  period  p ,  p > 2,  which  satisfies  Golomb's
randomness postulates.
Then p  is odd and ACHkL  has the value -1 ê p  when k  is not divisible by p .

Proof:  Consider  a  p µ p  cyclic  matrix  with  top  row  s0, s1, …, sp-1 .  We  shall  count  in  two
different ways the sum of all the agreements minus the disagreements between the top row and all
the other rows. Counting rowwise we get by G3 for each row i ,  2 § i § p ,  the same contribution
p.ACHkL . This gives a total value of pHp - 1L.ACHkL .

We shall now evaluate the above sum, by counting columnwise, the number of agreements minus
the number of disagreements between all lower entries with the top entries.

Case: p  even. 

By G1, the contribution of each column will be Hp ê2 - 1L - p ê 2 = -1, since each column counts
exactly  p ê2 - 1  agreements  of  a  lower  entry  with  the  top entry  and exactly  p ê 2  disagreements.
Summing this value over all  columns gives - p  for the total sum. Equating the two values yieldsHp - 1L ACHkL = -1.  However,  Equation  (3.1)  implies  that  p.ACHkL  is  an  integer.  This  is  not
possible when ACHkL = -1 ê Hp - 1L , unless p = 2.

Case: p  odd.

One  gets  for  Hp + 1L ê 2  columns  the  contribution  Hp - 1L ê 2 - Hp - 1L ê 2,  which  is  0,  and  forHp - 1L ê2  columns  the  contribution  Hp - 3L ê 2 - Hp + 1L ê2,  which  is  -2.  Hence  one  obtains  the
value  -Hp - 1L  for  the  summation.  Putting  this  equal  to  pHp - 1L.AC HkL  yields  the  value
ACHkL = -1 ê p .

Ñ

The  well  known  c2 -test  and  the  spectral  test,  [CovM67],  yields  ways  to  test  the  pseudo-
randomness  properties  of  a  given  sequence.  We  shall  not  discuss  these  methods  here.  The
interested  reader  is  referred  to  [Golo67],  Chapter  IV,  [Knut81],  Chapter  3,  or  Maurer's  universal
statistical test [Maur92].

There are also properties of a cryptographic nature which the sequence 8si<i¥0  in Figure 3.1 should
satisfy.

C1: The period p  of 8si<i¥0  has to be taken very large (about the order of magnitude of 1050 ).

C2: The sequence 8si<i¥0  should be easy to generate.

C3:  Knowledge  of  part  of  the  plaintext  with  corresponding  ciphertext  should  not  enable  a
cryptanalyst to generate the whole 8si<i¥0 -sequence (known plaintext attack).
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3.2 Linear Feedback Shift Registers

3.2.1 (Linear) Feedback Shift Registers

Feedback shift registers are very fast implementations to generate binary sequences. Their general
form is depicted in Figure 3.2.

s0 s1 sn−2 sn−1

fHs0,s1,∫,sn−2,sn−1L
Output

Figure 3.2

General Form of a Feedback Shift Register

A  feedback  shift  register  (FSR)  of   length  n  contains  n  memory  cells,  which  together  form the
(beginning)  state  Hs0, s1, …, sn-1L  of  the shift  register.  The function f  is  a mapping of 80, 1<n  in80, 1<  and is called the feedback function of the register. Since f  can be represented as a Boolean
function, it can easily be made with elementary logical functions.

After the first time unit, the shift register will output s0  and go to state Hs1, s2, …, snL , where sn =
f Hs0, s1, …, sn-1L . 

Continuing in this way, the shift register will generate an infinite sequence 8si<i¥0 . 

Example 3.2

Consider the case that n = 3  and that f  is  given by f Hs0, s1, s2L = s0 s1 + s2 .  Starting with an initial  stateHs0, s1, s2L ,  one can quite  easily  determine the successive states with the Mathematica  functions Mod,  Do,
and Print as follows:
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Clear@fD;
f@x_, y_, z_D := Mod@x∗y + z, 2D;
8s0, s1, s2< = 80, 1, 1<;
Do@ 8s0, s1, s2< = 8s1, s2, f@s0, s1, s2D<;

Print@8s0, s1, s2<D, 8i, 1, 6<D81, 1, 1<81, 1, 0<81, 0, 1<80, 1, 1<81, 1, 1<81, 1, 0<
In this section, we shall study the special case that f  is a linear function, say:

f Hs0, s1, …, sn-1L = c0 s0 + c1 s1 + … + cn-1 sn-1 ,

where all the  ci 's are binary and all the additions are taken modulo 2.

The general picture of a linear feedback shift register, which we shall shorten to LFSR, is depicted
in the figure below.

s0 s1 sn−2 sn−1

c0 c1 cn−2 cn−1

⊕ ⊕ ⊕

Output

Figure 3.3

General linear feedback shift register (LFSR)

The output sequence 8si<i¥0  of such a LFSR can be described by the starting state Hs0, s1, …, sn-1L
and the linear recurrence relation:

(3.2)  sk+n = ⁄i=0
n-1 ci sk+i , k ¥ 0.

or, equivalently

(3.3)  ⁄i=0
n ci sk+i = 0, k ¥ 0.
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where cn = 1  by definition. Let sHiL  denote the state at time i ,  i.e. sHiL = Hsi, si+1, …, si+n-1L .  Then,
similarly to (3.2) one has the following recurrence relation for the successive states of the LFSR:

(3.4)  sHk+nL = ⁄i=0
n-1  ci sHk+iL , k ¥ 0.

The  coefficients  ci  in  (3.2)  and  Figure  3.3  are  called  the  feedback  coefficients  of  the  LFSR.  If
ci = 0  then  the  corresponding  switch  in  Figure  3.3  is  open,  while  if  ci = 1  this  switch  is  closed.
We  shall  always  assume  that  c0 = 1,  because  otherwise  the  output  sequence  8si<i¥0  is  just  a
delayed version of a sequence, generated by a LFSR with its c0  equal to 1. 

As a consequence, any state of the LFSR not only has a unique successor state, as is natural,  but
also  has  a  unique  predecessor.  Indeed,  for  any  k ¥ 0  the  value  of  sk  is  uniquely  determined  by
sk+1, …, sk+n  by  means of  (3.2).  Later  on (in  Thm. 3.22)  we shall  prove  this  property  in  a  more
general situation.

Example 3.3

With n = 4, c0 = c1 = 1, c2 = c3 = 0, we get the following LFSR:  

s0 s1 s2 s3

⊕

Output

Figure 3.4

Example of LFSR with n = 4.

With starting state (1,0,0,0) one gets the subsequent list of successive states:

8s0, s1, s2, s3< = 81, 0, 0, 0<
Do@8s0, s1, s2, s3< = 8s1, s2, s3, Mod@s0 + s1, 2D<;

Print@i, " ", 8s0, s1, s2, s3<D, 8i, 15<D

81, 0, 0, 0<
1 80, 0, 0, 1<
2 80, 0, 1, 0<
3 80, 1, 0, 0<
4 81, 0, 0, 1<
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5 80, 0, 1, 1<
6 80, 1, 1, 0<
7 81, 1, 0, 1<
8 81, 0, 1, 0<
9 80, 1, 0, 1<
10 81, 0, 1, 1<
11 80, 1, 1, 1<
12 81, 1, 1, 1<
13 81, 1, 1, 0<
14 81, 1, 0, 0<
15 81, 0, 0, 0<

Note  that  the  state  at  t = 15  is  identical  to  the  state  at  t = 0,  so  the  output  sequence  8si<i¥0  has
period 15.

One can easily determine the output sequence of a LFSR with the Mathematica Functions Table,
Mod, and Do as follows:

Clear@sD; 8s@0D, s@1D, s@2D, s@3D< = 81, 0, 0, 0<;
s@j_D := Mod@ s@j − 4D + s@j − 3D, 2D
Table@s@jD, 8j, 0, 15<D

81, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1<
Since there are precisely 2n - 1  different states in a LFSR of length n  and the all-zero state always
goes over into itself, one can conclude that the period of 8si<i¥0  will never exceed 2n - 1.

3.2.2 PN-Sequences

Definition 3.3
A PN-sequence or pseudo-noise sequence is an output sequence of an n-stage LFSR with
period 2n - 1.

If an n-stage LFSR does not run cyclically through all 2n - 1  non-zero states, it certainly does not
generate a PN-sequence. As a consequence we have the following theorem.
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Lemma 3.2
An n-stage LFSR that generates a PN-sequence 8si<i¥0  runs cyclically through all 2n - 1
non-zero states.
Any non-zero output sequence of this LFSR is a shift of 8si<i¥0 .

We want  to  classify  all  LFSR's which generate  PN-sequences.  To this  end,  we associate with an
LFSR  with  feedback  coefficients  c0, c1, …, cn-1  its  characteristic  polynomial  f HxL ,  which  is
defined as follows:

(3.5)  f HxL = c0 + c1 x + … + cn-1 xn-1 + xn = ⁄i=0
n ci xi ,

where cn = 1 by definition and c0 = 1 by assumption.

Definition 3.4
Let f = ⁄i=0

n ci xi . Then

WHf L = 8 8si<i¥0 » 8si<i¥0 satisfies H3.2L <.
In words, WH f L  is the set of all output sequences of the LFSR with characteristic polynomial f HxL .

Lemma 3.3
Let f  be the characteristic polynomial of an n-stage LFSR. Then WH f L  is a binary vector
space of dimension n .

Proof:  Since  (3.2)  is  a  linear  recurrence  relation,  WH f L  obviously  is  a  linear  vectorspace.  Also,
each  8si<i¥0  in   WH f L  is  uniquely  determined  by  its  first  n  entries  s0, s1, …, sn-1 (the  beginning
state), so the dimension of WH f L  is at most n . On the other hand, the n  different sequences starting
with

00 …0
õúúúúúúúù ûúúúúúi

 1 00 ……00
õúúúúúúúúúúúù ûúúúúúúúúún-i-1

,

0 § i § n - 1, are clearly independent. So, the dimension of WH f L  is at least n .

Ñ

Let  f  be  a  polynomial  of  degree  n ,  say  f HxL = ⁄i=0
n ci xi  with  cn ∫ 0.  Then,  the  reciprocal

polynomial of f HxL  is defined by

(3.6)  f *HxL = xn f H1 ê xL =  c0 xn + c1 xn-1 + … + cn-1 x + cn  = ⁄i=0
n cn-i xi ,

With a sequence 8si<i¥0  we associate the power series (also called generating function)

(3.7)  SHxL = ⁄i=0
¶ si xi .

Instead of writing 8si<i¥0 œWH f L , we shall also use the notation SHxL œWH f L . We know that SHxL  is
uniquely  determined  by  the  beginning  state  Hs0, s1, …, sn-1L  and  the  characteristic  polynomial
f HxL . In the following theorem and corollary, we shall now make this dependency more explicit.
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Theorem 3.4
Let 8si<i¥0 œWH f L ,  with f  given by (3.5). Further,  let SHxL  be the generating function of8si<i¥0 . Then, SHxL f *HxL  is a polynomial of degree less than n .

Proof:

SHxL f *HxL =
H3.6L& H3.7L H⁄k=0

¶ sk  xkL.H⁄l=0
n cn-l xlL = ‚

j=0

¶ I⁄l=0
min 8 j,n< cn-l s j-lM x j =‚

j=0

n-1 I⁄l=0
j cn-l s j-lM x j +⁄ j=n

¶ H⁄l=0
n cn-l s j-lL x j =‚

j=0

n-1 I⁄l=0
j cn-l s j-lM x j +‚

j=n

¶
 H⁄i=0

n ci sH j-nL+iL x j =
H3.3L

‚
j=0

n-1 I⁄l=0
j cn-l s j-lM x j .

Ñ

Remark:

Note  that  the  proof  above  implies  that  SHxL = uHxLÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxL with  uHxL = ‚
j=0

n-1 H⁄l=0
j cn-l s j-lL x j .  This

polynomial  is  of  degree  < n  and  has  coefficients  depending  on  the  initial  state  and  the
characteristic polynomial.

Note also that the mapping SHxLöSHxL f *HxL  is one-to-one since f *HxL ∫ 0.

Example 3.4

Consider the LFSR with  n=5, f HxL = 1 + x2 + x5 and take as beginning  state  (1,1,0,1,0).  Then uHxL  can be
computed with the Mathematica function PolynomialMod as follows:

8c@0D, c@1D, c@2D, c@3D, c@4D, c@5D< = 81, 0, 1, 0, 0, 1<;
8s@0D, s@1D, s@2D, s@3D, s@4D< = 81, 1, 0, 1, 0<;

u = PolynomialModA‚
j=0

4

‚
l=0

j

c@5 − lD s@j − lD xj, 2E

1 + x + x4

To check Theorem 3.4 up to some term xL , we use (3.2) to compute the si 's up to L  (here we use
the Mathematica functions Mod, Print, and PolynomialMod):
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8c@0D, c@1D, c@2D, c@3D, c@4D, c@5D< = 81, 0, 1, 0, 0, 1<;
8s@0D, s@1D, s@2D, s@3D, s@4D< = 81, 1, 0, 1, 0<;

fstar = ‚
i=0

5

c@5 − iD xi;

L = 60;
s@i_D := s@iD = Mod@s@i − 5D + s@i − 3D, 2D;

S = ‚
i=0

L

s@iD xi; Print@SD;

PolynomialMod@S∗fstar, 8xL, 2<D

1 + x + x3 + x5 + x10 + x13 + x15 + x16 + x19 + x20 + x21 + x22 + x23 + x27 + x28 + x30 +

x31 + x32 + x34 + x36 + x41 + x44 + x46 + x47 + x50 + x51 + x52 + x53 + x54 + x58 + x59

1 + x + x4

Note that the output is indeed the same as above.

Corollary 3.5
WH f L = 9 uHxLÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxL … degreeHuHxLL < n = .

Remark: Writing SHxL = uHxL ê f *HxL  means the same as SHxL f *HxL = uHxL .

Proof:  From Theorem 3.4  and  the  remark  below  it  we  know that  each  member  of  WH f L  can  be
written as uHxL ê f *HxL  with degreeHuHxLL < n  and we know that this uHxL  is unique. This proves the
Õ-inclusion.

On  the  other  hand,  WH f L  has  cardinality  2n  by  Lemma 3.3  and  there  are  also  exactly  2n  binary
polynomials uHxL  of degree < n .

Ñ

It is now easy to prove the following lemma.

Lemma 3.6
Let f  and g  be two (characteristic) polynomials and let 8si<i¥0 œ WH f Land 8ti<i¥0 œ WHgL .
Let lcm@ f , gD  denote the least common multiple of f  and g . Then8si + ti<i¥0 œ WHlcm@ f , gDL .

Proof:  Write  h = lcm@ f , gD  and  h = a. f  and  h = b.g .  Let  SHxL  and  THxL  be  the  generating
functions of 8si<i¥0 , resp. 8ti<i¥0 .

Corollary  3.5  implies  that  SHxL = uHxL ê f *HxL  and  THxL = vHxL ê g*HxL ,  where
degreeHuHxLL <degreeH f HxLL  and degreeHvHxLL <degreeHgHxLL . Since

Shift Register Sequences 37



SHxL + THxL = uHxLÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxL + vHxLÅÅÅÅÅÅÅÅÅÅÅÅÅg*HxL = a*HxL uHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa*HxL f *HxL + b*HxL vHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅb*HxL g*HxL = a*HxL uHxL+b*HxL vHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅh*HxL ,

and  both  a*HxL uHxL  as  well  as  b*HxL vHxL  have  degree  less  than  degreeHhHxLL ,  it  follows  that
SHxL + THxL œWHhL .

Ñ

3.2.3 Which Characteristic Polynomials give PN-Sequences?

The  period  of  a  polynomial  f  with  f H0L ∫0,  is  the  smallest  positive  m  such  that  f HxL  divides
xm - 1,  i.e.  the  smallest  positive  m  such  that  xm ª 1 Hmod H f HxLL .  It  is  well  defined,  since  the
sequence  of  successive  powers  of  x ,  reduced  modulo  f HxL ,  has  to  be  periodic.  Indeed, if
xi ª x j Hmod f HxLL  and  0 < i < j  then  also  xi-1 ª x j-1 Hmod f HxLL ,  because  gcdHx, f HxLL = 1.  (The
term  x  has  a  multiplicative  inverse  by  Corollary  B.14,  so  we  can  indeed  divide  by  x .)  We  can
repeat this process until we get 1 ª x j-i Hmod f HxLL .

Example 3.5

Let  f HxL = 1 + x4 + x5 .  Its  period  can  be  computed  with  the  Mathematica  functions  While  and
PolynomialMod  in  the  way  described  above.  So,  starting  with  x  (trying  m = 1),  we  compute  the
successive  powers  of  x  by  multiplying  the  previous  power  by  x  (this  amounts  to  a  cyclic  shift),  and  then
reducing the answer modulo f HxL , until we  arrive at the outcome 1.

f = 1 + x4 + x5; m = 1; u = x;
While@u =!= 1, u = PolynomialMod@ x∗u, 8 f, 2<D ; m = m + 1D
m

21

It follows from Theorem B.35 that a binary, irreducible polynomial of degree n  divides x2n-1 - 1,
so it also follows that the period m  of such a polynomial will divide 2n - 1. 

(This observation can be used to determine the period of a polynomial more efficiently, however
we shall not discuss that technique at this moment. See the end of Example 8.2)

Lemma 3.7
Let 8si<i¥0 œ WH f L , where f  is a polynomial of degree n  and period m . Then 8si<i¥0  has a
period dividing m .

Proof:  Write  xm - 1 = f HxL gHxL .  Taking  the  reciprocal  on  both  sides  gives  xm - 1 =  f *HxL g*HxL .
By Corollary 3.5, there exists a polynomial uHxL  of degree < n  such that

SHxL = uHxLÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxL = uHxL g*HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxL g*HxL =  uHxL g*HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1-xmL =  uHxL g*HxL H1 + xm + x2 m + …L
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Since  degreeHuHxL g*HxLL < degreeH f *HxL g*HxLL = degreeHxm - 1L = m ,  we  see  that  SHxL  must  have
period m  or a divisor of it. 

Ñ

Lemma 3.8
Let 8si<i¥0 œ WH f L , where f  is an irreducible polynomial of degree n  and period m . Then8si<i¥0  also will have period m .

Proof:  Let  8si<i¥0  have  period  p .  By  Lemma 3.7,  p  divides  m .  Let  SHpLHxL=⁄i=0
p-1 si xi .  It  follows

that

 SHxL = SHpLHxL H1 + xp + x2 p + …L = SHpLHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1-xp ,

while on the other hand, SHxL = uHxL ê f *HxL  by Corollary 3.5. Equating these two

expressions yields

SHpLHxL f *HxL = uHxL Hxp - 1L
and thus HSHpLHxLL* f HxL = u*HxL Hxp - 1L .

Since  f HxL  is  irreducible  of  degree  n  and  degreeHuHxLL < n ,  it  follows  that  f HxL  divides  Hxp - 1L .
So,  m , the period of f HxL , must divide p . We conclude that p = m .

Ñ

Example 3.6

Consider  the  irreducible  polynomial  f HxL = 1 + x + x2 + x3 + x4 ,  which  has  period  5,  sinceHx5 - 1L = Hx - 1L f HxL . Output sequences in W H f L  also have period 5, by the above lemma, as can easily be
checked.

8s0, s1, s2, s3< = 81, 1, 0, 0<
Do@8s0, s1, s2, s3< = 8s1, s2, s3, Mod@s0 + s1 + s2 + s3, 2D<;

Print@i, " ", 8s0, s1, s2, s3<D, 8i, 5<D

81, 1, 0, 0<
1 81, 0, 0, 0<
2 80, 0, 0, 1<
3 80, 0, 1, 1<
4 80, 1, 1, 0<
5 81, 1, 0, 0<
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A roundabout way to find an irreducible polynomial of degree n  is to factor x2n-1 - 1by means of
the Mathematica function Factor:

n = 5;
Factor@x2n−1 − 1, Modulus −> 2D

H1 + xL H1 + x2 + x5L H1 + x3 + x5L H1 + x + x2 + x3 + x5LH1 + x + x2 + x4 + x5L H1 + x + x3 + x4 + x5L H1 + x2 + x3 + x4 + x5L
In  Mathematica  one  can  find  an  irreducible  polynomial  over  p ,  p
prime,  with  the  function  IrreduciblePolynomial  for  which  the  package
Algebra`FiniteFields` needs to be loaded first.

<< Algebra`FiniteFields`

p = 2; deg = 11;
IrreduciblePolynomial@x, p, degD
1 + x9 + x11

Lemma 3.9
Let  8si<i¥0  be  a  PN-sequence,  generated  by  a  LFSR  with  characteristic  polynomial  f .
Then f  is irreducible.

Proof: Write f = f1 f2  with f1  irreducible, say of degree n1 > 0. 

By  Corollary  3.5,  the  sequence  1 ê f1*HxL œ WH f1L ,  so  the  period  of  1 ê f1*HxL  divides  2n1 - 1  by
Lemma 3.7 and Theorem B.35.

On the other hand, 1 ê f1* HxL = f2*HxL ê f *HxL œ WH f L ,  so by Lemma 3.2 1 ê f1*HxL  is a cyclic shift of8si<i¥0  and  thus  its  period  is  2n - 1.  This  is  only  possible  if  n = n1 ,  i.e.  if  f HxL  is  equal  to  the
irreducible factor f1HxL . 

Ñ

Example 3.7

Consider f HxL = H1 + x + x2L H1 + x + x3L = 1 + x4 + x5 . It is easy to check that 1 + x + x2  divides x3 - 1  and
that  1 + x + x3  divides  x7 - 1.  Since  3  and 7  are  relatively  prime,  it  follows that  f HxL  divides  x21 - 1.  We
conclude that each output sequence has a period dividing 21.

This can be checked for different beginning states as follows.
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8s0, s1, s2, s3, s4< = 81, 0, 0, 0, 0<
Do@8s0, s1, s2, s3, s4< = 8s1, s2, s3, s4, Mod@s0 + s4, 2D<;

Print@i, " ", 8s0, s1, s2, s3, s4<D, 8i, 21<D

81, 0, 0, 0, 0<
1 80, 0, 0, 0, 1<
2 80, 0, 0, 1, 1<
3 80, 0, 1, 1, 1<
4 80, 1, 1, 1, 1<
5 81, 1, 1, 1, 1<
6 81, 1, 1, 1, 0<
7 81, 1, 1, 0, 1<
8 81, 1, 0, 1, 0<
9 81, 0, 1, 0, 1<
10 80, 1, 0, 1, 0<
11 81, 0, 1, 0, 0<
12 80, 1, 0, 0, 1<
13 81, 0, 0, 1, 1<
14 80, 0, 1, 1, 0<
15 80, 1, 1, 0, 0<
16 81, 1, 0, 0, 0<
17 81, 0, 0, 0, 1<
18 80, 0, 0, 1, 0<
19 80, 0, 1, 0, 0<
20 80, 1, 0, 0, 0<
21 81, 0, 0, 0, 0<

The reader may want to try the beginning state H1, 1, 1, 0, 0L  and see what the period of the output
sequence  is.  This  output  sequence  could  also  have  been  generated  with  the  LFSR  with
characteristic polynomial 1 + x + x3  and beginning state H1, 1, 1L  (see also Example 3.11).
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We are now able to prove the main result of this subsection. We remind the reader of the definitio
of a primitive polynomial (of degree n), which is an irreducible polynomial with the property that
is  a primitive element in GFH2L@xD ê H f HxLL .  This translates  directly  into the equivalent  property tha
f HxL  has (full) period 2n - 1.

Theorem 3.10
A  non-zero  output  sequence  of  a  LFSR  with  characteristic  polynomial  f HxL  is  a  PN-
sequence if and only if f HxL  is a primitive polynomial.

Proof: Let f HxL  have degree n .

ï Let 8si<i¥0 œ WH f L  be a PN-sequence. It follows from Lemma 3.9 that f HxL  must be irreducible.
Lemma  3.8  in  turn  implies  that  f HxL  must  have  period  2n - 1,  which  makes  it  a  primitive
polynomial.

ì  If  f HxL  is  primitive,  it  certainly  is  irreducible.  By Lemma 3.8,  8si<i¥0  has  the same period as
f HxL  has, which is 2n - 1. It follows that 8si<i¥0  is a PN-sequence.

Ñ

Mathematica  finds a primitive polynomial of degree m  over p  in the variable x  by means of the
FieldIrreducible function.

m = 5; p = 2;
FieldIrreducible@GF@p, mD, xD

1 + x3 + x5

Let us check that this polynomial indeed defines a PN sequence.

8s0, s1, s2, s3, s4< = 81, 0, 0, 0, 0<
Do@8s0, s1, s2, s3, s4< = 8s1, s2, s3, s4, Mod@s0 + s3, 2D<;

Print@i, " ", 8s0, s1, s2, s3, s4<D, 8i, 31<D

81, 0, 0, 0, 0<
1 80, 0, 0, 0, 1<
2 80, 0, 0, 1, 0<
3 80, 0, 1, 0, 1<
4 80, 1, 0, 1, 0<
5 81, 0, 1, 0, 1<
6 80, 1, 0, 1, 1<
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7 81, 0, 1, 1, 1<
8 80, 1, 1, 1, 0<
9 81, 1, 1, 0, 1<
10 81, 1, 0, 1, 1<
11 81, 0, 1, 1, 0<
12 80, 1, 1, 0, 0<
13 81, 1, 0, 0, 0<
14 81, 0, 0, 0, 1<
15 80, 0, 0, 1, 1<
16 80, 0, 1, 1, 1<
17 80, 1, 1, 1, 1<
18 81, 1, 1, 1, 1<
19 81, 1, 1, 1, 0<
20 81, 1, 1, 0, 0<
21 81, 1, 0, 0, 1<
22 81, 0, 0, 1, 1<
23 80, 0, 1, 1, 0<
24 80, 1, 1, 0, 1<
25 81, 1, 0, 1, 0<
26 81, 0, 1, 0, 0<
27 80, 1, 0, 0, 1<
28 81, 0, 0, 1, 0<
29 80, 0, 1, 0, 0<
30 80, 1, 0, 0, 0<
31 81, 0, 0, 0, 0<

To find all  primitive polynomials of degree n  one can factor the cyclotomic polynomial QH2n-1LHx
(see  Definition  B.19).   With  the  Mathematica  functions  Factor  and  Cyclotomic  this  goes a
follows. 

p = 2; m = 6; n = pm − 1;
Factor@Cyclotomic@n, xD, Modulus −> 2D
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H1 + x + x6L H1 + x + x3 + x4 + x6L H1 + x5 + x6LH1 + x + x2 + x5 + x6L H1 + x2 + x3 + x5 + x6L H1 + x + x4 + x5 + x6L
The next corollary now follows directly from Theorem 3.10 and Theorem B.40.

Corollary 3.11
There are jH2n - 1L ên  different n-stage LFSR's generating PN-sequences.
Here j stands for Euler's totient function (Definition A.6).

The more or less exponential growth of jH2n - 1L ên  as function of n , makes it for moderate value
of n  already impossible for a cryptanalyst to guess the right primitive polynomial or to check them
all exhaustively.

With the Mathematica function EulerPhi one can easily verify this.

n = 100;
EulerPhi@2^n − 1Dê n

5707676340000000000000000000

3.2.4 An Alternative Description of WHf L for Irreducible f

We  shall  now  solve  recurrence  relation  (3.2)  for  the  case  that  the  corresponding  characteristic
polynomial  f = ⁄i=0

n ci xi  is  irreducible.  This includes, of course, the case that f  is primitive, for
which we know that the corresponding LFSR outputs PN-sequences.

We follow the standard mathematical method for solving linear recurrence relations.

Substituting s j = A.a j , for all j ¥ 0, in sk+n = ⁄i=0
n-1 ci sk+i  leads to the equation

A.ak+n = ⁄i=0
n-1 ci.A.ak+i .

Here A  and a are elements from an extension field of GF(2) that will be determined in a moment.
Dividing the above relation by A.ak , one arrives at an = ⁄i=0

n-1 ci ai , i.e.

f HaL = 0.

We  shall  study  the  case  that  f  is  irreducible  in  more  detail.  The  Galois  Field  GFH2nL=
GFH2L@xD ê H f HxLL  (see Theorem B.16) contains a zero of f  as an element. Calling this zero a,  we
note that

 GFH2nL = 8 ⁄i=0
n-1 ai ai » ai œ GFH2L, 0 § i < n < ,

with the normal coefficient-wise addition and with the regular product rule  (see (B.3) and (B.4)),
but always reducing powers of a  with an exponent ¥ n  by means of the relation an = ⁄i=0

n-1 ci an

to an expression of degree < n  (as shown in the Example B.5, where the letter x  is used instead of
the symbol a.).
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Example 3.8

Consider f HxL = 1 + x + x4  and let a be a zero of f HxL , so a 4 = 1 + a . 

Adding  the  elements  1 + a + a 3  and  a + a 2  in  GFH2L@xD ê H f HxLL  gives  1 + a 2 + a 3 .  Multiplication  gives
a + a 3 + a 4 + a 5  which is Ha + 1L f Ha L + H1 + a + a 2 + a 3L , so the result is 1 + a + a 2 + a 3 .

This could also have been computed with the Mathematica function PolynomialMod, as follows:

f = 1 + a + a4;
PolynomialMod@H1 + a + a3L + Ha + a2L, 8f, 2<D
PolynomialMod@H1 + a + a3L∗Ha + a2L, 8f, 2<D

1 + a2 + a3

1 + a + a2 + a3

Lemma 3.12
Let f  be a binary, irreducible polynomial of degree n  and let a be a zero of f  in GFH2nL .
Further, let L  be a non-trivial, linear mapping from GFH2nL  to GF(2). Then

WH f L = 8 8LHA.a jL< j¥0 » A œ GFH2nL <.
Proof: We need to check several things.

i) The sequence 8s j< j¥0 =8LHA.a jL< j¥0  clearly is a binary sequence, because L maps  GFH2nL  to GF(2)

ii) The sequence 8s j< j¥0 =8LHA.a jL< j¥0  satisfies (3.2). To see this, we check the equivalent conditio
(3.3). By the linearity of L  and the relation f HaL = ⁄i=0

n ci ai = 0, it follows that⁄i=0
n ci sk+i = ⁄i=0

n ci LHA.ak+iL = LHA.akH⁄i=0
n ci aiLL = LH0L = 0.

iii) Each of the 2n  choices of A œ GFH2nL  leads to a different binary solution of (3.3), as we shall
now show. By Lemma 3.3, these must constitute all the elements in WH f L . 

Suppose  that  the  sequences  8LHA.a jL< j¥0  and  8LHB.a jL< j¥0  are  identical.  It  follows  from
LHA.a jL=LHB.a jL ,  j ¥ 0,  and  the  linearity  of  L  that  in  particular  LHHA - BL.a jL = 0  for  0 § j < n .
However,  the elements 1, a, …, an-1 form a basis  of GFH2nL ,  because f  is  irreducible.  It  follows
from the  linearity  of  L  that  LHHA - BL.wL = 0  for  each field  element  w  in  GFH2nL .  Since  L  was a
non-trivial mapping, we can conclude that A = B .

Ñ

A convenient non-trivial linear mapping L  from GFH2nL  to GF(2) to consider is the Trace function
Tr, introduced in Problem B.16.

An alternative, is the projection of an element ⁄i=0
n-1 ai ai to its constant term a0 .
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Example 3.9

Take the irreducible polynomial f HxL = x4 + x + 1  of degree 4 (it even is primitive) and let a a zero of f HxL ,
so f Ha L = 0. The Trace function is given by TrHxL = x + x2 + x4 + x8 . 

Any element A œ GFH24L = 8 ⁄i=0
3 ai a i » ai œ GFH2L, 0 § i § 3 <  defines a unique binary sequence 8s j< j¥0 ,

defined by s j = TrHA.a jL . Below, we have taken A = 1 + a + a 2 .

The output sequence, corresponding with any value of A, can be evaluated with the Mathematica functions
PolynomialMod and Table, as follows:

n = 4; f = 1 + a + a4; A = 1 + a + a2;

Tr@x_D := ‚
i=0

n−1

x2
i
;

s@j_D := PolynomialMod@Tr@A ∗ajD, 8f, 2<D;
Table@s@jD, 8j, 0, 2n − 2<D

81, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0<
3.2.5 Cryptographic Properties of PN Sequences

We shall now investigate to which extent PN-sequences meet Golomb's randomness postulates G1-
G3.  After  that,  we check  the cryptographic  requirements  C1-C3.  As always,  we let  n  denote  the
length of the LFSR.

Ad G1:  By  Lemma 3.2  each  non-zero  state  occurs  exactly  once  per  period.  The  leftmost  bit of
each state will be the next output bit. So, the number of ones per period is 2n-1 and the number of
zeros per period is 2n-1 - 1, as the all-zero state does not occur. 

Ad G2: There are 2n-Hk+2L  states whose leftmost k + 2 coordinates are of the form 0 11 …1
ô öøøøø

k

 0, resp.

1 00 …0
ô öøøøø

k

 1.  Thus,  gaps  and  blocks  of  the  length  k ,  k § n - 2,  occur  exactly  2n-Hk+2L  times  per
period. 

The state 0 11 …1
ô öøøøø

n-1

 occurs exactly once. Its successor is the all-one state, which in turn is followed
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 by state 11 …1
ô öøøøø

n-1

 0.  Therefore, there is no block of length n - 1and one block of length n .

Similarly, there is one gap of length n - 1and no gap of length n .

Ad G3: With 8si<i¥0 œ WH f L  also 8si+k<i¥0 œ WH f L  by Lemma 3.2. The linearity of WH f L  implies tha
also 8si + si+k<i¥0 œ WH f L  The number of agreements per period between 8si<i¥0  and 8si+k<i¥0 equal
the  number  of  zeros  in  one  period  of  8si + si+k<i¥0  which  is  2n-1 - 1  by  Lemma  3.2  and G1
Similarly,  the  number  of  disagreements  is  2n-1 .  Thus,  the  out-of-phase  autocorrelation  ACHkL i
-1 ê H2n - 1L  for all 1 § k < 2n - 1.

We conclude that PN-sequences meet Golomb's randomness postulates in a most satisfactory way
Let us now check C1-C3.

Ad C1: Since the period of a PN-sequence generated by an n-stage LFSR is 2n - 1, one can easily
get sufficient large periods. For instance, with n = 166 the period is already about 1050 .

Ad C2: LFSR's are extremely simple to implement.

Ad  C3:  PN-sequences  are  very  unsafe!  Indeed,  knowledge  of  2 n  consecutive  bits, say
sk, sk+1, …, sk+2 n-1 , enables the cryptanalyst to determine the feedback coefficients c0, c1, …, cn-

uniquely and thus the whole 8si<i¥0 -sequence. This follows from the matrix equation:

(3.8)

i
k
jjjjjjjjjjjjjjjjjjjj

sk sk+1 … … sk+n−1

sk+1 sk+2 … … sk+n

. . … … .

. . … … .

. . … … .
sk+n−1 sk+n … … sk+2 n−2

y
{
zzzzzzzzzzzzzzzzzzzz 

i
k
jjjjjjjjjjjjjjjjjjjj

c0
c1
.
.
.

cn−1

y
{
zzzzzzzzzzzzzzzzzzzz =

i
k
jjjjjjjjjjjjjjjjjjjj

sk+n

sk+n+1

.

.

.
sk+2 n−1

y
{
zzzzzzzzzzzzzzzzzzzz .

The above system has a unique solution as we shall now show. If n  consecutive states of the LFSR
exist that are linearly dependent, i.e. if n  consecutive states span a § Hn - 1L  dimensional subspace
then  this  remains  so  because  of  (3.4).  This,  however,  contradicts  the  linear  independence  of statH0, 0, …, 0, 1L  and  its  n - 1successor  states.  We  conclude  that  any  n  consecutive  states  (and in
particular  the  n  rows  in  the  matrix  above)  are  linearly  independent.  Therefore,  the unknown
feedback coefficients c0, c1 …, cn-1 can easily be determined.

Example 3.10

Assume that we know the following substring of length 10: 1,1,0,1,1,1,0,1,0,1.  Assuming that n = 5, we can
solve (3.9) by means of the Mathematica function LinearSolve as follows:

m =

i

k

jjjjjjjjjjjjjjjjj

1 1 0 1 1
1 0 1 1 1
0 1 1 1 0
1 1 1 0 1
1 1 0 1 0

y

{

zzzzzzzzzzzzzzzzz

; b =

i

k

jjjjjjjjjjjjjjjjj

1
0
1
0
1

y

{

zzzzzzzzzzzzzzzzz

;

LinearSolve@m, b, Modulus −> 2D
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881<, 80<, 81<, 80<, 80<<
The  feedback  coefficients  are:  c0 = 1,  c1 = 0,  c2 = 1,  c3 = 0,  c4 = 0.  One  can  check  this  quite
easily with the Mathematica Functions Table, Mod, and Do as follows:

n = 5;
8c@0D, c@1D, c@2D, c@3D, c@4D< = 81, 0, 1, 0, 0<;
8s@0D, s@1D, s@2D, s@3D, s@4D< = 81, 1, 0, 1, 1<;

DoAs@kD = ModA‚
i=0

n−1

c@iD∗s@k − n + iD, 2E, 8k, n, 2n<E;

Table@s@kD, 8k, 0, 2n − 2<D

81, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0<

Of course, one does not know in general what the length n  is of the LFSR in use. We shall address
that problem in a more general setting in Subsection 3.3.1. 

If  only a string of 2 n - 1  consecutive  bits  of a PN-sequence is  known, the feedback coefficients
are not necessarily unique, as follows from the example n = 4  and the subsequence 1101011. This
remains  true  even  if  we  had  used  the  additional  information  that  c0 = 1.  Below  we  have  added
NullSpace to show the dependency in the linear relations.

m =
i

k

jjjjjjj

1 1 0 1
1 0 1 0
0 1 0 1

y

{

zzzzzzz; b =
i

k

jjjjjjj

0
1
1

y

{

zzzzzzz;

NullSpace@m, Modulus −> 2D
LinearSolve@m, b, Modulus −> 2D

880, 1, 0, 1<<
881<, 81<, 80<, 80<<

We have the solutions H1, 1, 0, 0L + lH0, 1, 0, 1L  with l œ 80, 1< .

Since sequences generated by LFSR's fail  to meet requirement C3, the next step will  be to study
nonlinear shift registers. However, since so much is known about PN-sequences, it is quite natural
that  one  tries  to  combine  LFSR's  in  a  non-linear  way  in  order  to  get  pseudo-random  sequences
with the right cryptographic properties.
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3.3 Non-Linear Algorithms

3.3.1 Minimal Characteristic Polynomial

As already mentioned at the beginning of Section 3.1, any deterministic algorithm in a finite state
machine  will  generate  a  sequence  8si<i¥0 ,  which  is  ultimately  periodic,  say  with  period  p .  This
means that, except for a beginning part, 8si<i¥0  will be generated in a trivial way by the LFSR with
characteristic  polynomial  1 + xp .  Therefore,  the  sequence  8si<i¥0  which  was  possibly  made  in  a
non-linear way, can also be made by a LFSR (except for a finite beginning part). If this beginning
part is non empty, not every state has a unique predecessor and the output sequence certainly will
not have maximal period. We shall address this problem in Theorem 3.22. Here, we shall assume
that  the  output  sequence  is  periodic  right  from  the  start.  The  discussion  above  justifies  the
following definition.

Definition 3.5
The linear complexity (or linear equivalence) of a periodic sequence 8si<i¥0  is the length
of the smallest LFSR that can generate 8si<i¥0 .

The following two lemmas are needed to prove explicit statements about the linear complexity of
periodic sequences.

Lemma 3.13
Let h  and f  be the characteristic polynomials of an m-stage, resp. n-stage LFSR. Then,

WHhL Õ WH f L ó h » f .

Proof:

ï Since 1 êh* œ WHhL Õ WH f L , it follows from Corollary 3.5 that a  polynomial uHxL  of degree < n
exists,  such that  one has 1 êh*HxL = uHxL ê f *HxL .  We conclude that  f *HxL = h*HxL uHxL  and thus that
f HxL = hHxL u*HxL , which means that h » f .

ì Writing f HxL = aHxL hHxL  with degreeHaHxLL = n - m , one has by the same Corollary 3.5 that

W(h) = 9 vHxLÅÅÅÅÅÅÅÅÅÅÅÅÅh*HxL … degreeHvHxLL < m =   = 9 a*HxL vHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa*HxL h*HxL … degreeHvHxLL < m =
= 9 a*HxL vHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxL … degreeHa*HxL vHxLL < n =  Õ WH f L .

Ñ
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Example 3.11

The  sequence  8si<i¥0 = 100101110 …  is  the  output  sequence  of  the  LFSR  with  hHxL = 1 + x + x3  and
beginning state H1, 0, 0L , as can be checked by

n = 3;
8s@0D, s@1D, s@2D< = 81, 0, 0<;
8c@0D, c@1D, c@2D< = 81, 1, 0<;

DoAs@kD = ModA‚
i=0

n−1

c@iD∗s@k − n + iD, 2E, 8k, n, 2n<E;

Table@s@kD, 8k, 0, 2n<D

81, 0, 0, 1, 0, 1, 1, 1, 0<
However,  since  hHxL H1 + x + x2L = 1 + x4 + x5 ,  the  same  output  sequence  can  also  be  obtained
from  the  LFSR  with  characteristic  polynomial  f HxL = 1 + x4 + x5  (see  also  Example  3.7).  As
beginning state one now has to take the first five terms of 8si<i¥0 .

n = 5;
8s@0D, s@1D, s@2D, s@3D, s@4D< = 81, 0, 0, 1, 0<;
8c@0D, c@1D, c@2D, c@3D, c@4D< = 81, 0, 0, 0, 1<;

DoAs@kD = ModA‚
i=0

n−1

c@iD∗s@k − n + iD, 2E, 8k, n, 2n<E;

Table@s@kD, 8k, 0, 2n<D

81, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1,
0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0<

Let  8si<i¥0 œ WH f L  for  some  f  and  suppose  that  one  is  looking  for  a  polynomial  h  of  smallest
degree such that 8si<i¥0 œ WHhL . Then, Lemma 3.13 suggests to check the divisors of f . That this is
sufficient will be proved later. The next lemma says when one does not need to check the divisors
of f .

Lemma 3.14
Let 8si<i¥0 œ WH f L  and SHxL = uHxL ê f *HxL . Then, 

$h» f , h∫ f  @8si<i¥0 œ WHhLD ó gcdHuHxL, f *HxLL ∫ 1.

Proof: Let dHxL  divide gcdHuHxL, f *HxLL  with degreeHdHxLL > 1.

Then, SHxL = uHxLÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxL = uHxLêdHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅf *HxLêdHxL , so 8si<i¥0 œ WH f ê d*L . It follows that there exists a proper divisor h
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of f , namely f ê d*  with 8si<i¥0 œ WHhL .

The proof in the reverse direction goes exactly the same.

Ñ

Theorem 3.15
Let  8si<i¥0  be  a  binary,  periodic  sequence,  say  with  period  p .  Let  the  first  p  terms  of8si<i¥0  be given by SHpLHxL = s0 + s1 x + … + sp-1 xp-1 . 
Then there exists a unique polynomial mHxL  with the following two properties:
i) 8si<i¥0 œ WHmL , 
ii) "h @ 8si<i¥0 œ WHhL ï m » hD  .
The reciprocal m*HxL  of  mHxL  is given by

m*HxL =
1-xp

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅgcdHSHpLHxL,1-xpL .

The polynomial mHxL  is called the minimal characteristic polynomial of 8si<i¥0 .

Example 3.12

Let 8si<i¥0  have period 15 and let SH15LHxL = 1 + x4 + x7 + x8 + x10 + x12 + x13 + x14 . Then

gcdHx15 - 1, SH15LHxLL = H1 + xL H1 + x + x2L H1 + x + x2 + x3 + x4L H1 + x + x4L .

So,  m*HxL = Hx15 - 1L ê gcdHx15 - 1, SH15LHxLL = 1 + x3 + x4  and  thus  mHxL = 1 + x + x4 .  Indeed,  this
SHxL  is the output sequence of the LFSR in Figure 3.4.

The  above  calculations  can  be  executed  with  the  Mathematica  functions  PolynomialGCD,
PolynomialQuotient, and PolynomialMod.

p = 15;
S = 1 + x4 + x7 + x8 + x10 + x12 + x13 + x14;
g = PolynomialGCD@S, xp − 1, Modulus −> 2D;
MSTAR = PolynomialMod@PolynomialQuotient@xp − 1, g, xD, 2D

1 + x3 + x4

Proof of Theorem 3.15: 

Let 8si<i¥0 œ WHmL . If 8si<i¥0 œ WHhL  for some divisor h  of m , replace m  by h  and continue with this
procedure until it can be assumed that 8si<i¥0 – WHhL  for any divisor of m . 

We shall show that such an m  is unique and of the form given in Theorem 3.15.

Since  the  period  of  8si<i¥0  is  p ,  Corollary  3.5  implies  that  for  some  uHxL  with
degreeHuHxLL <degreeHmHxLL ,

SHpLHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1-xp = SHpLHxL H1 + xp + x2 p + …L = SHxL = uHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅm*HxL .
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By our assumption on m  and by Lemma 3.14, gcdHm*HxL, uHxLL = 1, so

gcdIm*HxL, m*HxL SHpLHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1-xp M = 1.

It follows that

gcdHm*HxL H1 - xpL, m*HxL SHpLHxLL = 1 - xp .

i.e.

m*HxL.gcdH1 - xp, SHpLHxLL = 1 - xp .

Hence

m*HxL = 1-xp
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
gcdH1-xp,SHpLHxLL .

Ñ

Corollary 3.16
The  linear  complexity  of  a  binary,  periodic  sequence  8si<i¥0  with  period  p  and  initial
segment SHpLHxL = ⁄i=0

p-1 si xi  is equal to
 

p - degreeHgcdHxp - 1, SHpLHxLLL .

3.3.2 The Berlekamp-Massey Algorithm

Corollary  3.16  may be  of  help  to  the  designer  of  a  non-linear  system to  determine  how safe  his
system is against the kind of attack described in the discussion "Ad C3" in Subsection 3.2.5. 

A  cryptanalyst,  on  the  other  hand,  who  knows  a  segment  of  the  output  sequence,  say
s0, s1, …, sk-1 , can try the following strategy:

i)  find the smallest LFSR that generates s0, s1, …, sk-1 , 

ii) determine the next output bit of this LFSR and hope that it correctly "predicts'' the next bit sk of
the sequence.

Definition 3.6
LkH8si<i¥0L  is the length of the shortest LFSR that generates s0, s1, …, sk-1 .
When it is clear from the context which 8si<i¥0  is involved we shall simply write Lk . The
polynomial  f HkLHxL  will  denote  the  characteristic  polynomial  of  any  Lk -stage  LFSR that
generates the sequence s0, s1, …, sk-1 .

Clearly  LkH8si<i¥0L § k  for  any  sequence  8si<i¥0 ,  since  any  k -state  LFSR  will  generate
s0, s1, …, sk-1 , simply by taking s0, s1, …, sk-1  as starting state.
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Lemma 3.17

Let 8ti<i¥0  be an output sequence starting with 00 …0
ô öøøøø

k-1

 1. Then, 

LkH8ti<i¥0L = k .

Proof: Any LFSR of length n, n < k , that is filled with the first n  symbols of 8ti<i¥0  (which are all
zero) will output the all-zero sequence, so tk-1  will not be 1.

Ñ

Lemma 3.18
Let 8si<i¥0  and 8ti<i¥0  be two output sequences. Then, for all k ¥ 0 

LkH8si + ti<i¥0L § LkH8si<i¥0L + LkH8ti<i¥0L .

Proof:  This  is  a  direct  consequence  of  Lemma  3.6.  Indeed,  let  the  LFSR's  with  characteristic
polynomial  f HkLHxL  and  gHkLHxL  generate  the  first  k  terms  of  8si<i¥0 ,  resp.  8ti<i¥0 .  Then  by  Lemma
3.6,  the first  k  terms of 8si + ti<i¥0  will  be  generated by the LFSR with characteristic  polynomial
lcm@ f HkLHxL, gHkLHxLD . This lcm has degree at most the sum of the degrees of f HkLHxL  and gHkLHxL .

Ñ

It follows from Definition 3.6 that Lk+1 ¥ Lk  for any sequence 8si<i¥0 . More can be said.

Lemma 3.19
Let 8si<i¥0  be an output sequence. Suppose that the LFSR with characteristic polynomial
f HkLHxL  does not output sk  correctly. Then 

Lk+1 ¥ max 8Lk, k + 1 - Lk< .

Proof: We already know that Lk+1 ¥ Lk .

Let  8ti<i¥0  be  a  sequence  starting  with  00 …0
ô öøøøø

k

1   as  beginning  sequence.  Since  the  LFSR  with
characteristic  polynomial  f HkLHxL  does  generate  s0, s1, …, sk-1 ,  but  not  s0, s1, …, sk ,  it  follows
that  this  LFSR  will  generate  8si + ti<i=0

k .  Since  Lk+1 ¥ Lk ,  we  can  conclude  that
Lk+1H8si + ti<i¥0L = LkH8si + ti<i¥0L  = LkH8si<i¥0L( = Lk ). 

The statement now follows with Lemma 3.17 and Lemma 3.18 from

k + 1 = Lk+1H8ti<i¥0L § Lk+1H8si<i¥0L + Lk+1H8si + ti<i¥0L = Lk+1 + Lk .

Ñ

The following theorem shows that  in  fact  equality  holds  in  the  above  lemma. The proof  follows
from  the  Berlekamp-Massey  algorithm,  that  constructs  f HkLHxL  recursively,  cf.  [Mass69].  This
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algorithm  is  well  known  in  algebraic  coding  theory  for  the  decoding  of  BCH  codes  and  Reed-
Solomon codes (see [Berl68], Chapter 7).

Theorem 3.20
Let 8si<i¥0  be an output sequence. Suppose that the LFSR with characteristic polynomial
f HkLHxL  does not output sk  correctly. Then 

Lk+1 = max 8Lk, k + 1 - Lk< .

Proof:  In  view  of  Lemma  3.19,  it  suffices  to  find  a  polynomial  f HxL  of  degree  equal  to
max 8Lk, k + 1 - Lk<  that does output the first k + 1  terms of 8si<i¥0  correctly. This is exactly what
the Berlekamp-Massey algorithm does in a very efficient way.

We shall prove the theorem by induction.

Getting the induction argument started.

Define L0 = 0 and f H0LHxL = 1.

The sequence  00 …0
ô öøøøø

k

 of  length  k  can  be  generated  by the (degenerate)  LFSR with  characteristic
polynomial f HkLHxL = 1 of degree Lk = 0. 

The sequence 00 …0
ô öøøøø

k

 1  of length k + 1  can be generated by any Hk + 1L-stage LFSR, but not by a
shorter LFSR, as we already saw in Lemma 3.17. In this case,

Lk+1 = k + 1 = k + 1 - Lk = max 8Lk, k + 1 - Lk< . 

This proves the first induction step. 

The induction step: k ök + 1.

By  putting  k + n = j ,  ci = fi
HkL ,  and  n = Lk  in  (3.2),  the  induction  hypothesis  for  k  can  be

formulated as:

(3.9)  ‚
i=0

Lk-1
fi
HkL s j-Lk+i = s j , Lk § j § k - 1.

If (3.9) also holds for j = k , then Lk+1 = Lk , f Hk+1LHxL = f HkLHxL  and there remains nothing to prove. 

If (3.9) does not hold, then

(3.10)  ‚
i=0

Lk-1
fi
HkL s j-Lk+i = s j + 1, j = k .

Let m  be the unique integer smaller than k  defined by

i) Lm < Lk ,
ii) Lm+1 = Lk ,

so m  is the index of the last increase of L .

Because we have already proved the start of the induction argument, this number is well defined.
It follows from the induction hypothesis and the above definition of m  that:
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(3.11)  ‚
i=0

Lm-1
fi
HmL s j-Lm+i = : s j,

sm + 1,
if Lm § j § m - 1,

j = m.

Notice that Lk = Lm+1 = max 8Lm, m + 1 - Lm< = m + 1 - Lm . 

Define L = max 8Lk, k + 1 - Lk< . We claim that

(3.12)  
f HxL = xL-Lk  f HkLHxL + xL-Hk+1-Lk L f HmLHxL

= xL-Lk  f HkLHxL + xL-k+m-Lm  f HmLHxL
will be a suitable choice for f Hk+1LHxL . 

Clearly,  the  first  term  in  (3.12)  has  degree  HL - LkL + Lk = L  and  the  second  term  has  degreeHL - k + m - LmL + Lm < L . So, f HxL  has the right degree. But also, by (3.9), (3.10), (3.11),⁄i=0
L-1 fi s j-L+i

=
H3.12L ‚

i=L-Lk

L-1
fi-HL-LkLHkL  s j-L+i + ‚

i=L-HL-k+m-LmLL-k+m
fi-HL-k+m-LmLHmL  s j-L+i

=
subst. i  ‚

i=0

Lk-1
fi
HkL s j-Lk+i +‚

i=0

Lm-1
fi
HmL s j-Lm-k+m+i +s j-k+m

= 9 s j + 0 = s j,Hsk + 1L + 1 = sk,
 
L § j § k - 1,

j = k.
 

This proves that the LFSR with characteristic polynomial f HxL  indeed can generate s0, s1, …, sk .

Ñ

Theorem  3.20  only  proves  that  the  degree  Lk  of  f HkLHxL  is  unique.  In  general,  the  polynomial
f HkLHxL  itself will not be unique.

The algorithm, described in the proof above, can be executed and summarized as follows:

Shift Register Sequences 55



Algorithm 3.21 Berlekamp-Massey

input a binary sequence 8si<i¥0 , an index u  
initialization f = 1, L = 0, j = 0
parameters used 

fne, Lne : stand for the characteristic polynomial and length of the LFSR
  as desired by the present iteration; 

fol , Lol  : stand for the polynomial and length just before the last change
  in length;

diff : the difference between the present iteration number and 
  the iteration number after the last change in length. 

while Hs j = 0L Ï H j § uL   do j = j + 1
if j = u + 1 then STOP
put fol = 1; Lol = 0

f = x j+1 ; L = degreeH f L
k = j + 1; diff = 0

while k < u  do
begin

if ⁄i=0
L-1 fi sk-L+i ∫ sk  then

begin
Lne = max 8L, k + 1 - L<
fne = xLne-L. f + xLne-Hdiff+1+LolL. fol

if  Lne  ∫ L then
begin
 fol  = f ;  Lol = L;

 L = Lne ; diff = 0;
 end

else
begin
 diff = diff + 1;

end 
  f = fne

end
else

begin
diff = diff + 1;

end
k = k + 1; 
end

output  f  the  characteristic  function  of  the  shortest  LFSR  that  can  outputHs0, s1, …, suL .

Example 3.13

Consider the sequence8si<i=0
30 = 80, 0, 0, 0, 0, 1 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0< .

The Mathematica  version  of   the  Berlekamp-Massey  algorithm  that  we  give  below makes  use  of
the  functions  Do,  CoefficientList,  Mod,  Max,  PolynomialMod,  Length,  and  Print.

56 FUNDAMENTALS OF CRYPTOLOGY



Note  that  we  have  combined  the  two  while  statements  in  the  algorithm  above  into  a  single  Do
statement. All intermediate functions are also printed.

s = 80, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0<;

Lol = 0; fol = 1;
diff = 0; Clear@xD;
f = 1; L = 0; g = CoefficientList@f, 8x<D;

DoAIfAModA‚
i=1

L

gPiT sPj − 1 − L + iT, 2E == sPjT, diff = diff + 1,

Lne = Max@j − L, LD;
fne = PolynomialMod@xLne−L f + xLne−Lol−diff−1 fol, 2D;

If@Lne ≠ L, fol = f; Lol = L; L = Lne; diff = 0, diff = diff + 1D;
f = fne; g = CoefficientList@f, 8x<DE;
Print@"j=", j, ", L=", L, ", f=", fD, 8j, Length@sD<E

j=1, L=0, f=1

j=2, L=0, f=1

j=3, L=0, f=1

j=4, L=0, f=1

j=5, L=0, f=1

j=6, L=6, f=1 + x6

j=7, L=6, f=1 + x5 + x6

j=8, L=6, f=1 + x5 + x6

j=9, L=6, f=1 + x5 + x6

j=10, L=6, f=1 + x5 + x6

j=11, L=6, f=1 + x5 + x6

j=12, L=6, f=x5 + x6

j=13, L=6, f=x5 + x6

j=14, L=6, f=x5 + x6

j=15, L=6, f=x5 + x6

j=16, L=6, f=x5 + x6

j=17, L=6, f=x5 + x6

j=18, L=12, f=1 + x11 + x12

j=19, L=12, f=1 + x10 + x12
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j=20, L=12, f=1 + x9 + x12

j=21, L=12, f=1 + x8 + x12

j=22, L=12, f=1 + x7 + x12

j=23, L=12, f=1 + x6 + x12

j=24, L=12, f=1 + x5 + x12

j=25, L=13, f=x + x5 + x13

j=26, L=13, f=1 + x + x12 + x13

j=27, L=14, f=1 + x + x2 + x5 + x12 + x13 + x14

j=28, L=14, f=x2 + x5 + x14

j=29, L=14, f=x2 + x5 + x14

j=30, L=16, f=1 + x + x4 + x7 + x12 + x13 + x16

j=31, L=16, f=1 + x + x4 + x7 + x12 + x13 + x16

3.3.3 A Few Observations about Non-Linear Algorithms

The problem with non-linear feedback shift registers, in general, is the difficulty of their analysis.
One has to answer questions like: how many different cycles of output sequences are there, what
is their length, what is their linear complexity, etc. The following theorem will make it clear that it
is possible to say at least a little bit about general non-linear feedback shift registers. 

Clearly,  the  output  sequence  of a  non-linear  FSR does  not  have maximal period if  there  are  two
different states  with the same successor  state.  A state with more than one predecessor is called a
branch point.

Theorem 3.22
An n-stage feedback shift  register  with  (non-linear)  feedback fuction f Hs0,, s1, …, sn-1L
has no branch points if and only if a Boolean function gHs1,, s2, …, sn-1L  exists such that
f Hs0,, s1, …, sn-1L = s0 + gHs1,, s2, …, sn-1L .

Proof: Since f  is a Boolean function, one can write 

f Hs0,, s1, …, sn-1L = gHs1,, s2, …, sn-1L + s0 hHs1,, s2, …, sn-1L .

ï  If   hHs1,, s2, …, sn-1L = 0  for  some  Hs1, s2, …, sn-1L ,  then  both  states  H0, s1, s2, …, sn-1L  andH1, s1, s2, …, sn-1L  will  have  the  same  successor  state.  Thus  a  branch  point  would  exist,
contradicting our assumption. We conclude that h ª 1.
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ì  The  state  H0, s1, s2, …, sn-1L  has  successor  Hs1, s2, …, sn-1, snL  with  sn =  gHs1, s2, …, sn-1L ,
while  state  H1, s1, s2, …, sn-1L  has  successor  Hs1, s2, …, sn-1, sn + 1L .  Therefore,  there  are  no
branch points.

Ñ

There are many ways to use LFSR's in a non-linear way. Below we depict two proposals that are
extensively discussed in [Ruep86]. Others ideas can be found in [MeOoV97], Chapter 6.

f

LFSR k

LFSR k−1

LFSR 2

LFSR 1

output

Figure 3.5

Combining several PN's with one non-linear function f .
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s0 s1 sn−2 sn−1

NonLinear Function f

c0=1 c1 cn−2 cn−1

⊕ ⊕ ⊕

output

Figure 3.6

One LFSR with a non-linear output.

3.4 Problems

Problem 3.1
Let 8si<i¥0  be binary, periodic sequence of period 17, starting with the sequence 01101000110001011. To 
which extent does 8si<i¥0  satisfy Golomb's Randomness Postulates? 
(Note for the interested reader. The sequence above has its ones at the positions corresponding to the 
quadratic residues modulo 17 (see also input line above Theorem A.21). The parameters that arise when 
checking G3 can be predicted by Theorem A.22 and Corollary A.24)

Problem 3.2
Express the polynomial gcdHxm - 1, xn - 1L  in terms of x  and gcdHm, nL . (See also Problem A.3.)

Problem 3.3
Let  8ui<i¥0  and  8vi<i¥0  be  the  output  sequences  of  binary  LFSR's  of  length  m  resp.  n ,  where  m, n ¥2.
Assume  that  8ui<i¥0  and  8vi<i¥0  are  both  PN  sequences  and  that  gcdHm, nL = 1.  Hence,  also
gcdH2m - 1, 2n - 1L = 1(see Problem A.3). Let the sequence 8wi<i¥0  be defined by wi = ui vi , i ¥ 0, and let p
be the period of 8wi<i¥0 .

a) Prove that p  is a divisor of H2m - 1L H2n - 1L .
b) How many zeros and how many ones appear in a subsequence of length H2m - 1L H2n - 1L  in the 

sequence 8wi<i¥0 ?
c) Prove that H2m - 1L H2n - 1L ê p  must divide the two numbers determined in ii).
d) Prove that p = H2m - 1L H2n - 1L .
e) How many gaps of length 1 does the 8wi<i¥0 -sequence have per period when m, n ¥ 4?

Problem 3.4
Let 8si<i¥0  be the binary sequence defined by

si = 9 1,
0,

  
if i = 2l - 1, l œ ,

otherwise.
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So, the 8si<i¥0  starts like 11010001000000010. Let Lk  be the linear complexity of s0, s1, …, sk-1 .
Prove that 

L2l = 2l-1, l ¥ 1.

Problem 3.5M

Let a binary sequence 8si<i¥0  have period 15 and start with 010110000101010.
What is the minimal characteristic polynomial of 8si<i¥0  and what is the linear complexity of this sequence?

Problem 3.6
Consider  the  binary,  periodic  sequence  8si<i¥0  determined  by  the  period  212 - 1  and  the  values
s0 = s29-1 = 1 and si = 0 for 0 for 0 § i < 212 - 1, i ∫ 0, 29 - 1.
What is the minimal characteristic polynomial of 8si<i¥0 ? What is the linear complexity of this sequence?

Problem 3.7M

Consider  the  binary  polynomials  f HxL = 1 + x + x3 and  gHxL = 1 + x2 + x5 .  The  corresponding  LFSR's  are
denoted by LFSR( f )  resp.  LFSR(g ).  Let  8si<i¥0  and 8ti<i¥0  denote  the output  sequences of LFSR( f )  resp.
LFSR(g ). 
The sequence 8ui<i¥0  is defined by ui = si + ti, i ¥ 0.
The 28  different initial states Hs0, s1, s2, t0, t1, t2, t3, t4L  generate different periodic sequences 8ui<i¥0 .
What are the cycle lengths (=periods) of these periodic sequences? Give an initial state of each cycle.

Problem 3.8
Consider the binary shift register depicted in the figure below.

sn−1
HiL

cn−1

⊕ sn−2
HiL

cn−2

⊕ s1
HiL

c2

⊕ s0
HiL

c1

⊕
Output

c0=1

Let sHiL = Hsn-1
HiL , sn-2

HiL , …, s1
HiL, s0

HiLL  be the state of the shift register at time i, i ¥ 0.
a) Give the n µ n  matrix T  satisfying sHi+1L = TsHiL for all i ¥ 0.
b) Prove that the characteristic equation of T  over  is given by

ln = cn-1 ln-1 + cn-2 ln-2 + … + c1 l + 1.

c) From matrix theory we may conclude that over

(3.13)Tn = cn-1 Tn-1 + cn-2 Tn-2 + … + c1 T + I,
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where I  is the n µ n  identity matrix. 
Since all elements in (3.13) are integer, equation (3.13) also holds modulo 2.
Derive a recurrence relation between sHi+nL , sHi+n-1L , … , sHi+1L , and sHiL .

d) Which LFSR of length n  gives the same output sequence as the above shift register? 
What does the initial state have to be in this LFSR to generate the same output sequence?

Problem 3.9
Let a œ GF H23L  be a zero of f HxL = x3 + x + 1. So, by Theorem B.30,

f HxL = Hx - aL Hx - a2L Hx - a4L ,
f * HxL =Hx - a3L Hx - a5L Hx - a6L = H1 - axL H1 - a2 xL H1 - a4 xL .

Prove that W H f L  consists of all sequences⁄i=0
¶ Ha.ai + a2.a2 i + a4.a4 iL xi , a œ GFH23L ,

(Hint: use Corollary 3.5 and use the partial fraction expansion over GFH23L .)
Note that the expression above can be written as ⁄i=o

¶ TrHa.aiL xi , where Tr stands for the Trace function, as
introduced in Problem B.16.
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4 Block Ciphers

4.1 Some General Principles

4.1.1 Some Block Cipher Modes

É Codebook Mode

Block ciphers are conventional cryptosystems that typically handle a fixed number of symbols at a
time (under a given key) and do this encryption/decryption independent of past input blocks (see
Figure  4.1).  For  the  encryption  process,  the  data  (plaintext)  enters  the block  cipher  from the  left
and leaves it on the right as ciphertext. For the decryption, it is exactly the other way around.

In  the  next  section  we  shall  describe  a  few  widely  used  block  ciphers.  At  this  moment,  the
particular  layout  of such a cipher is  not so important.  One should view it  as an electronic device
that can convert n-tuples of bits to other n-tuples at very high speeds (under a key) in such a way
that the reverse process is only feasible if one knows the key.

Assuming that  the  plaintext  is  a  long binary file,  one  breaks it  up in segments  Mi ,  i ¥ 0,  each n
bits long. The result of the encryption of Mi  is denoted by Ci  and we write  

Ci = BCkHMiL ,  i ¥ 0,

where k  is the key. The decryption process will be denoted by BC≠ , so we have Mi = BCk
≠HCiL .

Since  an  n-tuple  of  symbols  from  an  alphabet    can  be  viewed  as  one  symbol  from  n ,  the
difference  between  an  n-tuple  from  one  alphabet  or  a  single  symbol  from  another  alphabet  is
theoretically of little importance but may be of great practical value.

Therefore, the key property of a block cipher is the lack of memory in the encryption device.

It  is  clear  that  as  long  as  the  key  remains  the  same,  the  same plaintext  will  be  encrypted  to  the
same ciphertext.  For this  reason,  encryption in  the mode shown in Figure 4.1 is  called codebook
mode.  It  is  as  if  one  uses  a  codebook  or  dictionary  for  the  encryption.  It  may  be  clear  that
encrypting the same message twice under the same key is cryptographically insecure, hence, block
ciphers are normally not used in codebook mode.
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Block
Cipher

plaintext ciphertext

key
k bits

n bits n bits

Figure 4.1

Block Cipher in Codebook Mode

É Cipher Block Chaining

There are several  standard methods to circumvent the problems mentioned above. One technique
is  called  cipher  block  chaining.  We  assume  again  that  one  is  encrypting  a  long  file.  Each
ciphertext, say Ci  at time i , is not only transmitted to the receiver, but it is also added coordinate-
wise to the next block of plaintext Mi+1 . 

To this end, the encryption algorithm has to make use of some kind of memory device, commonly
called  a  buffer.  See  Figure  4.2  below.  Of  course,  the  buffer  has  to  be  initialized  before  the
encryption process can be started.

Note that by introducing memory to this system it technically has become a stream cipher.

Block
Cipher

Buffer Ci

key

Mi + 1

Ci + 1=

BCHMi + 1⊕CiL
⊕

Figure 4.2

Cipher block chaining - Encryption

The decryption process reverses the above process. The buffer has to be initialized with the same
initial  value as  was used to start  the encryption.  It  can be part  of the secret  key or a just  a fixed
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constant. 

The notation BC≠  in Figure 4.3 stands for the inverse of the block cipher used for encryption.

BC←

Buffer Ci

key

Ci+1

Mi+1

BC←HCi+1L
=Mi+1⊕Ci

⊕

Figure 4.3

Cipher block chaining - Decryption

Remark:

Note,  that  when Ci = C j ,  for  some i < j ,   in  Figure  4.2,  one has  that  Mi ∆ Ci-1 = M j ∆ C j-1 ,  i.e.
Ci-1 ∆ C j-1 = Mi ∆ M j .  This means that  the modulo sum of the two previous ciphertexts  is equal
to  the  sum  of  the  ciphertexts  Mi  and  M j .  In  many  situations  this  means  that  some  information
about the plaintext leaks away. For instance, as we can deduce from Example 5.2 , the modulo 26
addition of two English texts (with a Vigenère Table (Table 2.3) will still have sufficient structure
to enable a unique reversal of the addition process.

The above observation is reason to go to longer block lengths than the ones most commonly in use
today (being 64 bits).

É Cipher Feedback Mode

Another way to make sure that  a block cipher  under the same key encrypts the same plaintext at
different moments into different ciphertexts is called the cipher feedback mode. 

This  method  is  depicted  in  Figure  4.4  below,  but  in  a  more  general  setting.  In  many  practical
situations, for instance in many internet protocols, one wants to transmit only a few bits at a time,
say r  bits, where r  is less than the block length of the block cipher. 

Instead of padding the r  bits with n - r  zeros in order to get an n-tuple that can serve as input for a
block  cipher,  one  adds  the  r-tuple  coordinatewise  modulo  2  to  the  r  leftmost  output  bits  of  the
block  cipher.  The  input  of  the  block  cipher  is  given  by  the  contents  of  a  shift  register  (without
feedback)  that  at  each  clock pulse  shifts  r  positions  to  the  left  to  accommodate the  r  bits  of  the
previous ciphertext.
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Output

Block Cipher

Shift Register

{ r−bits shift

n bits

n bits

r bits

r bits

r bits Ci Ci

Ci

Mi

key

⊕

Figure 4.4

Cipher Feedback Mode

4.1.2 An Identity Verification Protocol

In  this  subsection,  we  want  to  give  an  idea  how  a  block  cipher  can  be  used  in  an  identity
verification  protocol.  Such  a  protocol  is  a  discussion  between  two  parties  in  which  one  of  them
wants to convince the other that he is authentic. An application is, for instance, a smart card of a
person, say Alice, who wants to withdraw money from her account through a card reader of a bank.

While issuing the card to Alice, the bank stores two numbers on it:

- the identity number IdA  of Alice,

- the secret key kA  of Alice.

The  key  kA  can  not  be  accessed  from  the  outside  world;  it  does  not  even  have  to  be  known  to
Alice. The identity number can be accessed by any card reader (it may even be printed or written
on the outside). They are related by 

(4.1)  kA = BCMKHIdAL ,

where BC stands for a block cipher and MK for the bank's master key. MK is stored in every card
reader  of the bank. It  would be impractical  to store the secret  keys of all  customers in each card
reader.

The block cipher BC is also implemented on the card. 

When the card is inserted into the card reader, it will be asked to present its identity number (IdA

in our case). A genuine card reader can now compute Alice's secret key kA  from (4.1).

The card  reader  generates  a  random string  r  of  n  bits  and presents  it  as  a  challenge  to  the  card.
The  card  returns  BCkAHrL  as  its  response  to  the  card  reader.  The  card  reader  simply verifies  this
calculation.  If the card's answer to the challenge r  is   correct,  the card reader "knows" that kA  is
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stored on the card and it will conclude that the card is authentic. Otherwise, it will not accept the
card.  

Figure 4.5

Card Reader

knows k, ID knows MK

|
ID

computes k = BCMK  HIDL
generates random r
as challenge to card

{
r

computes c = BCk HrL
|

c

checks if c = BCk HrL
An identity verification protocol.

The card can use the same protocol to check that the card reader is genuine. It sends its challenge
to  the  card  reader.  The  reply  by  the  card  reader  can  only  be  correct  if  the  card  reader  is  able  to
compute the secret key kA , i.e. if the card reader knows the bank's master key MK.

Normally, a Personal Identification Code (PIN) is used to link the card to the card holder.

4.2 DES

É DES

In  1974  the  National  Bureau  of  Standards  (NBS)  solicited  the  American  industry  to  develop  a
cryptosystem that could be used as a standard in unclassified U.S. Government applications. IBM
developed a system called LUCIFER. After being modified and simplified, this system became the
Data Encryption Standard (DES for short) in 1977.

Right  away,  DES was  made available  on  a  fast  chip.  This  made it  very  suitable  for  use  in  large
communication  systems.  The  complete  design  of  DES  has  been  made  public  at  the  time  of  its
introduction. This has never been done before, although in each textbook one can find the remark
that the security of a cryptosystem should not depend on the secrecy of the system. 

We shall not give a complete description of DES. The reader is referred to [Konh81], [MeyM82],
[MeOoV97], or [Schn96].

DES is a block cipher operating on 64 bits simultaneously (see Figure 4.6). 

The key consists of eight groups of 8 bits. One bit in each of these groups is a parity check bit that
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makes the overall parity in each block odd. So, although the keysize appears to be 64, the effective
keysize is 56 bits.

DES
plaintext ciphertext

key

64H56L bits

64 bits 64 bits

Figure 4.6

The Data Encryption Standard

DES consists of 16 identical rounds. The 64 input bits are divided into two halves: the 32 leftmost
bits form L0  and the 32 rightmost bits form R0 .

In each round, a new L  and R  are defined by

(4.2)  Li = Ri-1 ,  1 § i § 16,
Ri = Li-1 ∆ f HRi-1, KiL , 1 § i § 16.

Here, Ki  stands for a well-defined subsequence of bits from the key K . 

Further,  f  is  function  of  the  previous  right-half  and  this  subkey  Ki .  This  function  is  defined  by
means  of  a  collection  of  fixed  tables,  called  substitution  tables.  The  outcome  is  added
coordinatewise  modulo 2  to  Li-1 .  Note  that  Li  is  simply the  previous  right-half.  (See  Figure  4.7
below.). 

The final output of DES is formed from L16  and R16 .

f

Ri − 1Li − 1

RiLi

subkey

⊕

3232

Figure 4.7

A Typical Round of DES
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In  Figure  4.7  one  can  see  that  the  inverse  algorithm  of  DES  can  be  computed  from  the  same
scheme  by  simply  going  from  the  bottom  to  the  top.  Indeed,  it  follows  from  (4.2)  that  for  all
1 § i § 16

Ri-1 = Li
Li-1 =Ri ∆ f HRi-1, KiL = Ri ∆ f HLi, KiL .

Many people have criticized the decision to make DES a standard. The two main objections were:

i)  The  effective  keysize  (56  bits)  is  too  small  for  an  organization  with  sufficient  resources.  An
exhaustive keysearch is, at least in principle, possible. 

ii) The design criteria of the tables used in the f -function are not known. Statistical tests however
show  that  these  tables  are  not  completely  random.  Maybe  there  is  a  hidden  trapdoor  in  their
structure.

During  the  first  twenty  years  after  the  publication  of  the  DES-algorithm  no  effective  way of
breaking it was published. However, in 1998, for the first time, a DES challenge has been broken
by a more or less brute-force attack.

É Triple DES

When it  became clear that  DES could no longer be used to protect  sensitive data,  a modification
was introduced, called Triple DES. It consists of three DES implementations in a row, except that
the  middle  one  is  orientated  the  other  way  around.  Thus,  one  has  DES,  DES≠ ,  and  then  again
DES. See Figure 4.8 below.

DES DES← DES

key 1 key 2 key 1

Figure 4.8

Triple DES

There are two interesting things to note about this design. First of all, the third key is the same as
the  first  key.  The  effective  key  search  is  2 µ 56 = 112  in  this  way.  This  is  considered  to  remain
secure for many years to come.

The second observation is that the cipher in the middle is DES≠  instead of DES.

These  two  features  make  it  possible  to  keep  systems  in  which  Triple  DES  is  implemented
compatible  with  single  DES  systems.  Indeed,  by  taking  the  keys  1  and  2  the  same,  the  above
system reduces to a single DES scheme.
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4.3 IDEA
There  are  quite  a  few  alternatives  to  DES.  One  reason  for  looking  for  them may have  been  the
export  restrictions  by the American government, another,  the costs and patent rights.  Contrary to
DES, which uses well  chosen tables  in  each round,  some of the alternatives  make use of several
mathematical primitives that are algebraically uncorrelated.

IDEA  [Lai92]  is  such  a  system.  The  name  stands  for  International  Data  Encryption  Algorithm.
IDEA also handles 64 bits at a time (see the remark in Subsection 4.1.1 about this size), but has a
key of 128 bits. It consists of 8 identical rounds, which are depicted in Figure 4.9. The 64 bits are
equally divided over four blocks of 16 bits each. These blocks are called Xi , 1 § i § 4, at the input
side  of  a  typical  round  and  Yi ,  1 § i § 4,  on  the  output  side.  The  entries  Ki ,  1 § i § 6,  denote
substrings of the key. Their composition depends on the particular round that has taken place. 

The mathematical primitives in IDEA operate on these 16 bits. They are the following operations.

è Coordinatewise XOR (addition modulo 2). 

In Figure 4.9, this is depicted by ∆.

In Mathematica the XOR can be performed with the Mod function (here shown on 4-tuples).

Mod@81, 1, 0, 0< + 81, 0, 1, 0<, 2D

80, 1, 1, 0<
è Addition modulo 216 .

In Figure 4.9, this is depicted by a square with a plus sign in it  á+ .

Interpret  the  two  inputs  as  the  binary  representation  of  two  integers.  Add  these  integers  modulo
216  and output the binary representation of the sum.

In Mathematica  this  can be performed with the FromDigits  and IntegerDigits  functions
(here shown on 4-tuples).

a = FromDigits@81, 0, 1, 1<, 2D
b = FromDigits@81, 1, 1, 0<, 2D
su = Mod@a + b, 16D
IntegerDigits@su, 2D

11
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9

81, 0, 0, 1<
è Multiplication modulo 216 + 1.

In Figure 4.9, this is depicted by ≈.

Interpret the two inputs (binary 16-tuples) as the binary representation of two integers modulo the
prime number 216 + 1 = 65537. Make an exception for the all-zero word which will be identified
with the integer 216 . In this way we have a 1-1 correspondence between binary 16-tuples and the
elements of 65537

*  (see Example B.3).

Multiply  these  two  integers  modulo  216 + 1,  and  output  the  binary  representation  of  the  product

(but map 1 0 …0
õúúúúúúù ûúúúú16

 to 0 …0
õúúúúúúù ûúúúú16

). 

Since,  216 + 1  is  prime,  the  multiplication  a µ b  (as  defined  above)  is  a  one-to-one  mapping  for
fixed  a  or  b .  Below  we  demonstrate  this  again  for  4-tuples.  Note  that  24 + 1  is  also  a  prime
number.

a = FromDigits@81, 0, 1, 0<, 2D;
b = FromDigits@80, 1, 1, 0<, 2D;
a = If@a == 0, 16, aD;
b = If@b == 0, 16, bD;
pr = Mod@a∗ b, 17D
pr = If@pr == 16, 0, prD;
IntegerDigits@pr, 2, 4D

9

81, 0, 0, 1<
The reader is invited to multiply the sequences 81, 0, 0, 0<  and 80, 0, 1, 0< .

Block Ciphers 71



X1 X2 X3 X4

Y1 Y2 Y3 Y4

K1 K2 K3 K4

K5
K6

⊗ ⊗

⊗
⊗

f f

f
f

⊕
⊕

⊕ ⊕
⊕ ⊕

Figure 4.9

One Round in the International Data Encryption Algorithm 
(IDEA)

As with DES, IDEA can be inverted by simply going through it from the bottom to the top.

4.4 Further Remarks
RC5 is a scheme that is a little bit similar to IDEA. Its algebraic primitives are again the exclusive
or and addition modulo 2w , where w  is the word length, but instead of the multiplication modulo
2w + 1, which only works if 2w + 1 is prime, RC5 makes use of cyclic shifts. 

The  word  length  of  RC5  is  2 w ,  where  the  user  can  select  w  from 16,  32,  or  64.  An  additional
advantage of RC5 is the freedom to choose the number of rounds in the scheme. Depending on the
required speed and security, the user may opt for many or just a few rounds.

In  1993  two  attacks  on  block  ciphers  were  published,  that  turned  out  to  be  surprisingly  strong.
These  methods  are  called  linear  and  differential  cryptanalysis  (see  [MatsY93],  resp.  [BihS93])
and  are  in  fact  known plaintext  attacks.  Several  proposed  block  ciphers  were  not  strong  enough
against these attacks, however the DES algorithm could withstand it. Later it became clear that the
inventors  of  DES  were  already  aware  of  these  attacks.  For  further  reading  we  like  to  mention
[Knud94].

At the time of this writing, a collection of proposals are being studied by the (American) National
Institute  of Standards and Technology (NIST for short) for a new industrial  standard. The names
of  these  proposals  are  CAST-256,  CRYPTON,  DFC,  DEAL,  E2,  FROG,  HPC,  LOKI97,
MAGENTA, MARS, RC6, RIJNDAAEL, SAFER+, SERPENT and TWOFISH (see the web page
'Advanced  Encryption  Standard'  http://csrc.nist.gov/encryption/aes/aes_home.htm).  The  outcome
of this study is not yet clear.
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4.5 Problems

Problem 4.1
Describe the decryption process for a block cipher used in of cipher feedback mode.

Problem 4.2
Consider a block cipher that is used in cipher block chaining mode. Suppose that during transmission, Ci ,
the i-th ciphertext block, is corrupted. How many plaintext blocks will be affected?
Answer the same question for the case of cipher feedback mode.

Problem 4.3 M

What is the next sensible block length of IDEA, if the same scheme and the same primitives are being used,
but only the length of the registers is increased? (This length is 16 in IDEA.)
What is wrong with the intermediate values?
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5 Shannon Theory

5.1 Entropy, Redundancy, and Unicity Distance
In Chapter 2, we have seen that the cryptanalysis of a cryptosystem often depends on the structure
that is present in most texts. For instance in Table 2.1 we could find the key 22 (or -4L , because
"tu quoque Brute" was the only possible plaintext that made sense.

This  structure  in the plaintext  remains present  in  the ciphertext  (although in  hidden form).  If  the
extra  information  arising  from this  structure  exceeds  our  uncertainty  about  the  key,  one  may  be
able to determine the plaintext from the ciphertext!

We shall first need to quantify the concept of information. Let X  be a random variable defined on
a set  = 8x1, x2, …, xn<  by the probabilities

 PrHX = xiL = pi , 1 § i § n .

So, ⁄i=1
n pi = 1 and pi ¥ 0 for all 1 § i § n .

We shall show that 

(5.1)  J HpiL = -log2 pi

is  a  good  measure  for  the  amount  of  information  given  by  the  occurrence  of  the  event  xi ,
1 § i § n .  The base 2 in (5.1)  can be replaced by other  choices,  but  reflects  our intuitive  notions
about  information,  as  we  shall  see.  With  2  as  choice  for  the  base  in  the  logarithm  the  unit of
information is a called a bit.

Let   = 8x<  above  (so  n = 1L .  Then  p1 = 1.  Now the  occurrence  of  an  event  x  that  occurs  with
probability  1  (like  the  sun  will  rise  again  tomorrow)  gives  no  information  whatsoever.  This
corresponds nicely with JH1L = 0 in (5.1). 

Now consider an event that occurs with probability 1 ê2, like the specific sex of a newborn baby.
So,  now  = 8b, g< .  Assuming that  both sexes have the same probability  1 ê 2  of occurring,  such
an outcome gives precisely one bit of information. For instance, a 1 can denote a boy and a 0 can
denote a girl. This one bit of information is again in agreement with JH1 ê 2L = 1 in (5.1). 

If an event occurs with probability 1 ê 4, then its occurrence gives two bits of information. This is
clear in the case that there are four possible outcomes, each with probability  1 ê4. Each outcome
can be represented by a different sequence of two bits. 

On the other hand, the amount of information that an event gives, when it has a probability of 1/4
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to  occur,  should  be  independent  of  the  probabilities  of  the  other  possible  outcomes.  Thus,  the
value J H1 ê4L = 2 (see (5.1)) agrees again with our intuition. Continuing in this way one gets

(5.2)  J H1 ê2kL = k , k ¥ 0.

The expected value  of  stochastic  variable  JHPrHX LL ,  defined over   ,  is  called  the entropy  of  X
and  will  be  denoted  by  either  HHX L  or  by  H  HpL ,  where  p = Hp1, p2, …, pnL .  Hence,
HHX L = ExpHJHPrHX LLL =  ⁄i=1

n pi JHpiL =  -⁄i=1
n pi log2 pi :

(5.3)  HHpL = -⁄i=1
n pi log2 pi .

When n = 2, one often writes p1 = p , p2 = 1 - p , and hHpL  instead of HHpL:

(5.4)  hHpL = - p.log2 p - H1 - pL.log2H1 - pL , 0 § p § 1.

Since  x.log2 x  tends  to  0  for  x Ø 0,  there  are  no  real  problems  with  the  definition  and  the
continuity of the entropy function H  HpL  when some of the probabilities are 0 (or 1).

The function hHpL  is depicted below (with the Mathematica function Plot).

p =.;
Entropy@p_D = −p∗Log@2, pD − H1 − pL Log@2, 1 − pD;

Plot@Entropy@xD, 8x, 0, 1<D;
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The entropy function HHpL  can be evaluated as follows.

MultiEntropy@p_ListD := − ‚
i=1

Length@pD
p@@iDD ∗Log@2, p@@iDDD

p = 81ê4, 1ê4, 1 ê4, 1 ê4<;
MultiEntropy@pD
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One can give the following interpretations to the entropy HHX L  of a random variable X :

- the expected amount of information that a realization of X  gives,
- our uncertainty about X ,
- the expected number of bits needed to describe an outcome of X .

With these  interpretations  in  mind one expects  the  entropy  function  HHX L  to  have the following
properties:

P1:  HHp1, p2, …, pnL = HHp1, p2, …, pn, 0L
P2:  HHp1, p2, …, pnL = HHpsH1L, psH2L, …, psHnLL ,

for any permutation s of the index set 81, 2, …, n<.
P3:  0 § HHp1, p2, …, pnL § HH1 ên, 1 ên, …, 1 ênL .

P4:  HHp1, p2, …, pnL =  HHp1, p2, …, pn-2, pn-1 + pnL + Hpn-1 + pnL HI pn-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅpn-1+pn
, pnÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅpn-1+pn

M .

The interpretations of these properties are straightforward. 

P1 says that adding another event to  but one with probability 0 of occurring does not affect the
uncertainty about X .

P2 states that renumbering the different events in  leaves the entropy the same.

P3  says  that  the  uncertainty  about  X  is  maximal  if  all  events  have  the  same  probability of
occurring.

Finally,  P4  states  that  the  expected  number  of  bits  necessary  to  describe  an  outcome  from   is
equal to the number of bits necessary when combining events xn-1 and xn  into a single event, say
x̀n-1 ,  plus  the  number bits  to  necessary  to  distinguish  between events  xn-1  and xn  conditional  to
the fact that event x̀n-1  did occur.

For instance, if n = 4, then HH 1ÅÅÅÅ4 , 1ÅÅÅÅ4 , 1ÅÅÅÅ4 , 1ÅÅÅÅ4 L = 2 and also 

HI 1ÅÅÅÅ4 , 1ÅÅÅÅ4 , 1ÅÅÅÅ2 M + 1ÅÅÅÅ2 .HI 1ÅÅÅÅ2 , 1ÅÅÅÅ2 M = I 1ÅÅÅÅ4  .2 + 1ÅÅÅÅ4  .2 + 1ÅÅÅÅ2  .1M + 1ÅÅÅÅ2  .1 = 2.

Although  we  shall  not  prove  it  here,  it  can  be  shown [Khin57]  that  (5.1)  is  the  only  continuous
function  satisfying  (5.2)  yielding  an  entropy  function   ⁄i=1

n pi JHpiL  satisfying  the  above
mentioned properties P1-P4. 

Example 5.1 

Consider the flipping of a coin. Let PrHheadL = p  and PrHtailL = 1 - p, 0 § p § 1. The entropy is given by
(5.4).

That hH1 ê2L = 1  is of course confirmed by the fact that one needs one bit to represent the outcome of the
tossing of a fair coin. For instance, 0 ¨ heads and 1¨ tails. 

Since hH1 ê4L º 0.8113  one expects that  on the average only 0.8113 bits are needed to represent
the  outcome of  the  tossing  of  an unfair  coin  with  PrHheadL = 1 ê4.  This  statement  is  true  in  the
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sense that one can approach the number 0.8113 arbitrarily close. In Chapter 6 we shall show how
this  is  done.  The  trick  will  be  to  represent  the  outcome  of  many  tossings  together  by  one  single
string of bits. For instance with two tossings one can represent the outcomes as follows:

two tossings probablity representation

hh 1 ê16 111
ht 3 ê16 110
th 3 ê16 10
tt 9 ê16 0

The expected length of this representation is
1ÅÅÅÅÅÅÅ16  .3 + 3ÅÅÅÅÅÅÅ16  .3 + 3ÅÅÅÅÅÅÅ16  .2 + 9ÅÅÅÅÅÅÅ16  .1 = 27ÅÅÅÅÅÅÅ16 .

But  each  representation  describes  two  outcomes,  so  this  scheme  needs  27 ê32 º 0.843  bits  per
tossing.  Taking  three,  four,  …  tossings  at  a  time  leads  to  increasingly  better  approximations  of
hH1 ê4L . 

There is however a problem to address, namely that the receiver of a long string of zeros and ones
should be able  to determine  the outcomes of  the tossings  in  a unique way.  One can easily  verify
that any sequence made up from the subsequences 111, 110, 10 and 0 can only be broken up into
these subsequences in just one way . We shall address this problem extensively in Chapter 6.

Example 5.2 (Part 1)

The  26  letters  in  the  English  alphabet  can  be  represented  with  log2 26 º 4.70  bits  per  letter,  by  coding
sufficiently  long  strings  of  letters  into  binary  strings.   Indeed,  for  k  letters  one  needs  `log2 26kp  bits  and
thus one needs `log2 26kp êk  bits per letter, which converges to log2 26 .

On the other hand, the entropy of 1-grams can easily be computed with the probabilities given in
Table 1.1.  One obtains 4.15 bits per letter. 

Also for bi-grams and tri-grams these computations have been made (see [MeyM82], App.F. One
gets the following values:

 H(1-grams) º 4.15 bits/letter,
 H(2-grams)/2 º 3.62 bits/letter,
 H(3-grams)/3 º 3.22 bits/letter.

According to some tests the asymptotic value for n Ø ¶  is less than 1.5 bits/letter!

78 FUNDAMENTALS OF CRYPTOLOGY



Definition 5.1
Let HX0, X1, …, Xn-1L , n ¥ 1, denote the plaintext generated by a plaintext source  over
the alphabet 2 .
Then the redundancy Dn  of HX0, X1, …, Xn-1L  is defined by

Dn = n - HHX0, X1, …, Xn-1L .

The quantity d = Dn ên  stands for the average redundancy per letter.

If the alphabet size is q  and each symbol is represented by log2 q  bits, the redundancy is given by
Dn = n.log2 q - HHX0, X1, …, Xn-1L . If a different representation of the alphabet symbols is used,
say  with  an  expected  representation  length  of  l  bits  per  symbol,  we  have
Dn = n.l - HHX0, X1, …, Xn-1L .

The  redundancy  measures  to  which  extent  the  length  of  the  plaintext  exceeds  the  length  that  is
strictly necessary to carry the information of the text (all measured in bits). 

Let  us now turn our attention to a cryptosystem   consisting of cryptographic  transformation Ek

indexed by keys k  from a key space  .  Assume that  the unknown plaintext  is  a regular English
text.  In  the  context  of  this  chapter  we  assume  that  the  cryptanalyst  has  unlimited  computing
power.  So,  given a ciphertext  a cryptanalyst  can try out all  keys to check for possible plaintexts.
As soon as the ciphertext is just a few letters long, some keys can be ruled out because they lead to
impossible or improbable letter combinations in the plaintext. The longer the ciphertext, the more
keys can be ruled out. They violate the structure or interpretation of English texts. More formally,
they  violate  the  redundancy  in  the  plaintext.  Sooner  or  later,  only  the  key  that  was  used  for  the
encryption remains as only candidate.

Let  us  return  to  the  general  setting.  Let  n  be  the  length  of  the  plaintext  (in  bits).  There  are  2n

possible  binary  sequences,  but  only  2HHX0,X1,…,Xn-1L  represent  meaningful  messages.  The
probability that a decryption with the wrong key hits a legitimate message is 2HHX0,X1,…,Xn-1L ê2n . If
all  keys  are  tried  out  and  all  are  equally  likely,  one  expects  to  find  » » 2HHX0,X1,…,Xn-1L ê2n

meaningful  plaintexts.  Let  K  denote  the  uniform  distribution  over  the  key  space    .  Then» » = 2HHKL and one can write that 2HHKL 2HHX0,X1,…,Xn-1L ê 2n  meaningful messages are expected. If
this  number  is  less  than  1,  very  likely  it  will  be  just  the  key  used  for  the  encryption  that  will
survive this analysis. The above happens if 

HHKL + HHX0, X1, …, Xn-1L - n § 0,

 i.e. if the redundancy satisfies

Dn ¥ HHKL .

If  K  does not  have a uniform distribution,   we can still  use  the interpretation  that  HHKL  denotes
the uncertainty about the key to repeat the above reasoning.
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Definition 5.2
Consider  a  ciphertext-only  attack  on  a  cryptosystem    with  key-space    and  plaintext
source . Then the unicity distance of this cryptosystem is defined by

inf  8n œ + » Dn ¥ HHKL< ,

where HHKL  is the entropy of the key and Dn  the redundancy in the plaintext.

As soon as the redundancy in the plaintext exceeds the uncertainty about the key, the cryptanalyst
with  sufficient  resources  may  be  able  to  determine  that  plaintext  from  the  ciphertext.  Thus,  the
unicity distance indicates the user of a cryptosystem when to change the key in order to keep the
system sufficiently secure.

Example 5.2 (Part 2)

We continue with Example 5.2. Assume that a simple substitution has been applied to an English
text (see Subsection 2.1.2). Assuming that all 26! possible substitutions are equally likely, one has

HHKL = -‚
i=1

26! 1ÅÅÅÅÅÅÅÅÅ26!
log2 1ÅÅÅÅÅÅÅÅÅ26!

= log2 26 ! º 88.382 bits.

If one approximates the redundancy Dn  in a text of n  letters by H4.70 - 1.50L n = 3.20 n  bits, one
obtains a unicity distance of 88.4 ê3.2 º 28 characters.

According  to  Friedman  [Frie73]:  ''practically  every  example  of  25  or  more  characters
representing  the  mono-alphabetic  substitution  of  a  "sensible"  message  in  English  can be  readily
solved.'' These two numbers are in remarkable agreement.

5.2 Mutual Information and Unconditionally Secure Systems
Quite often random variables contain information about each other. In cryptosystems, the plaintext
and the ciphertext are related through the key. In this section we shall give a formal definition (in
the information theoretic sense of the word) of an unconditionally secure cryptosystem 

Let  X  and  Y  be  two  random  variables,  defined  on    resp.  .  The  joint  distribution
Pr,HX = x, Y = yL  of X  and Y  is often shortened to just

p,Hx, yL .

Similarly,  the  conditional  probability  Pr»HX = x » Y = yL  that  X = x ,  given  that  Y = y ,  is
denoted by

p»Hx » yL .

It satisfies the relation

(5.5)  p,Hx, yL = p»Hx » yL.pHyL
The uncertainty about X  given Y = y  is defined analogous to the entropy function by
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(5.6)  HHX » Y = yL = -⁄i=1
n p»Hx » yL.log2 p»Hx » yL .

It can be interpreted as the expected amount of information that a realization of X  gives, when the
occurrence of Y = y  is already known.

The  equivocation  HHX » Y L  or  conditional  entropy  of  X  given  Y  is  the  expected  value of
HHX » Y = yL  over all y . In formula,

(5.7)  

HHX » Y L = ⁄yœ pHyL.HHX » Y = yL  

=
H5.6L

-⁄yœ pHyL.⁄xœ p»Hx » yL.log2 p»Hx » yL
=

H5.5L
-⁄xœ ⁄yœ pHyL.p»Hx » yL.log2 p»Hx » yL  

= -⁄xœ ⁄yœ p,Hx, yL.log2 p»Hx » yL .

Let HHX , Y L  be defined analogously to the entropy function H  for one variable.

Theorem 5.1 Chain Rule

HHX , Y L = HHX L + HHY » X L = HHY L + HHX » Y L
Proof: We use (5.5) and (5.7).

HHX , Y L =

= -⁄xœ ⁄yœ p,Hx, yL.log2 p,Hx, yL
= -⁄xœ ⁄yœ p,Hx, yL.log2 pHyL - ⁄xœ ⁄yœ p,Hx, yL.log2 p»Hx » yL
= -⁄yœ pHyL.log2 pHyL + HHX » Y L = HHY L + HHX » Y L .

The second equality follows by a symmetry argument.

Ñ

In words, the above theorem states that the uncertainty about a joint realization of X  and Y  equals
the uncertainty about X  plus the uncertainty about Y  given X .

Corollary 5.2
Let X  and Y  are independent random variables. Then

i) HHX , Y L = HHX L + HHY L ,
ii) HHX » Y L = HHX L ,
iii) HHY » X L = HHY L .

Proof: To prove i) we repeat the proof of Theorem 5.1 with p,Hx, yL = pHxL.pHyL .

HHX , Y L = -⁄xœ ⁄yœ p,Hx, yL.log2 p,Hx, yL
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= -⁄xœ ⁄yœ p,HxL.log2 pHxL - ⁄xœ ⁄yœ p,Hx, yL.log2 pHyL
= -⁄xœ pHxL.log2 pHxL - ⁄yœ pHyL.log2 pHyL  

= HHX L + HHY L .

Statements ii) and iii) follow directly from i) and the chain rule.

Ñ

The  amount  of  information  (see  (5.1)  that  a  realization  Y = y  gives  about  a  possible  realization
X = x  can be quantified as the amount of information that the occurrence of X = x  gives minus
the amount of information that X = x  will give when Y = y  is already know. We denote this by
I;Hx, yL . It follows that

I,Hx; yL = H-log2 pHxLL - H-log2 p»Hx » yLL
= -log2 pHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp»Hx»yL =

H5.5L
- log2 

pHxL.pHyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp,Hx,yL = I;Hy; xL .

Note the symmetry in I,Hx; yL = I;Hy; xL .

The mutual information IHX ; Y L  of X  and Y  is defined as the expected value of I,Hx; yL , i.e.

(5.8)  

IHx; yL = -⁄xœ ⁄yœ p,Hx, yL.I;Hx; yL
= -⁄xœ ⁄yœ p,Hx, yL. log2 

pHxL.pHyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp,Hx,yL

= -⁄xœ ⁄yœ p,Hx, yL. log2 pHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp»Hx»yL  = IHY ; X L .

Theorem 5.3
IHX ; Y L = HHX L + HHY L - HHX , Y L = HHX L - HHX » Y L = HHY L - HHY » X L.

Proof: From (5.8) it follows that

IHX ; Y L =

= -‚
xœ ‚

yœ
p,Hx, yL.log2 pHxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp»Hx»yL

= -⁄xœ ⁄yœ p,Hx, yL.log2 pHxL  +⁄xœ ⁄yœ p,Hx, yL.log2 p»Hx » yL
= -⁄xœ pHxL.log2 pHxL  -HHX » Y L = HHX L - HHX » Y L .

The other statements follow from Theorem 5.1.

Ñ

IHX ; Y L  can  be  interpreted  as  the  expected  amount  of  information  that  Y  gives  about  X  (or  X
about Y ).
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Example 5.3 

The  binary  symmetric  channel  can  be  described  as  follows.  A  source  sends  X = 0  or  X = 1,  each  with
probability  1 ê2.  The  receiver  gets  Y = X  with  probability  1 - p  and  Y = 1 - X  with  probability  p.  It
follows that  =  = 80, 1<  and that

p H0L = p » H0 » 0L p H0L + p » H0 » 1L p H1L = H1 - pL. 1ÅÅÅÅ2 + p. 1ÅÅÅÅ2 = 1ÅÅÅÅ2 .

Similarly, p H1L = 1 ê2. Also p , H0, 0L = p , H1, 1L = H1 - pL ê2 and 
p , H0, 1L = p , H1, 0L = p ê2. So, for the binary symmetric channel we have by (5.8)

IHX ; Y L = -2 9 1- pÅÅÅÅÅÅÅÅÅÅÅ2  log2 1ê2ÅÅÅÅÅÅÅÅÅÅÅ1- p + pÅÅÅÅÅ2  log2 1ê2ÅÅÅÅÅÅÅÅÅp = =

= 1 + p.log2 p + H1 - pL.log2H1 - pL = 1 - HHpL .

We conclude that the receiver gets 1 - HHpL  bits of information about X  per received symbol Y .
How to approach this  quantity 1 - HHpL  is  the fundamental problem in algebraic coding theory
[MacWS77], Section 1.6.

For p = 1 ê2  the receiver gets no information (since HH1 ê2L = 1) about the transmitted symbols,
as is to be expected.

Let  us  now  return  to  the  conventional  cryptosystem  as  explained  in  Chapter  1.   Assume  that  a
probability distribution Pr HK = kL  is defined on the keyspace   and let the sequence of random
variables

M HuL = HM0, M1, …, Mu-1L
denote the plaintext, and let

CHvL = HC0, C1, …, Cv-1L
denote the ciphertext. So, CHvL = EkHM HuLL . In most applications v  will be equal to u . Since Ek  is a
one-to-one mapping, the plaintext is uniquely determined by the key and the ciphertext, therefore,
one has

(5.9)  HHM HuL » K, CHvLL = 0.

Of  course  the  user  of  the  cryptosystem  is  interested  to  know  how  much  information  CHvL  leaks
about M HuL .

Theorem 5.4

IHM HuL; CHvLL ¥ HHM HuLL - HHKL
In  words:  the  uncertainty  about  the  key  together  with  the  information  that  the  ciphertext  gives
about  the  plaintext  is  greater  than  or  equal  to  the  uncertainty  about  the  plaintext.  Again,  this
reflects our intuition.
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Proof of Theorem 5.4:

 By (5.9) and the chain rule (Thm. 5.1, which also applies to conditional entropies) one has that

HHK » CHvLL = HHK » CHvLL + HHM HuL » K, CHvLL = HHM HuL, K » CHvLL
= HHM HuL » CHvLL + HHK » M HuL, CHvLL ¥ HHM HuL » CHvLL .

In words: given the ciphertext the uncertainty about the key is at least as great as the uncertainty
about the plaintext. This reflects the property that knowing the ciphertext, one can reconstruct the
plaintext from the key, but not necessarily the other way around.

It follows that

HHM HuL » CHvLL § HHK » CHvL L § HHKL
and by Theorem 5.3 that

IHM HuL; CHvLL = HHM HuLL - HHM HuL » CHvLL ¥ HHM HuLL - HHKL .

Ñ

Definition 5.3
A cryptosystem is called unconditionally secure or is said to have perfect secrecy if 

IHM HuL; CHvLL = 0.

Corollary 5.5
A necessary condition for a cryptosystem to be unconditionally secure is given by

HHM HuLL § HHKL .

In cryptosystem where all  keys and all  plaintexts are equally likely,  Corollary 5.5 states that you
need to have at least as many keys as plaintexts.  

Example 5.4 

Suppose that we have 2k  keys, all with probability 1 ê2k . Then

HHKL = -‚
i=1

2k
1ÅÅÅÅÅÅÅ

2k .log2 1ÅÅÅÅÅÅÅ
2k = k  bits.

If  the  messages  are  the  outcome  of  u  tossings  with  a  fair  coin,  one  has  in  a  similar  way  that
HHM HuLL , so, for perfect secrecy one needs k ¥ n.

This  can be  realized  the  encryption  cHuL = mHuL ∆ kHuL ,  where kHuL  stands  for  the  first  u  bits  of  the
key k  and where ∆ stands for a coordinatewise modulo 2 addition. With this encryption, with each
ciphertext cHuL  each possible plaintext is still equally likely.
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5.3 Problems

Problem 5.1
Show that function -⁄i=1

n pi.log2 pi  satisfies properties P1-P4 in Section 5.1.

Problem 5.2
Let a § 1 ê2. 

a) Prove that
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n + 1

 
nn

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kk  Hn - kLn-k § Jn

k
N §

nn
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kk  Hn - kLn-k.

b) Show that these inequalities imply that 

limxØ¶  1ÅÅÅÅn  log „
i=0

dant
 Jn

i
N = hHaL ,

where hHxL  is the entropy function defined in (5.4).

Problem 5.3
Assume that the English language has an information rate of 1.5 bits per letter. What is the unicity distance
of the Caesar cipher, when applied to an English text? 
Answer the same question for the Vigenère cryptosystem with key length r .

Problem 5.4
Consider a memoryless message source that generates an output letter X  that is uniformly distributed over
the alphabet 80, 1, 2< .
After transmission over a channel the symbol Y , that is received, will be equal to X  with probability 1 - p ,
0 § p § 1, and it will be equal to any of the other two letters in the alphabet with probability p ê2.
Compute the mutual information IHX , Y L  between X  and Y .

Problem 5.5
Let  be a plaintext source that generates independent, identical distributed letters X  from 8a, b, c, d< . The
probability distribution is given by PrHX = aL = 1 ê2, PrHX = bL = 1 ê4, and PrHX = cL = Pr Hx = dL = 1 ê8.
Consider the two coding schemes:

a | 00
b | 01
c | 10
d | 11

scheme A

 

a | 0
b | 10
c | 110
d | 111

scheme B

The  output  sequence  of  the  plaintext  X  is  first  converted  into  a  80, 1<-sequence  by  means  of  one  of  the
above coding schemes and subsequently encrypted with the DES algorithm.
What is the unicity distance for both coding schemes?

Problem 5.6
Prove that the one-time pad is an unconditionally secure cryptosystem.
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6 Data Compression Techniques
It is clear from Chapter 5 (see Definitions 5.1 and 5.2) that the security of a cryptosystem can be
significantly  increased  by  reducing  the  redundancy  in  the  plaintext.  In  Example  5.1  such  a
reduction has been demonstrated.

In  this  chapter  we shall  describe  two general  methods to  reduce  the  redundancy.  The process of
removing redundancy from plaintexts is called data compression or source coding. 

6.1 Basic Concepts of Source Coding for Stationary Sources
Let a plaintext source  output independently chosen symbols from the alphabet 8m1, m2, …, mn<
with respective  probabilities  p1, p2 …, pn .  Symbol mi  will  be  encoded into  a  binary  string  ci of
length li , 1 § i § n .

The set 8c1, c2, …, cn<  is called a code C  for source . The idea of data compression is to use such
a code that the expected value of the length of the encoded plaintext is minimal. Since the symbols
generated  by  the  plaintext  source  are  independent  of  each  other,  it  suffices  to  minimize  the
expected length of an encoded symbol

(6.1)  L = ⁄i=1
n pi li .

The minimization has to take place over all possible codes C  for source .  There is however an
additional constraint. A receiver (decoder) has to be able to retrieve the individual messages from
the  concatenation  of  the  successive  codewords.  Not  every  code  has  this  property.  Indeed  let
C = 80, 01, 10< . The sequence 010 can be made in two ways: 0 followed by 10 and 01 followed by
0. This ambiguity has to be avoided.

Definition 6.1
A  code  C  is  called  uniquely  decodable  (shortened  to  U.D.)  if  every  concatenation  of
codewords from C  can only in one way be split up into individual codewords.

Example 6.1 

Let  n = 4  and  C = 80, 01, 011, 111<  (this  is  the  code  of  Example  5.1  in  reversed  order).  This  code  C  is
U.D., as we shall now demonstrate. 

Consider a concatenation of codewords. If the left most bit is a 1, the left most codeword is 111. If on the

other hand the left most bit is a 0, the concatenation  either looks like 0 11 …1
õúúúúúúúù ûúúúúúk

, for some k ¥ 0, or it starts

with the subsequence 011 …1
õúúúúúúúù ûúúúúúk

0 for some positive integer k . 

Depending  on whether  k = 3 l, 3 l + 1,  or  k = 3 l + 2,  the  left  most  codeword is  0,  01 resp.   011.  One

Data Compression Techniques 87



can now remove this codeword and apply the same decoding rule to the remaining, shorter concatenation
of codewords.

Theorem 6.1 McMillan Inequality [McMi56]
A necessary and sufficient condition for the existence of a uniquely decodable code C  of
cardinality n  with codewords of length li , 1 § i § n , is

(6.2)  ‚
i=1

n 1
ÅÅÅÅÅÅÅÅÅ
2li

§ 1.

Proof: We shall only prove that the inequality above is a necessary condition for the existence of a
U.D.  code  with  codeword  ci  of  length  li ,  1 § i § n .  That  it  also  is  a  sufficient  condition  will  be
proved later in this chapter. 

Let L = ‚
i=1

n 1ÅÅÅÅÅÅÅ
2li

 and let us assume (without loss of generality) that l1 § l2 § … § ln . Then

LN = I‚
i=1

n 1ÅÅÅÅÅÅÅÅ
2li

MN
= ‚

j=N.l1

N .ln A jÅÅÅÅÅÅÅÅ2 j ,

where A j  is the number of ways to write j  as li1 + li2 + … + liN , or, alternatively, A j  is the number
of ways to make a concatenation of N  codewords of total length j .

Because  C  is  U.D.,  no  two  different  choices  of  N -tuples  of  codewords  will  give  rise  (when
concatenated) to the same string of length j . So, A j § 2 j . 

Substitution of this inequality in (6.2) implies that for all N ¥ 1

LN § ⁄ j=N.l1
N.ln 1 = NHln - l1L + 1.

Since the left-hand side grows exponentially in N , while the right hand side is a linear function of
N , we conclude that L § 1.

Ñ

As can  be  seen  in  Example  6.1,  one  may  have  to  look  for  a  much longer  prefix  of  the  received
sequence than the length of the longest codeword to be able to decode it. This is not very practical.

Definition 6.2
A code C is called a prefix code  or instantaneous  if  no codeword is a prefix of another
codeword.

The code in Example 6.1 is not a prefix code, since the codeword 0 is a prefix of the codeword 01.
The  code  in  Example  5.1  clearly  is  prefix  code.  For  the  decoding  of  a  prefix  code  one  simply
looks for a prefix of the received sequence that is a codeword. Because the code is a prefix code
this codeword is unique. Remove it and proceed in the same way. 

Note  that  when a  prefix  code  is  used,  one only needs  to  examine at  most  ln  bits  of  the  received
sequence to determine the first codeword in the received sequence.

The above observation proves the next theorem.
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Lemma 6.2
A prefix code is uniquely decodable.

Theorem 6.3 Kraft Inequality [Kraf49]
A  necessary  and  sufficient  condition  for  the  existence  of  a  prefix  code  with  codeword
lengths li , 1 § i § n , is

(6.3)  ‚
i=1

n 1
ÅÅÅÅÅÅÅÅÅ
2li

§ 1 .

Proof:  A prefix code is  U.D. by Lemma 6.2.  So,  it  follows from the McMillan  inequality  (Thm.
6.1) that (6.3) is a necessary condition for a code to be a prefix code. 

We shall now prove that (6.3) implies the existence of a prefix code with codewords ci  of lengths
li , 1 § i § n , and a fortiori of a U.D. code with these lengths.

Without loss of generality l1 § l2 § … § ln .  Because of this ordering and since ‚
i=1

n-1 1ÅÅÅÅÅÅÅ
2li

< 1  we
can define vectors ci = Hci,1, ci,2, …, ci,liL , 1 § i § n , by the binary expansion of ⁄ j=1

i-1 1 ê2l j :‚
j=1

i-1 1ÅÅÅÅÅÅÅÅ
2l j

=
ci,1ÅÅÅÅÅÅÅÅÅ2 +

ci,2ÅÅÅÅÅÅÅÅÅ22 + … +
ci,liÅÅÅÅÅÅÅÅÅÅ
2li

.

For instance,  c1 = H0, 0, …, 0L  of  length  l1 ,  c2 = H0, …, 0, 1, 0, …, 0L  of  length l2  with a  one on
coordinate l1  etc. By definition, ci  has length li .

It  remains  to  show  that  no  cu  can  be  the  prefix  of  a  codeword  cv ,  u ∫ v .  Suppose  the  contrary.
Clearly  lu ∫ lv ,  otherwise  the  two  words  would  be  identical.  So,  lu < lv  and  thus  u < v .  It  also
follows that‚

j=1

v-1 1ÅÅÅÅÅÅÅÅ
2l j

- ‚
j=1

u-1 1ÅÅÅÅÅÅÅÅ
2l j

=
def. ‚

j=1

l

v

cv, jÅÅÅÅÅÅÅÅÅÅ
2l j

- ‚
j=1

l

u

cu, jÅÅÅÅÅÅÅÅÅÅ
2l j

=
prefix

‚
j=lu+1

l

v

cv, jÅÅÅÅÅÅÅÅÅÅ
2l j

§ ‚
j=lu+1

l

v

1ÅÅÅÅÅÅÅÅ
2l j

< ‚
j=lu+1

¶ 1ÅÅÅÅÅÅÅ2 j = 1ÅÅÅÅÅÅÅÅÅ
2lu ,

while on the other hand‚
j=1

v-1 1ÅÅÅÅÅÅÅÅ
2l j

- ‚
j=1

u-1 1ÅÅÅÅÅÅÅÅ
2l j

= ‚
j=u

v-1 1ÅÅÅÅÅÅÅÅ
2l j

¥ 1ÅÅÅÅÅÅÅÅÅ
2lu .

These two inequalities contradict each other.

Ñ
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Example 6.2 

Consider l1 = 1, l2 = 2, l3 = 3, and l4 = l5 = 4. 

Since 1ÅÅÅÅÅÅÅ21 + 1ÅÅÅÅÅÅÅ22 + 1ÅÅÅÅÅÅÅ23 + 1ÅÅÅÅÅÅÅ
24 + 1ÅÅÅÅÅÅÅ24 = 1, the Kraft inequality is satisfied.

The  proof  above  gives  the  following  codewords  (we  have  used  the  Mathematica  functions  Length,  Do,
Table, IntegerDigits, and Print):

l = 81, 2, 3, 4, 4<;
L = Length@lD; c =.;
c@1D = Table@0, 8l@@1DD<D;

DoAc@iD = IntegerDigitsA
i

k
jjjjjj‚
j=1

i−1 1
cccccccccccccccc
2l@@jDD

y

{
zzzzzz 2l@@iDD, 2E, 8i, 2, L<E;

Do@Print@c@iDD, 8i, 1, L<D80<81, 0<81, 1, 0<81, 1, 1, 0<81, 1, 1, 1<
This code is a prefix code, as one can easily verify.

It is quite remarkable that the McMillan and the Kraft conditions ((6.2) and (6.3) are the same. It
follows  that  the  smallest  average  value  of  the  length  of  a  U.D.  code  is  equal  to  the  smallest
average value of the length of a prefix code!

The next two theorems give bounds on the average value of the length of a prefix code (or a U.D.
code).

Theorem 6.4
Consider a plaintext source  that outputs messages mi  with probability pi , 1 § i § n . 
Let C  be a U.D. code which maps message mi  into codeword ci  of length li , 1 § i § n .
Then the expected value L = ⁄i=1

n pi li  of the length of an encoding satisfies

L ¥ HHpL .

Proof: It follows from the well-known inequality ln x § 1 - x , x > 0, and from (6.2) that

HHpL - L = -⁄i=1
n pi.log2 pi - ⁄i=1

n pi li = 1ÅÅÅÅÅÅÅÅÅln 2  ‚
i=1

n
pi.ln 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

pi  .2li
§

1ÅÅÅÅÅÅÅÅÅln 2  ‚
i=1

n
piJ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

pi  .2li
- 1N = 1ÅÅÅÅÅÅÅÅÅln 2  II‚

i=1

n 1ÅÅÅÅÅÅÅÅ
2li

M - 1M § 0.

Ñ
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Theorem 6.5
Consider a plaintext  that outputs messages mi  with probability pi , 1 § i § n . 
Then a prefix code C  exists for this source with an expected word length L , satisfying

 L < HHpL + 1.

Proof: Define li  by li = `log2 1 ê pip , 1 § i § n . Then 2li ¥ 1 ê pi  and thus⁄i=1
n 1 ê2li § ⁄i=1

n pi = 1.

For these values of li , 1 § i § n , construct the code C  as described in the proof of Theorem 6.3. It
is a prefix code and the expected value L of its length satisfies

L = ⁄i=1
n pi.li = ⁄i=1

n pi.`log2 1 ê pip < ⁄i=1
n pi.Hlog2 1 ê pi + 1L = HHpL + 1.

Ñ

Corollary 6.6
The minimal expected length of all  prefix (or U.D.) codes for a plaintext source   with
probability distribution p  has a value L  satisfying

HHpL § L < HHpL + 1.

We shall  now apply  the  above  corollary  to  N -tuples  of  source  symbols.  Since  the  entropy  of  N
independent symbols equals N  times the entropy of one symbol, one gets an expected length LHNL
for an N -gram that satisfies

N .HHpL § LHNL < N .HHpL + 1.

It follows that

(6.4)  HHpL § LHNL
ÅÅÅÅÅÅÅÅÅÅÅÅN < HHpL + 1ÅÅÅÅÅÅN .

So, limNØ¶
LHNL
ÅÅÅÅÅÅÅÅÅÅÅN = HHpL . This confirms the last of the three interpretation  of the entropy function

H , that were given at the beginning of Chapter 5.

We shall now derive some properties that a prefix code with minimal expected L will satisfy.
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Theorem 6.7
Consider  the  source    which  outputs  independent  symbols  mi ,  1 § i § n ,  with
probabilities p1 ¥ p2 ¥ … ¥ pn .
Among all U.D. codes for this source, let C  be one which minimizes the expected value
L  of the length of an encoding. Let this code C  have codewords ci  of length li , 1 § i § n . 
Then, after a suitable reindexing of codewords associated with the messages of the same
probability, 

P1) l1 § l2 § … § ln .
P2) C  can be assumed to be a prefix code.
P3) ‚

i=1

n 1ÅÅÅÅÅÅÅÅ
2li

= 1.
P4) ln-1 = ln .
P5) Two of the codewords of length ln  differ only in their last coordinate.

Proof:

P1) Suppose that pu > pv  and lu > lv . Make a new code C*  from C  by interchanging cu  and cv .
Then C*  is also an U.D. code. The expected length L*  of C*  satisfies

L* = L + puHlv - luL + pvHlu - lvL = L + Hpu - pvL Hlv - luL < L .

This contradicts our assumption on the minimality of L.

If pu = pv , u < v , one can obtain lu § lv  by a simple renumbering of the indices.

P2) If  a  U.D.  code  exists  with  expected  length  L ,  then  a  prefix  code  with  the  same expected
length L  also exists because the necessary and sufficient conditions in Theorems 6.1 and 6.2. are
the same.

P3) If  ‚
i=1

n 1ÅÅÅÅÅÅÅ
2li

< 1  one  can  decrease  ln  by  1  and  still  satisfy  the  Kraft  inequality  (6.3).  By
Theorem  6.2  a  prefix  code  with  smaller  expected  length  would  exist.  This  contradicts  our
assumption on C .

P4) If  ln > ln-1  then  P1  implies  that  ln  is  strictly  greater  than  any  of  the  other  codeword
lengths.  It  follows that  the  left  hand side  in  P3)  will  be  a  rational  number with denominator  2ln .
For this reason it can not be equal to 1.

P5) Delete  the  last  coordinate  of  cn  and  call  the  resulting  vector  cn
* .  Let  C*  be  the  code8c1, c2, …, cn-1, cn

*< . It follows from P3) that C*  does not satisfy the Kraft inequality (6.3). So C*

is not a prefix code, while C  was. This is only possible if cn
*  is a proper prefix of some codeword

ci , 1 § i § n - 1. This means that this ci  must have length ln  too and also that ci  and cn
*  differ in

just their last coordinate. 

Ñ

Property  P5 gives  a  clue  how to  construct  a  U.D. code with  minimal  expected  codeword length.
The method will be described in the next section. 
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6.2 Huffman Codes
The Huffman algorithm [Huff52] constructs for every stationary plaintext source a prefix code that
has  an  average  codeword  length  that  is  minimal  among  all  U.D.  codes  for  this  source.  The
algorithm has a recursive character. 

If the plaintext  source has only two possible output symbols, both with a non-zero probability of
occurring, the best one can do is to assign the symbols 0 and 1 to them. Clearly, L = 1 < HHpL + 1
in this case. 

Each recursion step consists of two parts: a reduction process and a splitting process. 

The reduction process.

Let    be  a  plaintext  source  which  outputs  independent  symbols  mi ,  1 § i § n ,  with  probabilities
p1 ¥ p2 ¥ … ¥ pn .  Replace  the  two  symbols  mn-1  and  mn  by  one  new  symbol  mn-1

*  with
probability  pn-1

* = pn-1 + pn .  In  this  way,  a  new  source  *  is  obtained  with  one  output  symbol
less than . 

The splitting process.

Let  C* = 8c1, c2, …, cn-2, cn-1
* <  be  a  prefix  code  of  minimal  expected  length  L*  for  the  output

symbols 8m1, m2, …, mn-2, mn-1
* <  of *  (to find this code in the recursion process, one may want

to reindex these symbols in order of non-increasing probabilities).

The code C  is given by 

ci = ci
* for 1 § i § n - 2,

cn-1 = Hcn-1
* , 0L ,

cn = Hcn-1
* , 1L

In  words,  when the symbol mn-1
*  is  split  up  in  the two symbols mn-1 and mn ,  the codeword cn-1

*

will be extended with a 0 resp. 1 (or the other way around) to distinguish them.

Example 6.3

Let n = 6 and let the plaintext source  output independent symbols described by the table:

m1 m2 m3 m4 m5 m6
0.3 0.2 0.2 0.1 0.1 0.1

To keep track of the reduction process, we use the notation Hmn-1 + mnL  for mn-1
* .  After applying

one reduction and a reordering of the probabilities in non-increasing order we get

m1 m2 m3 Hm5 + m6L m4
0.3 0.2 0.2 0.2 0.1

Repeating this process, one gets
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m1 Hm4 + Hm5 + m6LL m2 m3
0.3 0.3 0.2 0.2

and Hm2 + m3L m1 Hm4 + Hm5 + m6LL
0.4 0.3 0.3

and finallyHm1 + Hm4 + Hm5 + m6LLL Hm2 + m3L
0.6 0.4

For  the  splitting  process  we  traverse  the  above  process  in  opposite  direction.  We  start  with  the
code 80, 1<  and at each splitting of a message into two messages, we append a zero resp. a one.

Note, how mi  is replaced by ci  at each step. We getHc1 + Hc4 + Hc5 + c6LLL Hc2 + c3LH0L H1L
and Hc2 + c3L c1 Hc4 + Hc5 + c6LLH1L H0, 0L H0, 1L
and

c1 Hc4 + Hc5 + c6LL c2 c3H0, 0L H0, 1L H1, 0L H1, 1L
and

c1 c2 c3 Hc5 + c6L c4H0, 0L H1, 0L H1, 1L H0, 1, 0L H0, 1, 1L
and as code for the source :

c1 c2 c3 c4 c5 c6H0, 0L H1, 0L H1, 1L H0, 1, 1L H0, 1, 0, 0L H0, 1, 0, 1L
We see that l1 = l2 = l3 = 2, l4 = 3, and l5 = l6 = 4. One can easily check that ⁄i=1

6 1 ê2li = 1  and
that  HHpL § L < HHpL + 1.  We  use  the  MultiEntropy  function  defined  in  Section  5.1  and  further
the Mathematica function Length.

MultiEntropy@p_ListD := − ‚
i=1

Length@pD
p@@iDD ∗Log@2, p@@iDDD
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p = 80.3, 0.2, 0.2, 0.1, 0.1, 0.1<;
MultiEntropy@pD
l = 82, 2, 2, 3, 4, 4<; len = Length@lD;

‚
i=1

len 1
cccccccccccccccc
2l@@iDD

== 1

‚
i=1

len

p@@iDD∗l@@iDD

2.44644

True

2.5

To  demonstrate  this  Huffman  code,  we  apply  it  to  a  text  made  up  by  the  first  6  letters  of  the
alphabet. We first simulate the source with the Mathematica functions Which, Random  and  Do
(note that <> joins two strings).

SeedRandom@12321D; randomchar@x_D :=

Which@x < 0.3, "a", x < 0.5, "b", x < 0.7, "c",
x < 0.8, "d", x < 0.9, "e", x < 1, "f"D;

sourcetext = ""; n = 10;
Do@sourcetext =

sourcetext <> randomchar@Random@Real, 80, 1<DD, 8j, 1, n<D;
sourcetext

eedcbccaec

To encode we use the Huffman coding determined above and the function StringReplace.

code = StringReplace@sourcetext, 8"a" → "00", "b" → "10",
"c" → "11", "d" → "011", "e" → "0100", "f" → "0101"<D

010001000111110111100010011

To compare the length of this particular coding with the entropy we use the function MultiEntropy
defined above and the Mathematica function StringLength.
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StringLength@codeDê n − MultiEntropy@pD

0.253561

In  Mathematica,  the  decoding can be  implemented with  the  function  StringReplace,  because  this
function works from left to right, as follows.

st = StringReplace@code, 8"0101" −> "f",
"0100" −> "e", "011" −> "d", "11" −> "c", "10" −> "b",

"00" −> "a"<D
sourcetext == st

eedcbccaec

True

In fact, the following figure gives a better way to describe the decoding process. Read the received
string bitwise from left to right. Depending on the input symbol follow the tree from its root to the
right: a 1 lets you go up and a 0 down. As soon as a leaf (end point) of the tree has been reached,
write down the corresponding alphabet symbol and start again at the root with the next.

For  instance,  the  first  two  symbols  in  "00010000010000101000010011"  are  "00"  and  lead  to
symbol "a". The next four symbols are "0100" and lead to "e", etc.

root

0

1

0

1

a

0

1

0

1

d

0

1

b

c

Figure 6.1

Decoding Tree for Huffman Code
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Lemma 6.8
Let    be  a  plaintext  source  with  independent  output  symbols  mi ,  1 § i § n ,  with
probabilities  p1 ¥ p2 ¥ … ¥ pn .  Let   *  be  the  reduced  plaintext  source  with
independent  output  symbols  mi

* ,  1 § i § n - 1,  with  probabilities  pi
* = pi ,  1 § i § n - 2,

and pn-1
* = pn-1 + pn . 

Assume that C*  is a prefix code for source *  that minimizes the expected value of the
length  of  any  prefix  encoding  for  * .  Let  the  words  in  C*  be  denoted  by  ci

* ,
1 § i § n - 1.  Define  code  C  for    by  ci = ci

*  for  1 § i § n - 2,
cn-1 = HHcn-1

* L1, …, Hcn-1
* Ln-1, 0L , and cn = HHcn-1

* L1, …, Hcn-1
* Ln-1, 1L .

Then C  is a prefix code for source   that minimizes the expected value of the length of
any prefix encoding for .

Proof:  That C  is  a prefix code is  straightforward.  Let  li  and  li*  denote  the length of ci  resp.  ci
* .

These numbers are related by li = li* ,  1 § i § n - 2,  and ln-1 = ln = ln-1
* + 1. The expected lengths

L  and L*  of C  resp. C*  are related by:

L = ⁄i=1
n pi li = ⁄i=1

n-2 pi li + pn-1 ln-1 + pn ln = ⁄i=1
n-2 pi

* li* + pn-1Hln-1
* + 1L + pnHln-1

* + 1L =⁄i=1
n-2 pi

* li* + Hpn-1 + pnL ln-1
* + Hpn-1 + pnL = ⁄i=1

n-2 pi
* li* + pn-1

*  ln-1
* + Hpn-1 + pnL = L* + Hpn-1 + pnL .

From Theorem 6.7 and a reasoning like the above, we know that any prefix code C
`

 for source 
that minimizes the expected value of the length of an encoding for  can be reduced to a code for
source *  that  has an expected encoding length equal to L

`
- Hpn-1 + pnL .   Since L*  was minimal

for * , we have L
`

- Hpn-1 + pnL ¥ L* = L - Hpn-1 + pnL , i.e. L
`

¥ L . Since L
`

 was minimal for , we
conclude that L

`
= L , i.e. C  realizes the minimal expected length for an encoding of .

Ñ

Theorem 6.9
Let    be  a  plaintext  source    with  independent  output  symbols  mi ,  1 § i § n ,  with
probabilities p1 ¥ p2 ¥ … ¥ pn . 
Then the Huffman code for  this  source will  have an expected encoding length L  that is
minimal among all U.D. codes for this source.

Proof:  For  n = 2  the  statement  is  obvious  because  the  Huffman  code  will  be  equal  to  8H0L, H1L<
with L = 1. The induction argument is a direct consequence of Lemma 6.8.

Ñ

6.3 Universal Data Compression - The Lempel-Ziv Algorithms
If one wants to compress data from a source with unknown statistics,  the Huffman algorithm can
not  be  applied.  For  such a  situation,  one needs  so-called  universal  data compression  techniques.
Examples are the Lempel-Ziv algorithms (there are two of them) and a technique called arithmetic
coding (see [ZivL77], [ZivL78], resp. [RisL79]). 
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In  [ZivL77],  the  authors  introduce  a  window  of  a  fixed  length  that  slides  over  the  sequence of
source symbols, say from left  to right.  The sliding window  consists of two parts:  a larger part on
the left, called the search buffer, and a smaller part on the right, called the look-ahead buffer. The
source  symbols  in  the  search  buffer  have  already  been  encoded.  The  encoder  encodes  as  many
new source  symbols  in  the  look-ahead  buffer  as  possible  by  looking  in  the  search  buffer  for  the
largest  match  of  already  encoded  symbols.  Suppose  that  the  first  j  unencoded  source  symbols
match  with  the  j  symbols  in  the  search  buffer  that  start  at  position  i ,  but  that  these  j  symbols
followed by the next  source  symbol,  say  a ,  could  not  be  matched.  Then the  encoder  outputs  the
triple Hi, j, aL  and the sliding window will move j + 1 characters to the right.

For example, suppose that the search buffer has length 10 and the look-ahead buffer has length 5.
Let the sliding window be given by  

.. b b c

1 2 3 4 5 6 7 8 9 10

a b a c b c a a c a
´¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈̈ ¨¨¨¨¨¨̈ ¨̈¨≠ Æ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈̈ ¨¨¨¨¨¨̈ ¨̈

search buffer

1 2 3 4 5

a c b a c
´¨¨¨¨¨¨¨¨̈ ¨¨¨̈¨≠ Æ¨¨¨¨¨¨¨¨̈ ¨̈ ¨̈
look ahead buffer

b a ..

The  largest  match  that  can  be  found,  are  the  first  three  letters  in  the  look-ahead  buffer  with  the
three  letters  starting  at  position  3 in  the  search  buffer.  The encoder  will  send the  triple  H2, 3, aL ,
where  a  is  the  first  symbol  that  could  not  be  matched.  The  sliding  window  will  move  four
positions  to  the  right.  At  the  beginning,  when the  search  buffer  is  empty,  the  first  encoding  will
start with H0, 0, xL , where x  is the first symbol of the source. 

We  shall  now  discuss  a  particular  variant  of  the  Lempel-Ziv  codes.  We  follow  [Well99],  where
also  an  analysis  of  the  performance  can  be  found.  The  basic  idea  is  that  both  sides  (sender  and
receiver)  make a  dictionary  that  represents  in  a  smart  way substrings  that  have  been transmitted
before.  If  the  new string  of  characters  that  is  to  be  compressed  is  already  in  the  dictionary,  one
encode this string by the index of the corresponding entry in the dictionary. In general, this index
will be a lot shorter than the string. If the new string is not in the dictionary, more work has to be
done.

The dictionary  that  sender  and receiver  are  making simultaneously will  be (a lot)  larger  than the
alphabet    of  the  source  .  However,  this  dictionary  will  be  stored  in  a  very  efficient  way  by
means of a so-called linked list.

The  reader  has  to  realize  that  the  use  of  the  Lempel-Ziv  algorithm  involves  some  overhead.
However, for files of moderate length (say, one page of text) it already makes sense to use them.

É Initialization

As already remarked before, the dictionary  will be stored by means of a linked list. Each entry in
the list has its own address u . The corresponding entry consists of an ordered pair Hv, aL , where v
should be interpreted as a pointer to another entry in the dictionary (so v  is again an address) and
where a  is a letter in the alphabet . Let A  denote the size of  .

To initialize the algorithm we start with a dictionary consisting of the following A + 1 entries:
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address pointer letter

0 0 ∅
1 0 a1
2 0 a2
ª ª ª
A 0 aA

Note that all these entries point to the list element with address 0. The symbol « is not an element
of . It is an additional symbol, serving as a punctuation mark.

To be ready for the encoding, we set the pointer value v  to 0 and the address pointer u  to A + 1 (u
is the address of the next empty location in the linked list) . 

É Encoding

Algorithm 6.10 Encoding for Lempel-Ziv
do begin read the next source symbol a

if Hv, aL  is already an entry in the dictionary then give v  the value of the address
of Hv, aL  

else begin
1) transmit v ,
2) make a new dictionary entry Hv, aL  with address u ,
3) u = u + 1 (raise pointer u  by 1),
4) give v  the value of the address of H0, aL

end
until  source stops.

The interpretation of the above is the following. If Hv, aL  is already an entry in the dictionary then
the encoder is processing a string of symbols that has occurred at least once before. By assigning
to v  the value of the address of Hv, aL , one will be able later on to reconstruct this list.

If  Hv, aL  is not an entry in the dictionary, the encoder is faced with a new string that has not been
processed before. It will transmit v  to let the receiver know the address of the last source symbol
in the preceding string.  Further,  the encoder makes a new dictionary entry Hv, aL  with address u .
The symbol a  will serve as root of a new string. Pointer v  is given the value of the address of entryH0, aL . The 0 in this entry points at dictionary entry H0, «L  which indicates the beginning of a new
string.  

Note  that  the  output  symbols  of  the  coding  process  are  dictionary  indices,  more  precisely,
addresses  of  the  linked  list.  Their  length  grows  logarithmically  in  the  length  of  the  dictionary.
Note  also,  that  each  new  source  symbol  will  increasingly  often  not  give  rise  to  a  new  output
symbol, because the current string will already have been encoded before.
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Example 6.4 (Part 1)

Consider a binary string 8si<i=1
n  that we want to compress. So,  = 80, 1<  and A = 2.

We initialize the coding process by putting

Dict = 880, −1<, 80, 0<, 80, 1<<
u = 3; v = 0; output = 8<;

880, −1<, 80, 0<, 80, 1<<
Note that we have used the negative number -1 instead of the null symbol «.

To demonstrate the coding process,  we output for each new source symbol si  the new dictionary
(represented as linked list), the new values of u and v and the complete output sequence. 

We use the Mathematica function Position that finds the place of an element in a list. Because
our list  contains  lists  as elements  we add [[1]]  twice.  Note that  we subtract  1 from the address,
because our numbering starts with 0 instead of 1.

Pos@s_List, el_ListD := Position@s, elD@@1DD@@1DD − 1

For instance

l = 883<, 85<, 87<, 82<, 81<<;
el = 87<;
pos@l, elD

2

Now we are ready for the coding process. We use the Mathematica functions Do, If, MemberQ,
Append, and Print.

s = 81, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1<;
Do@If@MemberQ@Dict, 8v, s@@iDD<D,

v = Pos@Dict, 8v, s@@iDD<D,
output = Append@output, vD;
Dict = Append@Dict, 8v, s@@iDD<D;
v = Pos@Dict, 80, s@@iDD<DD;
Print@Dict, ", v=", v, ", total output is ", outputD,
8i, 1, Length@sD<D880, −1<, 80, 0<, 80, 1<<, v=2, total output is 8<
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880, −1<, 80, 0<, 80, 1<, 82, 1<<, v=2, total output is 82<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<<
, v=1, total output is 82, 2<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<<
, v=1, total output is 82, 2, 1<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<<
, v=5, total output is 82, 2, 1<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, 1<<
, v=2, total output is 82, 2, 1, 5<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, 1<<
, v=4, total output is 82, 2, 1, 5<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, 1<, 84, 1<<
, v=2, total output is 82, 2, 1, 5, 4<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, 1<, 84, 1<<
, v=3, total output is 82, 2, 1, 5, 4<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, 1<,84, 1<, 83, 0<<, v=1, total output is 82, 2, 1, 5, 4, 3<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, 1<,84, 1<, 83, 0<<, v=5, total output is 82, 2, 1, 5, 4, 3<880, −1<, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, 1<,84, 1<, 83, 0<<, v=6, total output is 82, 2, 1, 5, 4, 3<

f Decoding

For a proper decoding, the receiver must be able to reconstruct  the same dictionary as was made
by  the  transmitter.  He  can  only  act  whenever  a  new  output  symbol  arrives.  Let  v  be  this  new
symbol.

By the encoding algorithm (Alg.  6.10)  the arrival  of v  implies that  a  new element (say the u-th)
has to be added to the dictionary. The pointer of this new entry is given by v .

The source symbol for this entry is not known since it is the root symbol of the next string (which
has  not  been  encoded  yet  by  the  transmitter).  So,  only  the  pair  Hv, ? L  can  be  added  to  the
dictionary.

The  receiver  is  however  able  to  fill  in  the  missing  symbol  in  the  previous  dictionary  entry  (at
address u - 1). 

Further,  the  receiver  can  decode  the  complete  source  symbol  string  associated  with  the  received
symbol. 

We shall demonstrate the above process for the received sequence of Example 6.4. 
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Example 6.4 (Part 2)

The  receiver  initializes  just  as  the  receiver  did.  So,  u = 3,  v = 0,  and  the  dictionary  is  given  by880, « <, 80, 0<, 80, 1<< .

He receives the following list of symbols: 82, 2, 1, 5, 4, 3< .

The first received symbol is v = 2. 

So, the new dictionary entry will be 82, ? <  and will have address u = 3. The question mark can not
be filled in yet. 

Pointer 2 in 82, ? <  points at the entry with address 2 in the dictionary, which is 80, 1< . This entry
tells us that the last symbol of the previous string was a 1 and that for the preceding part we need
to go to the dictionary entry with address 0. This entry is 80, « < , so we are done.

The new dictionary is given by 880, « <, 80, 0<, 80, 1<, 82, ? }}.

The second received symbol is v = 2. 

To fill  in  the question mark in the current  dictionary,  we look at  the entry in the dictionary with
address  v = 2.  This  entry  is  80, 1< .  Its  source  symbol  gives  the  value  of  the  question  mark.
Therefore, we get the following dictionary 880, « <, 80, 0<, 80, 1<, 82, 1<< .

Also, a new dictionary entry has to be added, namely 8v, ? }={2,?} at address u = 4. 

Pointer  2  in  this  new  entry  82, ? <  points  at  the  entry  with  address  2  in  the  dictionary,  which  is80, 1< .  This  entry  tells  us  that  the  last  symbol  of  the  previous  string  was  a  1  and  that  for  the
preceding part  we need to  go to  the  dictionary  entry  with  address  0.  This  entry  is  80, « < ,  so we
are done. The decoded string is just "1".

The new dictionary is given by 880, « <, 80, 0<, 80, 1<, 82, 1<, 82, ? }}.

The third received symbol is v = 1. 

To fill  in  the question mark in the current  dictionary,  we look at  the entry in the dictionary with
address v = 1. This entry is 80, 0< . Its source symbol gives the value of the question mark. So, we
get the following dictionary 880, « <, 80, 0<, 80, 1<, 82, 1<, 82, 0<< .

Also, a new dictionary entry has to be added, namely 8v, ? }={1,?} at address u = 5. 

Pointer  2  in  this  new  entry  81, ? <  points  at  the  entry  with  address  1  in  the  dictionary,  which  is80, 0< .  This  entry  tells  us  that  the  last  symbol  of  the  previous  string  was  a  0  and  that  for  the
preceding part  we need to  go to  the  dictionary  entry  with  address  0.  This  entry  is  80, « < ,  so we
are done. The decoded string is just "1".

The new dictionary is given by 880, « <, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, ? }}.

The fourth received symbol is v = 5. 

To fill  in  the question mark in the current  dictionary,  we look at  the entry in the dictionary with
address  v = 5.  This  entry  is  81, ? < .   The  pointer  1  in  this  entry  refers  to  another  entry  in  the
dictionary, namely with address 1, so to entry 80, 0< . Pointer 0 in this entry means that we are at
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the root of a string. The source symbol of entry 80, 0<  tells us that ? =0.  So, we get the following
dictionary 880, « <, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<< .

Also, a new dictionary entry has to be added, namely 8v, ? }={5,?} at address u = 6. 

Pointer  5  in  this  new  entry  85, ? <  points  at  the  entry  with  address  5  in  the  dictionary,  which  is81, 0< .  This  entry  tells  us  that  the  last  symbol  of  the  previous  string  was  a  0  and  that  for  the
preceding  part  we  need  to  go  to  the  dictionary  entry  with  address  1.  This  entry  is  80, 0< ,  so  the
preceding source symbol is 0 and we are pointed to 80, « < . This means that we are done and that
the decoded string is just "00". 

The new dictionary is given by 880, « <, 80, 0<, 80, 1<, 82, 1<, 82, 0<, 81, 0<, 85, ? }}.

The reader is invited to continue this process.

6.4 Problems

Problem 6.1
Decode the string 01100111111111100011, which has been made with the code in Example 6.1.

Problem 6.2
Apply the Huffman algorithm to the plaintext source  that generates the symbols a, b, c, d, e, f , g , and
h  independently with probabilities 1/2, resp. 1/4, 1/8, 1/16 1/32, 1/64, 1/128 and 1/128. 
What is the expected number of bits needed for the encoding of one letter? Compare this with the entropy
of the source.

Problem 6.3 M

Duplicate  Example  6.3  for  the  plaintext  source    that  generates  the  symbols  a, b, c, d, e, f , g ,  and  h
independently with probabilities 1 ê3, resp. 1 ê4, 1 ê6, 1 ê12, 1 ê15, 1 ê20, 1 ê30,  and 1 ê60. 

Problem 6.4
Apply  the  Welch  variant  of  the  Lempel-Ziv  encoding  procedure  to  the  binary  sequence
0000000000000000. 
Demonstrate the first 5 steps of the decoding process.
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7 Public-Key Cryptography

7.1 The Theoretical Model 

7.1.1 Motivation and Set-up

In  modern  day  communication  systems,  conventional  cryptosystems  turned  out  to  have  two
essential disadvantages.

i) The problem of key management and distribution. 

A communication system with n  users, who all  use a conventional cryptosystem to communicate

with each other, implies the need of Jn
2
N  keys and Jn

2
N  secure channels.

Whenever a user wants to change his keys or a new user wants to participate in the system n - 1
(resp. n) new keys have to be generated and distributed over as many secure channels.

ii) The authentication problem. 

In computer controlled communication systems the electronic equivalent of a signature is needed.
Conventional cryptosystems do no provide this feature in a natural way, especially when there is a
conflict  between sender  and receiver,  it  is  impossible to decide who is  right.  Any message made
by one of them could also have been made by the other.

These disadvantages prompted researchers to look for a different kind of cryptosystem.

In  [DifH76],  W.  Diffie  and  M.E.  Hellman  published  their  pioneering  work  on  public-key
cryptosystems. See Figure 7.1, where their system is depicted.

Ann Encryption Decryption Bob

Key Source Eve

m PBHmL=c SBHcL=m

PB

Figure 7.1

A public-key cryptosystem for encryption.
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Every user U  of the cryptosystem makes a pair of matching algorithms PU  and SU  (or gets them
from a trustworthy authority). These algorithms operate on elements of later to be defined sets.

Algorithm  PU  has  to  be  made  public  by  U ,  while  algorithm  SU  has  to  be  kept  secret  by   U .
Depending on the application, these algorithms must satisfy some of following properties:

PK1 PU  and SU  are efficient algorithms, i.e. they do not need much computing time or 
memory space.

PK2 SU HPU HmLL = m , for every user U  and for each possible message m .

PK3: It is infeasible to find an algorithm SU
*  from PU  that satisfies SU

* HPU HmLL = m  for all m .

PK4 PU HSU HmLL = m , for every user U  and for each possible message m .

PK5: It is infeasible to find an algorithm SU
*  from PU  that satisfies PU

* HSU HmLL = m  for all m .

Properties PK3 and PK5 are not precisely formulated. Their precise meaning depends too much on
the application and may vary in time.

7.1.2 Confidentiality

We assume that properties PK1, PK2, and PK3 hold.

If Alice wants to send an encrypted message m  to Bob, she first looks up the public (encryption)
algorithm PB  of Bob. She encrypts m  by applying algorithm PB  to m . So, she sends to Bob:

c = PBHmL .

Bob recovers m  from the received ciphertext c  by applying his (secret) algorithm SB  to c . Indeed,

SBHcL = SBHPBHmLL =
PK2 m .

To make the system practical to use, property PK1 must hold. It  is for the security of the system
that property PK3 has to be required. 

PK3 makes it possible to publish the (encryption) algorithms PU  without endangering the privacy
of the transmitted messages.

We summarize the encryption scheme in the following table.
Public PU of all users U
Secret SU  to all users, except U

Properties PK1, PK2, PK3

Encryption of m by Ann PB HmL = c
Decryption of c by Bob SB HcL = m

 

Table 7.1

A public-key cryptosystem used for privacy.
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If  a  user  U  wants  to  change  his  personal  key,  he  simply  generates  a  new  set  of  matching
algorithms PU  and SU  satisfying PK1, PK2 and PK3 and makes PU  public.  The same has  to  be
done when a new user wants to participate in the communication system. 

In [DifH76], the authors suggest to use trapdoor, one-way function for the encryption. A one-way
function is a function f : A Ø B  with the following properties:

F1) f HaL  is easy to evaluate for any a œ A ,
F2) it is computationally infeasible to compute f ≠HbL  for almost all b œ B .

A trapdoor, one-way function is a one-way function f  satisfying the further property that

F3) f ≠HbL , b œ B , is easy to compute given certain additional information. 

Property  F1  makes  such  a  function  practical  to  use,  while  property  F2  makes  f  safe  to  use  for
encryption purposes. Property F3 makes decryption by the receiver possible.

In daily life a telephone book can be used as a one-way function; given a name one can easily find
the  corresponding  telephone  number  but  not  the  other  way  around.  Looking  up  a  telephone
number of a person amounts to finding the name of that person. This takes log2 L  operations, if L
is the number of names in the telephone guide. Finding the name if the telephone number is given
means going through the whole book, name after name. The complexity is L . Property F2 is based
on the exponential relation between log2 L  and L .

One-way functions f  are also used to check the authenticity of a person that wants to get access to
something. Each user U  has his own PIN code xU , but in a central computer only the name of U
is stored together with the value yU = f HxU L . 

When U  wants to get access he needs to give his name and xU . The value f HxU L  will be evaluated
and  sent  to  the  computer.  If  this  values  matches  yU ,  user  U  can  get  access,  otherwise  not.  The
advantage of this  system is  that  the PIN codes xU  do not  need to  be stored in the computer.  So,
anybody who can read out the memory of the computer can still not determine the PIN codes. 

In  Chapters  8,  9,  and  12  we  shall  discuss  various  proposals  for  trapdoor  one-way  functions  that
can be used to turn into a public-key cryptosystem. In the next  chapter we shall  meet a one-way
function, which does not have a trapdoor.

7.1.3 Digital Signature

We assume that properties PK1, PK4, and PK5 hold.

If  Alice  wants  to  sign  a  message  m  that  she  wants  to  send  to  Bob,  she  applies  her  own (secret)
algorithm SA  to m , so she sends 

c = SAHmL .

Bob recovers m  from c  by applying the publicly known algorithm PA  to c . Indeed, 
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PAHcL = PAHSAHmLL =
PK4 m .

The value c  can be used by Bob as signature for m , because, by PK5, Alice is the only person who
can compute c  from m , i.e. only she can make a c  from a given message m  such that PAHcL = m .

The converse  however is  possible:  everybody is  able to find a pair  Hm, cL  such that  c  carries  m 's
signature, i.e. such that PAHcL = m: simply take any c  and compute m = PAHcL .

So, Alice has to make sure that a randomly selected c  has a negligible probability of leading to a
useful message PAHcL = m .  This can quite easily be achieved by assuming some structure in each
message m , e.g. start with the time and date.

We summarize this signature system explained above in the following table.
Public PU of all users U
Secret SU  to all users, except U

Properties PK1, PK4, PK5

Signing of m by Ann SA HmL = c
Verification of c by Bob PA HcL = m

 

Table 7.2

A public-key cryptosystem used 
for signing a message.

Note  that  anybody  else  can  also  verify  Alice's  signature  by  computing  PAHcL ,  so  there  is  no
secrecy.

7.1.4 Confidentiality and Digital Signature

We assume that properties PK1, PK2, PK3, PK4, and PK5 hold.

If Alice wants to send message m  in encrypted form with her own signature  to Bob, she combines
the techniques of Subsections 7.1.2 and 7.1.3. Thus, she uses her own secret algorithm SA  and the
public algorithm PB  of Bob to send

c = PBHSAHmL .

Bob recovers m  from c  by applying PA SB  to c . Indeed,

PAHSBHcLL = PAHSBHPBHSAHmLLLL =
PK2 PAHSAHmLL =

PK4 m .

Although everybody can look up the public PB , it is only Bob who can recover m  from c , because
only Bob knows SB .

Bob keeps the pair SBHcL , which is SBHPBHSAHmLLL , i.e. SAHmL , as Alice's signature on m , just like in
Subsection 7.1.3.

We summarize this in the following table.

108 FUNDAMENTALS OF CRYPTOLOGY



Public PU of all users U
Secret SU  to all users, except U

Properties PK1, PK2, PK3, PK4, PK5

Ann sends PB HSA HmLL = c
Bob computes
Bob saves

PA HSB HcLL = m
SB HcL = SA HmL

 

Table 7.3

A public-key cryptosystem used 
for encryption and signing.

7.2 Problems

Problem 7.1
In  a  communication  network  every  user  U  has  its  own  public  encryption  algorithm  PU  and  secret
decryption algorithm SU . A message m  from user A  (for Alice) to user B  (for Bob) will always be sent in
the format Hc, AL , with c = PBHmL . 
The name of the sender in this message tells Bob from whom the message originates.
Bob  will  retrieve  m  from  Hc, AL ,  by  computing  SBHcL = SBHPBHmLL = m  (see  PK2),  but  Bob  will  also
automatically  send HPAHmL, BL  back to Alice (note that  HPAHmL, BL  has the same format as HPBHmL, AL).  In
this way, Alice knows that her message has been properly received by Bob.

a) Show how a third user E  (for Eve) of the network can retrieve message m  that was sent by Alice  to Bob.
You may assume that Eve can intercept all messages that are communicated over the network, and that Eve
can also transmit her own texts, as long as they have the right format.

b)  Show  that  communication  over  this  network  is  still  not  safe  if  the  protocol  is  such  that  Alice  sends
PBHHPBHmL, ALL  to Bob and that Bob automatically sends PAHHPAHmL, BLL  back to Alice.
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8 Discrete Logarithm  Based Systems

8.1 The Discrete Logarithm System

8.1.1 The Discrete Logarithm Problem

In [DifH76],  Diffie  and Hellman propose a public-key distribution  system which is  based on the
apparent  difficulty  of  computing  logarithms  over  the  finite  field  GFHpL ,  p  prime,  which  is  also
often  denoted  by  p  or  p .  The  reader,  who  is  not  familiar  with  the  theory  of  finite  fields  is
referred to Appendix B. 

Let a be a primitive element (or generator) of GFHpL . So, each nonzero element c  in GFHpL  can be
written as

(8.1)c = am

where m  is unique modulo p - 1. 

Example 8.1

In GF(7) the element a = 3  is a primitive element, as can be checked from 32 ª 2 Hmod 7L , 33 ª 6 Hmod 7L ,
34 ª 4 Hmod 7L , 35 ª 5 Hmod 7L , and 36 ª 1 Hmod 7L .

This can be done at once with

Mod@3^81, 2, 3, 4, 5, 6<, 7D

83, 2, 6, 4, 5, 1<
Example 8.2

In GFH197L,  the element a = 2  is primitive. Such an element can be found with the Mathematica function
PowerList  (for  which  the  package  Algebra`FiniteFields  first  has  to  be  initialized).  This  function
finds a primitive element in p  and generates all its powers (starting with the 0-th). The second element in
this list is the primitive element itself.

<< Algebra`FiniteFields`
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p = 197;
PowerList@GF@p, 1DD@@2DD

82<
To check that  2 is  a primitive element modulo 197 is  a lot  easier.  The multiplicative  group 197

*

has order 196, so each element has an order dividing 196 (see Theorem B.5).

With the function FactorInteger one can find the different prime factors of 196.

FactorInteger@196D

882, 2<, 87, 2<<
It now follows from

PowerMod@2, 196ê7, 197D == 1
PowerMod@2, 196ê2, 197D == 1

False

False

that the order of 2 modulo 197 does not divide 196 ê2 or 196 ê7, so the order must be 196.

If  m  is  given,  c  can  be  computed  from (8.1)  with  2. `log2 pp  multiplications  (see  [Knut81],  pp.
441-466).  One  can  realize  this  by  creating  the  table  a, a2, a22, a23, …, a2`log2  pp-1  (each  is  the
square of the previous one) and multiplying elements from this table, whose exponents add up to
m . To this end the binary representation of m  can be used.

Example 8.3

Take  m=171.  Its  binary  expansion  is  10101011,  as  follows  from  the  Mathematica  function
IntegerDigits.

IntegerDigits@171, 2D

81, 0, 1, 0, 1, 0, 1, 1<
So, now one has a 171 = a 128.a 32. a 8.a 2.a .

This  calculation  can  also  be  done  on  the  fly.  The  leftmost  1  in  the  binary  representation  of  m
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stands  for  a.  Each  subsequent  symbol  (from  the  left)  in  the  binary  representation  implies  a
squaring of the previous result, but if this symbol is a 1 also an additional multiplication by a has
to be performed.

Clear@aD;
i
k
jjjjj
i
k
jjjjJJIHHaL2L

2
 aM2N

2
 aN

2y
{
zzzz
2

 a
y
{
zzzzz
2

 a

a171

If one has to perform the same modular exponentiation many times, for instance on a smart card
implementation, there are ways to do this with fewer multiplications.

Definition 8.1
An  addition  chain  for  an  integer  m  is  a  sequence  of  integers
a1 = 1 < a2 < … < al-1 < al = m , with the property that each ak , 2 § k § l , is the sum of
two (not necessarily different) preceding ai 's. 
The index  l  is called the length of the chain.

The way that addition chains are used for (modular) exponentiation,  is clear. If ak = ai + a j ,  then
aak = aai .aa j . Hence, am = aal  can now be computed recursively.

It  is,  in  general,  not  obvious  how the  shortest  addition  chain  of  an  integer  m  can  be  found.  See
[Knut81], Section 4.6.3 and [Bos92], Chapter 4.

Example 8.4

An addition chain for m = 15 is the sequence 1,2,3,6,12,15.

Note  that  the  calculation  of  a 15  involves  5  multiplications  with  this  addition  chain  and  6  multiplications
with the binary method explained before.

In Mathematica the PowerMod function is a fast way to compute modular exponentiations. 

a = 2; m = 171111111; p = 197888888;
PowerMod@a, m, pD

55895160

The opposite problem of finding m  satisfying (8.1) from c , is not so easy. It is called the discrete
logarithm problem, because in p  the exponent m  can be written like m = loga c .

In  [Knut73],  pp.9,  575-576,  one  can  find  an  algorithm  that  solves  the  logarithm  problem.  It
involves roughly c1 

è!!!!p  operations and c2 
è!!!!p  bits  of memory space (where c1  and c2  are some

constants).  In  Theorem  8.1  a  more  precise  analysis  of  this  algorithm  will  be  given.  Writing
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t = log2 p  (and  forgetting  about  the  constants),  one  gets  the  following  exponential  relation
between exponentiation and taking logarithms.

Table 8.1

exponentiation t
taking logarithms 2tê2

The computational discrepancy between 
exponentiation and taking logarithms

8.1.2 The Diffie-Hellman Key Exchange System

We shall now describe how the discrepancy in computing time between exponentiation and taking
logarithms, as depicted in Table 8.1, can be used to execute a key exchange protocol of a "public-
key cryptography"-type. Such a protocol is a method for two parties who do not share a common
secret key to agree on a common key in a secure manner. 

Setting up the system:

1)  All  participants  share  as  system  parameters  a  prime  number  p  and  a  primitive  element
(generator) a  in GF HpL .

2) Each participant P  chooses an integer mP , 1 < mp § p - 2, at random, computes cP = amP  and
puts cP  in the public key book. Participant P  keeps mP  secret. 

Using the system:

Let  us  now  assume  that  Alice  (A  for  short)  and  Bob  (B)  want  to  communicate  with  each  other
using a conventional cryptosystem, but that they have no secure channel to exchange a key. With
the public key book, they can agree on the common secret key

kA,B = amA  mB .

Alice can compute kA,B  by raising the publicly known cB  of Bob to the power mA , which only she
knows herself. Indeed,HcBLmA = HamBLmA = amA  mB = kA,B .

Similarly, Bob finds kA,B  by computing HcALmB . 

If somebody else (Eve) is able to compute mA  from cA  (or mB  from cB ), she can compute the key
kA,B  just like Alice or Bob did. By taking p  sufficiently large, the computation time of solving this
logarithm problem will be prohibitively large. Diffie and Hellman suggest to take p  about 100 bits
long. A different way of finding kA,B  from cA  and cB  does not seem to exist.

There is no obvious reason to restrict the size of the finite field to a prime number. So, from now
on the size of the field can be any prime power q = pe  (see  Theorem B.16 or Theorem B.20).
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In  [Lune87],  Chapter  XIII,  efficient  algorithms  to  find  primitive  elements  in  finite  fields  are
described. See also Problem B.6 and Problem B.10.

We summarize the key distribution system in Table 8.2.

Table 8.2

system
parameters

field size q
primitive element α

secret key of P mP
public key of P cP = αmP

common key of A and B kA,B = αmA mB

Ann computes HcBLmA
Bob computes HcALmB

The Diffie-Hellman Key Exchange System

Example 8.5 (Part 1)

Let p = 197 and a = 2.

Alice chooses as a random secret exponent mA = 56  and Bob as a random secret exponent mB = 111. They
compute their public key with the PowerMod function.

cA = PowerMod@2, 56, 197D
cB = PowerMod@2, 111, 197D

178

82

Alice  can compute the common key with Bob by raising the publicly known cB  to the power mA ,
which she only knows. She gets:

PowerMod@82, 56, 197D

114

 Bob gets the same common key by raising cA  to the power mB . Indeed, he gets:

PowerMod@178, 111, 197D

114
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8.2 Other Discrete Logarithm Based Systems

8.2.1 ElGamal's Public-Key Cryptosystems

In  [ElGa88],  two  public-key  systems  are  described  that  are  based  on  the  discrete  logarithm
problem. One can be used for encryption purposes, the other as a signature scheme.

In both systems the transmitted text is longer than the plaintext.  

É Setting It Up

As system parameters, all participants share a prime number p  and a generator (primitive element)
a of the multiplicative group p

* . The generalization to finite fields is straightforward and will be
omitted.

A  variation  that  one  sees  quite  often  is  to  consider  q
*  with  q  prime  and  an  element  a œ q

* of
large prime order, say p , instead of taking a primitive element. Note that by Theorem B.5, p  must
divide q - 1. 

Each participant P  chooses an integer mP , 1 § mp § p - 1, at random, computes cP = amP Hmod pL
and makes cP  public. Participant P  keeps mP  secret. 

As  a  variation,  each  participant  can  also  choose  his  own  finite  field  and  primitive  element  a,
instead of having them as system parameters, but there seems to be little reason to do so.

É ElGamal's Secrecy System

Encryption of a message for Bob.

Suppose that  Alice wants to send a private  message u  to Bob. The message is represented by an
integer u  in 80, 1, …, p - 1< .

Alice selects a random integer r  and computes R = ar . 

Next, Alice computes S = u.cB
r .

Alice sends to Bob, the pair HR, SL .

Decryption by Bob.

Bob receives  the pair  HR, SL  and can quite  easily  retrieve  the message u  with  his  own secret  mB

with the following calculation:

S ê RmB = u.cB
r ê ar.mB = u.ar.mB ê ar.mB = u .
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Example 8.5 (Part 2)

We continue with Example 8.5. We have p = 197 , a = 2 and cB = 82 as public parameters.

The number mB = 111 is only known to Bob.

Suppose that Alice wants to encrypt message u=123 for Bob.

Let r = 191 be the random integer chosen by Alice (it is coprime with p - 1).

Alice sends the pair (R, S ) computed by

p = 197; a = 2; cB = 82;
r = Random@Integer, 80, p − 2<D
u = 123;
R = PowerMod@a, r, 197D
S = Mod@PowerMod@cB, r, 197D∗u, pD

60

90

20

To  decrypt,  Bob  computes  S ê RmB mod p  with  his  own  secret  mB = 111  by  means  of  the
Mathematica  functions  Mod  and  PowerMod.  Note  that  PowerMod@a, -1, pD  computes  the
multiplicative inverse of a modulo p (see Subsection A.3.3).

mB = 111;
Mod@S∗PowerMod@PowerMod@R, mB, pD, −1, pD, pD

123

An  eavesdropper  can  not  determine  r  from  R ,  since  we  assume  that  taking  logarithms  is
intractable. For that reason, this eavesdropper is not able to divide out HcBLr  from S  (to obtain the
secret u).

É ElGamal's Signature Scheme

Signing of a message by Alice.

Suppose that Alice wants to send a signed message u  to Bob. The message is again represented by
an integer u  in 80, 1, …, p - 2< .
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Alice selects a random integer r  that is relatively prime to p - 1 and computes R = ar . 

Next, Alice uses her secret exponent mA  to compute S  satisfying

(8.2)  u ª mA R + r.S Hmod p - 1L .

Alice can use the extended version of Euclid's Algorithm to find S  efficiently.

Alice sends to Bob the triple Hu, R, SL , where the pair HR, SL  serves as signature on the message u .

Verification of the signature by Bob.

Bob receives the signature HR, SL  together with the message u . 

Bob checks this signature by verifying that

au ª HcALR RS Hmod pL .

This relation has to hold because by (8.2)

 au ª amA  R.ar.S ª HamALR.HarLS ª  HcALR.RS  Hmod pL .

Example 8.5 (Part 3)

Continuing with Example 8.5, where we have p = 197 , a = 2 and cA = 178 as public parameters.

The number mA = 56 is only known to Alice.

Suppose that Alice wants to sign message u=123 for Bob.

Let r = 97 be the random integer chosen by Alice (it is coprime with p - 1).

Alice computes 

p = 197; a = 2; mA = 56;
r = 97; u = 123; S =.;
R = PowerMod@a, r, 197D
S ê. Solve@8r S == u − mA ∗R, Modulus == p − 1<, SD@@1DD

98

171

to find the signature HR, SL = H98, 171L  that she adds to her message u.

Bob checks this signature by verifying a u ª HcALR RS Hmod pL:

cA = 178; R = 98; S = 171;
PowerMod@a, u, pD ==

Mod@ PowerMod@cA, R, pD∗PowerMod@R, S, pD, pD
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True

8.2.2 Further Variations

In the ElGamal scheme, the signature on a message u  consists of two parts: R , being ar  with r  
random, and S , being a solution of u ª mA R + r.S Hmod p - 1L  (see (8.2)). Of course one can vary 
this so-called signature equation.

The next three variations do exactly this. The reader that wants to know more about them than is
presented below is referred to [MeOoV96] and [Schne96].

É Digital Signature Standard

In the Digital Signature Standard (see [FIPS94]) the signature equation is given by:

r.S ª u + mA .R Hmod p - 1L.
The  system is  designed  by  the  National  Security  Agency  (NSA)  and  adopted  as  standard  by the
National Institute of Standards and Technology (NIST).

DSS adds two sequences of 160 bits each to the end of a document as guarantee of its authenticity
and integrity. To this end, it first compresses the document to a sequence of 160 bits by means of a
cryptographically secure hash function (see Section 13.2), called the Secure Hash Algorithm  (see
[MeOoV96], $9.53 and [Schne96]).

To set up the system the following joint parameters are chosen:

i) A  prime  number  q  whose  binary  representation  has  a  word  length  that  is  divisible  by  
64 and lies between 512 and 1024.

ii) A prime factor p  of q - 1 that is 160 bits long.

iii) A value g = HhHq-1Lêp mod qL , where h  is less than q - 1, such that g  is greater than 1.

Since gp ª hq-1 ª 1 Hmod qL  by Fermat's  Theorem (A.15),  it  follows that  the  multiplicative  order
of  g  divides  p .  On  the  other  p  is  prime,  therefore,  g  has  multiplicative  order  p  itself  (see  also
Theorem B.5).

Each user U  chooses a secret exponent mU , computes cU ª gmU Hmod qL  and makes cU  public.

When Alice wants to sign a file M , she first computes its 160 digits long hash value hHM L  with the
Secure Hash Algorithm. 

Next, she chooses a random number r < p  and adds as signature to M  the numbers R  and S , both
of length 160, defined by:

R = HHgr mod qL mod pL ,
S.r = HhHM L + mA R Hmod pL .
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A receiver can check the authenticity and integrity of the received message M  by evaluating:

w ª S-1 Hmod pL ,
x ª hHM L.w Hmod pL ,
y ª R.w Hmod pL ,
U = HHgx.HcALy mod qL mod pL .

If  R = U  the  document  will  be  accepted  as  genuine  and  coming  from  Alice.  By  a  simple
substitution one can verify that the relation u = U  indeed should hold. 

The function of the random number r  above is to hide the secret key of Alice.

É Schnorr's Signature Scheme

In Schnorr's signature scheme [Schno90] the signature equation (see (8.2)  is given by:

S ª mA R + r Hmod p - 1L.
É The Nyberg-Rueppel Signature Scheme

The Nyberg-Rueppel  signature scheme [NybR93]  is slightly different from the others. Here, R  is
defined by 

R = u.ar  with r  random.

The signature equation (see (8.2) is given by:

S ª mA R - r Hmod p - 1L.
In the Nyberg-Rueppel scheme, the message u  can be retrieved directly from R  and S , since

u ª R.a-r ª R.aS-mA  R ª R.aS ê HamALR ª R.aS ê cA
R Hmod pL.

If u  is not the hash value of a much longer other file, this feature is an advantage, because only R
and S  have to be sent.

8.3 How to Take Discrete Logarithms
When one  has  to  take  a  logarithm in  GFHqL ,  the  most  obvious  way to  reduce  the  workload  is  to
factor  q - 1  in  prime  power  factors,  compute  the  logarithm  for  each  of  these  factors,  and  then
combine the results  with the Chinese Remainder Theorem (Thm. A.19). In Subsection 8.3.1,  this
method will be demonstrated for a particular technique.

As  we  have  said  before,  discrete  logarithm  based  systems  are  often  set  up  in  a  multiplicative
subgroup of GFHqL .  This generalization does not affect the methods that will  be discussed in this
section.
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8.3.1 The Pohlig-Hellman Algorithm

In  [PohH78],  Pohlig  and Hellman demonstrate  that  discrete  logarithms can be taken much faster
than  in  è!!!q  operations,  if  q - 1  has  only  small  prime  divisors.  We  shall  first  demonstrate  this
method for two special cases.

É Special Case: q - 1 = 2n

Examples  of  prime  numbers  that  are  a  power  of  2  plus  one  are  given  by   q = 17,  q = 257,  and
q = 216 + 1.

n = 16; PrimeQ@2n + 1D

True

So, let a  be a primitive element in a finite field GFHqL .  The problem is to find m , 0 § m § q - 2,
satisfying (8.1) for given value of c . 

Let m0, m1, …, mn-1  be the binary representation of the unknown m ,  i.e.

m = m0 + m1 2 + … + mn-1 2n-1 , mi œ 80, 1<, 0 § i § n - 1.

Of course,  it  suffices  to  compute  the unknown mi 's.  Since  a  is  a  primitive  element  of  GFHqL  we
know (see also Theorem B.21) that aq-1 = 1 and ai ∫ 1 for 0 < i < q - 1.

It also follows that  aHq-1Lê2 = -1, because the square of aHq-1Lê2  is 1, while aHq-1Lê2 ∫ 1. (We also
use here that by Theorem B.15 the quadratic equation x2 = 1 has ≤1 as only roots.) Hence

cHq-1Lê2 = HamLHq-1Lê2 = amHq-1Lê2 = aIm0+m1  2+…+mn-1  2n-1M Hq-1Lê2
=

a prim.
am0Hq-1Lê2 = 9 +1,

-1,
if m0 = 0,
if m0 = 1.

Therefore,  the  evaluation  of  cHq-1Lê2  in  GFHqL ,  which  takes  at  most  2. `log2 qp  multiplications,  as
we have seen in Subsection 8.1.1), yields m0 .

Compute c1 = c.a-m0 . Now m1 can be determined in the same way as above from

c1
Hq-1Lê4 = aIm1  2+m2  22+…+mn-1  2n-1M Hq-1Lê4

= am1Hq-1Lê2 = 9 1,
-1,

if m1 = 0,
if m1 = 1.

Compute c2 = c1.a-2 m1 = c.a-Hm0+m1 2L  and determine m2  from Hc2LHq-1Lê8 . Repeat this process until
also mn-1 (and thus m) has been determined.

The above algorithm finds m  from c  in at most
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n.H2. `log2 qp + 2L º 2. Hlog2 qL2 º 2 n2,

operations, where the term +2 comes from the evaluation of the ci 's (in the i-th step a-2i-1  has to
be squared and the outcome may or may not have to be multiplied to ci-1 ).

Comparing  with  Table  8.1,  we  observe  that  in  the  current  case  (i.e.  q = 2n + 1),  the  discrepancy
between  the  computational  complexity  of  using  the  Diffie-Hellman  scheme  (one  exponentiation
involving  2 n  multiplications)  and  breaking  it  ( º 2 n2  multiplications)  is  quadratic,  which  is  not
significant enough to make the system secure.

Remark:

Note  that  when q - 1 = s .2t ,  s  odd,  the  t  least  significant  bits  of  m  can  be  found in  exactly  the
same way.

Example 8.6

Consider the equation 3m ª 7 mod 17. So, q = 17, a = 3, and c = 7. Note that a -1 = 6.

Writing m = m0 + 2 m1 + 4 m2 + 8 m3 , we find m0  by evaluating cHq-1Lê2 mod q.

PowerMod@7, 8, 17D

16

Since  this  is  -1  we  know  that  m0 = 1.  Compute  c1 ª c ê3 ª 6. c ª 8 mod 17.  Then  m1  can  be
found from c1

Hq-1Lê4 mod q

PowerMod@8, 4, 17D

16

Again  this  is  -1,  so  m1 = 1.  Compute  c2 ª c1 ê32 ª 62.c1 ª 16 mod 17.  Then  m2  can  be  found
from c2

Hq-1Lê8 mod q

PowerMod@16, 2, 17D

1

Since the outcome is 1, we have m2 = 0. So, c3 = c2  and m3  can be found from c3
Hq-1Lê16 mod q

PowerMod@16, 1, 17D
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16

We now also have m3 = 1 and thus m = 1.20 + 1.21 + 0.22 + 1.23 = 11. We can check this with:

PowerMod@3, 11, 17D

É General Case: q - 1 has only small prime factors

Let q - 1 = ¤i=1
k pi

ni , where the pi 's are different primes and the exponents ni  are strictly positive
(see the Fundamental Theorem in Number Theory, Thm. A.6). We assume that all pi 's are small.
Later we shall say precisely what we mean by that.

Instead of solving m  from (8.1) directly, we shall determine

(8.3)  mHiL ª m Hmod pi
niL , 1 § i § k .

With  the  Chinese  Remainder  Theorem  (Thm.  A.19)  one  can  compute  m  efficiently  from  these
mHiL 's.

To  determine  mH1L  (the  others  mHiL 's  can  be  found  in  the  same  way)  we  write  it  in  its  p1 -ary
representation.  For the sake of convenience we drop all  the sub- and superscripts  referring to the
i = 1 case. 

mH1L = m0 + m1 p + … + mn-1 pn-1 , ml œ 80, 1, …, p - 1<, 0 § l § n - 1.

Similarly  to  the  Special  Case  (k = 1, p = 2),  we  will  find  the  coefficients  mi  by  single
exponentiations.

Coefficient  m0  can  be  found  by  evaluating  cHq-1Lêp .  From  Theorem  B.21  it  follows  thatHcHq-1LêpLp = 1, which implies that cHq-1Lêp  is a p-th root of unity. 

Define the primitive p-th root of unity w by w = aHq-1Lêp  and make a table  of 1, w, w2, …, wp-1 .
Then, because m ª mH1L mod pn  and mH1L ª m0 mod p , we have

cHq-1Lêp = HamLHq-1Lêp = amHq-1Lêp = amH1LHq-1Lêp = am0Hq-1Lêp = wm0 .

So, a simple table lookup of  cHq-1Lêp  will yield m0 . 

To  determine  m1 ,  we  first  compute  c1 = c.a-m0  and  then  evaluate  c1
Hq-1Lêp2 ,  etc.,  until  mH1L  has

been determined. Similar calculations have to be made to determine the other mHiL 's.  

For this algorithm, we have to make tables of the powers of the primitive p-th roots of unity for all
the prime factors of q - 1.

The values of these factors have to be small enough to be able to store them.

Each time that we want to take a logarithm the algorithm will have to take ⁄i=1
k ni  exponentiations,

therefore, the algorithm involves⁄i=1
k 2. `log2 qp.ni º 2. log2 q.H⁄i=1

k niL § 2 Hlog2 qL2
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operations, if we forget about the lower order terms. Again we have a quadratic relation between
using the Diffie-Hellman key-exchange system and breaking it.

É An Example of the Pohlig-Hellman Algorithm

Example 8.7

Consider Equation (8.1) with q = 8101, primitive element a=6.

Note that q is a prime number, so GFHqL = 8101 .

Preliminary Calculations. 

First  of  all  we  factor  q - 1  and  compute  the  multiplicative  inverse  of  6  modulo  8101  with  the
Mathematica functions FactorInteger and PowerMod.

q = 8101; a = 6;
FactorInteger@q − 1D
x = PowerMod@a, −1, qD

882, 2<, 83, 4<, 85, 2<<
6751

So, q - 1 = 22 .34 .52  and a -1 = 6751.

Next we use the PowerMod function again to calculate the primitive 2-nd, 3-rd and 5-th roots of
unity: w1 = 6H8101-1Lê2 = 64050 , w2 = 6H8101-1Lê3 = 65883 , and w3 = 6H8101-1Lê5 = 61620 :

q = 8101; a = 6;
Om1 = PowerMod@a, Hq − 1Lê 2, qD
Om2 = PowerMod@a, Hq − 1Lê 3, qD
Om3 = PowerMod@a, Hq − 1Lê 5, qD

8100

5883

3547

So, w1 = 8100, w2 = 5883, and w3 = 3547. With the Table function we make the following three
tables:
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q = 8101; a = 6;
Om1 = PowerMod@a, Hq − 1Lê 2, qD;
Om2 = PowerMod@a, Hq − 1Lê 3, qD;
Om3 = PowerMod@a, Hq − 1Lê 5, qD;
Table@PowerMod@Om1, i, qD, 8i, 0, 1<D
Table@PowerMod@Om2, i, qD, 8i, 0, 2<D
Table@PowerMod@Om3, i, qD, 8i, 0, 4<D

81, 8100<
81, 5883, 2217<
81, 3547, 356, 7077, 5221<

Hence, we have tables

p1 = 2 i 0 1Hω1Li 1 8100

p2 = 3 i 0 1 2Hω2Li 1 5883 2217

p3 = 5 i 0 1 2 3 4Hω3Li 1 3547 356 7077 5221

The preliminary work for the Chinese Remainder Theorem consists of solving the following three
systems of linear congruence relations:looomnooo u ≡ 1 Hmod 4L

u ≡ 0 Hmod 81L
u ≡ 0 Hmod 25Llooomnooo v ≡ 0 Hmod 4L
v ≡ 1 Hmod 81L
v ≡ 0 Hmod 25Llooomnooo w ≡ 0 Hmod 4L
w ≡ 0 Hmod 81L
w ≡ 1 Hmod 25L

These  three  systems  can  be  solved  with  the  Mathematica  function
ChineseRemainderTheorem  for  which  we  first  have  to  load  the  package
NumberTheory`NumberTheoryFunctions`

<<NumberTheory`NumberTheoryFunctions`
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u = ChineseRemainderTheorem@81, 0, 0<, 84, 81, 25<D
v = ChineseRemainderTheorem@80, 1, 0<, 84, 81, 25<D
w = ChineseRemainderTheorem@80, 0, 1<, 84, 81, 25<D

2025

6400

7776

So,  u ª 2025 Hmod 8100L , v ª 6400 Hmod 8100L , w ª 7776 Hmod 8100L .

This concludes the preliminary work.

Solving Equation (8.1) for: c = 7531, q = 8101.

We  first  determine  mHiL = m mod pi
ni ,  1 § i § 3,  as  defined  in  (8.2),  with  the  method  explained

above. Of course, the tables that we just made have to be consulted at each step.

First prime factor: p1 = 2, n1 = 2.

c = = 7531, cH8101−1Lê2 = 8100, m0 = 1,

c1 = c.α−1 = 8006, c1H8101−1Lê22 = 1 , m1 = 0.

Hence mH1L = 1 + 0.21 = 1.

Second prime factor: p2 = 3, n2 = 4.

c = = 7531, cH8101−1Lê3 = 2217, m0 = 2,

c1 = c.α−2 = 6735, c1H8101−1Lê32 = 1 , m1 = 0,

c2 = c1 = 6735, c2H8101−1Lê33 = 2217, m2 = 2,

c3 = c2.α−2.32 = 6992, c3H8101−1Lê34 = 5883, m3 = 1.

Hence mH2L = 2 + 0.31 + 2.32 + 1.33 = 47.

Third prime factor: p3 = 5, n3 = 2.

c = = 7531, cH8101−1Lê5 = 5221, m0 = 4,

c1 = c.α−4 = 7613, c1H8101−1Lê52 = 356 , m1 = 2.

Hence mH3L = 4 + 2.51 = 14.

The final solution m is given by:

m ª u.mH1L + v.mH2L + w.mH3L ª

Mod@2025∗1 + 6400∗47 + 7776∗14, 8100D

126 FUNDAMENTALS OF CRYPTOLOGY



6689

This can easily be checked.

PowerMod@6, 6689, 8101D

7531

In  Mathematica,  the  precalculation  of  a, b,  and  c  is  not  really  necessary,  because  m  can  be
computed directly from mH1L, mH2L , and mH3L  with the ChineseRemainderTheorem function:

ChineseRemainderTheorem@81, 47, 14<, 84, 81, 25<D

6689

If  q - 1  has  large  prime  factors,  the  dominant  term  in  the  workload  of  the  Pohlig-Hellman
algorithm  will  be  the  ⁄i=1

k pi  exponentiations  necessary  for  the  generation  of  the  tables81, wi, …, wi
pi-1< ,  1 § i § k ,  and  the  number  ⁄i=1

k ni  of  exponentiations,  necessary  to  determine
the mHiL 's.

In the next subsection, we shall explain a method to take logarithms if one (or more) of the prime
power factors of q - 1 is too large to store the tables in the Pohlig-Hellman method.

8.3.2 The Baby-Step Giant-Step Method

If one (or more) of the prime power factors of q - 1  is too large for the Pohlig-Hellman method,
the method below can be used. It gives the user full freedom to balance the length of the table that
he wants to store and the remaining workfactor.

We start with an example.

Example 8.8

Consider the equation 29m ª 30 Hmod 97L  and assume that we can only store a table with 10 field elements.

We  make  a  table  of  29i mod 97  for  i = 0, 1, …, 9  and  we  compute  29-1 mod 97  with  the  Mathematica
functions  Table,PowerMod,GridBox, and Transpose. 
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q = 97; a = 29;
powers = Table@8PowerMod@29, i, qD, i<, 8i, 0, 9<D;
GridBox@Transpose@powersD, RowLines −> True,
ColumnLines −> TrueD êê DisplayForm

x = PowerMod@a, −1, qD

1 29 65 42 54 14 18 37 6 77
0 1 2 3 4 5 6 7 8 9

87

We also find that 29-1 ª 87 Hmod 97L .

Writing  m = 10 j + i , 0 § i § 9,  we  see  that  29m ª 30 Hmod 97L  can  be  rewritten  as
29i ª 30.29-10. j Hmod 97L  or  as  29i ª 30.8710. j Hmod 97L .  Since  8710 ª 49 Hmod 97L ,  we  have  the
equivalent problem of solving 29i ª 30.49 j Hmod 97L , 0 § i § 9.

We  do  this  by  trying  j = 0, 1, …  and  each  time  checking  if  30.49 j mod 97  occurs  in  the  list  of
powers 81, 29, 292, …, 299< Hmod 97L.  Note that m < 97, so j § d97 ê10t = 9.

To facilitate the table lookup, we sort the elements in the table of powers with the function Sort.

sortedpowers = Sort@powersD;
GridBox@Transpose@sortedpowersD,
RowLines −> True, ColumnLines −> TrueD êê DisplayForm

1 6 14 18 29 37 42 54 65 77
0 8 5 6 1 7 3 4 2 9

Next,  we  try  30.49 j mod 97  until  we  see  the  answer  appear  in  the  table  above.  We  use  the
Mathematica functions, While, MemberQ, and Mod. We also print the corresponding column of
the table of sorted powers ( j  has to be decreased by 1, because we started the numbering of j  with
0).
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j = 0;
While@MemberQ@sortedpowers, 8Mod@30∗49j, 97D, _<D == False,
j = j + 1D;

j
Mod@30∗49j, 97D

4

14

We conclude that j = 4  and that 30.49 j mod 97  occurs in table as 14, which is 295 mod 97  (hence
i = 5). Indeed

Mod@30∗494, 97D == Mod@295, 97D

True

It  follows  that  m = 10 j + i = 10.4 + 5 = 45.  Indeed,  2945 ª 30 mod 97,  as  can  be  easily  checked
with:

PowerMod@29, 45, 97D

30

The above method will now be stated in full generality. 

Theorem 8.1 Baby-Step Giant-Step Method
Let  a  be  a  primitive  element  of  GFHqL .  Let  p  be  a  divisor  of  q - 1  (not  necessarily
prime) and define w = aHq-1Lêp . So, w is a primitive p-th root of unity. 
Let  c  be  any  p-th  root  of  unity.  Then,  for  every  (trade-off  value)  t ,  0 § t § 1,  one  can
find the exponent m , 0 § m § p - 1, satisfying

c = bm

with an algorithm that uses
p1-tH1 + log2 ptL  operations,
pt.log2 q  bits of memory space,

and an initial calculation involving
pt.H1 + log2 ptLoperations.

Proof:  Let  u = `ptp .  We  make  a  table  of  the  successive  powers  wi ,  0 § i § u - 1.  This  requires
u º pt  multiplications. 

Next,  we sort  this  table in pt log2 pt  operations,  see [Knut73],  pp.184. Together this  explains the
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number of operations in the precalculation.

Each of the u º pt  field elements in the table needs log2 q  bits of memory space. This explains the
memory requirement above.

Define i  and j  by

m = j.u + i , 0 § i < u º pt .

Observe that

0 § j § mÅÅÅÅÅÅu § pÅÅÅÅÅu º p1-t .

Of course solving c = wm  is equivalent to finding i  and j , 0 § i < u , satisfying 

wi = c.w- j.u . 

To  solve  this  equation,  we  simply  compute  c.w-l.u ,  for  l = 0, 1, …  and  check  if  the  outcome
appears in the table. This will happen when l = j , so before l = `p1-t p .
For each value of l  we have to perform 1 multiplication and a table look-up, which costs another
log2 pt  operations. 

Ñ

For t = 1 ê2  this  algorithm reduces  to the è!!!q  (both for  memory and time complexity) algorithm
that was mentioned at the end of Subsection 8.1.1.

The two extreme cases of the algorithm are:

t = 0: no table at all; all powers 1, b, b2, … need to be tried.

t = 1; complete table of 1, b, b2, …, bq-1 is present; only a single table look-up is needed.

Note that the product of computing time and bits of memory space in the above algorithm is more
or less constant.

8.3.3 The Pollard-r Method

The time complexity of the Pollard-r Method [Poll78] is the same as that of the Baby-Step Giant-
Step  method  explained  in  the  previous  section.  The  advantage  lies  in  the  minimal  memory
requirements. 

We  shall  explain  the  Pollard-r  Method  for  the  special  case  of  a  multiplicative  subgroup  G of
GFHqL  of  prime order.  So, we want to solve m ,  0 § m < p ,  from the equation c = am  (see (8.1)),
where  a œ GFHqL  has  order  p ,  p  prime,  and  where  c œ GFHqL  is  some given  p-th  root  of  unity.
Note that p  divides q - 1 by Theorem B.5..

Example 8.9 (Part 1)

To avoid  calculations  in  a  finite  field,  we take for  q  the  prime number  4679.  Note  that  q - 1 = 2 µ 2339.
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Further we observe that 11 is a primitive element of GFH4679L  and thus that a = 11Hq-1Lê2339 = 112 = 121
is  the  generator  of  a  multiplicative  subgroup  of  order  2339.  All  these  calculations  can  be  easily  checked
with  the  Mathematica  functions  PrimeQ,  FactorInteger,  PowerMod  and  the  function
MultiplicativeOrder 

MultiplicativeOrder@a_, n_D := If@GCD@a, nD == 1,
Divisors@ EulerPhi@nD D êê.

8x_, y___< −> If@PowerMod@a, x, nD == 1, x, 8y<D D;

that was introduced in Subsection B.4.1, but which is a standard function in Mathematica 4.

q = 4679;
PrimeQ@qD
FactorInteger@q − 1D
MultiplicativeOrder@11, qD
PowerMod@11, 2, qD
MultiplicativeOrder@121, qD

True

882, 1<, 82339, 1<<
4678

121

2339

Further on, we shall continue with this example, when we want to solve the equation

121m ª 3435 Hmod 4679L .

Note  that  this  equation  must  have  a  solution,  since  3435  is  indeed  a  2339-th  root  of  unity  in
GFH4679L .  Indeed,  all  2339-th  roots  of  unity  are  a  zero of  x2339 - 1  and by  Theorem B.15 there
are no other zeros of this polynomial.

PowerMod@3435, 2339, 4679D

1
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In order to solve c = am , we partition the multiplicative subgroup G  of GFHqL  of order p , in three
subsets Gi , i = 0, 1, 2, as follows:

x œ Gi ó x ª i Hmod 3L .

We define a sequence 8xi<i¥0  in GFHqL  recursively by x0 = 1 and 

(8.4)  xi+1 = f HxiL =  
loooomnoooo Hxi

2 mod qL,Hc.xi mod qL,Ha.xi mod qL,  if xi œ G0,
if xi œ G1,
if xi œ G2.

With the sequence 8xi<i¥0  we associate two other sequences 8ai<i¥0  and 8bi<i¥0  in such a way that
for all i ¥ 0 

xi = aai  cbi .

To this end, take a0 = b0 = 0 and use the recursions

ai+1 =  
looomnooo H2 ai mod pL,

ai,Hai + 1 mod p,
 

if xi œ G0,
if xi œ G1,
if xi œ G2.

bi+1 =  
looomnooo H2 bi mod pL,Hbi + 1 mod pL,

bi,
 

if xi œ G0,
if xi œ G1,
if xi œ G2.

Note that by induction 

xi+1 = xi
2 = Haai  cbiL2 = a2 ai  c2 bi = aai+1  cbi+1 ,  if xi œ G0 , 

xi+1 = c.xi = c.aai  cbi = aai+1 cbi = aai+1  cbi+1 , if xi œ G1 ,
xi+1 = a.xi = a.aai  cbi = aai  cbi+1 = aai+1  cbi+1 , if xi œ G2 .

As  soon  as  we  have  two  distinct  indices  i  and  j  with  xi = x j  we  are  done,  because  this  would
imply that  aai  cbi = aa j  cb j  and thus that  aai-a j = cb j-bi .  Provided that  bi ∫ b j ,  we have found the
solution m ª Ha j - aiL ê Hbi - b jL Hmod pL .

If  bi = b j ,  which  happens  with  negligible  probability,  we  put  c ' = c.a  and  solve  c ' = am' ,  where
m ' = m + 1.

To  find  indices  i  and  j  with  xi = x j ,  we  follow Floyd's  cycle-finding  algorithm:  find  an  index  i
such that xi = x2 i  (so, take j = 2 i). 

To this  end,  we start  with the pair  Hx1, x2L ,  calculate  Hx2, x4L ,  then Hx3, x6L ,  and so on,  each time
calculating  Hxi+1, x2 i+2L  from the previously  calculated  Hxi, x2 iL  by the defining rules  xi+1 = f HxiL
and x2 i+2 = f 2Hx2 iL  In this way, huge storage requirements can be avoided. 

Example 8.9 (Part 2)

We continue with Example 8.9.  Hence,  we have q = 4679, a = 121, an element of  (prime) order
p = 2339, and c = 3435. I.e. we have the equation:

121m ª 3435 Hmod 4679L .
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The  recurrence  relation  for  the  8xi<i¥0  sequence  can  be  evaluated  by  means  of  the  Which  and
Mod functions.

RecX@x_, alp_, c_, q_D := Which@ Mod@x, 3D == 0, Mod@x2, qD,
Mod@x, 3D == 1, Mod@c∗x, qD, Mod@x, 3D == 2, Mod@alp∗x, qD D

The  smallest  index  i,  i ¥ 1,  satisfying  xi = x2 i  can  quite  easily  be  found  with  the  help  of  the
While function.

alp = 121; c = 3435; q = 4679;
x1 = RecX@1, alp, c, qD;
x2 = RecX@x1, alp, c, qD; i = 1;
While@x1 != x2, x1 = RecX@x1, alp, c, qD;
x2 = RecX@RecX@x2, alp, c, qD, alp, c, qD; i = i + 1D;
i

76

So,  x76 = x152  and  m ª Ha152 - a76L ê Hb76 - b152L Hmod 2339L .  However,  above  we  did  not  update
the values of the sequences ai  and bi . We will do that now.

RecurrDef@8x_, a_, b_<D := Which@
Mod@x, 3D == 0, 8Mod@x2, qD, Mod@2 a, pD, Mod@2 b, pD<,
Mod@x, 3D == 1, 8Mod@c∗x, qD , a, Mod@b + 1, pD<,
Mod@x, 3D == 2, 8Mod@alp∗x, qD, Mod@a + 1, pD, b<D
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alp = 121; c = 3435; q = 4679; p = 2339;
x1 = 1; a1 = 0; b1 = 0;
x2 = 1; a2 = 0; b2 = 0;
8x1, a1, b1< = RecurrDef@8x1, a1, b1<D; i = 1;
8x2, a2, b2< = RecurrDef@RecurrDef@8x2, a2, b2<DD;
While@x1 != x2, 8x1, a1, b1< = RecurrDef@8x1, a1, b1<D;

8x2, a2, b2< = RecurrDef@RecurrDef@8x2, a2, b2<DD;
i = i + 1D;

Print@"i=", iD
Print@"xi=", x1, ", ai=", a1, ", bi=", b1D;
Print@"x2. i=", x2, ", a2. i=", a2, ", b2. i=", b2D;

i=76

xi=492, ai=84, bi=2191

x2. i=492, a2. i=286, b2. i=915

Indeed, the relation a ai  cbi  gives the same value for i = 76 and i = 2 µ 76: 

Mod@PowerMod@alp, a1, qD∗PowerMod@c, b1, qD, qD
Mod@PowerMod@alp, a2, qD∗PowerMod@c, b2, qD, qD

492

492

The  solution  m  of  121m ª 3435 Hmod 4679L  can  now  be  determined  from
m ª H286 - 84L ê H2191 - 915L Hmod 2339L .

m = Mod@Ha2 − a1L∗ PowerMod@b1 − b2, −1, pD, pD

1111

That m = 1111 is indeed the solution can be checked with

PowerMod@alp, 1111, qD == c

True
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The r in the name of this algorithm reflects the shape of the 8xi<i¥0 -sequence: after a while it starts
cycling around. The memory requirements of Floyd's cycle finding algorithm are indeed minimal.
The expected running time  is è!!!!p . For further details, the reader is referred to [Poll78].

8.3.4 The Index-Calculus Method

É General Discussion

To  describe  the  index-calculus  method  in  general  we  consider  a  cyclic  group  G  of  order  N
generated by an element g . So, G = 8e, g, g2, …, gN-1<  and gN = e .

In this setting we want to solve m  from gm = h  (see (8.1)) for a given h œ G . 

The basic idea of the index-calculus method consists of the following steps:

1)  Select  an  appropriate  subset  S  of  G  with  the  property  that  a  large  proportion  of  the  elements
of G  can be expressed as a product of elements of S  in an efficient way. This set  S  is  called the
factor  base.  An  element  g œ G  that  can  be  expressed  as  a  product  of  elements  of  S  is  called
smooth  with respect to S . Let k  be the size of S . In the next two steps each element in S  will be
written as a power of g . 

2) Find a sufficiently large collection I  of exponents i  with the property that each gi , i œ I , can be
expressed  efficiently  as  a  product  of elements of S ,  say gi = s1

u
i,1 s2

u
i,2 … sk

u
i,k .  Taking the logg of

both hands, we get a set of linear congruence relations

i ª ui,1 logg  s1 + ui,2 logg  s2 + … + ui,k  logg  sk Hmod NL , i œ I .

3)  Treating  the  numbers  logg  s j ,  1 § j § k ,  as  unknowns,  solve  the  above  system  of  linear
congruence relations (for this, the system of linear congruence relations has to have rank k  and the
set I  will have to be sufficiently large).

4) Pick a random exponent r  and try to express gr h  as a product of elements of S . As soon as this
has happened, say gr.h = s1

v
1 s2

v
2 …sk

v
k , we again take the logg  of both hands and get 

r + m ª v1 logg  s1 + v2 logg  s2 + … + vk  logg  sk  Hmod NL .

Since the values of each logg  si  has already been determined in Step 3 and r  was chosen, m  can be
determined from this congruence relation.

Note that Steps 2 and 3 aim to solve the logarithm problem for all the elements in the factor base.
Step 4 tries to reduce the current logarithm problem to the factor base elements.

It  may  be  clear  that  the  optimal  size  of  the  factor  base  S  is  a  compromise  between  manageable
storage  requirements  and  the  probability  that  a  random  element  in  G  (namely  gr h)  can  be
expressed as a product of elements of S . 
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In general, there are two (related) unresolved problems in the above approach.

è How can one determine a good factor base?

è How does one express an element in G  as product of elements of S?

In  the  next  subsubsections  we  demonstrate  the  above  method  for  two  special  cases  where  more
can be said about the above two questions.

Complexity

There  are  many  variations  of  the  index-calculus  method.  Typically,  their  complexity  grows
subexponential  in  log2 N ,  while  the  methods described  in  Subsections  8.3.1,  8.3.2,  and 8.3.3 are
all exponential in log2 N .

É  p
* , i.e. the Multiplicative Group of GFHpL

In this case, G = 81, 2, …, p - 1< . Let g  be a generator of this group. 

Choice of the factor base S : the first k  prime numbers, p1, p2, …, pk .

If  k  is  sufficiently  big,  a  large  proportion  of  the  elements  in  G  can  be  expressed  as  product of
powers of these k  primes, i.e. they will be smooth with respect to S .

Technique to express an element in G  as product of elements of S : divide the element by the pi 's.

Complexity

Adleman in [Adle79] analyzes this technique in detail and arrives at a complexity of

expC 
è!!!!!!!!!!!!!!!!!!!!!!ln p lnln p

for some constant C . 

Example 8.10

Consider  541
*  with  primitive  element  g = 2.  That  541  is  prime  and  that  2  is  a  primitive  element  can  be

checked with the Mathematica functions PrimeQ, FactorInteger, and PowerMod. Indeed, the order
of 2 divides » 541

* » = 540  by Theorem B.5, therefore, we only have to check that 2Hp-1Lêd T 1 Hmod 541L  for
the divisors of p = 541.

p = 541;
PrimeQ@pD
FactorInteger@p − 1D

True

882, 2<, 83, 3<, 85, 1<<
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PowerMod@2, H541 − 1Lê 2, pD
PowerMod@2, H541 − 1Lê 3, pD
PowerMod@2, H541 − 1Lê 5, pD

540

129

48

As factor base S  we take the set of the first five prime numbers, which can be generated with the
Mathematica functions Prime and Table.

Table@Prime@iD, 8i, 1, 5<D

82, 3, 5, 7, 11<
We want to write each of the elements in this factor base as a power of g = 2, i.e. we want to solve
the  logarithm problem for  the  elements  in  the  factor  base.  To  this  end,  we try  to  find  powers  of
g = 2  in 541

*  that  can be expressed as  product  of  elements  in  82, 3, 5, 7, 11< .  For this,  we can
use the Mathematica function FactorInteger and PowerMod. When trying  

p = 541;
try = PowerMod@2, 102, pD
FactorInteger@tryD

136

882, 3<, 817, 1<<
we see that we have no complete factorization in 82, 3, 5, 7, 11< .  

After  some  trial  and  error  we  did  find  the  elements  214 ,  281 ,  2207 ,  2214 ,  and  2300  achieving  our
goal.
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p = 541;
FactorInteger@PowerMod@2, 14, pDD
FactorInteger@PowerMod@2, 81, pDD
FactorInteger@PowerMod@2, 207, pDD
FactorInteger@PowerMod@2, 214, pDD
FactorInteger@PowerMod@2, 300, pDD

882, 1<, 87, 1<, 811, 1<<
882, 1<, 83, 1<, 87, 2<<
885, 2<, 811, 1<<
885, 1<, 87, 1<<
882, 5<, 811, 1<<

Writing  m1 = log2 2,  m2 = log2 3,  m3 = log2 5,  m4 = log2 7,  m5 = log2 11  and  taking  the
logarithms on both sides gives five linear congruence relations in m1, m2, …, m5 . 

For example, 2207 ª 52 .111 mod 541 can be rewritten as 

2207 ª 22. log2  5 21. log2  11 ª 22 m3  2m5 mod 541. 

Taking log2  on both sides gives the congruence relation 

207 ª 2 m3 + m5 mod 540.

So, we have:

14 ª m1 + m4 + m5 Hmod 540L ,
81 ª m1 + m2 + 2 m4 Hmod 540L ,
207 ª 2 m3 + m5 Hmod 540L ,
214 ª m3 + m4 Hmod 540L ,
300 ª 5 m1 + m5 Hmod 540L ,

The above system of linear congruence relations can be solved with the Solve function:

m1 =.; m2 =.; m3 =.; m4 =.; m5 =.;
Solve@8m1 + m4 + m5 == 14 , m1 + m2 + 2∗ m4 == 81,
2∗ m3 + m5 == 207, m3 + m4 == 214, 5 m1 + m5 == 300,
Modulus == 540<, 8m1, m2, m3, m4, m5<D
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88Modulus → 540, m2 → 104, m3 → 496, m1 → 1, m4 → 258, m5 → 295<<
So, we know that 

m1 = log2 2 = 1, m2 = log2 3 = 104, m3 = log2 5 = 496, m4 = log2 7 = 258, 
m5 = log2 11 = 295

or, equivalently

21 ª 2 mod 541,  2104 ª 3 mod 541,  2496 ª 5 mod 541,  2258 ª 7 mod 541,
2295 ª 11 mod 541.

If  the  above  linear  congruence  relations  are  not  linearly  independent  one  has  to  replace  some
equations by others until they are linearly independent.

Let us now find a solution of 2m ª 345 Hmod 541L .

From 

FactorInteger@345D
FactorInteger@Mod@22 345, 541DD
FactorInteger@Mod@2100 345, 541DD
FactorInteger@Mod@213 345, 541DD

883, 1<, 85, 1<, 823, 1<<
882, 1<, 8149, 1<<
883, 2<, 841, 1<<
882, 3<, 87, 1<<

we  see  that  345  can  not  be  expressed  as  product  of  elements  of  S ,  nor  can  22 µ 345  and
2100 µ 345, but 213 ä 345 = 23 71  in GFH541L .

We conclude that 

13 + m ª 3. m1 + 1. m4 ª 3 µ 1 + 258 ª 261 Hmod 540L ,

therefore, the solution of 2m ª 345 Hmod 541L  is given by

m ª 248 Hmod 540L .

This can easily be checked with

PowerMod@2, 248, 541D
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345

Because of the small parameters, we can find out explicitly  how many elements in 81, 2, …, 540<
can  be  expressed  as  product  of  elements  of  S .  We  use  the  Mathematica  functions  Select,
Flatten, Table, Sort, and Length and make use of the fact that the exponent of 2 is at mostdlog2 541t = 9, the exponent of 3 is at most dlog3 541t = 5, etc., in any number less than 541.

BaseProd = Select@
Flatten@ Table@ 2i1 3i2 5i3 7i4 11i5,

8i1, 0, Log@2, 541D<,
8i2, 0, Log@3, 541D<,
8i3, 0, Log@5, 541D<,
8i4, 0, Log@7, 541D<,
8i5, 0, Log@11, 541D<D D ,

# < 541 &D êê Sort
Length@BaseProdD

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22,
24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50,
54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90,
96, 98, 99, 100, 105, 108, 110, 112, 120, 121, 125, 126, 128,
132, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 175, 176,
180, 189, 192, 196, 198, 200, 210, 216, 220, 224, 225, 231, 240,
242, 243, 245, 250, 252, 256, 264, 270, 275, 280, 288, 294, 297,
300, 308, 315, 320, 324, 330, 336, 343, 350, 352, 360, 363, 375,
378, 384, 385, 392, 396, 400, 405, 420, 432, 440, 441, 448, 450,
462, 480, 484, 486, 490, 495, 500, 504, 512, 525, 528, 539, 540<
142

Therefore, about a quarter of all elements in G can be expressed as product of elements of S . That
means that on the average it takes four trials (choices of r) before gr h can expressed as a product
of elements of 82, 3, 5, 7, 11< .
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É GFH2nL
All  elements  in  GFH2nL  can  be  represented  by  means  of  binary  polynomials  of  degree < n  in  x
modulo an irreducible polynomial f HxL  (see Theorem B.16). One writes GFH2nL = GFH2L@xD ê H f HxLL .

Let  the  polynomial  a = aHxL  denote  a  primitive  element  of  GFH2nL .  Then  GFH2nL  can  also  be
represented  by  binary  polynomials  of  degree  < n  modulo  the  minimal  polynomial  pHxL  of  a .  It
follows  that  a  is  a  primitive  element  in  GFH2L@aD ê HpHaLL ,  i.e.  x  is  a  primitive  element  in
GFH2L@xD ê HpHxLL .

See  Example  B.6,  where  f HxL = x4 + x3 + x2 + x + 1  defines  GFH24L  and  where  aHxL = 1 + x  is  a
primitive  element  of  GFH24L = GFH2L@xD ê Hx4 + x3 + x2 + x + 1L .  This  element  a  is  a  zero  of  the
primitive  polynomial  pHxL = x4 + x3 + 1.  In  GFH2L@xD ê Hx4 + x3 + 1L  the  element  x  is  a  primitive
element

Equation (8.1), that we want so solve, can be reformulated as: 

for every polynomial cHxL  of degree < n , find the exponent m , 0 § m § 2n - 2, such that 
xm ª cHxL Hmod pHxLL .

As  choice  of  the  factor  base  S  we  take  all  binary,  irreducible  polynomials  of  degree  §s,  say
p1HxL, p2HxL, …, pkHxL . (The number of such polynomials is given by Theorem B.17).

As a technique  to express an element in GFH2nL  as a product  of elements of S ,  we simply divide
the element by the polynomials piHxL .

A  polynomial  uHxL  that  can  be  expressed  as  a  product  of  elements  of  S  is  called  smooth  with
respect to S .

Complexity

Coppersmith [Copp84] analyzes this algorithm and finds as asymptotic running time

expC "################################Hln nL Hln ln nL23

Later, further improvements have been found with names like number field sieve and function field
sieve (see [AdDM93], [Adle94], and [HelR83]).

For an excellent survey on the discrete logarithm problem we refer the reader to [Odly85].

Example 8.11

We want to take a logarithm in GFH210L . To represent GFH210L  properly and to find a primitive element in
it,  we  look  for  a  primitive  polynomial  of  degree  10.  We  do  this  with  the  Mathematica  function
FieldIrreducible for which the package Algebra`FiniteFields` has to be read first. 

<< Algebra`FiniteFields`
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fld = GF@2, 10D;
FieldIrreducible@fld, xD

1 + x7 + x10

So,  we  take  GFH210L = GFH2L@xD ê Hx10 + x7 + 1L  which  has  x  as  primitive  element.  Equation  (8.1)
now reads like: 

find m such that  xm ª cHxL Hmod x10 + x7 + 1L .

As factor base S  we shall take the set of all irreducible polynomials of degree §4.

The  reader  may  remember  that  all  binary,  irreducible  polynomials  of  degree  d  appear  in  the
factorization of x2d - x (see Theorem B.35).

Clear@xD;
FactorAx23 − x, Modulus −> 2E
FactorAx24 − x, Modulus −> 2E

x H1 + xL H1 + x + x3L H1 + x2 + x3L
x H1 + xL H1 + x + x2L H1 + x + x4L H1 + x3 + x4L H1 + x + x2 + x3 + x4L

Hence, as factor base S  we have:

p1HxL = x, p2HxL = 1 + x, 
p3HxL = 1 + x + x2 , p4HxL = 1 + x + x3 ,
p5HxL = 1 + x2 + x3 , p6HxL = 1 + x + x2 + x3 + x4 , 
p7HxL = 1 + x + x4 , p8HxL = 1 + x3 + x4 .

We want to write each of the elements in this factor base as a power of x, i.e. we want to solve the
logarithm problem for the elements in the factor base.  To this  end, we try to find powers of  x  in
GFH2L@xD ê Hx10 + x7 + 1L  that  can  be  expressed  as  a  product  of  the  polynomials  p jHxL ,  1 § j § 8.
We  use the Mathematica function Factor and PolynomialMod. 

attempt = PolynomialMod@x85, 8x10 + x7 + 1, 2<D
Factor@attempt, Modulus −> 2D

1 + x + x2 + x3 + x4 + x5 + x6 + x9

H1 + xL2 H1 + x + x2L H1 + x2 + x3 + x4 + x5L
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We conclude that x85  is not smooth with respect to our factor base S . After some trial  and error
we find the following list of smooth powers of x:

Factor@PolynomialMod@x, 8x10 + x7 + 1, 2<D, Modulus −> 2D
Factor@PolynomialMod@x86, 8x10 + x7 + 1, 2<D, Modulus −> 2D
Factor@PolynomialMod@x140, 8x10 + x7 + 1, 2<D, Modulus −> 2D
Factor@PolynomialMod@x211, 8x10 + x7 + 1, 2<D, Modulus −> 2D
Factor@PolynomialMod@x319, 8x10 + x7 + 1, 2<D, Modulus −> 2D
Factor@PolynomialMod@x457, 8x10 + x7 + 1, 2<D, Modulus −> 2D
Factor@PolynomialMod@x605, 8x10 + x7 + 1, 2<D, Modulus −> 2D
Factor@PolynomialMod@x787, 8x10 + x7 + 1, 2<D, Modulus −> 2D

x

H1 + x + x3L H1 + x2 + x3L
x2 H1 + x + x2L2
H1 + xL5 H1 + x + x2 + x3 + x4L
H1 + xL H1 + x3 + x4L H1 + x + x2 + x3 + x4L
H1 + x + x2L H1 + x + x3L H1 + x + x4L
H1 + xL H1 + x2 + x3L H1 + x + x4L
H1 + x + x3L H1 + x2 + x3L2

Writing  piHxL ª xmi Hmod x10 + x7 + 1L ,  these  relations  give  rise  to  eight  linear  congruence
relations. For instance, the last equation gives

x787 ª H1 + x + x3L H1 + x2 + x3L2 ª Hxm4L Hxm5L2 ª xm4+2 m5 Hmod x10 + x7 + 1L .

Taking the logarithm on both sides gives the linear congruence relations 

787 ª m4 + 2 m5 Hmod 1023L , 

since  1023 is  the multiplicative  order  of  the  primitive  element  x.  In  this  way,  the  eight  relations
above can be rewritten as 

1 ª m1 Hmod 1023L ,
86 ª m4 + m5 Hmod 1023L ,
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140 ª 2 m1 + 2 m3 Hmod 1023L ,
211 ª 5 m2 + m6 Hmod 1023L ,
319 ª m2 + m6 + m8 Hmod 1023L ,
457 ª m3 + m4 + m7 Hmod 1023L ,
605 ª m2 + m5 + m7 Hmod 1023L ,
787 ª m4 + 2 m5 Hmod 1023L .

This  forms  a  system  of  congruence  relations  that  can  be  solved  with  the  Mathematica  function
Solve.

Clear@m1, m2, m3, m4, m5, m6, m7, m8D;
Solve@8m1 == 1 , m4 + m5 == 86, 2 m1 + 2 m3 == 140,
5 m2 + m6 == 211, m2 + m6 + m8 == 319, m3 + m4 + m7 == 457,
m2 + m5 + m7 == 605, m4 + 2 m5 == 787, Modulus == 1023<,

8m1, m2, m3, m4, m5, m6, m7, m8<D

88Modulus → 1023, m8 → 827, m1 → 1, m3 → 69,
m6 → 591, m7 → 1003, m2 → 947, m4 → 408, m5 → 701<<

So,  we  know  that  m1 = 1,  m2 = 947,  m3 = 69,  m4 = 408,  m5 = 701,  m6 = 591,  m7 = 1003,  and
m8 = 827. 

If the linear congruence relations are not linearly independent one has to replace some equations
by others until they are linearly independent.

Let us now find a solution of xm ª 1 + x + x6 + x9 Hmod x10 + x7 + 1L .

From 

Factor@
PolynomialMod@1 + x + x6 + x9, 8x10 + x7 + 1, 2<D, Modulus −> 2D

Factor@PolynomialMod@x50 H1 + x + x6 + x9L, 8x10 + x7 + 1, 2<D,
Modulus −> 2D

H1 + xL2 H1 + x + x2 + x3 + x4 + x5 + x7L
H1 + x + x2L2 H1 + x + x4L

we  see  that  1 + x + x6 + x9 can  not  be  written  as  product  of  polynomials  in  S ,  but
x50H1 + x + x6 + x9L  can.

We  conclude  that  50 + m ª 2 m3 + m7 ª 2 µ 69 + 1003 ª 118 Hmod 1023L ,  so  the  solution  of
xm ª 1 + x + x6 + x9 Hmod x10 + x7 + 1L  is given by

m ª 68 Hmod 1023L .
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This can be checked by

PolynomialMod@x68, 8x10 + x7 + 1, 2<D

1 + x + x6 + x9

8.4 Problems

Problem 8.1M

Users A  and B  want to use the Diffie-Hellman system to fix a common key over a public channel. They use
GFHpL , with p = 541 and primitive element a=2. 
User B  makes cB = 123  public. If mA = 432, what will be the common key kA,B  that A  and B  use for their
communication?

Problem 8.2
Users A  and B  want to use the Diffie-Hellman system to fix a common key over a public channel. They use
2@xD ê Hx10 + x3 + 1L  as representation of GFH210L . User B  makes cB =0100010100 public, which stands for
the  field  element  x + x5 + x7 .  If  mA = 2,  what  will  be  the  common  key  that  A  and  B  use  for  their
communication?

Problem 8.3
Demonstrate the Special Case version of the Pohlig-Helmann algorithm, that computes logarithms in finite
fields of size q = 2n + 1, by evaluating log3H142L  in GF(257).

Problem 8.4M

Check that 953 is a prime number and that 3 is a generator of 953
* . Find the three least significant bits of

the solution m  of the congruence relation 3m ª 726 mod 953.
(See the remark in the discussion of the special case q - 1 = 2n  in Subsection 8.3.1.) 

Problem 8.5
Compute log3H135L  in GF(353) with the Pohlig-Hellman algorithm.

Problem 8.6M

Find a solution of  log44 55  in GF(197) by means of the Baby-Step Giant-Step method, when only 15 field
elements can be stored.

Problem 8.7M

Check that  a = 662  is  a  primitive 2003-th  root  of  unity  in GFH4007L  (note  that  4007  is  a prime number).
Let G  be the multiplicative subgroup G  of order 2003 in GF(4007) generated by a. Check that 2124 is an
element of G .
Determine log662 2124 by the Pollard-r method. 

Problem 8.8M

Check that g = 996  is a generator of the multiplicative group 4007
* . Set up the index-calculus method with

a factor base of size 6 and determine log996 1111.
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Problem 8.9M

Solve the equation xm ª 1 + x3 + x9 Hmod x10 + x3 + 1L  in the setting of Example 8.11.

Problem 8.10M

What  is  the  probability  that  a  random  element  xm Hmod x10 + x3 + 1L  is  smooth  with  respect  to  the  set of
irreducible, binary polynomials of degree § 10 (see Example 8.11). 
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9 RSA Based Systems

9.1 The RSA System
In 1978 R.L. Rivest,  A. Shamir and L. Adleman [RivSA78]  proposed a public  key cryptosystem
that has become known as the RSA system. It makes use of the following three facts:

1) Exponentiation modulo a composite number n , i.e. computing c  from c ª me Hmod nL  for given
m  and e , is a relatively simple operation (see Subsection 8.1.1).

2)  The opposite  problem of  taking  roots  modulo a  large,  composite  number  n ,  i.e.  computing m
from c ª me Hmod nL  (which can be written as m ª

è!!!ce Hmod nL) for given c  and e ,  is,  in general,
believed to be intractable.

3) If the prime factorization of n  is known, the problem of taking roots modulo n  is feasible.

9.1.1 Some Mathematics

From Appendix  A  we  quote  Theorem A.14   and  the  definition  of  Euler's  Totient  function  (Def.
A.6):

Theorem 9.1  Euler
Let a  and n  be integers. Then

(9.1)  gcdHa, nL = 1 ï ajHnL ª 1 Hmod nL ,

where  Euler's  Totient  Function  jHnL  counts  the  number  of  integers  in  between  1  and  n
that are coprime with n . The function jHnL  can be computed from the relation:

(9.2)  jHnL = n ‰
p»n, p prime

I1 - 1ÅÅÅÅÅp M .

The  reader  can  check  the  above  in  any  example  with  the  Mathematica  functions  GCD  and
EulerPhi. 
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n = 1999; a = 1234;
GCD@a, nD
ph = EulerPhi@nD
PowerMod@a, ph, nD

1

1998

1

9.1.2 Setting Up the System

É Step 1 Computing the Modulus nU

Each  user  U  of  the  system  chooses  two  different  large  prime  numbers,  say  pU  and  qU .  In  the
original proposal the suggested length was about 100 digits. 

Let nU = pU  qU . It follows from (9.2) that

(9.3)  jHnU L = nU I1 - 1ÅÅÅÅÅÅÅÅÅpU
M I1 - 1ÅÅÅÅÅÅÅÅÅqU

M = HpU - 1L HqU - 1L .

This can also be seen directly. The n  integers in between 1 and nU = pU  qU  are all  coprime with
nU  except for the qU  multiples of pU  (namely pU , 2. pU , 3. pU , …, qU .pU ) and the pU  multiples
of  qU  (namely  qU , 2. qU , 3 qU , …, pU .qU )  In  this  counting,  one  should  realize  that  the  number
pU  qU  has been subtracted once too often. 

Example 9.1 (Part 1) 

To keep this example manageable participant Bob will keep his primes reasonably small. He makes use of
the Mathematica functions Prime and EulerPhi.

pB = Prime@1200D
qB = Prime@1250D
nB = pB∗qB
phiB = EulerPhi@nBD

9733
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10177

99052741

99032832

É Step 2 Computing the Exponents eU  and dU

User  U  chooses  an  integer  eU ,  1 < eU < jHnU L ,   with  gcdHeU , jHnU LL = 1.  User  U  computes  the
unique integer dU , satisfying

(9.4)  eU  dU ª 1 Hmod jHnU LL , 1 < dU < jHnU L .

For instance,  U  can use Euclid's  Algorithm (see Section A.2) to find dU  in  less  than log f  jHnU L
operations (Theorem A.9) with f = I1 +

è!!!5 M ë2. 

Example 9.1 (Part 2)

The random choice of eB  and the computation of dB  can be made with the Mathematica functions
Random, While, and ExtendedGCD.

eB = Random@Integer, 81, nB<D;
While@GCD@eB, phiBD != 1,

eB = Random@Integer, 81, nB<DD;
eB
ExtendedGCD@eB, phiBD

81119923

81, 817089915, −13998717<<
So, Bob has eB = 81119923 and dB = 17089915. This can be checked by the Mod calculation:

dB = 17089915;
Mod@eB∗dB, phiBD

1
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É Step 3 Making Public: eU  and nU

Each user U  makes eU  and nU  public,  but  keeps dU  secret.  The primes numbers pU  and qU  no
longer play a role. User U  may use them to reduce the complexity of his calculations as we shall
see later on. They may not be made public by U . 

9.1.3 RSA for Privacy

If user A , say Alice, wants to send a secret message to Bob (user B) she represents her message in
any standardized way by a number m , 0 < m < nB . Next, Alice looks up the public exponent eB of
Bob. She will send the ciphertext c  computed from

c ª meB Hmod nBL .

Bob can recover m  from c  by raising it  to the power dB  which he only knows. Indeed, for some
integer l  one has 

(9.5)  cdB ª HmeBLdB ª meB  dB ª
H9.4L

m1+l.jHnBL ª m.HmjHnBLLl ª
H9.1L

m Hmod nBL .

when  gcdHm, nBL = 1.  In  Problem  9.2  the  reader  is  invited  to  verify  that  the  system  also  works
when gcdHm, nBL ∫ 1.

We summarize the RSA secrecy system in the next table.

Table 9.1

public eU and nU of all users U
secret dU of user U

property eU dU ≡ 1 Hmod ϕ HnULL
message to Bob 0 < m < nB

encryption by A c ≡ meB Hmod nBL
decryption by B cdB ≡ m Hmod nBL

The RSA System for Privacy

The public and secret exponents in the RSA system are traditionally called  eU  and dU  to denote
the encryption resp. decryption functions that they have in this subsection.

Example 9.1 (Part 3)

We  continue  with  the  parameters  of  Example  9.1,  so  nB =99052741,  eB = 81119923,  and
dB = 17089915.  The  encryption  c ª meB Hmod nBL  of  message  m = 12345678  leads  with  the
Mathematica function PowerMod to 
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nB = 99052741; eB = 81119923; dB = 17089915;
m = 12345678;
c = PowerMod@m, eB, nBD

38447790

Bob decrypts this by computing cdB Hmod nBL , which gives m.

PowerMod@c, dB, nBD

12345678

It  is  possible  to  reduce  the  work  factor  of  the  decryption  process  by  means  of  the  Chinese
Remainder  Theorem (Thm. A.19).  Indeed,  since  Bob knows the  factorization  of n  into  p µ q ,  he
can do the following.

Bob precomputes integers a  and b  mod n , satisfying : a ≡ 1 Hmod pL
a ≡ 0 Hmod qL: b ≡ 0 Hmod pL
b ≡ 1 Hmod qL

Next,  Bob  computes   m1 ª c1
d Hmod pL  and  m2 ª c2

d Hmod qL ,  where  c1 = Hc mod pL  and
c2 = Hc mod qL .  Note  that  all  these  calculations  take  place  modulo  the  integers  p  and  q  that  are
typically  half  the length of n .  By the Chinese Remainder Theorem, m = Hcd mod nL  is  now given
by m1.a + m2.b Hmod nL . 

There is  even an extra  bonus in this approach. The exponent d  in  the calculations  of m1  and m2

can  be  reduced  modulo  p - 1,  resp.  q - 1,  by  Fermat's  Theorem  (Thm.  A.15).  Indeed,
m1 ª cd ª cd1  mod p ,  with  d1 = Hd mod pL  and  a  similar  statement  is  true  for  the  mod  q
calculations.

Altogether, this way of computing cd mod n  reduces the workload by a factor of about 4. 

Example 9.1 (Part 4)

We  continue  with  the  parameters  of  Example  9.1,  so  pB = 9733,  qB = 10177,   nB =99052741,
eB = 81119923, and dB = 17089915. To compute the solutions to: a ≡ 1 Hmod 9733L

a ≡ 0 Hmod 10177L: b ≡ 0 Hmod 9733L
b ≡ 1 Hmod 10177L

we load the Mathematica package NumberTheory`NumberTheoryFunctions`
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<<NumberTheory`NumberTheoryFunctions`

and find a and b with the function ChineseRemainderTheorem.

a = ChineseRemainderTheorem@81, 0<, 89733, 10177<D
b = ChineseRemainderTheorem@80, 1<, 89733, 10177<D

45287650

53765092

Next, we calculate m1 ª cd1 Hmod pL  and m2 ª cd ª cd2 Hmod qL . We get

p = 9733; q = 10177; d = 17089915;
c = 38447790;
c1 = Mod@c, pD
c2 = Mod@c, qD
d1 = Mod@d, p − 1D
d2 = Mod@d, q − 1D
m1 = PowerMod@c1, d1, pD
m2 = PowerMod@c2, d2, qD

2440

9261

523

4411

4234

977

The  result  of  the  decryption  process  is  now  given  by  m1.a + m2.b mod n  and  coincides  with  our
earlier decryption process.
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n = 99052741;
Mod@m1∗a + m2∗ b, nD

12345678

9.1.4 RSA for Signatures

The  RSA system can  equally  be  used  to  sign  messages.  To  sign  a  message  m ,  0 < m < nB ,  Bob
will compute c = HmdB mod nBL .

The receiver  of c ,  say Alice,  can easily retrieve the original  message from ceB Hmod nBL ,  because
Bob's parameters eB  and nB  are public. To check this we repeat (9.5) (with a minor variation):

(9.6)  ceB ª HmdBLeB ª meB  dB ª
H9.4L

m1+l.jHnBL ª m.HmjHnBLLl ª
H9.1L

m Hmod nBL .

for  all  m  with gcdHm, nBL = 1.  The relation  ceB ª m Hmod nBL  also holds  when gcdHm, nBL ∫ 1.  In
Problem 9.2 the reader is asked to prove this.

Alice should keep c  as Bob's signature on m . Only Bob can have made c  out of m , because he is
the only one knowing dB . The reader is advised to reread the discussion above Table 7.2.

Table 9.2

public eU and nU of all users U
secret dU of user U

property eU dU ≡ 1 Hmod ϕ HnULL
message of Bob 0 < m < nB

signing by B c ≡ mdB Hmod nBL
verification by A ceB ≡ m Hmod nBL

signature the pair Hm, cL
The RSA System for Signing

Example 9.1 (Part 5)

Bob signs message m = 11111111 by computing c ª mdB Hmod nBL .

m = 11111111;
c = PowerMod@m, dB, nBD

74138899
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Alice verifies this by computing ceB Hmod nBL , which gives m.

9.1.5 RSA for Privacy and Signing

Suppose  that  Alice  wants  to  sign  a  confidential  message  m  to  Bob.  The  solution  described  in
Subsection 7.1.4 , namely Alice first signs m  with her secret key and then encrypts the result with
Bob's public key, can not always be applied directly in the RSA-case.

To see this, we observe that Alice would like to send

(9.7)  c = HmdA Hmod nALLeB Hmod nBL .

However,  this  mapping  is  not  one-to-one  if  nA > nB .  For  instance,  the  messages  m = 1  and
m = H1 + nBLeA  will both be mapped to c = 1.

Since  Alice  and  Bob  do  not  want  to  share  their  prime  numbers,  we  must  have  nA < nB .  In  this
case, Bob can recover m  as follows:HcdB Hmod nBLLeA Hmod nAL = m .

To verify this, combine (9.5) with (9.6). 

Of course, there now is the problem of what to do when Bob wants to sign a confidential message
to  Alice.  A  simple  solution  is  to  have  every  user  U  make  two  sets  of  parameters,  one  with  its
modulus  smaller  than  some  threshold  T  and  the  other  with  its  modulus  larger  than  T .  In  this
setting,  the  sender  uses  his  own  smaller  modulus  for  the  signature  and  the  receivers  larger
modulus for the encryption. 
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public eUi and nUi of all users U, i = 1, 2

secret dUi of user U, i = 1, 2

properties eUi dUi ≡ 1 Hmod ϕ HnUiLL
nU1 < T < nU2

message from
Alice to Bob

0 < m < nA1

Alice sends c ≡ HHmdA1 mod nA1LeB2 mod nB2L
Bob computes HHcdB2 mod nB2LeA1  mod nA1L = m

Bob keeps as
signature

m and HcdB2  mod nB2L
which is equal toHmdA1 mod nA1L

Table 9.3

RSA for privacy and signing

If  there  is  an  argument  between  Alice  and  Bob,  they  will  go  to  an  arbitrator.  This  arbitrator  is
given  the  pair  m  and  u = HcdB2 mod nB2L  by  Bob.  As  an  integer,  the  latter  is  equal  toHmdA1 mod nA1L , sinceHcdB2 mod nB2L =

H9.7L IHHmdA1 mod nA1LeB2 mod nB2LdB2 mod nB2M =
H9.5L HmdA1 mod nA1L .

Just like in Subsection 9.1.4, the arbitrator now checks if ueA1 ª m Hmod nA1L .

If  this  is  the  case,  the  message  m  came  indeed  from  Alice,  if  not,  u  will  not  be  considered  as
Alice's signature on m .

Note that  the arbitrator  does not need to know the secret  exponents  of Alice or Bob to make his
decision. Therefore,  Alice and Bob can continue to use their original set of parameters.
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9.2 The Security of RSA: Some Factorization Algorithms

9.2.1 What the Cryptanalyst Can Do

Suppose that  an  eavesdropper,  say Eve,  gets  hold of a  secret  message c = meB Hmod nBL  for  Bob.
Once  Eve  knows  the  secret  exponent  dB  of  Bob,  she  can  compute  m  from  the  ciphertext  c  in
exactly the same way as Bob can, namely by computing cdB Hmod nBL  (see (9.5)).

To determine dB  from the public exponent eB  and the relation eB.dB ª 1 Hmod jHnBLL  (see (9.4)) is
easy for Eve as soon as she knows jHnBL: just like Bob did when he set up the system, she will use
Euclid's Algorithm.

To find jHnBL = pB.qB  (see (9.3)) from the publicly known modulus nB , Eve will have to find the
factorization of nB . 

At  the  time  of  the  introduction  of  RSA,  Schroeppel  (not  published)  had  a  modification  of  a
factorization algorithm by Morrison and Brillhart [MorB75]. It involved 

e
è!!!!!!!!!!!!!!!!!!!!!ln n lnln n operations

In  the  next  table  we  have  made  use  of  the  Mathematica  functions  TableForm,  Table,  Exp,
Sqrt, Log, and N to give an impression of the growth of the above expression. 

TableForm@ Table@
8k, N@Exp@ Sqrt@Log@10^kD Log@Log@10^kDDDD, 3D<,
8k, 25, 250, 25<D , TableHeadings −>

88<, 8"length in digits", "complexity"<<,
TableAlignments −> 8Center<D

length in digits complexity
25 4.3×106

50 1.42× 1010

75 8.99× 1012

100 2.34× 1015

125 3.41× 1017

150 3.26× 1019

175 2.25× 1021

200 1.2× 1023

225 5.17× 1024

250 1.86× 1026
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As one can see, if n  is  about 200 digits  long, the above cryptanalysis  is clearly not tractable.  On
the  other  hand,  much  larger  numbers  have  been  factored  than  was  thought  to  be  possible  at  the
time that  the  original  RSA scheme was  proposed  (at  the  time of  the  printing  the  record  stood at
512  bits  numbers).  For  this  reason,  one  now  sees  proposals  for  implementations  of  RSA with  a
much larger modulus.

An example of a  fast  modern factorization algorithm can be found in [LensH86].  Other methods
will be discussed in Section 9.2.3. There does exist special factorization algorithms that run faster
if n  is of a special form. We shall discuss one of these methods in the next subsection.

Up  to  now,  there  seems  to  be  no  way  of  breaking  the  RSA  system  other  than  by  factoring  the
modulus n .  There is  no formal proof however that these two problems are equivalent.  In Section
9.5  we  shall  discuss  a  variant  of  the  RSA system  for  which  it  can  be  shown  that  breaking  it  is
equivalent to factoring its modulus.

A drawback of having to choose large moduli is that the execution of a single exponentiation takes
more time than one may like, especially when one wants to encrypt a long file. Quite often in such
a  situation  one  shall  use  a  hybrid  system:  a  symmetric  system  with  secret  key  k  is  used  for
encryption of the data and the RSA scheme is used to send this key securely to the receiver (using
the public parameters of the receiver).

When generating p  and q  it is a bad idea to first generate p  and then try out p + 2, p + 4, …  for
primality.  One  really  wants  p - q  to  be  large.  Indeed,  if  a  cryptanalyst  can  guess  p - q ,  for
instance by checking all likely values, it follows from 

4 n = 4 p.q = Hp + qL2 - Hp - qL2

 that p + q  also can be determined. From these two linear relations p  and q  can be found, which
implies that the system has been broken.

Example 9.2

Let n = 5007958289. Guessing that q - p = 200, we get p + q from

n = 5007958289;
"#####################
4 n + 2002

141534

From p + q =
è!!!!!!!!!!!!!!!!!!!!4 n + 2002 and q - p = 200, we get that q = Iè!!!!!!!!!!!!!!!!!!!!4 n + 2002 + 200M ë2.
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q = i
k
jj"#####################

4 n + 2002 + 200y
{
zz ì 2

p = q − 200

70867

70667

p ∗ q == n

True

We conclude that » p - q »  has to be large. A way to do this is to take q  more than p +
è!!!!p . 

In  the  literature  one  can  also  find  a  few  attacks  on  the  RSA  system,  that  have  a  probability of
success  which  is  not  significantly  more  than  the  probability  that  a  randomly  chosen  integer  a
smaller than n  has a non-trivial  factor in common with n .  This factor would then be p  or q . The
probability  that  the  latter  happens  can  be  evaluated  with  the  Euler  Totient  function  jHnL  and  is
given by

n-jHnLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn =
H9.3L p.q-Hp-1L Hq-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp.q = p+q-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp.q º 1ÅÅÅÅÅp ,

assuming  that  p < q .  That  one  should  not  take  p  too  small  will  follow  from  the  factorization
algorithm that we shall discuss in the next subsection.

Because the "attacks" mentioned above have such a small probability of success, we choose not to
discuss them here. Some of the problems at the end of this chapter are based on them.

9.2.2 A Factorization Algorithm for a Special Class of Integers

We  shall  now  briefly  discuss  a  factorization  algorithm  that  runs  faster  than  the  general
factorization  algorithms  that  we  shall  address  later  under  the  assumption  that  at  least  one  of  the
prime factors of n , say p , has the property that p - 1 only contains small prime factors.

É Pollard's p - 1 Method

In  [Poll75],  Pollard  describes  a  way  to  factor  n  in  è!!!!p  steps,  where  p   is  the  smallest  prime
divisor of n . This explains why we have to take p  and q  both large.

The assumption in Pollard's p - 1  method is  that  in the factorization of n  at  least  one of the two
factors,  say  p ,  has  the  property  that  p - 1  has  only  small  prime factors.  To  be  more  precise,  an
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integer is said to be smooth (see also Subsection 8.3.4) with respect to S  if all its prime factors are
less than or equal to S . We shall assume that p - 1 is smooth with respect to some integer S .

Example 9.3

The  prime  number  p = 70877  has  the  property  that  p - 1  is  smooth  with  respect  to  S = 50,  as  one  can
check with the Mathematica function FactorInteger and PrimeQ.

p = 70877; PrimeQ@pD
FactorInteger@p − 1D

True

882, 2<, 813, 1<, 829, 1<, 847, 1<<
For each prime number r , r § S ,  the largest power of r  that is still less than or equal to n  can be
determined from

ri § n , or, equivalently, i § logr n .

Define R  by

(9.8)  R = ¤p§S, p prime pdlogr  nt
Example 9.4 (Part 1)

Consider  the  number  n = 6700892281  and  assume  that  at  least  on  of  its  factors,  say  p,  is  smooth  with
respect to S = 50. It follows from 

Prime@15D
Prime@16D

47

53

that there are 15 primes less than or equal to S = 50. So, R  can be calculated from H9.8L  with the
Mathematica functions Prime, Log, and Floor as follows

n = 6700892281; R = ‰
i=1

15

HPrime@iDLFloor@ Log@Prime@iD,nDD
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404956718036087157154810988735114505168715463893514902450607270767
02214282424813734946501919403167962039754577870030089486336000000
00000000

To see the exponents of the primes up to 50 (out of curiosity), we give

FactorInteger@RD

882, 32<, 83, 20<, 85, 14<, 87, 11<, 811, 9<, 813, 8<, 817, 7<, 819, 7<,823, 7<, 829, 6<, 831, 6<, 837, 6<, 841, 6<, 843, 6<, 847, 5<<
If p - 1  is smooth with respect to S , each prime power ri  that divides p - 1, will also be a factor
of R , since i  will be at most dlogr nt . It follows that Hp - 1L  divides R . 

We  know  from  Fermat's  Theorem  (Thm.  A.15)  that  any  integer  a ,  1 § a < p,  will  satisfy
ap-1 ª 1 Hmod pL . Since Hp - 1L » R , also aR ª 1 Hmod pL .

Now take a random integer a , 2 § a < n , and check if gcdHa, nL = 1. If this gcd is not 1, we have
found a factor of n  and we are done.

If gcdHa, nL = 1  it follows from aR ª 1 Hmod pL  that p » HaR - 1L . Since it is very unlikely that also
aR ª 1 Hmod qL , we shall almost certainly find a factor of n  (namely p) from gcdHaR - 1, nL . Note
that aR  does not have to be evaluated for this calculation, the value of aR Hmod nL  suffices.

Example 9.4 (Part 2)

To find a factor of n = 6709248019  we pick a random a  in between 2 and n - 1  and compute the
gcd of aR - 1 with n by means of the Mathematica functions Random, PowerMod, and GCD.

a = Random@Integer, 82, n<D
GCD@PowerMod@a, R, nD − 1, nD

3922094384

81919

It follows that p = 81919 is a factor of n. The other factor follows from n ê p = 81799. Note that if
q is also smooth with respect to S , we would have found n as outcome of the gcd calculation.

We summarize Pollard's p - 1 method in the following table. 

input : integer n.
select a smoothness parameter S.
calculate R from H9.8L.
select a random a, 2 ≤ a < n.
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compute d = gcd HaR − 1, nL.
if 1 < d < n then d is a factor of n

else STOP or select a new random a

Figure 9.1

Pollard ' s p - 1 Method to Factor n

To make Pollard's  p - 1method infeasible,  one  often  chooses  so-called  safe  primes  when setting
up  the  RSA  system.  These  strong  primes  are  primes  p  of  the  form  p = 2 p ' + 1,  where  p '  is  a
(large) prime. In this case, p - 1 has just one small factor.

9.2.3 General Factorization Algorithms

É The Pollard-· Method

Let  p  be  an  unknown  prime  factor  of  the  integer  n  that  we  want  to  factor.  Now  look  at  the
sequence a0, a1, …, defined recursively by 

a0 = 1,
ai+1 ª ai

2 + 1 Hmod pL , i ¥ 0.

Suppose  that  we  have  found  indices  u  and  v  with  v > u  and  au ª av Hmod pL .  Then  clearly
gcdHav - au, nL  is divisible by p  and very likely this gcd is equal to p .

Of course, p  is not known, so we replace the above recursion relation by

(9.9)  a0 = 1,
ai+1 ª ai

2 + 1 Hmod nL , i ¥ 0.

Since  p » n  we  will  find  the  factor  p  from  gcdHav - au, nL  for  the  same  values  of  u  and  v  (the
probability that other large factors of n  divide this gcd is negligible).

Instead of having to store all previously computed values of ai , i ¥ 0, we use Floyd's cycle-finding
algorithm to  find an  index k  such that  a2 k = ak  and then  we take  u = k  and v = 2 k .  The idea  is
simply  that  one  starts  with  a1  and  a2  and  recursively  determines  the  pair  Hai, a2 iL  fromHai-1, a2 Hi-1LL .

The above is summarized in the following figure.

input : integer n.
put a = 1, b = 2.
do a ← Ha2 + 1L mod n ,

b ← IHHb2 + 1L mod nL2 + 1M mod n
until d = gcd Hb − a, nL > 1
if d < n then d is a factor of n

else STOP

Figure 9.2

Pollard's ·  Method to Factor n
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Example 9.5 

To find a factor of n = 9032411471 with the above method we use the Mathematica functions While, Mod,
and GCD functions.

n = 168149075693;
a = 1; b = 2; d = GCD@b − a, nD;
WhileAd == 1, a = Mod@a2 + 1, nD;
b = ModAHMod@b2 + 1, nDL2 + 1, nE; d = GCD@b − a, nDE

d

350377

So, 350377 is a factor of n = 168149075693. The quotient n ê p  is 479909, which happens to be a
prime too, as can easily be checked with the function PrimeQ.

a = nê350377
PrimeQ@aD

479909

True

É Random Square Factoring Methods

This  method and  the  next  one  are  related  to  the  Index-Calculus  Method  discussed  in  Subsection
8.3.4. The reader may want to read the introduction there first, but that will not necessary for the
understanding of the discussion here. We assume that n  is a composite odd integer.

The method consists of the following four steps.

Step 1:

Construct  the set S = 8p1, p2, …, pk<  consisting of the first  k  prime numbers, so p1 = 2, p2 = 3,
etc. The set S  will be called the factor base.

Step 2:

Find sufficiently many pairs Hai, biL  such that

(9.10)  ai
2 ª bi Hmod nL  
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and such that bi  is smooth with respect to S , i.e. bi  factors completely into elements of the factor
base S , say

bi = ‰
j=1

k
p j

ui, j , with ui, j ¥ 0.

Put   ui = Hu1,1, u1,2, …, u1,kL .  Pairs  Hai, biL  satisfying  property  (9.10)  can  be  found  by  trying
random  choices  of  ai .  An  alternative  is  to  use  any  suitable  recursion  relation  that  generates
candidates for ai . For instance, after trying ai = a  one may want to try ai = HHa2 + 1L mod nL .

Step 3:

Find  a  collection  of  bi 's  whose  product  is  a  perfect  square.  Quite  clearly,  only  the  parity  of  the
ui, j 's  matters  in  this  condition,  so  let  us  put  vi, j = Hui, j mod 2L  and  vi = Hv1,1, v1,2, …, v1,kL .  We
write vi ª ui Hmod 2L .

Since any k + 1  vectors  vi  (all  of length k )  must be linearly  dependent  over 2 ,  there must be a
non-trivial  linear  combination  adding  up  to  0.  Such  a  linear  combination  can  be  found  very
efficiently with standard methods from linear algebra.

Let I  denote the subset of 81, 2, …, k<  with ⁄iœI  vi ª 0 H mod 2L . Set

x = ¤iœI ai  and y = H¤iœI biL1ê2 . 

Step 4:

It  follows  from  (9.10)  that  x2 ª y2 Hmod nL ,  i.e.  n  divides  Hx - yL Hx + yL .  Assume  that
x T ≤ y Hmod nL  (the probability that this happens is at least 1/2 as we shall see in a moment and as
will be demonstrated more extensively in Subsection 9.5.1 for the case that n  is the product of two
different  primes).  Then  x - y  must  be  divisible  by  a  non-trivial  divisor  of  n .  In  other  words,
gcdHx - y, nL  yields a non-trivial factor of n .

If  gcdHx - y, nL = n  one  has  to  try  to  find  another  perfect  square,  either  by  another  linear
dependency between the vi 's or by exchanging one of the pairs Hai, biL  for a new one. 

Consider the congruence relation x2 ª y2 Hmod nL  where y  is assumed to have a given fixed value
that is coprime with n .  Further,  let pa  be any factor in the prime power decomposition of n  (see
Theorem A.6). Then x2 ª y2 Hmod paL  has just two solutions, namely x ª ≤ y Hmod paL . Indeed, for
a = 1  this follows from Theorem B.15. For a > 1, we still have that pa  must divide either x - y  or
x + y ,  because  if  p » Hx - yL  and  p » Hx + yL  then  p » 2 y ,  but  p I y  (since  n  is  odd,  also  p  will  be
odd). We conclude that x ª ≤ y Hmod paL  also when a > 1.

It  now  follows  directly  from  the  Chinese  Remainder  Theorem  (Thm.  A.19)  that  relation
x2 ª y2 Hmod nL  has  2l  solutions,  where  l  is  the  number  of  different  prime  numbers  dividing  n .
Only two of these 2l , l ¥ 2, solutions are given by x ª ≤ y Hmod nL ,  therefore, the probability that
gcdHx - y, nL  yields a non-trivial factor of n  is at least H2l - 2L ê2l ¥ 2 ê 4 = 1 ê2.

input : integer n.
make factor base S = 8p1, …, pk<
find pairs Hai, biL with
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ai random, ai
2 ≡ bi Hmod nL, bi smooth w.r.t. S

find index set I such that‰
i∈I

 bi is a perfect square

put  x = ‰
i∈I

ai, y = "###############¤i∈I bi

put d = gcdHx − y, nL
if d < n then d is a factor of n

else retry with other I

Figure 9.3

Factoring by Random Squares

Example 9.6

Suppose that we try to factor n = 1271  with the above method. We first make the factor base consisting of
the first 8 primes by means of the Mathematica functions Table and Prime.

S = Table@Prime@iD, 8i, 1, 8<D

82, 3, 5, 7, 11, 13, 17, 19<
Next,  we  use  the  function  Random  to  generate  a  random  a,  1 § a § n,  and  the  function
FactorInteger to factor b ª a2 Hmod nL .

n = 1271; a = Random@Integer, 81, n<D
b = Mod@a2, nD
FactorInteger@bD

460

614

882, 1<, 8307, 1<<
Unfortunately,  b = 614  is  not  smooth with  respect  to  S ,  but  after  some trial  and error  we found
the following nine smooth numbers (they are put in a list called a).
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n = 1271;
a = 8583, 879, 1137, 421, 727, 1034, 1051, 107, 1111<;
b = Mod@a2, nD;
TableForm@Table@ 8a@@iDD, b@@iDD,

Times @@ Superscript @@@ FactorInteger@ b@@iDD D <,
8i, 1, Length@aD< D, TableHeadings −>

88<, 8"a", "a2 mod n", "factors"<<,
TableAlignments −> 8Left<D

a a2 mod n factors
583 532 22 71 191

879 1144 23 111 131

1137 162 21 34

421 572 22 111 131

727 1064 23 71 191

1034 245 51 72

1051 102 21 31 171

107 10 21 51

1111 180 22 32 51

The exponents in the factorization of the bi 's are given by the vectors ui , that form the rows of the
matrix U  below. The vectors vi  are the modulo 2 reductions of the ui 's. They form the rows of the
matrix V  below. 

For instance, b1 = 532 = 22 .7 .19  gives u1 = 82, 0, 0, 1, 0, 0, 0, 1<  and v1 = 80, 0, 0, 1, 0, 0, 0, 1< .
These  two  rows  are  the  first  row  of  the  matrices  U  resp.  V  below.  We  use  the  function
MatrixForm to display them.

U = 882, 0, 0, 1, 0, 0, 0, 1<, 83, 0, 0, 0, 1, 1, 0, 0<,
81, 4, 0, 0, 0, 0, 0, 0<, 82, 0, 0, 0, 1, 1, 0, 0<,
83, 0, 0, 1, 0, 0, 0, 1<, 80, 0, 1, 2, 0, 0, 0, 0<,
81, 1, 0, 0, 0, 0, 1, 0<, 81, 0, 1, 0, 0, 0, 0, 0<,
82, 2, 1, 0, 0, 0, 0, 0<<;

V = Mod@U, 2D;
MatrixForm@UD
MatrixForm@VD
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i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

2 0 0 1 0 0 0 1
3 0 0 0 1 1 0 0
1 4 0 0 0 0 0 0
2 0 0 0 1 1 0 0
3 0 0 1 0 0 0 1
0 0 1 2 0 0 0 0
1 1 0 0 0 0 1 0
1 0 1 0 0 0 0 0
2 2 1 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 1 0 0 0 1
1 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
1 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0
1 1 0 0 0 0 1 0
1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
To find a non-trivial linear combination of the rows of V  adding up to the all-zero vector modulo
2, we use the NullSpace and Transpose functions.

NullSpace@Transpose@VD, Modulus −> 2D

880, 0, 0, 0, 0, 1, 0, 0, 1<, 80, 0, 1, 0, 0, 1, 0, 1, 0<,81, 0, 1, 0, 1, 0, 0, 0, 0<, 80, 1, 1, 1, 0, 0, 0, 0, 0<<
We  see  that  the  first  of  the  above  linear  dependencies  between  rows  of  V  reflect  two  identical
rows, but the third one does give an index set I  that can be used, namely I = 81, 3, 5< .

It leads to the values x = a1 a3 a5  and y = è!!!!!!!!!!!!!!!b1 b3 b5

x = a@@1DD ∗a@@3DD ∗a@@5DD
y = Hb@@1DD ∗b@@3DD ∗ b@@5DDL1ê2
GCD@x − y, nD

481907217

9576

41
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We conclude that p = 41 is a factor of n = 1271. Indeed 1271 = 31 µ 41.

n ê 41

31

É Quadratic Sieve

The complexity of this method is given by

e1.923.. Hln nL1ê3  Hln ln nL2ê3  operations.

As with the previous methods, we shall not explain all details of this factorization technique. Let n
be the number that we want to factor.

To  start  we  need  a  so-called  factor  base  S ,  which  means  that  S  is  a  list  of  k  primes  (which  k
primes will be determined later).

Let r = eè!!!n u  and let the polynomial f HxL  be defined by

 f HxL = Hx + rL2 - n = x2 + 2 r.x + r2 - n .

Note  that  r2 § n < Hr + 1L2 ,  so  0 § n - r2 < 2 r + 1 § 2 
è!!!n + 1.  It  follows  that  if  x  is  small  in

absolute value, then also f HxL  will be small (when compared to n).

For x = 0, ≤1, ≤2, …  define a  by a = x + r  and test b = Hx + rL2 - n  for smoothness with respect
to S , i.e. test if all prime factors of b  are in S . If so, we save the pair Ha, bL  in a list of pairs Hai, biL
with this property.

Note that ai
2 ª Hx + rL2 ª bi Hmod nL , just as in equation (9.10).

If  a  prime  p  divides  bi ,  then  p » HHx + rL2 - nL  for  some  known  value  of  x .  This  means  that
n ª Hx + rL2 Hmod pL  and thus that n  is a quadratic residue (QR) mod p .  This means that the only
prime  factors  that  will  appear  in  the  factorization  of  any  of  the  bi 's  will  have  Jacobi  symbolHn ê pL = 1. 

So,  we  let  the  factor  basis  S  consist  of  the  k  smallest  p j ,  1 § j § k ,  with  the  property  thatHn ê p jL = 1. We also add -1and 2 to S , because the bi 's may be negative and/or even.

Now that we know how to construct a list of pairs Hai, biL , satisfying

ai
2 ª bi Hmod nL ,

bi  is smooth with respect to S ,

we can continue with Step 3 in the algorithm described in the previous subsubsection.

We summarize the quadratic sieve method in the following figure.
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input : integer n.
make factor base S = 8−1, 2, p1, …, pk< with Hnê pjL = 1

find pairs Hai, biL with ai − dè!!!nt small,
ai
2 ≡ bi Hmod nL, and bi smooth w.r.t. S

find index set I such that‰
i∈I

 bi a perfect square

put x = ‰
i∈I

ai, y = "####################H¤i∈I biL
put d = gcd Hx − y, nL
if d < n then d is a factor of n

else retry with other I

Figure 9.4

Quadratic Sieve Factoring Algorithm 

We shall only give an example of the first two steps of the quadratic sieve method.

Example 9.7 

Let  n = 661643.  To  make  a  factor  base  with  10  primes,  we  use  the  Mathematica  functions  While,
Length, JacobiSymbol, Prime, and AppendTo.

n = 661643; k = 10;
SS = 8−1, 2<; i = 2;
While@Length@SSD − 2 < k,
If@JacobiSymbol@n, Prime@iDD == 1,
AppendTo@SS, Prime@iDDD; i = i + 1D;

SS

8−1, 2, 11, 19, 23, 31, 37, 47, 53, 59, 79, 89<
To  try  out  if  any  of  f H-5L, f H-4L, …, f H5L  is  smooth  with  respect  to  S  we  use  the  functions
TableForm, Table, and FactorInteger:

n = 661643; Clear@x, fD;
r = eè!!!!

nu; m = 5;

f@x_D := Hx + rL2 − n;
TableForm@ Table@ 8r + i, f@iD,

FactorInteger@f@iDD êê OutputForm<, 8i, −m, m<DD
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808 −8779 88−1, 1<, 88779, 1<<
809 −7162 88−1, 1<, 82, 1<, 83581, 1<<
810 −5543 88−1, 1<, 823, 1<, 8241, 1<<
811 −3922 88−1, 1<, 82, 1<, 837, 1<, 853, 1<<
812 −2299 88−1, 1<, 811, 2<, 819, 1<<
813 −674 88−1, 1<, 82, 1<, 8337, 1<<
814 953 88953, 1<<
815 2582 882, 1<, 81291, 1<<
816 4213 8811, 1<, 8383, 1<<
817 5846 882, 1<, 837, 1<, 879, 1<<
818 7481 887481, 1<<

We  see  that  we  have  only  found  three  pairs  Hai, biL ,  namely  H811, -3922L ,   H812, -2299L ,  andH817, 5846L .

So, we need to try a larger range of values. We leave the rest of this example as an exercise to the
reader (see Problem 9.7).

9.3 Some Unsafe Modes for RSA

9.3.1 A Small Public Exponent

We shall discuss here two particular dangers described in [Håst88] (see also [CoppFPR96]). The 
first one is the situation that more people have chosen the same (small) public exponent and that a 
sender wants to transmit the same message to all of them. The second danger is when a sender 
wants to transmit several mathematically related messages to the same receiver, who happens to 
have a small public exponent. 

Both dangers may appear farfetched to the reader, but since exponentiations modulo large 
numbers are still rather cumbersome, it remains very appealing in practical situations to select 
small public exponents. 

É Sending the Same Message to More Receivers Who All Have the Same Small Public Exponent

Suppose that Alice wants to send the same secret message m  to Bob, Chuck, and Dennis. Let the 
public modulus of these three people be given by the numbers nB , nC , and nD . Now assume that 
they all happen to have the same public exponent e = 3. The messages that Alice will transmit are

(9.11)  
cB ≡ m3 Hmod nBL for Bob,
cC ≡ m3 Hmod nCL for Chuck,
cD ≡ m3 Hmod nDL for Dennis.

RSA Based Systems 169



Almost certainly the three moduli will be coprime (otherwise at least two of moduli are 
compromised in a trivial way). The eavesdropper Eve, who intercepts cB , cC , and cD  can use the 
Chinese Remainder Theorem (Thm. A.19) to determine m3 Hmod nB nC  nDL  from (9.11).

Since it can be assumed that m < min 8nB, nC, nDL , also m3 < nB nC  nD  holds. So, the above 
means that Eve in fact has found the integer m3 . To compute m  is now straightforward.

Example 9.8 

Suppose that nB = 137703491, nC = 144660611, and nD = 149897933. Let the three intercepted messages 
be given by cB = 124100785, cC = 85594143, and cD = 148609330.

To solve the system of linear congruence relations

m3 ª cB Hmod nBL; m3 ª cC Hmod nCL; m3 ª cD Hmod nDL , 

with known right hand sides and known moduli, we use the Mathematica function 
ChineseRemainderTheorem. To this end we first have to load the package 
NumberTheory`NumberTheoryFunctions`.

<<NumberTheory`NumberTheoryFunctions`

nB = 137703491; nC = 144660611; nD = 149897933;
cB = 124100785; cC = 85594143; cD = 148609330;
mCubed = ChineseRemainderTheorem@8cB, cC, cD<, 8nB, nC, nD<D

1881563525396008211918161

We conclude that m3 ª 1881563525396008211918161 Hmod nB nC  nDL . Since m3 < nB nC  nD , we 
even have 

m3 = 1881563525396008211918161. 

To find m is now easy.

m = HmCubedL1ê3

123454321

That this outcome is correct can easily be checked by means of the Mod function.
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Mod@m3, nBD == cB
Mod@m3, nCD == cC
Mod@m3, nDD == cD

True

True

True

É Sending Related Messages to a Receiver with Small Public Exponent

Alice wants to send two secret messages, say m1  and m2  to Bob, who happens to have a public 
exponent eB  that is rather small. Let nB  be Bob's modulus. Now, assume that the two messages of 
Alice are related in a linear way, say m2 = a.m1 + b , where a  and b  are in nB  and assume further 
that eavesdropper Eve knows this linear relation. 

Coppersmith et al. [CoppFPR96] describe two surprising methods for Eve to recover the plaintext 
m . 

Direct Method

We shall first describe this method for the case e = 3.

Let the encryptions of m1  and m2  be denoted by c1 , resp. c2 . So, c1 ª m1
3 Hmod nBL  and 

c2 ª Ha.m1 + bL3 Hmod nBL . Then 

(9.12)  
b Hc2 + 2 a3 c1 - b3L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a Hc2 - a3 c1 + 2 b3L ª

3 a3 bm1
3 + 3 a2 b2 m1

2 + 3 ab3 m1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 a3 bm1

2 + 3 a2 b2 m1 + 3 ab3 ª m1 Hmod nBL.
With the Mathematica function Simplify one can verify these calculations as follows

Clear@a, b, c1, c2, m1, m2D;

SimplifyA b Hc2 + 2 a3 c1 − b3L
ccccccccccccccccccccccccccccccccccccccccccccccc
a Hc2 − a3 c1 + 2 b3L êê. 8c1 −> m13, c2 −> Ha∗ m1 + bL3<E

m1

A particular simple case is given by m1 = m  and m2 = m + 1, i.e. a = b = 1. Then (9.12) reduces to Hm + 1L3 + 2 m3 - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHm + 1L3 - m3 + 2

ª
3 m3 + 3 m2 + 3 m
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3 m2 + 3 m + 3
ª m Hmod nBL
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Example 9.9 

Suppose that nB = 477310661 and that the messages m1  and m2  are related by m2 ª 3 m1 + 5 Hmod nBL . So, 
a = 3 and b = 5. Let c1 = 477310661 and c2 = 5908795. Then m1  can be computed with the Mathematica 
functions Mod and Solve as follows

Clear@c1, c2, f, g, m1, m2, a, bD;
n = 477310661;
c1 = 5908795; c2 = 374480016;
a = 3; b = 5;
f = Mod@b Hc2 + 2 a3 c1 − b3L, nD;
g = Mod@a Hc2 − a3 c1 + 2 b3L, nD;
Solve@8f == g∗ m1, Modulus == n<, m1D

88Modulus → 477310661, m1 → 321321321<<
So, we have found m1 = 321321321. That this is indeed the solution can be verified quite easily as 
follows 

m1 = 321321321;
m2 = Mod@3∗ m1 + 5, nD
PowerMod@m1, 3, nD == c1
PowerMod@m2, 3, nD == c2

9342646

True

True

If a = b = 1 and eB > 3, a method like the above still exists. In fact, it can be shown [CoppFPR96] 
that polynomials PHmL  and QHmL  exist such that each of them can be expressed as rational 
polynomials in c1 ª me Hmod nBL  and c2 ª Hm + 1Le Hmod nBL  and such that QHmL = m.PHmL . For 
eb = 5 these polynomials are given by

PHmL = c2
3 + 2 c1 c2

2 - 4 c1
2 c2 + c1

3 - 2 c2
2 + 9 c1 c2 + 8 c1

2 + c2 - 2 c1 ,

QHmL = 9 c1 c2
2 - 9 c1

2 .

Again, one can check this with
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Clear@c1, c2, mD;
P = c23 + 2 c1∗c22 − 4 c12 c2 + c13 − 2 c22 +

9 c1∗c2 + 8 c12 + c2 − 2 c1; Q = 9 c1∗c22 − 9 c12;
Expand@P êê. 8c1 −> m3, c2 −> Hm + 1L3<D
Expand@Q êê. 8c1 −> m3, c2 −> Hm + 1L3<D

SimplifyA Q
cccc
P

êê. 8c1 −> m3, c2 −> Hm + 1L3<E

9 m2 + 54 m3 + 135 m4 + 171 m5 + 135 m6 + 54 m7 + 9 m8

9 m3 + 54 m4 + 135 m5 + 171 m6 + 135 m7 + 54 m8 + 9 m9

m

To find such a solution, write P = ‚
i+ j§e

pi, j c2
i  c1

j  and Q = ‚
i+ j§e

qi, j c2
i  c1

j . Next, substitute 

c2 = Hm + 1Le  and c1 = me  in P  and Q  to obtain two polynomials in m  of degree § e2 .  Now, 
equate the coefficients of m  in QHmL = m.PHmL . This gives 2 HHe + 1L + e + … + 2 + 1L =  

2 Je + 2
2

N = He + 2L He + 1L  linear equations in the coefficients of P  and Q . So, there is in fact a 

large solution space. 

Since the number of terms in PHmL  and QHmL  grows quadratic in e  the above approach will still be 
rather cumbersome for larger values of e .

Method through GCD calculation

For arbitrary values of e  there is a more direct way to determine m1  and m2  from c1  and c2 , when 
they satisfy a polynomial relation that is known to the eavesdropper. Suppose that 
m2 ª f Hm1L Hmod nBL . The idea is to compute the gcd of ze - c1  and H f HzLLe - c2 . Indeed, since m1  
is a zero of both polynomials, it follows that both are divisible by z - m1 . As a consequence, also 
the gcd will contain this factor. Almost certainly the gcd will not contain any other factors. 

We shall demonstrate this idea with an example. 

Example 9.10 

Let eB = 5, nB = 466883. Further suppose that the message m1  and m2  are related by m2 = 2 m1 + 3 and 
that they are encrypted into c1 = 66575, resp. c2 = 387933. We want to compute 
gcdHz5 - 66575, H2 z + 3L5 - 387933L  mod 466883. In general, this can not be done since nB  is not prime. 
Also Mathematica can not do this directly. We shall simply follow the polynomial version of Euclid's 
Algorithm step for step. Problems may arise, when numbers appear that are not coprime with n. This 
happens rarely and is not bad at all. Indeed, one almost always finds in this way a non-trivial factor of n, 
so the system will be broken!
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In the first step we calculate f1 = H2 z + 3L5 - 387933 and f2 = z5 - 66575 and then divide f1  by f2 . We use 
the Mathematica functions PolynomialMod and Expand.

n = 466883;
c1 = 66575; c2 = 387933;
f1 = Expand@H2 z + 3L5 − c2D
f2 = z5 − c1
f3 = PolynomialMod@f1 − 32 f2, nD

−387690 + 810 z + 1080 z2 + 720 z3 + 240 z4 + 32 z5

−66575 + z5

342061 + 810 z + 1080 z2 + 720 z3 + 240 z4

To keep the division process more manageable, we normalize f3  by multiplying it with the 
multiplicative inverse of its leading coefficient (mod nB ). We use the Mathematica function 
PowerMod.

InverseLeadCoeff = PowerMod@240, −1, nD
f3 = PolynomialMod@InverseLeadCoeff∗f3, nD

258731

376877 + 408526 z + 233446 z2 + 3 z3 + z4

We continue with this division process until fk = 0 for some k . The gcd will be given by fk-1 .

f4 = PolynomialMod@f2 − f3∗Hz + 466880L, nD

130290 + 381818 z + 291812 z2 + 233446 z3

InverseLeadCoeff = PowerMod@233446, −1, nD
f4 = PolynomialMod@InverseLeadCoeff∗f4, nD

103752
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184581 + 292352 z + 116723 z2 + z3

f5 = PolynomialMod@f3 − f4∗Hz + 350163L, nD

355162 + 4681 z + 203714 z2

InverseLeadCoeff = PowerMod@203714, −1, nD
f5 = PolynomialMod@InverseLeadCoeff∗f5, nD

349909

397084 + 98465 z + z2

f6 = PolynomialMod@f4 − f5∗Hz + 18258L, nD

451016 + 87731 z

InverseLeadCoeff = PowerMod@87731, −1, nD
f6 = PolynomialMod@InverseLeadCoeff∗f6, nD

132235

466340 + z

f7 = PolynomialMod@f5 − f6∗Hz + 99008L, nD

0

We conclude that k = 7 and that

gcdHz5 - 66575, H2 z + 3L5 - 387933L ª z + 466340 ª z - 543 (mod 466883).

Therefore, the secret message m is 543. One can check this with the Mathematica function 
PowerMod.
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m = 543;
PowerMod@m, 5, nD == c1
PowerMod@2 m + 3, 5, nD == c2

True

True

The above approach of finding m  by computing a gcd is still practical for e  up to 32 bits long 
([CoppFPR96]). 

9.3.2 A Small Secret Exponent; Wiener's Attack

Wiener [Wien90]  shows that  it  is  unsafe to use  the RSA system with a small  secret  exponent  d ,
where "small" means something like è!!!n . This observation is of importance, because often one is
inclined  to  reduce  the  work  load  of  the  exponentiation,  by  choosing  a  small  exponent.  For
instance,  if  a smart card is used to sign messages (see Subsection 9.1.3),  it  will  have to compute
exponentiations cd Hmod nL . If the card has limited computing power, a relatively small value of d
(of course not so small that d  can be found by exhaustive search) would be handy. 

We first show that we can replace (9.4) by the slightly stronger relation

e.d ª 1 Hmod lcmHp - 1, q - 1LL ,

where  lcm denote  the  least  common multiple.  We remark  that  p - 1  and  q - 1  both  divide  fHnL
and  so  does  lcmHp - 1, q - 1L .  Now  note  that  for  a  correct  functioning  of  the  RSA  system,  one
only  needs  that  e.d ª 1 Hmod p - 1L  and  e.d ª 1 Hmod q - 1L .  The  reason  is  that  these  two
congruences are sufficient to prove that (9.5) and (9.6) hold modulo p  resp. modulo q .  From the
Chinese Remainder Theorem it then follows that (9.5) and (9.6) also hold modulo n . We conclude
that it is sufficient that e.d ª 1 Hmod lcmHp - 1, q - 1LL . 

The subsequent cryptanalysis  will  deal with this most general case. It  is  the cryptanalyst's aim to
find d  satisfying this relation (and also p  and q). The above congruence can be rewritten as 

e.d = 1 + K. lcmHp - 1, q - 1L = 1 + KÅÅÅÅÅÅG  Hp - 1L Hq - 1L ,

where  G = gcdHp - 1, q - 1L .  If  K  and  G  have  a  factor  in  common,  the  above  relation  may  be
further simplified to

(9.13)  e.d = 1 + kÅÅÅÅÅg  Hp - 1L Hq - 1L , with gcdHk, gL = 1.
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One should realize that often G  (and thus also g ) will be very small. In a typical RSA system, p
and q  will be safe primes, meaning that p - 1 = 2. p '  and q - 1 = 2. q ' ,  with p '  and q '  prime. So,
in this case G = 2 and g = 1 or 2.

Let us rewrite (9.13) by dividing both hands by d.n  ( = d.p.q) and rearranging the terms:

(9.14)  kÅÅÅÅÅÅÅÅÅd.g = eÅÅÅÅn + kÅÅÅÅÅÅÅÅÅd.g  I 1ÅÅÅÅÅp + 1ÅÅÅÅq - 1ÅÅÅÅn M - 1ÅÅÅÅÅÅÅÅÅd.n .

What  we  like  to  show  is  that  k ê Hd.gL  is  a  convergent  of  the  continued  fraction  of  the  known
rational  e ê n .  Since  these  continued  fractions  are  easy  to  compute,  it  is  then  possible  to  find  the
secret exponent d  (and k  and g ).

Theorem 9.2
Assume that p ~ q ~

è!!!n ,  e ~ n , and  2 g < d . 
Then  k ~ Hg.dL  and  the  numbers  d, k, g, p ,  and  q  can  be  found  from  the  continued
fraction of e ên  for secret exponents d  up to n1ê4 . 

Remark 1:

We shall be a little sloppy with the use of the ~ symbol. What we mean with a ~ b  is something
like "a  and b  have the same order of magnitude".

Remark 2:

We already discussed the likelihood that g  is small. If d  is selected as a small integer, the value of
e  will  be  like  that  of  a  random  number  in  the  range  81, 2, …, lcmHp - 1, q - 1L< ,  so  also  the
assumption  e ~ n  is  very  reasonable.  The  same holds  for  p ~ q ~

è!!!n (see  the  discussion  around
Example 9.2).

Remark 3:

Relation  (9.14)  implies  that  kÅÅÅÅÅÅÅÅÅd.g > eÅÅÅÅn ,  therefore,  it  suffices  to  check only the  odd convergents of
e ê n .

Proof of Theorem 9.2:

If e ~ n  then k ~ g.d  by (9.14), since the other terms there all tend to zero. It further follows from
(9.14) that

| kÅÅÅÅÅÅÅÅÅd.g - eÅÅÅÅn | = … kÅÅÅÅÅÅÅÅÅd.g  I 1ÅÅÅÅÅp + 1ÅÅÅÅq - 1ÅÅÅÅn M - 1ÅÅÅÅÅÅÅÅÅd.n …  § k+gÅÅÅÅÅÅÅÅÅÅÅÅÅd.g.n + kÅÅÅÅÅÅÅÅÅd.g  I 1ÅÅÅÅÅp + 1ÅÅÅÅq M
 ~ d+1ÅÅÅÅÅÅÅÅÅÅÅd.n + 1ÅÅÅÅÅÅÅÅÅÅè!!!!n ~ 1ÅÅÅÅÅÅÅÅÅÅè!!!!n .

Since 2 g.d < d2 < n1ê2 , we conclude that

| kÅÅÅÅÅÅÅÅÅd.g - eÅÅÅÅn | § 1ÅÅÅÅÅÅÅÅÅÅè!!!!n < 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Hd.gL2 .

It follows from Theorem A.35 that the rational number k ê Hd.gL  will appear as a convergent in the
continued fraction of e ê n . Since gcdHk, gL = 1  and since (9.13) also implies that gcdHk, dL = 1, it
follows from Corollary A.32 that k  and d.g  will be obtained from one of the convergents. Because
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g  is very small, we can find g  and d  with a small trial and error effort.

From (9.13)  one  can now compute Hp - 1L Hq - 1L  and since  p.q  is  known,  one  can also  find the
factorization of n  into p  and q .

Ñ

Example 9.11 

Consider n = 9998000099 and e = 6203014673. Let us compute the successive convergents of e ên. We first
load  the  Mathematica  package  NumberTheory`ContinuedFractions`  and  then  we  can  use  the
functions ContinuedFraction and FromContinuedFraction (use Normal in Mathematica 3). 

<<NumberTheory`ContinuedFractions`

n = 9998000099; e = 6203014673;
FromContinuedFraction@ContinuedFraction@eên, 2DD
FromContinuedFraction@ContinuedFraction@eên, 4DD
FromContinuedFraction@ContinuedFraction@eên, 6DD
FromContinuedFraction@ContinuedFraction@eên, 8DD

1

2
cccc
3

5
cccc
8

18
ccccccc
29

Let  us  check  why  the  last  one  does  not  lead  to  d  (the  other  cases  are  even  simpler).  Writing
18 ê29 = k ê Hd.gL  leads  to  k = 18,  g = 1,  and d = 29.  An easy  argument  to  show that  this  is  not
the  right  value  of  d  is  an  encryption  followed  by  a  decryption,  not  resulting  into  the  original
message. We use the function PowerMod.

m = 123; d = 29;
c = PowerMod@m, e, nD;
PowerMod@c, d, nD == m

False
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Let us try the next convergent.

FromContinuedFraction@ContinuedFraction@eên, 10DD

85
cccccccccc
137

Writing  85 ê137 = k ê Hd.gL  leads  to  k = 85,  g = 1,  and  d = 137.  From  (9.13)  we  getHp - 1L Hq - 1L = 9993745862.

k = 85; g = 1; d = 137;
He ∗d − 1L gêk

9997800120

Together with n = p.q = 9998000099 we get p + q - 1 = p.q - Hp - 1L Hq - 1L =

n − He∗d − 1L gêk

199979

So,  p  and  q  are  the  roots  of  Hx - pL Hx - qL = x2 - 199980 x + 9998000099.  They  can  be  found
with the function Solve

Clear@xD;
Solve@x2 − 199980 x + 9998000099 == 0, 8x<D

88x → 99989<, 8x → 99991<<
Indeed, 99989 µ 99991 = n.

99989∗99991 == n

True
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9.3.3 Some Physical Attacks

Clearly  physical  attacks  on  cryptographic  implementations  are  beyond  the  scope  of  this
introduction. Nevertheless, two such attacks will be mentioned briefly, because of their relation to
theory that we have explained here.

É Timing Attack

Suppose  that  RSA  is  implemented  on  a  hardware  device  (like  a  smartcard),  and  that  the  secret
exponentiation  (m Ø Hmd mod nL  or  c Ø Hcd mod nL)  in  the  RSA process  follows  a  computational
scheme  of  the  type  explained  in  Subsection  8.1.1,  i.e.  any  method  that  consists  of  repeated
squarings and/or multiplications. See for instance Example 8.1.3.

It  is  further  assumed  in  this  attack  (see  [Koch96])  that  an  observer  can  measure  the  electro-
magnetic  radiation  or  power  consumption  of  the  device  and  can  clock  the  length  of  the  various
calculations. Typically, a multiplication takes longer than a simple squaring operation.

In  this  way,  the  attacker  can  determine  the  particular  sequence  of  squarings  and  multiplications
that the program went through. Based on the outcome, he can simply compute the secret exponent
d  stored on the card. 

For  instance,  if  the  measurements  give  Sq.Sq.M.Sq.Sq.M.Sq.Sq.M.Sq.M,  where  Sq  stands  for
Squaring and M for Multiplying, we get the exponent from

Clear@aD;
i
k
jjjjj
i
k
jjjjJJIHHaL2L

2
 aM2N

2
 aN

2y
{
zzzz
2

 a
y
{
zzzzz
2

 a

a171

É The "Microwave" Attack

Suppose again that RSA is implemented on a hardware device (say a smartcard), but now assume
that the secret exponentiation (m Ø Hmd mod nL  or c Ø Hcd mod nL) in the RSA process makes use
of  the  Chinese  Remainder  Theorem  (Thm.  A.19).  See  for  instance  Example  9.1,  Part  4.  So,  we
assume  that  two  independent  exponentiations  take  place  on  this  device:  one  modulo  p  and  one
modulo q , where n = p.q .

Now suppose that this RSA implementation is used to sign data (this is the simplest version of the
attack,  cfr.  [LensA96]  and [BoDML97]).  So,  typically,  the  attacker  presents  a  message m  to  the
smart  card  and  would  normally  expect  c = Hmd mod nL  back.  However,  the  attacker  submits  the
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smart  card,  when  it  is  making  its  calculations,  to  the  right  kind  of  radiation  ("just  put  it  in  a
microwave"  is  an  oversimplification  of  this  attack)  and  hopes  that  in  one  of  the  two
exponentiations an incorrect calculation will be made.

For instance, the smart card calculates c1 = Hmd mod pL  correctly, but gets a wrong value for c2 , 
i.e. c2 ' ∫ Hmd mod qL . The reader should remember that in the smart card values a  and b  are stored 
satisfying: a ≡ 1 Hmod pL

a ≡ 0 Hmod qL: b ≡ 0 Hmod pL
b ≡ 1 Hmod qL

So,  the  card  will  output  c ' = Ha.c1 + b.c2 ' mod nL .  Now  note  that  since  b ª 0 Hmod pL  and
a ª 0 Hmod qL  

c - c ' ª a.c1 - a.c1 ª 0 Hmod pL ,

c - c ' ª b.c2 - b.c2 ' ª bHc2 - c2 ' L T 0 Hmod qL .

It follows that gcdHc - c ', nL  gives a non-trivial factorization of n . 

It depends on the application whether the attacker can let the card give the correct value of c  too,
for  instance  by  having  the  card  sign  m  again  without  introducing  any  radiation).  A  way  around
this  problem  is  to  let  the  attacker  select  a  message  c ,  compute  m = Hce mod nL  with  the  public
exponent  e  and submit  m  when attacking  the  card.  In this  way,  the correct  value of c  is  already
known beforehand. 

Example 9.1 (Part 6)

We  continue  with  the  parameters  of  Example  9.1,  so  pB = 9733,  qB = 10177,   nB =99052741,
eB = 81119923, and dB = 17089915. 

Further, a = 45287650 and b = 53765092 (see Ex. 9.1, Part 4).

When, m = 12345678, the correct value of c is given by

n = 99052741; e = 81119923;
c = 11111111;
m = PowerMod@c, e, nD

24307114

So, when signing m = 24307114 the card should produce c = 11111111. 

In his calculations the card computes numbers c1  and c2  and gets c as follows:
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p = 9733; q = 10177;
d = 17089915; d1 = Mod@d, p − 1D; d2 = Mod@d, q − 1D;
m1 = Mod@m, pD; m2 = Mod@m, qD;
a = 45287650; b = 53765092;
c1 = PowerMod@m1, d1, pD;
c2 = PowerMod@m2, d2, qD;
c = Mod@a∗c1 + b∗c2, nD

11111111

However,  when  c1  is  calculated  incorrectly  due  to  radiation,  say  c1 ' = 8765,  the  card  will
produce  an  incorrect  value  c '  for  c = 11111111  and  the  gcd  of  the  difference  of  these  two
numbers with n will yield a factor of n.  

c1Prime = 8765;
cPr = Mod@a∗c1Prime + b∗c2, nD
GCD@c − cPr, nD

92608527

10177

The number 10177 is indeed one of the two factors of n.

9.4 How to Generate Large Prime Numbers; Some Primality Tests

9.4.1 Trying Random Numbers

To  make  the  RSA  system  practical,  one  needs  an  efficient  way  to  generate  very  long  prime
numbers. The following pseudo-algorithm describes a probabilistic way of how this can be done.

Algorithm 9.3 Method to generate an l -digits long prime number

Step 1:  Write down a random, odd integer u  of l  digits long.

Step 2:  Test the candidate u  for primality. 
 If u  is not prime, go back to Step 1, otherwise STOP. 
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In  the  next  two paragraphs  we  shall  discuss  several  ways  to  test  an  integer  u  for  primality.  The
first  two  tests  do  not  give  an  absolute  guarantee  that  u  is  prime,  but  the  probability  that  a
composite number u  meets the test can be made arbitrary small. The second test (of which only an
outline will be given in Section 9.3.3) can guarantee the primality, but it is much slower. For other
tests we refer the reader to [Knut81], Section 4.5.4.

Example 9.12

In Mathematica one can use the functions Random, PrimeQ, and While to simulate the above algorithm.
Note that the parity of u is not tested below (this is not an essential part of the above algorithm anyway).

u = 1; l = 3;
att = 0;
While@PrimeQ@uD == False, att = att + 1;

u = Random@Integer, 810l−1, 10l<DD;
Print@"prime number is ", uD
Print@att, " attemptHsL"D

prime number is 907

7 attemptHsL
How often does one expect  to  have to go through Steps 1 and 2 in the above "algorithm" before
obtaining a prime? To answer this question we have to know the fraction of the prime numbers in
the set of odd, l-digit numbers. To this end we quote the Prime Number Theorem (Th. A.2).

Theorem 9.4
Let pHxL  count the number of primes less than or equal to x  (see Definition A.1). Then

limxØ¶
pHxLÅÅÅÅÅÅÅÅÅÅÅÅÅxêln x = 1

With the Prime Number Theorem one can quite easily obtain an approximation of the fraction of
odd, l-digit numbers that are prime. One gets

pH10lL-pH10l-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH10l-10l-1Lê2 º
P.N .T . 10l

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ln 10l - 10l-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ln 10l-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH10l-10l-1Lê2 = 2 H9 l-10LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ9. l.Hl-1L.ln 10 º 2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅl.ln 10

For instance, with l = 100, one gets

l = 100;
EstimateProb@l_D =

2 H9∗l − 10LêH9∗l∗Hl − 1L∗Log@10DL;
N@EstimateProb@100D, 3D
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0.00868

Since the reciprocal of this number is about 115, we estimate that the expected number runs in the
prime generation algorithm above will be 115. 

9.4.2 Probabilistic Primality Tests

É The Solovay and Strassen Primality Test

Let p  be a prime number. We recall from Definition A.9 that an integer u  with p I u  (read: p  does
not divide u), is called a quadratic residue (QR) modulo p , if the equation

x2 ª u Hmod pL ,

has an integer solution. If p I u  and this congruence relation does not have an integer solution, u
will be called a quadratic non-residue modulo p  (NQR). The well known Legendre symbol Hu ê pL
(see Definition A.10) is defined byI uÅÅÅÅÅp M  = 

looomnooo +1
-1

0
    

if u is a quadratic residue mod p,
if u is a quadratic nonresidue mod p,
if p divides u.

The Jacobi symbol H uÅÅÅÅÅm L  (see Definition A.11) generalizes the Legendre symbol to all odd integers
m . Let m = Pi HpiLei  where the pi 's are (not necessarily distinct) odd primes. Then, H uÅÅÅÅÅm L  is defined
by I uÅÅÅÅÅÅm M = ‰

i
I uÅÅÅÅÅÅÅpi

Mei

In Section A.4, the reader can find all kinds of properties of the Legendre symbol and the Jacobi
symbol.  These properties  culminate in  an extremely efficient  algorithm to compute the values of
these  symbols.  An example  can be found there.  In Mathematica,  both  symbols  can be computed
with the JacobiSymbol function:

u = 12703; m = 16361; JacobiSymbol@u, mD

1

As a matter of fact, since m  in the example above, is a prime number, it is quite easy to compute a
"square-root" of u . For a discussion of how this can be done, we refer the reader to Section 9.5. In
Mathematica one can simply use the  Solve function.
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Clear@xD;
Solve@8x2 == 12703, Modulus == 16361<, xD

88Modulus → 16361, x → 7008<, 8Modulus → 16361, x → 9353<<
Indeed, H≤7008L2 ª 12703 Hmod 16361L , as can be checked with the PowerMod function.

PowerMod@7008, 2, 16361D

12703

To find a solution of the equation x2 ª u Hmod mL  for composite integers  m  is,  in  general,  a very
difficult  problem  and  intractable  for  large  values  of  m  (see  [Pera86]  for  a  discussion  of  this
problem). 

If m  is the product of different primes and this factorization is known (!), one can find the square
root of u  by finding the square root of u  modulo all the prime factors of m  and then combine the
result  by  means  of  the  Chinese  Remainder  Theorem.  In  Section  9.5,  this  method  will  be
demonstrated.  When  m  has  higher  prime  powers  in  its  factorization,  matters  get  much  more
complicated. 

Let p  be a prime number, p > 2. We recall from Theorem A.23 that for all integers u :

(9.15)  I uÅÅÅÅÅp M ª uHp-1Lê2  (mod p).

The Solovay and Strassen Algorithm [SolS77] relies on the following theorem.

Theorem 9.5
Let m  be an odd integer and let G  be defined by

G = 9 0 § u < m » gcdHu, mL = 1 and I uÅÅÅÅÅÅm M ª uHm-1Lê2 Hmod mL =
Then

(9.16)  » G » = m - 1 if m  is prime. 

(9.17)  » G » § Hm - 1L ê2 if m  is not a prime, 

Proof:  If  m  is  prime,  every  integer  0 < u < m  satisfies  (9.15),  and  has  gcd  1  with  m ,  so» G » = m - 1 in this case. 

So,  we  now  consider  the  case  that  m  is  not  a  prime  number.  Clearly,  G  is  a  subgroup  of  the
multiplicative group
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m
* = 8 0 § u < m » gcdHu, mL = 1 <.

It follows (from Theorem B.5) that the cardinality of G  divides that of m
* . So, if G ∫ m

*  we can
conclude  that  » G » § » m

* » ê 2 = jHmL ê2 § Hm - 1L ê 2.This  would  prove  the  theorem.  We
conclude, that it suffices to prove the existence of an element u  in m

*  with H uÅÅÅÅÅm L T uHm-1Lê2 Hmod mL .

We distinguish two cases. In [SolS77], the authors omit to consider the case that m  is a square. In
the proof below, which is  due to J.W. Nienhuys (private  communication), Case 1 will  cover this
possibility.

Case  1:  The  number  m  is  divisible  by  at  least  the  square  of  some  prime  number.  We  write
m = pr.s  with p  an odd prime, r ¥ 2, and gcdHp, sL = 1. 

Let u  be a solution of the system simultaneous congruence relations:

(9.18)  u ª 1 + p Hmod prL ,

(9.19)  u ª 1 Hmod sL .

By the Chinese Remainder Theorem (Thm. A.19) such a solution u  exists  and is  unique modulo
m . Clearly, gcdHu, prL = gcdHu, sL = 1, so gcdHu, mL = 1, i.e. u œ m

* .

It  follows  from (9.18),  the  binomial  theorem,  and  an  argument  similar  to  the  proof  of  Theorem
B.26  that um ª H1 + pLm ª 1 Hmod prL . By (9.19) we also have that um ª 1 Hmod sL . By the Chinese
Remainder Theorem we now have that um ª 1 Hmod mL . 

Since  u T 1 Hmod mL  by  (9.18),  it  also  follows  that   um-1 T 1 Hmod mL .  This  in  turn  implies  that
uHm-1Lê2 T ≤1 Hmod mL ,  which implies that u  can not satisfy (9.15). We conclude that this element
u  is a member of m

* , but not of G .

Case 2: m  is the product of s  distinct prime numbers, say m = p1 p2 … ps , with s ¥ 2.

Let a  be a quadratic non-residue modulo p1 . By the Chinese Remainder Theorem there is a unique
integer u  modulo m  satisfying the system simultaneous congruence relations

(9.20)u ª a Hmod p1L,
(9.21)  u ª 1 Hmod piL,  2 § i § s .

Clearly, gcdHu, piL = 1  for 1 § i § s , so u œ m
* . To show that u – G , we need to show that (9.15)

does not hold.

Since u ª 1 Hmod piL,   2 § i § s , it follows that I uÅÅÅÅÅÅpi
M = 1  for these indices. But I uÅÅÅÅÅÅÅp1

M = I aÅÅÅÅÅÅÅp1
M = -1,

because  a  is  NQR.  From  the  definition  of  the  Jacobi  symbol  (Def.  A.11)  it  follows  thatH uÅÅÅÅÅm L = -1. In particular this implies that H uÅÅÅÅÅm L ª -1 Hmod piL  for any 2 § i § s .

On the other hand, (9.21) implies that uHm-1Lê2 ª 1 Hmod piL  for any 2 § i § s . HenceHu êmL T uHm-1Lê2 Hmod piL
for any i , 2 § i § s , and a fortiori (9.15) does not hold.

Ñ
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We can now describe the Solovay and Strassen Algorithm.

Algorithm 9.6 Solovay and Strassen primality test
input odd integer m  (candidate) 

security parameter k
initialize prime=True; i=1;
while prime and i § k  do

begin
select a random integer u, 1 < u < m ;
if gcdHu, mL ∫ 1 or Hu êmL T uHm-1Lê2 Hmod mL  then prime=False;
i=i+1;
end

output prime

In the algorithm above,  k  can be any positive  integer.  The probability  that  k   independently  and
randomly  selected  elements  u  will  pass  the  two  tests,  given  in  Algorithm  9.6,  while  m  is  not
prime, is less than or equal to 2-k  by Theorem 9.5. By taking k  sufficiently large, the probability
that a non-prime number survives the above algorithm can be made arbitrary small. 

See  however  the  Miller-Rabin  test  in  the  next  subsubsection,  where  we  have  4-k  as  probability
that a composite number is not detected after k  tests.

Example 9.13

To test if the odd number m = 1234563  is prime we use the Mathematica functions GCD, JacobiSymbol,
PowerMod, and Mod:

m = 1234563;
u = 1212121;
GCD@u, mD == 1
Mod@JacobiSymbol@u, mD − PowerMod@u, Hm − 1Lê 2, mD, mD == 0

True

False

The reader is invited to test m = 104729 for primality.

É Miller-Rabin Test

The  Miller-Rabin  test  [Mill76],  [Rabi80a]  is  based  on  the  fact  (see  Theorem  B.14)  that  the
equation x2 ª 1 Hmod pL  has only two solutions: x ª ≤1 Hmod pL .

So, let m  be an odd integer that we want to test for primality. Assuming for a moment that m  is in
fact  prime,  we  have  by  Fermat's  Theorem  (Thm.  A.15)  that  any  integer  a  with  gcdHa, mL = 1
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satisfies am-1 ª 1 Hmod mL .

Since  m - 1  is  even,  it  follows  that  aHm-1Lê2 ª ≤1 Hmod mL .  If   aHm-1Lê2  happens  to  be  +1  andHm - 1L ê2  is  even,  we  can  repeat  the  argument,  so  in  this  case  we  conclude  that
aHm-1Lê4 ª ≤1 Hmod mL , etc. In this way, one can prove the following lemma.

Lemma 9.7
Let p  be a prime and write p - 1 = a .2 f ,  with a  odd.  Let u  be an integer in between 1
and p - 1. Then 
either ua ª 1 Hmod pL
or ua .2i

ª -1 Hmod pL  for some 0 § i < f .

To test an odd integer m  for primality we proceed as follows. First we write m - 1 = a .2 f , with a
odd.  Next  we  pick  a  random  integer  u ,  2 § u < m ,  and  compute  from  left  to  right
ua, ua .2, …, ua .2 f . As soon as one of these numbers is not in 8-1, 1< , while the next one is +1, or
if ua .2 f

T 1 Hmod mL  we may conclude that m  is composite and we can stop. 

We repeat the test k  times, where k  is a security parameter, that will be discussed in a moment.

Let  m  be  an  integer  and let  u  be  such  that  ua .2 j
ª 1 Hmod mL ,  j ¥ 1,  while  ua .2 j-1

T ≤1 Hmod mL .
Then u  is called a strong witness to the composedness of m . It gives a proof that m  is composite.

On  the  other  hand,  let  m  be  composite  and  let  u  be  an  integer  that  satisfies  ua ª 1 Hmod mL  or
ua .2 j

ª -1 Hmod mL  for some 0 § j § f - 1, then this u  is called a strong liar (to the primality) of
m . 

For an efficient primality test we want composite numbers to have as few strong liars as possible.

Algorithm 9.8 Miller-Rabin primality test
input odd integer m  (candidate) 

security parameter k
initialize prime=True; i=1;
write m - 1 = a .2 f , a  odd.
while prime and i § k  do

begin
select a random integer u, 1 < u < m - 1;
compute x ª Hua mod mL
if x T ≤1 Hmod mL  then

begin put j = 1
while x T ≤1 Hmod mL  and j § f - 1
do        begin x ≠ Hx2 mod mL

  if x ª 1 Hmod mL  then prime=False
  j ≠ j + 1
  end

if x T -1 Hmod mL  then prime=False
 end

i = i + 1;
end

output prime
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Example 9.14 

Let  m = 7933. Then m - 1 = 1983.22 . Let us pick a random u  and compute u1983.2i  for i = 0, 1, 2. We use
the  Mathematica  functions  While  and  EvenQ  to  write  m - 1  as  a .2 f  and  use  Random,  PowerMod,
Print, and Do for the actual test.

m = 7933;
f = 0; a = m − 1; While@EvenQ@aD, f = f + 1; a = aê2D;
8a, f<
u = Random@Integer, 81, m − 2<D
x = PowerMod@u, a, mD;
Do@8Print@xD, x = Mod@x2, mD<, 8i, 0, f<D

81983, 2<
4225

7932

1

1

We see that no matter how often we run this, we shall always get H+1, +1, +1L  or H-1, +1, +1L ,
or H*, -1, +1L  .

Example 9.15 

Let m = 429. A strong witness of the composedness of m is given by the choice u = 34, as we can see below.
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m = 429;
f = 0; a = m − 1; While@EvenQ@aD, f = f + 1; a = aê2D;
8a, f<
u = 34
x = PowerMod@u, a, mD;
Do@8Print@xD, x = Mod@x2, mD<, 8i, 0, f<D

8107, 2<
34

265

298

1

What remains to be done is to give an estimate of the fraction of strong liars modulo a composite
number.  The  next  theorem says  that  this  fraction  is  at  most  1/4.  This  means  that  the  probability
that  a  composite  number  will  not  be  detected  after  k  runs  of  the  Miller-Rabin  test  is  at  mostH1 ê 4Lk .  This  compares  very  favorably  with  the  Solovay  and  Strassen  primality  test  where  this
probability can only be upperbounded by H1 ê2Lk .

Theorem 9.9
Let m  be a composite number, m ∫ 9. Then the number of strong liars in between 1 and
m - 1 is at most jHmL ê4, where j denotes Euler's totient function.
In  other  words:  the  probability  that  after  k  runs  Algorithm  9.8  has  not  established  the
composedness of a non-prime m  is at most 4-k .

The proof of Theorem 9.8 (see [Moni80] or [Rabi80a]) is very technical and does not give further
insight to the reader of this introduction.

If m = 9, jHmL ê 4 will be 6 ê4, which is less than the two "strong liars" -1 and +1.

9.4.3 A Deterministic Primality Test

Primality tests that prove in a deterministic way that a certain is prime or not are of course much
slower than probabilistic algorithms of the type discussed in the previous subsection.

We  shall  now  explain  the  idea  behind  the  deterministic  primality  test  of  H.  Cohen  and  H.W.
Lenstra  jr.  [CohL82].  This  test  is  an  improvement  of  [AdPR83].  We  shall  not  give  a  complete
description  of  this  test.  That  would  involve  too  much  advanced  and  deep  number  theory.  We
closely follow the excellent introductory article by Lenstra [LensH83].
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We start by quoting Fermat's Theorem (Thm. A.15).

Theorem 9.10 Fermat
Let m  be a prime number and let a  be any integer. Then

(9.22)  am ª a Hmod mL .

Let  m  be  an  integer  that  we  want  to  test  for  primality.  A  single  integer  a  that  does  not  satisfy
(9.22), proves that m  is not a prime number.

Unfortunately,  the  opposite  is  not  true.  For  instance,  m = 561  satisfies  (9.22),  while
m = 3 µ 11 µ 17.  To  see  this  we  first  compute  lcmHjH3L, jH11L, jH17LL

=
Thm.A .17 lcmH2, 10, 16L = 80 . Let a  be coprime with 561. It follows from Euler's Theorem (Thm.

A.14)  that  a80  is  congruent  to  1  modulo  each  of  the  three  prime  divisors  of  561.  The  Chinese
Remainder  Theorem  (Thm.  A.19)  now  implies  that  a80 ª 1 Hmod 561L .  Hence,
a561 ª a.Ha80L7 ª a Hmod 561L . 

For the values of a  that have a factor in common with 561, (9.22) can be proved in a similar way.

The reader may want to verify the above with the Mathematica  functions FactorInteger  and
PowerMod:

m = 561; FactorInteger@mD
a = 543;
PowerMod@a, m, mD == a

883, 1<, 811, 1<, 817, 1<<
True

Composite  integers  m  with  the  property  that  am-1 ª 1 Hmod mL ,  for  all  a  with  gcdHa, mL = 1,  are
commonly called Carmichael numbers. 

The converse of a slightly stronger statement than Theorem 9.10 does hold however. In the sequel,Ha ê mL  denotes, as usual, the Jacobi symbol.

Theorem 9.11
An odd integer m  is prime if and only if for all integers a

gcdHa, mL = 1 ï aHm-1Lê2 ª Ha êmL Hmod mL .

Proof:  That the relation above holds for prime numbers was already remarked on in (9.15).  The
converse was first proved by Lehmer [Lehm76], but it also follows directly Theorem 9.5.
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Ñ

The above theorem is of course not a very efficient primality test for numbers that are more than
100 digits long. Lenstra offers the following "attractive" alternative.

Theorem 9.12
An odd integer m  is prime if and only if every divisor d  of m  is a power of m .

Proof:  This  statement   is  completely  trivial,  since  d = 1 = m0  and  d = m = m1  are  the  only
divisors of a prime number m . All other numbers in between 1 and m  can not be written as power
of m .

Ñ

Clearly it is not this theorem that we want to use as a primality test, but a variation of it does turn
out  to  be very powerful.  We shall  show that  under certain conditions every divisor  of m  looks a
little bit like a power of m .

Theorem 9.13
Let m  be an integer m  that is coprime with 6. Assume further that

(9.23)  Hu êmL ª uHm-1Lê2 Hmod mL for u = -1, 2, and 3,

(9.24)  aHm-1Lê2 ª -1 Hmod mL for some integer a .

Then, for each d  dividing m

(9.25)  d ª m j Hmod 24L for some non-negative integer.

In fact, (9.19) can be strengthened to

(9.26)  d ª m j Hmod 24L for j = 0 or 1.

Condition  (9.24)  can  not  be  omitted  in  the  theorem  above.  Indeed,  m = 1729 = 7 µ 13 µ 19  does
satisfy (9.23), but does not satisfy (9.25). Note that m ª 1 Hmod 24L , therefore, no power of m  will
ever be equal to one of the prime divisors of m .

All  these  statements  can  be  checked  with  the  Mathematica  functions  FactorInteger,
JacobSymbol, PowerMod, and Mod:
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m = 1729; FactorInteger@mD
Mod@m, 24D
Mod@JacobiSymbol@−1, mD − PowerMod@−1, Hm − 1Lê 2, mD, mD == 0
Mod@JacobiSymbol@2, mD − PowerMod@2, Hm − 1Lê 2, mD, mD == 0
Mod@JacobiSymbol@3, mD − PowerMod@3, Hm − 1Lê 2, mD, mD == 0

887, 1<, 813, 1<, 819, 1<<
1

True

True

True

Before  we  prove  Theorem  9.13,  we  shall  illustrate  how  it  can  be  used  to  test  the  primality of
integers m ,  24 < m < 242 .  After  the proof we shall  discuss generalizations  of Theorem 9.13, that
yield efficient primality tests for larger values of m .

Algorithm 9.14 (Cohen and Lenstra limited primality test)
input m , 24 < m < 242 ,
initialize prime=True,
test 1: if gcdHm, 6L ∫ 1 then prime=False
test 2: if Hu êmL T uHm-1Lê2 Hmod mL for u = -1, 2, or 3

then prime=False
test 3: find an integer a  with aHm-1Lê2 ª -1 Hmod mL ;

if no such integer a  exists then prime=False
test 4: compute d = Hm mod 24L . 

if d > 1 and d » m  then prime=False
output prime

Proof:  The  first  matter  to  be  addressed  is  Test  3.  If  m  is  prime,  the  probability  that  a  random
1 < a < m  satisfies  (9.24)  is  1/2  by  Theorem  A.23  and  Theorem  A.20.  So,  in  two  tries  one  can
expect to find an integer a  satisfying (9.24). If no such integer a  exists,  m  is not prime. 

More can be said about this step. Assuming the Extended Riemann Hypothesis one can even prove
that  (9.24)  has a solution a , 1 < a < 2 Hlog mL2 , if m  is prime. (See also [Pera86].)

If  m  meets  the  first  three  tests,  we  know from Theorem 9.13  that  each  divisor  d  of   m  must  be
congruent  to 1 or m  modulo 24. Since m < 242 ,  we may assume that d < 24  (otherwise consider
n êd  instead of d ). It follows that d  is in fact equal to 1 or to (m mod 24L . 
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The  possibility  that  d = Hm mod 24L ,  d > 1,  is  ruled  out  by  Test  4.  It  follows  that  this  divisor  d
must be equal to 1. We conclude that m  is prime.

Ñ

To be able to prove Theorem 9.13 we need the following lemmas. The first gives a necessary and
sufficient condition for two integers m1  and m2 , both having gcd 1 with 6, to be congruent to each
other modulo 24.

Lemma 9.15
Let m1  and m2  be two integers, both coprime with 6. Then 

m1 ª m2 Hmod 24L ó Hu êm1L = Hu êm2L  for u = -1, 2,  and 3.

Proof: There are eight integers m , 1 § m § 24, that are coprime with 6, namely 1, 5, 7, 11, 13, 17,
19  and  23.  For  each  of  these  values  m  we  calculate  the  values  Hu êmL  for  u = -1, 2,  and  3  by
means of Corollary A.24, Theorem A.25, resp. Theorem A.27 or with the Mathematica  functions
JacobSymbol, which can be applied at once to a whole list of numbers.

m = 81, 5, 7, 11, 13, 17, 19, 23<;
JacobiSymbol@−1, mD
JacobiSymbol@2, mD
JacobiSymbol@3, mD

81, 1, −1, −1, 1, 1, −1, −1<
81, −1, 1, −1, −1, 1, −1, 1<
81, −1, −1, 1, 1, −1, −1, 1<

It  is  easy  to  verify  that  the  matrix  with  these  three  vectors  as  rows  has  the  property  that  all
columns  are  different.  This  shows  that  the  three  values  Hu êmL ,  u = -1, 2,  3,  uniquely  define  m
from 81, 5, 7, 11, 13, 17, 19, 23< .

Ñ

For  example,  by  looking  at  the  second  column,  we  see  that  m = 5  is  uniquely  defined  in81, 5, 7, 11, 13, 17, 19, 23<  by the three values H-1, mL = 1, H2 ê mL = -1, and H3 êmL = -1.

Lemma 9.16
Let m  be any integer. ThenHm, 6L = 1 ï m2 ª 1 Hmod 24L .
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Proof:  Since m  is  not  divisible  by 3, it  follows that  m2 ª 1 Hmod 3L.  Similarly,  since m  is  odd, it
follows that m2 ª 1 Hmod 8L . To see this, write m = 2. n + 1. Then m2 = H2. n + 1L2 = 4 nHn + 1L + 1.

Since, 3 and 8 are coprime, the statement follows from the Chinese Remainder Theorem.

Ñ

Of course, we could have checked the above lemma with the Mathematica function Mod as follows

m = 81, 5, 7, 11, 13, 17, 19, 23<
Mod@m2, 24D

81, 5, 7, 11, 13, 17, 19, 23<
81, 1, 1, 1, 1, 1, 1, 1<

We are now ready to prove Theorem 9.13.

Proof of Theorem 9.13:

It  is  a  direct  consequence  of  condition  gcdHm, 6L = 1  and  Lemma  9.16  that  each  exponent  j  in
(9.25) can be reduced modulo 2. This shows that (9.25) can be replaced by (9.26) 

Next, note that it suffices to prove (9.25) for prime divisors d  of m  only. Write m - 1 = f  .2k  and
d - 1 = g .2l , where f  and g are odd and where k > 0, l > 0.

We shall  first  prove  that  l ¥ k  and  then  use  Lemma 9.15  to  show that  either  d ª n0 Hmod 24L  or
d ª n1 Hmod 24L .

Raise  both sides  in  condition (9.24)  to  the  power g  and reduce  the  result  modulo d .  Since  d » m
and g  is odd, one obtains

a f .g .2k-1
ª H-1Lg ª -1 Hmod dL .

Since  we  assume that  d  is  prime  and  since  a  can  not  have  a  factor  in  common with  d  or  m ,  it
follows from Fermat's Theorem (Thm. A.15) that

a f .g .2l
ª a f Hd-1L ª 1 f ª 1 Hmod dL .

We conclude from these two congruence relations that

k - 1 < l .

Now consider u œ 8-1, 2, 3< . Since g  is odd and d » m , we have

u f .g .2k-1
ª ugHm-1Lê2 ª

H9.23L Hu êmLg ª Hu êmL Hmod dL .

On the other hand (again because d  is prime), we have

u f .g .2l-1
ª u f Hd-1Lê2 ª

H9.15L Hu êdL f ª Hu êdL Hmod dL .
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It follows from the two last congruence relations that for i = -1, 2, 3

(9.27)  Hu êdL = Hu êmL2l-k .

Note  that  we  have  replaced  the  congruence  relation  above  by  an  equality  sign.  We can  do  this,
because both hands have value -1 or 1.

If l = k , relation (9.27) and Lemma 9.15 together imply that d ª m ª m1 Hmod 24L . 

On  the  other  hand,  if  l > k ,  the  right  hand  side  of  (9.27)  is  equal  to  1,  which  is  also  Hu ê1L .  So,
Lemma 9.15 yields that d ª 1 ª n0 Hmod 24L .

Ñ

Crucial in the application of Theorem 9.13 is the fact that we can replace (9.25) by (9.26). Because
of  this,  only  one  condition  needed  to  be  tested  in  the  fourth  step  of  Algorithm 9.14.  The  reason
that (9.25) could be replaced by (9.26) (see Lemma 9.16) is the fact that

gcdHn, 24L ï n2 ª 1 Hmod 24L . 

Theorem 9.13  can  only  prove  the  primality  of  integers  m ,  24 < m < 242 .  For  larger  values  of  m
one needs generalizations of Theorem 9.13. As may be expected, the exponent in Lemma 9.16 will
have to be increased in these generalizations. An example of such a generalization would be

gcdHm, 65520L = 1 ï m12 ª 1 Hmod 65520L.
In order to test 100-digit numbers for primality, one uses

gcdHm, sL = 1 ï m5040 ª 1 Hmod 65520L.
where s  is the 53-digit number

26 µ 33 µ 52 µ 72 µ 11 µ 13 µ 17 µ 19 µ 31 µ 37 µ 41 µ 43 µ 61 µ 71
µ 73 µ 113 µ 127 µ 181 µ 211 µ 241 µ 281 µ337 µ 421 µ 631 µ 1009 µ 2521.

Note  that  è!!!!m < s ,  if  m  has  not  more than  100 digits.  A rough outline  of  the  primality  test  of  a
100-digit number is as follows.

Algorithm 9.17 (Cohen and Lenstra; outline of primality test)
input m < 10100

initialize prime=True,
test 1: if gcdHm, sL ∫ 1 then prime=False
test 2: if m  fails any of 67 congruence relations like (9.23) 

then prime=False
test 3: compute d = Hni mod sL , for i = 1, 2, …, 5039, 

if any of these d  divide m  then prime=False
output prime

If  m  is  composite,  the  algorithm above  will  sometimes  yield  a  factor  of  m .  The  probability  that
this  will  happen  however,  is  very  small.  In  most  cases  that  m  is  composite,  the  algorithm  will
terminate in Step 2 and one does not obtain a factor of m . The algorithm above can be adapted to
test larger integers for primality. The expected running time is
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Hln nLc ln ln n

where c  is some constant.

9.5 The Rabin Variant
In  Subsection  9.2.1,  it  was  mentioned  that  no  other  general  method  of  breaking  RSA  is  known
than by factoring n . In [Rabi79], Rabin proposes a variant of the RSA system, whose cryptanalysis
can be proved to be equivalent to the factorization of n .

9.5.1 The Encryption Function

In  the  RSA  system,  each  user  U  had  to  select  a  public  exponent  eu  with  gcdHeU , nU L = 1  (see
(9.2)). In Rabin's variant, all users U  take the same exponent

(9.28)  eU = 2.

We remind the reader of the discussion in Subsection 9.3.1.

Since gcdH2, jHnU LL = 2, because both pU - 1  and qU - 1  are even, encryption is no longer a one-
to-one mapping. Indeed, if  c ª m2 Hmod nU L , with gcdHc , nU L = 1  and nU = pU  qU , it follows that
the  congruence  relation  x2 ª c Hmod pU L  has  two  solutions,  namely  ≤m Hmod pU L  and,  similarly,
the congruence relation x2 ª c Hmod qU L  will have the two solutions ≤m Hmod qU L . By the Chinese
Remainder Theorem (Thm. A.19), the congruence relation  

(9.29)x2 ª c Hmod nU L
has four solutions modulo nU .  What happens if  gcdHc, nU L ∫ 1  is  an easy exercise  for the reader
(see Problem 9.5). 

Example 9.16 (Part 1)

Consider the encryption of the message m = 12345678  modulo the modulus n = 9733 µ 10177 = 99052741
(we use the Mathematica functions Prime and PowerMod).
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pB = Prime@1200D;
qB = Prime@1250D;
nB = pB∗qB
m = 12345678;
PowerMod@m, 2, nBD

99052741

43962531

To find  the  four  messages  that  are  mapped to  the  same ciphertext,  we have  to  combine  the  four
systems  of  linear  congruence  relations  x ª ≤ m Hmod pL  and  x ª ≤ m Hmod qL  with  the  Chinese
Remainder Theorem. We have to load the package NumberTheory`NumberTheoryFunctions`  to
be able to use the function ChineseRemainderTheorem. 

<<NumberTheory`NumberTheoryFunctions`

m1 = ChineseRemainderTheorem@
812345678, 12345678<, 89733, 10177<D

m2 = ChineseRemainderTheorem@
8−12345678, 12345678<, 89733, 10177<D

m3 = ChineseRemainderTheorem@
812345678, −12345678<, 89733, 10177<D

m4 = ChineseRemainderTheorem@
8−12345678, −12345678<, 89733, 10177<D

12345678

48738630

50314111

86707063

To check this we calculate
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PowerMod@m1, 2, nBD
PowerMod@m2, 2, nBD
PowerMod@m3, 2, nBD
PowerMod@m4, 2, nBD

43962531

43962531

43962531

43962531

We note that the image space of the encryption function is not the whole set 80, 1, …, nU < .  As a
consequence,  this  variant  by  Rabin  can  not  be  used  in  a  straightforward  way  as  a  signature
scheme. (See the related Fiat-Shamir protocol in Chapter 14.)

9.5.2 Decryption

É Precomputation

How  does  one  decrypt  a  message  c ª m2 Hmod nL  in  the  Rabin  variant  of  the  RSA  system?  As
explained  earlier  in  this  section,  we  do  this  with  the  Chinese  Remainder  Theorem.  As
precalculation, one computes integers a  and b  satisfying

(9.30)  a ª 1 Hmod pU L and a ª 0 Hmod qU L ,

(9.31)  b ª 0 Hmod pU L and b ª 1 Hmod qU L .

The solutions a  and b  can easily be found as follows; for instance, to find a ,  we obtain a = l.qU

from the second congruence relation and substitute  this in the first congruence relation.  One gets
the  congruence  relation  l.qU ª 1 Hmod pU L ,  which  can  be  solved  with  the  extended  version of
Euclid's Algorithm, (Alg. A.8). See also Example A.3. 

These systems of congruence relations can also be solved directly with the Mathematica  function
ChineseRemainderTheorem  for  which  the  package
NumberTheory`NumberTheoryFunctions` has to be loaded first.

Example  9.16 (Part 2)

Continuing with the parameters of Example 9.16, we need to solve

a ª 1 Hmod 9733L and a ª 0 Hmod 10177L ,
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b ª 0 Hmod 9733L and b ª 1 Hmod 10177L .

<<NumberTheory`NumberTheoryFunctions`

a = ChineseRemainderTheorem@81, 0<, 89733, 10177<D
b = ChineseRemainderTheorem@80, 1<, 89733, 10177<D

45287650

53765092

So, a = 45287650 and b = 53765092.

É Finding a Square Root Modulo a Prime Number

Next, one has to solve the congruence relation x2 ª c Hmod pU L  (and, similarly, x2 ª c Hmod qU L).
If c = 0 the solution is obvious, so, let us assume that c T 0 Hmod pU L .

For  notational  reasons  we  omit  the  subscript  U  from  now  on.  It  turns  out  that  an  immediate
technique to find x  is not always possible. We consider three cases.

Case 1: p ª 3 Hmod 4L
If c  is the square of some element m  in p  (such a c  is called a quadratic residue modulo p; see
Section A.4), the two solutions of x2 ª c Hmod pL  are given by ≤cHp+1Lê4 . Indeed, if we square this
expression we get from Fermat's theorem:H≤cHp+1Lê4L2 ª cHp+1Lê2 ª c.cHp-1Lê2 ª c.mp-1 ª

Thm. A .15
c Hmod pL .

Example 9.17

Consider  the  prime  p = 3571  which  is  congruent  to  3  modulo  4.  The  number  c = 2868  is  a  quadratic
residue modulo  p  as  can  be  checked with  the  Legendre symbol.  To  verify  all  these assertions  we use the
Mathematica functions Prime, Mod, and JacobiSymbol.
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p = Prime@500D
Mod@p, 4D == 3
c = 2868;
JacobiSymbol@c, pD == 1

3571

True

True

The solution of  x2 ª 2868 Hmod pL  is given by m ª ≤ 2868Hp+1Lê4 ª ≤ 3234 Hmod 3571L .

To verify this we use the Mathematica function PowerMod.

m = PowerMod@c, Hp + 1Lê 4, pD
PowerMod@8m, −m<, 2, pD

3234

82868, 2868<
Case 2: p ª 5 Hmod 8L
With  a  slight  refinement  of  the  method  used  above  it  can  be  shown  that  the  solution of
x2 ª c Hmod pL  in this case is given by ≤cHp+3Lê8  if  cHp-1Lê4 ª 1 Hmod pL  and by ≤2. c.H4. cLHp-5Lê8 if
cHp-1Lê4 ª -1 Hmod pL .

See Problem 9.14, which addresses this case.

Example 9.18

Consider  the  prime  p = 3581  which  is  congruent  to  5  modulo  8.  The  number  c = 2177  is  a  quadratic
residue  modulo  p  as  can  be  checked  with  the  Legendre  symbol,  which  is  a  special  case  of  the  Jacobi
symbol.
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p = Prime@501D
Mod@p, 8D == 5
c = 2177;
JacobiSymbol@c, pD == 1

3581

True

True

The  solution  of   x2 ª 2177 Hmod pL  is  given  by  m ª ≤ 2177Hp+1Lê4 ª ≤ 3100 Hmod 3581L  because
cHp-1Lê4 ª 1 Hmod pL  (otherwise the answer would be ≤ 2. c.H4. cLHp-5Lê8 ).

If@PowerMod@c, Hp − 1Lê 4, pD == 1,
m = PowerMod@c, Hp + 3Lê8, pD,
m = Mod@2 c∗PowerMod@4 c, Hp − 5Lê8, pD pDD

PowerMod@8m, −m<, 2, pD

3100

82177, 2177<
Case 3: p ª 1 Hmod 8L
A  fast  deterministic  algorithm  to  solve  this  congruence  relation  does  not  exist.  We  follow
[Rabi79]. 

In Section A.4 we have introduced QR as the set of quadratic residues modulo p  and NQR as the
set of quadratic non-residues modulo p . 

Let  r  and  s  denote  the  two  solutions  ≤m  of  the  congruence  relation  x2 ª c Hmod pL .  Then  r + u
and s + u  are the two solutions of Hx - uL2 - c ª 0 Hmod pL . In other words,

(9.32)Hx - uL2 - c = Hx - Hr + uLL Hx - Hs + uLL
over the finite field p  (=GF(p)).

Since r T s Hmod pL ,   it  follows that  the field element  Hr + uL ê Hs + uL  will  never take on value 1.
Since the mapping u Ø Hr + uL ê Hs + uL  is one-to-one for u œ p , u ∫ -s , we conclude that

(9.33)  8Hr + uL ê Hs + uL » u œ p \ 8-s<< = p \ 81< .
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The  reader  may  want  to  verify  this  by  means  of  the  Mathematica  functions  Table,  Mod,
PowerMod, and Union. 

p = 19; s = 9;
r = p − s;
S1 = Table@Mod@Hr + uL∗PowerMod@Hs + uL, −1, pD, pD ,

8u, 0, r − 1<D
S2 = Table@Mod@Hr + uL∗PowerMod@Hs + uL, −1, pD, pD ,

8u, r + 1, p − 1<D
S = Union@S1, S2D

818, 3, 8, 9, 4, 16, 15, 7, 10, 0<
82, 11, 14, 6, 5, 17, 12, 13<
80, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18<

It  follows from (9.33)  and Theorem A.20 that  for  half  of the admissible  values  of u  the elementHr + uL ê Hs + uL  will be in QR ‹ 80<  and for the other half it will be in NQR. In the first case, either
u = -r  or (by Theorem A.21) both r + u  and s + u  will be an element of QR or they will both be in
NQR. In the latter case, exactly one of them will be in QR and the other will be in NQR.

A property  of quadratic  residues  modulo a prime number that  we shall  need later  on is  given by
(A.16):

xHp-1Lê2 - 1 = ¤u is QR Hx - uL.
Example 9.19

As an example, consider the QR's mod 11. We introduce a new function:

ListQuadRes@p_D :=

Select@Range@pD, JacobiSymbol@#1, pD == 1 &D

p = 11;
ListQuadRes@pD

81, 3, 4, 5, 9<
So,  the  QR's  modulo  11  are  given  by:  1,  3,  4,  5,  and 9.  We now compute  with  the  Mathematica
function PolynomialMod:
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PolynomialMod@Hx − 1L Hx − 3L Hx − 4L Hx − 5L Hx − 9L, 11D

10 + x5

This is indeed equal to x5 - 1 modulo 11.

It  follows  from  the  above  discussion,  in  particular  from  (9.33)  and  (A.16),  that  for  a  randomly
chosen u , u œ p \ 8-s< , 

(9.34)  gcdHHx - uL2 - c, xHxHp-1Lê2 - 1LL Hmod pL
will be

x − u − r, if u + r ∈ QR ‹ 80< and u + s ∈ NQR,
x − u − s, if u + r ∈ NQR and u + s ∈ QR ‹ 80<,

1, if u + r ∈ NQR and u + s is NQR,Hx − uL2 − c, if u + r ∈ QR ‹ 80< and u + s ∈ QR ‹ 80<.
The  counting  arguments  above  imply  that  with  probability  Hp-1Lê2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp-1 = 1ÅÅÅÅ2 one  of  the  first  two
possibilities will occur. So, with probability 1/2 we have a non-trivial factor of Hx - uL2 - c . Since
u  is known, one also has found the value of r  or s .

Note that in the extremely unlikely, remaining case, namely if u = -s , expression Hx - uL2 - c  will
reduce to x2 + 2 s.x . So, the gcd in (9.34) will contain a factor x  and the other factor will yield the
solution s . 

An example of the above method will be given later.

The  expected  number  of  u 's  that  one  has  to  try  in  this  algorithm  before  finding  a  solution of
x2 ª c Hmod pL  is  the reciprocal  of 1/2,  i.e.  2.  For a discussion of other methods of taking square
roots modulo a prime number, we refer the interested reader to [Pera86].

É The Four Solutions

The final step in the decryption algorithm is of course to use the Chinese Remainder Theorem to
combine  each  of  the  two  solutions  of  x2 ª c Hmod pL  with  each  of  the  two  solutions of
x2 ª c Hmod qL .

Example  9.16 (Part 3)

We  continue  with  the  parameters  of  Example  9.16.   So,  p = 9733,  q = 10177,
n = p µ q = 99052741, and the solutions of 

a ª 1 Hmod 9733L and a ª 0 Hmod 10177L ,

b ª 0 Hmod 9733L and b ª 1 Hmod 10177L .

are given by a = 45287650 and b = 53765092.
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p = 9733; q = 10177; n = p∗q;
a = 45287650; b = 53765092;
Mod@p, 8D
Mod@q, 8D

5

1

Let c = 9513124 be a ciphertext.  Since p ª 5 Hmod 8L  and q ª 1 Hmod 8L , we follow Case 2 to find
the square root of c modulo p and Case 3 to find the square root of c modulo q.è!!!!!!!!!!!!!!!!!!

9513124 modulo p  by Case 2

We calculate cHp-1Lê4 ª 1 Hmod pL  with the Mathematica functions PowerMod and Mod

c = 9513124;
u = PowerMod@c, Hp − 1Lê 4, pD

1

and find 1. The square root of c modulo p is thus given by ≤ cHp+3Lê8 :

f = PowerMod@c, Hp + 3Lê 8, pD

868è!!!!!!!!!!!!!!!!!!
9513124 modulo q  by Case 3

We  want  to  find  the  zeros  of  x2 - 9513124  modulo  q.  We  take  a  random u  in  q  and  compute
gcdHHx - uL2 - 9513124, xHxHq-1Lê2 - 1LL  and hope to find a linear factor. We use the Mathematica
functions PowerMod, PolynomialGCD and

u = 11; x =.;
PolynomialGCD@Hx − uL2 − c, x HxHq−1Lê2 − 1L, Modulus −> qD

2492 + 10155 x + x2

We try again
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u = 111; x =.;
PolynomialGCD@Hx − uL2 − c, x HxHq−1Lê2 − 1L, Modulus −> qD

1438 + x

It follows that one of the square roots is given by x - 111 - g ª x + 1438 Hmod qL . So, by

g = Mod@−111 − 1438, qD

8628

It  follows  from  the  Chinese  Remainder  Theorem  (Thm.  A.19)  that  the  four  square  roots  of
x2 ª 9513124 Hmod 99052741L  are given by

Mod@a∗f + b∗g, nD
Mod@a∗f − b∗g, nD
Mod@−a∗f + b∗g, nD
Mod@−a∗f − b∗g, nD

6969696

63567091

35485650

92083045

9.5.3 How to Distinguish Between the Solutions

Let  f  be  one  of  the  two  solutions  of  x2 ª c Hmod pU L  and  let  g  be  one  of  the  two  solutions of
x2 ª c Hmod qU L . Further, let a  and b  be the solutions of the linear congruence relations (9.30) and
(9.31). 

Then, by the Chinese Remainder Theorem (Thm. A.19), the four solutions of (9.29) are given by

≤ f .a ≤ g.b Hmod nU L .

One would like the sender and receiver to be able to distinguish between the four solutions in such
a way that they can agree on one of them. In some cases this can be done quite easily. Indeed, if
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pU  and  qU  are  both  congruent  to  3  mod 4,   one  has  by  Corollary  A.24  that  -1  is  a  NQR both
modulo pU  and modulo qU . Hence, exactly one of f  and - f  is QR and the same is true for g  and
-g . Replacing f  by - f  and/or g  by -g , if necessary, one has without loss of generality that

+f.a + g.b is QR mod pU, +f.a + g.b is QR mod qU,
+f.a − g.b is QR mod pU, +f.a − g.b is QR mod qU,
−f.a + g.b is QR mod pU, −f.a + g.b is QR mod qU,
−f.a − g.b is QR mod pU, −f.a − g.b is QR mod qU.

By  Definition  A.11  and  the  second  statement  in  Theorem  A.26  we  have  thatH f .a + g.b ê nU L = H- f .a - g.b ênU L = 1,  while   H f .a - g.b ê nU L = H- f .a + g.b ênU L = -1.  Of  the
two solutions  with  Jacobi  value  +1,  one  will  lie  in  between 1  and HnU - 1L ê 2,  the other  will  lie
between HnU + 1L ê2 and nU - 1 (or both are equal to 0).

We conclude that there is a unique solution m  satisfying 0 § m § HnU - 1L ê 2  and Hm ê nU L = 1. So,
sender and receiver can agree to use only messages of this form.

Example 9.20 (Part 1)

Let  nB = 77  and  let  c = 53  be  a  received  message.  Repeating  the  decryption  process  explained  in  the
previous subsection, we get f = 2, g = 8, a = 22, and b = 56. 

With  the Mathematica  functions  Mod  and  JacobiSymbol,  we  get  the  following  four  possible  messages
with their respective Jacobi symbol value. 

nB = 77;
f = 2; g = 8;
a = 22; b = 56;
m1 = Mod@a∗f + b∗g, nBD;
m2 = Mod@a∗f − b∗g, nBD;
m3 = Mod@−a∗f + b∗g, nBD;
m4 = Mod@−a∗f − b∗g, nBD;
Print@m1, " ", JacobiSymbol@m1, nBDD
Print@m2, " ", JacobiSymbol@m2, nBDD
Print@m3, " ", JacobiSymbol@m3, nBDD
Print@m4, " ", JacobiSymbol@m4, nBDD

30 −1

58 1

19 1

47 −1

We conclude that m = 19  is the unique solution with Hm ê77L = 1  and 0 § m § 33, so m = 19  was
the message transmitted by the sender.
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If  pU  (or  qU L  is  congruent  to  1  modulo  4,  one  can  still  agree  to  use  only  messages  with
0 § m § HnU - 1L ê 2.  To  get  Hm ênU L = 1  the  sender  and  receiver  could  restrict  themselves  to
shorter messages, say 20 digits shorter, and fill  up the remaining 20 digits in such a way that the
resulting message has Jacobi symbol 1 modulo nU .

9.5.4 The Equivalence of Breaking Rabin's Scheme and Factoring n

We  shall   now  show  that  breaking  Rabin's  variant  of  RSA  is  equivalent   to  factoring  nU . Of
course, when the factorization of nU  is known to the cryptanalyst, Rabin's system is in fact broken,
because the cryptanalyst  can use the same methods to decrypt as the receiver can (see Subsection
9.5.2).

Theorem 9.18  
Let  n = p µ q ,  where  p  and  q  are  prime.  Let    denote  an  algorithm  that  for  every  c ,
which is the square of an integer, finds a solution of x2 ª c Hmod nL  with FHnL  operations.
Then  a  probabilistic  algorithm  exists  that  factors  n  with  an  expected  number  of
operations that is 2 HFHnL + 2 log2 nL .

Proof:  Select  a  random  m ,  0 < m < n ,  compute  c ª m2 Hmod nL  and  solve  x2 ª m Hmod nL  with
algorithm  in FHnL  steps. Let k  be the solution found by . The following four possibilities each
have probability 1/4:

iL
iiL
iiiL
ivL

k ≡ +m Hmod pL and k ≡ +m Hmod qL,
k ≡ +m Hmod pL and k ≡ −m Hmod qL,
k ≡ −m Hmod pL and k ≡ +m Hmod qL,
k ≡ −m Hmod pL and k ≡ −m Hmod qL.

Indeed, there are four different messages that are mapped to c  and they are all four equally likely.

In  case  ii),  gcdHk - m, nL = p  and  in  case  iii)  gcdHk - m, nL = q .  So,  the  calculation of
gcdHk - m, nL  will yield the factorization of n  with probability 1/2. This computation involves less
than  2 log2 n  calculations  by  Theorem  A.9,  therefore,  each  choice  of  m  involves  at  most
FHnL + 2 log2 n  operations.

Since the probability of success is 1/2, one expects to need two tries.

Ñ

Example 9.20 (Part 2)

Suppose  that  n = 77  and  that  the  value  of  m  that  we  have  picked  is  30.  Then
c ª 302 ª 53 Hmod 77L .  Now  assume  that  Algorithm    finds  k = 19  as  solution  to
x2 ª 53 Hmod 77L  (see Example 9.20 for these parameters).

Then one of the factors of n  will be found from gcdHk - m, nL . This would also have happened if 
had found k = 58, but not with 30 or 47.

All these calculations can easily be checked with the Mathematica function GCD.
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n = 77; m = 30;
GCD@19 − 30, nD
GCD@58 − 30, nD
GCD@30 − 30, nD
GCD@47 − 30, nD

11

7

77

1

9.6 Problems

Problem 9.1
Consider  the  RSA  system  with  n = 383 µ 563  (so  n = 215629)  and  public  key  e = 49.  So,  a  plaintext  m
will be encrypted into c = EHmL , where

EHmL = m49 Hmod nL .

Prove  that  every  ciphertext  c  satisfies  E10HcL ª c Hmod nL .  (Hint:  use  Fermat's  Theorem  and  the  Chinese

Remainder Theorem.) The notation E10HcL  stands for EHEH … EHcLLLõúúúúúúúúúúúúúúúù ûúúúúúúúúúúúúú10

.
Give an easy way for a cryptanalyst to recover plaintext m  from ciphertext c .

Problem 9.2
Verify that  the RSA secrecy system (or  signature  scheme) works correctly  when a message m  has  a non-
trivial factor in common with the modulus n = p µ q , i.e. show that HmeLd ª m Hmod nL
when gcdHm, nL = p or q Has always e and d denote the public resp.secret exponentsL.HHint : use Fermat' s Theorem and the Chinese Remainder Theorem.L
Problem 9.3
Consider the RSA cryptosystem with modulus  n = p µ q  and public exponent e .
a)  Prove that  the number of  solutions  of  the equation mu ª 1 Hmod pL ,  when u  divides  p - 1,  is  exactly  u
(hint: use the multiplicative structure of GFHpL , Theorem B.21)
b)  Show  that  each  solution  of  me-1 ª 1 Hmod pL  is  a  solution  of   mgcdHe-1,p-1L ª 1 Hmod pL  and  vice  versa
(use Fermat's Theorem,  use identity A.8 for the extended version of Euclid's algorithm).
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c) Prove that the number of solutions of the equation me ª m Hmod pL  is given by 1 + gcdHe - 1, p - 1L .
d) Prove that the number of plaintexts m  satisfying

me ª m Hmod nL
(in which case encryption does not conceal a message), is given by81 + gcdHe - 1, p - 1L<.81 + gcdHe - 1, q - 1L<.
(Hint: use the Chinese Remainder Theorem.)

Problem 9.4
Demonstrate the principle of the Solovay and Strassen primality test on the number m = 33. The number m
has been made small in this problem to keep the calculations simple. So, do not make use of numbers that
"incidentally" have a factor in common with m .

Problem 9.5 M

Give a Mathematica implementation of Algorithm 9.14 and test it out for two values of m , 24 < m < 242 .

Problem 9.6 M

Give a complete factorization of n = 110545695839248001 by means of Pollard's · Algorithm.

Problem 9.7 M

Complete Example 9.7. (Hint: extend the search to H-105, 105L .)

Problem 9.8 M

Apply the Wiener attack to n = 122714980793 and e = 34587422599.

Problem 9.9 M

Find a nontrivial  strong liar for the composite number m = 85.

Problem 9.10 M

Suppose that Alice has sent the same secret message to B, C, D, E, and F by means of the RSA system. Let
the public moduli of these people be given by nB = 324059, nC = 324371, nD = 326959, nE = 324851, and
nF = 324899. Assume that they all have the same public exponent e = 5.
Let  the  intercepted  messages  be  given  by  cB = 68207,  cC = 96570,  cD = 251415,  cE = 273331,  resp.
cF = 154351.
Determine Alice's message (see Example 9.8). 

Problem 9.11 M

Suppose that Alice has sent secret messages m1 = m  and m2 = m2 + 10 m + 20  to Bob by means of the RSA
system. Let Bob's modulus be nB = 483047  and eB = 3. Suppose that you have intercepted the transmitted
ciphertexts  c1 = 346208  resp.  c2 = 230313  and  that  you  know  the  above  relation  between  m1  and  m2 .
Determine m1  (see Example 9.10).

Problem 9.12
Consider the Rabin variant of the RSA system. So, only the number n  is public.
Suppose that a message m , 1 < m < n , has been sent that has a non-trivial factor in common with n .
How many possible plaintexts will the receiver find at the end of the decryption process?

210 FUNDAMENTALS OF CRYPTOLOGY



Problem 9.13 M

The  Rabin  variant  of  the  RSA  system  is  used  as  cryptosystem  with  n = 17419 µ 17431.  Demonstrate  the
decryption algorithm of this system for the ciphertext c = 234279292.
Which solution will come up if the method described in Subsection 9.5.3 is being followed? Why can this
method be applied?

Problem 9.14
Let p ª 5 Hmod 8L  and let c  be a quadratic residue modulo p . 
a) Show that cHp-1Lê4 ª ≤1 Hmod pL .
b) Show that the solution of x2 ª c Hmod pL  is given by ≤cHp+3Lê8  if  cHp-1Lê4 ª 1 Hmod pL .
c) Show that the solution of x2 ª c Hmod pL  is given by ≤2 cH4 cLHp-5Lê8  if  cHp-1Lê4 ª -1 Hmod pL . (Hint: use
Theorem A.25 which implies that 2 is not a quadratic residue modulo p)
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10 Elliptic Curves Based Systems
It  will  turn  out  in  this  chapter  that  discrete-logarithm-based  cryptosystems  can  also  be  defined
over  elliptic  curves.  For  RSA-based  systems  the  same  can  be  done,  but  there  seems  to  be  little
reason to do so. For discrete-logarithm-like systems over elliptic curves,  it may very well be that
smaller parameters are possible with the same level of security as the regular systems over finite
fields.

However,  many questions regarding EC-systems are still  open at  this  moment, making it  unclear
what the future of these systems will be.

10.1 Some Basic Facts of Elliptic Curves
Let GFHqL  be a finite  field with q  elements,  where q = pm .  The number p  is  prime and is called
the characteristic of GFHq). If m = 1, we have GFHqL = p , the set of integers modulo p . 

The so-called (affine) Weierstrass equation is given by

(10.1)  y2 + u.x.y + v.y = x3 + a.x2 + b.x + c .

It is defined over any field (like √  or ), but for cryptographic purposes we shall always assume
that the coefficients are in GFHqL .

If  p ∫ 2,  one  can  simplify  the  Weierstrass  equation  by  means  of  the  transformation
y Ø y - Hu.x + vL ê 2. One obtains (with new values for  a, b , and c)

(10.2)  y2 = x3 + a.x2 + b.x + c . 

If also p ∫ 3, one can apply x Ø x - a ê 3 to further reduce this form to:

(10.3)  y2 = x3 + b.x + c .

If p = 2, two standard simplifications of H10.1L  are possible. They are given by

(10.4)  y2 + x.y = x3 + a.x2 + c .

(10.5)  y2 + v.y = x3 + b.x + c .

Definition 10.1
An  elliptic  curve    over  GFHqL  is  defined  as  the  set  of  points  Hx, yL  satisfying  (10.1)
together with a single element O , called the point at infinity. 

To verify if a point Hu, vL  lies on a particular elliptic curve, say y2 = x3 + 2 x + 3  over 5 , is quite
easy.
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p = 5;
a = 0; b = 2; c = 3;
EC@x_, y_D = y2 − x3 − a∗x2 − b∗x − c;
8u, v< = 81, 4<;
Mod@EC@u, vD, pD == 0

True

To  see  if    contains  a  point  with  a  given  x-coordinate  we  can  use  the  Mathematica  function
Solve.  Since  the  Weierstrass  equation  is  quadratic  in  y ,  there  will  be  at  most  two  values  of  y
(see Theorem B.14).

p = 11;
Solve@ 8y2 == x3 − 5 x + 3, x == 3, Modulus == p<, 8y<D

88Modulus → 11, x → 3, y → 2<, 8Modulus → 11, x → 3, y → 9<<
So,  x = 3  leads  to  the  values  y = ≤2,  i.e.  to  the  points  H3, 2L  and  H3, 9L .  The  reader  should  try
some other values of x .

The  reader  is  referred  to  Subsection  9.5.2  to  find  a  discussion  on  how  the  square  root  of  a
quadratic residue modulo a prime number can be determined by mathematical means.

It  follows from the above that  a  point  P = Hx, yL  on an elliptic  curve  is  completely characterized
by  its  x-coordinate  and  the  "sign"  of  y .  This  reduces  the  storage  requirement  of  P  by  almost  a
factor 2. If q = p , p > 2, the "sign" of y  can be defined as being plus one when 0 § y § Hp - 1L ê2
and as minus one otherwise. 

If q = pm , p > 2, one can use likewise the "sign" of the left-most nonzero coordinate in the p-ary
representation of y .

For small values of p , one can find all points on  by trying out all possible value of x  and check
in  each  case  if  (10.1)  has  a  solution.  Below,  we  use  the  Mathematica  functions  Flatten,
Table, and Solve.

Clear@x, yD;
p = 11;
Flatten@
Table@ Solve@ 8y2 == x3 − 5 x + 3, x == u, Modulus == p<D,

8u, 0, p − 1<D , 1D
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88Modulus → 11, y → 5, x → 0<, 8Modulus → 11, y → 6, x → 0<,8Modulus → 11, y → 1, x → 2<, 8Modulus → 11, y → 10, x → 2<,8Modulus → 11, y → 2, x → 3<, 8Modulus → 11, y → 9, x → 3<,8Modulus → 11, y → 5, x → 4<, 8Modulus → 11, y → 6, x → 4<,8Modulus → 11, y → 2, x → 5<, 8Modulus → 11, y → 9, x → 5<,8Modulus → 11, y → 5, x → 7<, 8Modulus → 11, y → 6, x → 7<,8Modulus → 11, y → 4, x → 9<, 8Modulus → 11, y → 7, x → 9<<
We  see  that  for  p = 11,  there  are  14  solutions  (not  counting  O).  There  is  a  (imprecise)
probabilistic  argument to predict  the number of points on :  for each value of x ,  equation (10.1)
will have two solutions with probability 1/2 and no solutions with probability 1/2, leading to about
q  solutions.

As supporting  evidence  of  this  statement,  consider  the  right  hand  side  in  (10.2)  and  assume that
p > 2.  If,  for  a  given  value  of  x ,  the  right  hand  side  is  a  square  in  GF(p)  (there  are  Hp - 1L ê2
squares, namely all even powers of a primitive element in GFHpL; or see Theorem A.20), there will
be two solutions for y . If the right hand side is 0, there is only one solution, namely y = 0. There
are no other solutions.

 A famous theorem by Hasse [Silv86] states:

Theorem 10.1 Hasse
Let N  be the number of points on a elliptic curve over GFHqL . Then… N - Hq + 1L … § 2 

è!!!q
Note that in the example above, we have indeed that … 15 - 12 … § 2 

è!!!!!!11 . 

In  general,  it  is  very  hard  to  find  the  precise  number  of  points  on  an  elliptic  curve.  There  is
however an algorithm by Schoof [Scho95] which computes this number (see also [Mene93] for a
further discussion).

Although it is not necessary for the understanding of the rest of this chapter, we like to remind the
reader of the possibilities in Mathematica to make calculations over fields GFHpmL  with m > 1.

Example 10.1 

As  an  example  of  a  curve  over  GFH24L = GFH2L@a D ê H1 + a 3 + a 4L  (see  Table  B.2),  we  can  consider  the
equation  y2 = x3 + ax + 1.  To  test  if  Ha 2, a 14L  is  on  the  curve  we  first  load  the  Mathematica  package
Algebra`FiniteFields`.

<< Algebra`FiniteFields`
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f16 = GF@2, 81, 0, 0, 1, 1<D;
al = f16@80, 1, 0, 0<D;
EC@x_, y_D = y2 − x3 − al∗x − 1;
8u, v< = 8al2, al14<;
EC@u, vD

0

Indeed, Ha 14L2 = Ha 2L3 + a Ha 2L + 1, as can be checked with

al6 + al3 + 1

Hal14L2

80, 1, 1, 0<280, 1, 1, 0<2
10.2 The Geometry of Elliptic Curves
The reason that we are interested in elliptic curves is the addition operation that can be defined on
them. This operation will  have O œ   (the point  at infinity) as its unit-element and will  have the
structure of an additive group.

To  be  able  to  define  a  suitable  addition  on  ,  we  shall  make  use  of  the  property  that  any  line
intersecting    in  at  least  two  points,  will  intersect  it  in  a  third.  Here,  a  tangent  point  should  be
counted twice. The point O  at infinity is the intersection point of all vertical lines.

We shall first show a picture of an elliptic curve over the reals. We use the Mathematica  function
ImplicitPlot for which the package Graphics`ImplicitPlot` has to be loaded first.
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<< Graphics`ImplicitPlot`

elliptic = ImplicitPlot@ y2 == x3 − 5 x + 3, 8x, −3, 3<D
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-4
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4

The reader is invited to change the coefficient of x  in the function plotted above from  -5  to -4
and -3 and observe how the graph changes.

To see how the line y = x + 1  intersects y2 = x3 - 5 x + 3  we use the additional functions Epilog
and Line.
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ImplicitPlot@ y2 == x3 − 5 x + 3, 8x, −3, 4<,
PlotRange −> 8−4, 4<,
Epilog −> Line@ 88−3, 4<, 84, −3<<DD
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To find the intersection points numerically, one can use NSolve.

NSolve@ 8y2 == x3 − 5 x + 3, y == −x + 1<, 8x, y<D

88y → −1., x → 2.<, 8y → 0.381966, x → 0.618034<,8y → 2.61803, x → −1.61803<<
When the curve is defined over p  we can find the intersection points of a line with the curve by
means of the Solve function as follows.

p = 11;
Solve@ 8y2 == x3 − 5 x + 3, y == x − 1, Modulus == p<, 8x, y<D

88Modulus → 11, y → 1, x → 2<,8Modulus → 11, y → 2, x → 3<, 8Modulus → 11, y → 6, x → 7<<
A  different  way  to  find  the  intersection  points  of  a  line  y = u.x + v  with  an  elliptic  curve  is  to
substitute y = u.x + v  in (10.1), obtain a third degree equation in x  and find its factorization. 
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Example 10.2 

Suppose that we are working over 11 . To find the intersection points of y = 4 x + 1  with y2 = x3 - 5 x + 1,
we factor H4 x + 1L2 - Hx3 - 5 x + 1L  with the Mathematica function Factor.

p = 11;
Clear@xD;
ec = x3 − 5 x + 3;
il = 4 x + 1;
Factor@il2 − ec, Modulus −> pD

10 H2 + xL H7 + xL H8 + xL
We  get  as  x-values  of  the  intersection  points:  -2, -7,  and  -8.  From  y = 4 x + 1  we  find  the
solutions  H9, 4L, H4, 6L , and H3, 2L .

x = Mod@8−2, −7, −8<, pD
y = Mod@4∗x + 1, pD

89, 4, 3<
84, 6, 2<

É A Line Through Two Distinct Points

Let  P1 = Hx1, y1L  and  P2 = Hx2, y2L  be  two  distinct  points  on  an  elliptic  curve    (both  not  at
infinity). Let  be the line through P1  and P2 . How do we find the third point on the intersection
of  with ? If x1 = x2  and y1 = - y2  the point O  will be defined as this third point.

So, let us consider the case that x1 ∫ x2 . The line  though P1 and P2  is given by:  

(10.6)  y - y1 = lHx - x1L , with l= y2-y1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx2-x1
.

We discuss two cases.

p π 2

Assume that  the elliptic  curve is  already in reduced form (see (10.2)).  Substitution of (10.6) into
this  relation  yields  HlHx - x1L + y1L2 = x3 + a.x2 + b.x + c .  Since  we  know  two  roots  of  this  third
degree  equation,  there  must  be  a  third  one  (to  be  called  x3 ).  So,  the  same  equation  can  also  be
written as Hx - x1L Hx - x2L Hx - x3L = 0. Comparing the coefficient of x2  in both notations, we get

(10.7)  x3 = l2 - a - x1 - x2 ,
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and, by (10.6),

(10.8)  y3 = lHx3 - x1L + y1 .

Example 10.3 

Consider  the  elliptic  curve  y2 = x3 + 11 x2 + 17 x + 25  over  31 .  The  points  P1 = Hx1, y1L = H2, 7L  and
P2 = Hx2, y2L = H23, 9L  lie on  as can be verified with the Mod function as follows:

p = 31;
a = 11; b = 17; c = 25;
x1 = 2; y1 = 7; x2 = 23; y2 = 9;
F@x_, y_D := y2 − Hx3 + a∗x2 + b∗x + cL;
Mod@F@x1, y1D, pD == 0
Mod@F@x2, y2D, pD == 0

True

True

The slope l  of  the line    through P1  and P2  is  given by (10.6):  l = 9-7ÅÅÅÅÅÅÅÅÅÅÅÅÅ23-2 = 2 µ 3 = 6.  Here we
use the PowerMod function to get the multiplicative inverse of 21 modulo 31.

PowerMod@21, −1, pD

3

The coordinates Hx3, y3L  of the third intersection point of  with  are given by (10.7) and (10.8):

lam = 6;
x3 = Mod@lam2 − a − x1 − x2, pD
y3 = Mod@lam Hx3 − x1L + y1, pD

0

26

That the point P3 = H0, 26L  indeed lies on  can be verified with the calculation

Mod@F@x3, y3D, pD == 0
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True

p=2

We now assume reduced  form (10.4).  As above,  we substitute  (10.6)  into  (10.4)  and look at  the
coefficient of x2 . We get  

(10.9)  x3 = a - l2 - l - x1 - x2 ,

(10.10)  y3 = lHx3 - x1L + y1 .

Note that all minus signs can be replaced by plus signs, when p = 2.

É A Tangent Line

There is  one more possibility  that  we want  to discuss,  namely that   P1 = Hx1, y1L = P2 .  Let    be
the tangent line to  though P . This means that  meets  in P = Hx1, y1L , and that the slope of 
is  the  same  as  the  derivative  of    in  P .  One  usually  views  P  as  point  of  intersection  with
multiplicity two.  

Over  this situation looks like:

ImplicitPlot@ y2 == x3 − 5 x − 3, 8x, −3, 4<,
PlotRange −> 8−4, 4<,
Epilog −> Line@ 88−3, 3<, 84, −4<<DD
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At this  moment we exclude the possibility  that    is  a  double tangent  line  to   (meaning that  its
multiplicity is 3). If it were, the tangent line already intersects  in a point with multiplicity 3.
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In the sequel, when we speak of taking a derivative of a polynomial over a finite field we mean to
take the formal derivative and then reduce the coefficients modulo the characteristic of the field. 

For  instance,  in  GFH3mL  the  derivative  of  x4 + 2 x3 + x2 + 1  is  given  by  4 x3 + 6 x2 + 2 x ,  which
reduces to x3 + 2 x . 

p π 2

The slope of the tangent line through a point P = Hx1, y1L  on the curve y2 = x3 + a.x2 + b.x + c (see
(10.2))  is  given  by  the  value  of  y '  determined  through  implicit  differentiation,  so
2 y1.y ' = 3 x1

2 + 2 a.x1 + b . We conclude that the tangent line through P  is given by

(10.11)  y - y1 = lHx - x1L , with l= 3 x1
2+2 a.x1+b

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 y1
.

To find the third point of the line  through  we can still use (10.7) and (10.8).

p = 2

The slope of the tangent line through a point P = Hx1, y1L  on the curve y2 + x.y = x3 + a.x2 + c  (see
(10.4))  is  given  by  the  value  of  y '  determined  from  2 y1.y ' + y1 + x1.y ' = 3 x1

2 + 2 a.x1 ,  i.e.  by
y1 + x1.y ' = x1

2 . Hence, the tangent line through P  is given by

(10.12)  y - y1 = lHx - x1L , with l= x1
2+y1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx1

= x1 + y1ÅÅÅÅÅÅÅx1
.

To find the third point on  through  we observe that (10.9) (take x2 = x1 ) reduces to

x3 = a - l2 - l = a + x1
2 + I y1ÅÅÅÅÅÅÅx1

M2 + x1 + y1ÅÅÅÅÅÅÅx1
 =

a + x1
2 + x1 +

y1
2+x1  y1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x1
2  =

H10.4L  a + x1
2 + x1 +

x1
3+a.x1

2+c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x1
2 ,

i.e.

(10.13)  x3 = x1
2 + cÅÅÅÅÅÅÅ

x1
2 ,

and that (10.10) reduces to

(10.14)  y3 = x1
2 + Ix1 + y1ÅÅÅÅÅÅÅx1

M x3 .

Example 10.4 

Consider the elliptic curve y2 + x.y = x3 + a 9 x2 + a  over GFH16L , where a 4 = a + 1. The point Ha 2, a 12L
lies  on  this  curve,  as  can  be  easily  checked,  once  we  have  loaded  the  Mathematica  package
Algebra`FiniteFields`.

<< Algebra`FiniteFields`
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f16 = GF@2, 81, 1, 0, 0, 1<D;
a = f16@80, 1, 0, 0<D;
EC@x_, y_D = y2 + x∗y − x3 − a9 ∗x2 − a;
8x1, y1< = 8a2, a12<;
EC@x1, y1D

0

The tangent through Ha 2, a 12L  has slope l given by (10.12). So,

lam = x1 + y1êx1

81, 1, 0, 0<2
which is a 4 . To find the other point where the tangent intersects , we use (10.13) and (10.14).

x3 = x12 + aêx12
y3 = x12 + Hx1 + y1êx1L x3

80, 0, 1, 1<280, 0, 1, 0<2
So, Hx3, y3L = Ha 6, a 2L . This can all be checked easily. 

a6

a2

EC@x3, y3D

80, 0, 1, 1<280, 0, 1, 0<2
0
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10.3 Addition of  Points on Elliptic Curves
In  the  previous  section,  we  have  shown  how  the  line  through  two  points  on  an  elliptic  curve  
intersects  that  curve  in  a  third  point  and  how  that  point  can  be  computed  efficiently.  The  same
holds for a line that is tangent to , with the understanding that the tangent point is counted twice.

We are now ready to define an addition on . The geometric idea behind the formulas below is the
following. First of all, if P = Hx, yL  is a point on an elliptic curve  determined by (10.1), then

-P = Hx, - y - u.x - vL .

If u = v = 0, like in (10.2), this reduces to  

-P = Hx, - yL .

Geometrically, this can be described as follows: compute the line  through O  and P . It intersects
 in a third point, namely -P . As noted before, the point O  at infinity should be interpreted as the
intersection point of all vertical lines.

To add points P1  and P2 , both not at infinity, execute the following two steps:

1)  Compute  the  line    through  P1  and  P2  (or  tangent  line  though  P1 ,  if  P1 = P2 )  and  find  the
third point of intersection with . Let this be Q . 

2) The sum P1 + P2  is defined as P3 := -Q . 

The point O  serves as unit element of this addition and is its own inverse.

Definition 10.2 addition
Let  P  be  a  point  on  an  elliptic  curve    (so,  it  defined  by  (10.1)),  with  O  as  point  at
infinity. Then we define the sums

P + O = O + P = P .

Further,  let   P1 = Hx1, y1L  and  P2 = Hx2, y2L  be  two  points  on  ,  both  not  O .  Then  the
sum P1 + P2  is defined by 

i) P3 = -Q if x1 ∫ x2 .
Here, Q  is the third point of intersection of  with of the line  
through Hx1, y1L  and Hx2, y2L .

ii) P3 = -Q if P1 = P2  and the tangent line through P  is a single tangent.
Here, Q  is the third point of intersection of  with the tangent  
through P .

iii) P3 = -P1 if P1 = P2  and the tangent line through P  is a double tangent.

iv) P3 = O if P1 = -P2 .
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Note that possibility iii) can be interpreted as a special case of ii).

We shall depict the two most typical cases, namely i) and ii), by means of elliptic curves over the
reals. We need again package Graphics`ImplicitPlot`.

<< Graphics`ImplicitPlot`
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ImplicitPlot@ y2 == x3 − 5 x + 3, 8x, −3, 4<,
Epilog −> 8Line@88−3, −2<, 84, 5<<D,

Line@883, −6<, 83, 6<<D,
Text@"\!\H\∗

StyleBox@\"P\",\nFontColor−>RGBColor@0, 0, 1DD\L\!\H\∗

StyleBox@\"+\",\nFontColor−>RGBColor@0, 0, 1DD\L\!\H\∗

StyleBox@\"Q\",\nFontColor−>RGBColor@0, 0, 1DD\L",
82.3, −4<D,

Text@"\!\H\∗

StyleBox@\"P\",\nFontColor−>RGBColor@0, 0, 1DD\L",
8−2.4, −2.1<D,

Text@"\!\H\∗

StyleBox@\"Q\",\nFontColor−>RGBColor@0, 0, 1DD\L",
80.35, 1.9<D, PointSize@0.03D,

Point@8−2.31, −1.4<D,
Point@80.28, 1.26<D,
Point@83.01, −3.9<D<D;
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ImplicitPlot@ y2 == x3 − 5 x − 3, 8x, −3, 4<,
Epilog −> 8Line@883, −6<, 83, 6<<D,

Line@88−3, 3<, 84, −4<<D,
Text@"\!\H\∗

StyleBox@\"P\",\nFontColor−>RGBColor@0, 0, 1DD\L",
8−1.1, 1.65<D,

Text@"\!\H\∗

StyleBox@\"2\",\nFontColor−>RGBColor@0, 0, 1DD\L\!\H\∗

StyleBox@\"P\",\nFontColor−>RGBColor@0, 0, 1DD\L",
82.8, 3.5<D, PointSize@0.03D,

Point@8−1.1, 1.1<D,
Point@83.01, +3<D<D;
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The points  on an elliptic  curve together  with the addition  defined above form an additive  group.
We shall  not  prove that  here.  The reader  is  referred  to  [Mene93]  or  [SilT92].  Note  that  the only
non-trivial part to verify is the associativity of the addition. 

Theorem 10.2
The points  on an elliptic  curve    together  with  the addition  defined in Definition 10.2
form an additive group. The zero element is given by O .
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With the following Module one can compute the sum of two points (the point O  at infinity will be
denoted by 8O<) on an elliptic curve over p  with p > 2. We make use of formulas (10.6), (10.7),
(10.8)  and (10.11).  and use the Mathematica  function Which  with the same order  of cases  as in
Definition 10.2.

EllipticAdd@p_, a_, b_, c_, P_List, Q_ListD :=

Module@8lam, x3, y3, P3<,
Which@
P == 8O<, Q,
Q == 8O<, P,
P@@1DD != Q@@1DD,

lam = Mod@
HQ@@2DD − P@@2DDL PowerMod@Q@@1DD − P@@1DD, p − 2, pD, pD;

x3 = Mod@lam2 − a − P@@1DD − Q@@1DD, pD;
y3 = Mod@−Hlam Hx3 − P@@1DDL + P@@2DDL, pD;
8x3, y3<,

HP == QL fl HP@@2DD == 0L, 8O<,
HP == QL fl HP != 8O<L,

lam = Mod@ H3∗P@@1DD2 + 2 a∗P@@1DD + bL 

PowerMod@2 P@@2DD, p − 2, pD, pD;
x3 = Mod@lam2 − a − P@@1DD − Q@@1DD, pD;
y3 = Mod@−Hlam Hx3 − P@@1DDL + P@@2DDL, pD;
8x3, y3<,

HP@@1DD == Q@@1DDL fl HP@@2DD != Q@@2DDL, 8O<DD

Below, we show the addition of points in a number of cases.

p = 11; a = 0; b = 6; c = 3;
EllipticAdd@p, a, b, c, 84, 6<, 89, 4<D
EllipticAdd@p, a, b, c, 89, 4<, 89, 4<D
EllipticAdd@p, a, b, c, 84, 6<, 84, 6<D
EllipticAdd@p, a, b, c, 84, 6<, 8O<D
EllipticAdd@p, a, b, c, 84, 6<, 84, 5<D
EllipticAdd@p, a, b, c, 8O<, 89, 4<D

83, 9<
87, 6<
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84, 5<
84, 6<
8O<
89, 4<

Observe that the tangent through H4, 6L  is a double tangent, so by Definition 10.2, iii) H4, 6L + H4, 6L = -H4, 6L = H4, 5L .

As is common in additive groups, 2 P  will stand for P + P , similarly 3 P  stands for P + P + P , etc.
Similarly, 0 P  stands for O  and -n.P  stands for -Hn.PL . These multiples of P  are often called the
scalar multiples of P .

The  order  of  P  is  the  smallest  positive  integer  n  with  n.P = O .  Since    is  a  finite  group,  this
notion is well defined. The set 8O, P, 2 P, …, Hn - 1L P<  is a cyclic subgroup of . It follows that n
divides »  »  (see Theorem B.5).

Now that we have the Module EllipticAdd,  defined above, it is quite easy to compute n.P , n ¥ 1,
recursively as follows:

p = 11; a = 0; b = 6; c = 3; P = 89, 4<;
f@1D = P;
f@n_D := f@nD = EllipticAdd@p, a, b, c, P, f@n − 1DD;
Table@f@nD, 8n, 1, 5<D êê ColumnForm

89, 4<87, 6<87, 5<89, 7<8O<
So, on the curve y2 = x3 + 6 x + 3 over 11 , the point P = H9, 4L  has order 5.

In the next section, it will be important to have points available on an elliptic curve  that have a
very large order. If the cardinality of  is known and of a special form, for instance »  »  is a small
multiple of a large prime factor, then it is quite easy to find points on  with a known large order. 

As an example, consider »  » = 3 µ 7919 = 23757. Suppose that  3 P ∫ O .  Then P  has order 7919
or 23757. If 7919 P = 0  then P  has order 7919, otherwise 3 P  will have this order. To check these
assertions, apply Lemma B.4 and Theorem B.5 (rewrite the multiplicative notation in the additive
notation that we use here). 
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10.4 Cryptosystems Defined over Elliptic Curves
Most notions in this section can be viewed as direct translations of notions introduced in Chapter
8,  but  now  using  addition  over  an  elliptic  curve  as  principal  operation  instead  of  modular
multiplication. Modular exponentiation will translate into scalar multiplication.

For the above reason, it will often suffice to just present the new formulations without copying all
the proofs.

In  [Demy94]  one  can  find  a  RSA-like  cryptosystem  defined  over  elliptic  curves.  However,  to
break the system it is sufficient to factor its modulus. Since the original RSA system had the same
security  restriction  and  is  faster  in  its  calculations,  there  seems  to  be  little  reason  to  use  this
generalization of RSA to elliptic curves.

10.4.1 The Discrete Logarithm Problem over Elliptic Curves

We have seen in Section 10.3 how to add points on an elliptic curve . This is an operation with
relatively low complexity. To compute scalar multiples of a point P ,  say n.P  for some integer n ,
we can use repeated addition, but it is much more efficient to copy the ideas of Subsection 8.1.1.

Example 10.5

Take  n=171.  Its  binary  expansion  is  10101011,  as  follows  from  the  Mathematica  function
IntegerDigits.

IntegerDigits@171, 2D

81, 0, 1, 0, 1, 0, 1, 1<
So, to compute 171 P, it suffices to compute 

2 P = P + P, 
4 P = 2 P + 2 P,
8 P = 4 P + 4 P
 ª
 Ç  
128 P = 64 P + 64 P 

and add the suitable terms. This can be done on the fly as follows:

Clear@PD;
2 H2 H2 H2 H2 H2 H2 PL + PLL + PLL + PL + P
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171 P

Note  that  we  only  added  partial  results  to  themselves  or  to  P.  (The  reader  may want  to  look  at
Example 8.3 for the analogous modular arithmetic problem.)

Of course, addition chains may further reduce the complexity of these calculations.

The opposite problem of computing scalar multiples of a point is the following:

Definition 10.3
Let  be an elliptic curve. Let P  be a point on   and let Q  be a scalar multiple of P .
The  discrete  logarithm  problem  over  an  elliptic  curve  is  the  problem of  determining  n
for given P  and Q  from the relation

(10.15)  n.P = Q .

Although we shall see more efficient ways to solve (10.15) than by simply trying n = 1, 2, …, all
the methods have a complexity of the form na ,  a > 0,  and so they are exponentially  slower than
the (logarithmic) complexity of computing n.P  out of P . 

10.4.2 The Discrete Logarithm System over Elliptic Curves

Now that we have formulated the discrete logarithm problem over elliptic curves, we can describe
the analogue of the Diffie-Hellman key exchange protocol (see Subsection 8.1.2). 

As system parameters one needs an elliptic curve  over a finite field GFHqL  and a point P  on the
curve of high order, say the order n  of P  is 150-180 digits long. 

Each user U  of the system, selects a secret scalar mU , computes the point QU = mU  P  and makes
QU  public. Alice and Bob can now agree on the common key KA,B = mA mB P . Alice can find this
common key  by  computing  mA QB  with  her  secret  scalar  mA  and  Bob's  public  QB .  Bob  can  do
likewise.

This system is summarized in the following table.
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system
parameters

elliptic curve  over GF HqL
point P on  of high order

secret key of U mU
public key of U QU = mU  P

common key of A and B KA,B = mA mB P
Ann computes mA QB
Bob computes mB QA

Table 10.1

The Diffie-Hellman Key Exchange System over Elliptic Curves

Example 10.6 

Consider  the  elliptic  curve    over  863  defined  by  y2 = x3 + 100 x2 + 10 x + 1.  The  point  P = 8121, 517<
lies on it as can be checked with the Mathematica function Mod.

p = 863;
a = 100; b = 10; c = 1;
x = 121; y = 517;
Mod@y2 − Hx3 + a∗x2 + b∗x + cL, pD == 0

True

The  order  of  P  is  432.  To  show  this,  we  check  that  432 P = O  and  that  H432 ê pL P ∫ O  for  the
prime divisors of 432. We make use the binary expansion of these coefficients (to be found with the
function IntegerDigits). We also use of the EllipticAdd function defined in Section 10.3 and
the Do function.

FactorInteger@432D
IntegerDigits@432, 2D
IntegerDigits@432ê2, 2D
IntegerDigits@432ê3, 2D

882, 4<, 83, 3<<
81, 1, 0, 1, 1, 0, 0, 0, 0<
81, 1, 0, 1, 1, 0, 0, 0<
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81, 0, 0, 1, 0, 0, 0, 0<
p = 863; P =.;
a = 100; b = 10; c = 1;
P@0D = 8121, 517<;
P@i_D := P@iD = EllipticAdd@p, a, b, c, P@i − 1D, P@i − 1DD;
Q = EllipticAdd@p, a, b, c, EllipticAdd@p, a, b, c, P@8D, P@7DD,

EllipticAdd@p, a, b, c, P@5D, P@4DDD
EllipticAdd@p, a, b, c, EllipticAdd@p, a, b, c, P@7D, P@6DD,

EllipticAdd@p, a, b, c, P@4D, P@3DDD
EllipticAdd@p, a, b, c, P@7D, P@4DD

8O<
819, 0<
8341, 175<

Let  Alice  choose  mA = 130  and  Bob  mB = 288.  Then  QA = H162, 663L  and  QB = H341, 688L ,  as
can be checked as follows (note that we have chosen very friendly secret scalars).

QAlice = EllipticAdd@p, a, b, c, P@7D, P@1DD
QBob = EllipticAdd@p, a, b, c, P@8D, P@5DD

8162, 663<
8341, 688<

Alice  can  compute  the  common key  KA,B  with  the  calculation  KA,B = mA QB ,  where  mA = 130  is
her secret key. She finds 

QA@0D = 8341, 688<;
QA@i_D :=

QA@iD = EllipticAdd@p, a, b, c, QA@i − 1D, QA@i − 1DD;
EllipticAdd@p, a, b, c, QA@7D, QA@1DD

8341, 688<
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Likewise,  Bob  can  compute  the  common  key  KA,B  with  the  calculation  KA,B = mB QA ,  where
mB = 288 is his secret key. He also finds 

QB@0D = 8162, 663<;
QB@i_D := QB@iD = EllipticAdd@p, a, b, c, QB@i − 1D, QB@i − 1DD;
EllipticAdd@p, a, b, c, QB@8D, QB@5DD

8341, 688<
Now  that  the  Diffie-Hellman  key  exchange  system  over  elliptic  curves  has  been  described,  it
really  is  a  straightforward  exercise  to  show  that  the  ElGamal  protocol  and  the  other  systems,
described in Section 8.2, can be rewritten in the language of elliptic curves.

10.4.3 The Security of Discrete Logarithm Based EC Systems

In Section 8.3, various methods are described to take the discrete logarithm over a finite field. The
Pohlig-Hellman  algorithm, the  baby-step  giant-step  method,  and the  Pollard-r  method can all  be
directly  translated  into elliptic  curve terminology: just  replace modular exponentiations  by scalar
multiplication on the elliptic curve.

At  the  time  of  this  writing,  the  index-calculus  method  has  defeated  any  attempt  to  transfer  it
efficiently  to the elliptic  curve setting (see [Mill86]).  That  is  of great  cryptographic  significance,
because  the  index-calculus  method  was  the  only  one  with  a  subexponential  complexity.  This
means that  in  regular  discrete-logarithm-like  systems the index-calculus  method is  the governing
factor in determining the size of its parameters (to keep the system computationally secure). Since
the  index-calculus  method is  no  longer  around in  the  elliptic  curve  setting,  one  can afford much
smaller parameters to achieve the same level of security.

At  the  time  of  this  writing,  the  XEDNI  method  has  been  proposed  [Silv98]  as  an  alternative  to
solve  the  elliptic  curve  discrete  logarithm  problem.  Further  analysis  is  needed  to  determine  the
implications of this method.

There  are  special  attacks  on  discrete  logarithm based elliptic  curve  cryptosystems.  These  attacks
make it necessary to avoid special classes of elliptic curves. In particular, one should not use

singular curves,
supersingular curves,
anomalous curves. 

We shall  not  describe  these  attacks  (see  [MeOkV93],   [SatA98],  and [Smar98].  In  each  case  the
logarithm problem over an elliptic  curve can be translated to the logarithm problem over a finite
field (or an even simpler problem). We shall explain in one case that one can counter these attacks
by simply avoiding these special curves.
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Before  we  do  so,  we  need  to  introduce  a  new  notion.  We  homogenize  the  Weierstrass  equation
(10.1). This means that we multiply each term in it with the smallest power of z  in such a way that
all terms have the same degree:

(10.16)  FHx, y, zL = y2 z + u.x.y.z + v.y.z2 - x3 - a.x2 z - b.x.z - c.z3 = 0.

Note that if Hx, y, zL  satisfies (10.16), then so does lHx, y, zL . For that reason, one often normalizes
solutions to (10.16) by requiring the right-most non zero coordinate to be equal to 1.

Points  Hx, yL  that  satisfy  (10.1)  now  lead  to  solutions  Hx, y, 1L  of  (10.16).  The  (somewhat
mysterious) point O  at infinity can be represented by H0, 1, 0L .

A point on a curve  is a called singular if all partial derivatives ∑ F ê ∑ x ,  ∑ F ê ∑ y , and ∑ F ê ∑ z  are
zero. An elliptic curve can not contain two singular points. If a curve  contains a singular point
then it is called a singular curve, otherwise it is called a non-singular curve. 

With  some effort  one  can  show that  (10.2)  defines  a  non-singular  curve  if  and  only  if  the  cubic
expression on its  right  side has  no multiple  roots.  For (10.3)  with c ∫ 0,  this  is  equivalent  to the
condition 4 b3 + 27 c2 T 0 Hmod pL . 

When p = 2, (10.4) gives non-singular curves when c ∫ 0 and (10.5) when v ∫ 0. 

The above means, that it is quite simple to test if a curve is non-singular or not. 

We shall  not give a definition of what supersingular  means. Here it  suffices to know that curves
defined by (10.5) are supersingular and need to be avoided. Again, it is easy to avoid these curves.

Finally, anomalous curves are elliptic curves  over p  with the property that  »  » = p . 
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10.5 Problems

Problem 10.1 M

How many points lie on the elliptic curve defined in Example 10.1?

Problem 10.2
Find  the  intersection  points  over  31  of  the  lines  y = 4 x + 20  and  y = 4 x + 21  with  the  elliptic  curve
y2 = x3 + 25 x + 10.

Problem 10.3
Find  the  line  that  is  tangent  to  the  elliptic  curve  y2 = x3 + 11 x2 + 17 x + 25  over  31  in  the  point  H2, 7L .
Where else does this line intersect the curve?

Problem 10.4 M

Consider the elliptic curve  defined by y2 = x3 + 11 x2 + 17 x + 25 over 31 .
Check that the points P = 812, 10<  and Q = 825, 14<  lie on .  What is -P? Compute the sum of P  and Q
without using the Mathematica procedure presented in Subsection 10.3. 

Problem 10.5
Consider an elliptic curve . Let P  on  have order n . What is the order of -P?

Problem 10.6 M

Consider (again) the elliptic curve  defined by y2 = x3 + 11 x2 + 17 x + 25 over 31 .
Determine the orders of P = 827, 10<  and Q = 824, 28< .  What can you conclude about the cardinality of 
(hint: use Theorem B.5)?
What is the cardinality of  (hint: use Theorem 10.1)? 
Construct a point of maximal order from P  and Q .

Problem 10.7 M

Duplicate  Example  10.6  for  the  elliptic  curve    over  523  defined  by  the  equation
y2 = x3 + 111 x2 + 11 x + 1. Use for P  a point of order at least one hundred.
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11 Coding Theory Based Systems

11.1 Introduction  to Goppa codes
In  this  chapter  it  is  assumed  that  the  reader  is  familiar  with  algebraic  coding  theory.  A  reader
without  this  background  can  freely  skip  this  chapter  and  continue  with  Chapter  12.  From
[MacWS77] we recall the following facts about Goppa codes.

Theorem 11.1
Let GHxL  be any irreducible polynomial of degree t  over GF H2mL . Then the set

(11.1)  GHGHxL, GFH2mLL = 9 HcwLwœGFH2mL œ 80, 1<n À ‚
wœGFH2mL cwÅÅÅÅÅÅÅÅÅÅÅx-w

ª 0 Hmod GHxLL >
defines  a  binary  Goppa  code  of  length  n = 2m ,  dimension  k ¥ n - t.m  and  minimum
distance d ¥ 2 t + 1. 
A fast decoding algorithm with running time n.t , exists (see [Patt75]). 

Note that we have used the elements in GFH2mL  as an index set for the coordinates of the vectors in80, 1<n .  The  notions  used  above  mean  that  the  elements  in  GHGHxL, GFH2mLL  (which  are  called
codewords)  form  a  linear  subspace  in  80, 1<n  of  dimension  at  least  n - t.m  and  that  different
codewords  differ  in  at  least  2 t + 1coordinates  (one  says  that  the  Hamming  distance  dH  Hc, c 'L
between different codewords is at least 2 t + 1). 

A  decoding  algorithm  will  map  any  word  in  80, 1<n  that  differs  in  at  most  t  coordinates  from a
codeword c (which is unique by the triangle inequality) to that codeword. Hence, if a codeword c
is transmitted and the received word r  differs from c  in no more than t  coordinates (dH  Hc, rL § t ),
the receiver is able to recover c  from r . For this reason, t  is called the error-correcting capability
of the code GHGHxL, GFH2mLL .

Any k µ n  matrix of which the rows span a particular  linear  code is  called a generator matrix of
that code. It follows from this definition that the code can be described by

(11.2)8 m.G » m œ 80, 1<k <.
Example 11.1 (Part 1)

Let a be the primitive element in GFH24L  satisfying a 4 + a 3 + 1 = 0. After having loaded the Mathematica
package  Algebra`FiniteFields`  we  can  generate  the  log  table  of  GFH24L  with  the  functions
MatrixForm and PowerList.

Coding Theory Based Systems 237



<<Algebra`FiniteFields`

MatrixForm@PowerList@GF@2, 81, 0, 0, 1, 1<DDD

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1
1 1 0 1
1 1 1 1
1 1 1 0
0 1 1 1
1 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0
0 1 1 0
0 0 1 1

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Consider the binary Goppa code G HGHxL, GFH24LL  of length 16 defined by GHxL = x2 + x + a . That
GHxL  is  indeed  an  irreducible  polynomial  over  GFH24L  can  easily  be  checked  with  the
Mathematica functions GF, Table, and TableForm because it suffices to show that GHxL  has no
linear factors.

f16 = GF@2, 81, 0, 0, 1, 1<D;
x = f16@80, 1<D;
a = f16@80, 1<D;
G@x_D := x2 + x + a;
G@0D
Table@8i, G@xiD<, 8i, 0, 14<D êê TableForm

80, 1, 0, 0<2
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0 80, 1, 0, 0<2
1 80, 0, 1, 0<2
2 81, 1, 1, 1<2
3 81, 0, 1, 0<2
4 81, 0, 1, 0<2
5 81, 1, 0, 0<2
6 80, 1, 1, 1<2
7 81, 0, 0, 1<2
8 80, 1, 1, 1<2
9 81, 1, 1, 1<2
10 81, 1, 0, 0<2
11 80, 0, 0, 1<2
12 80, 0, 1, 0<2
13 81, 0, 0, 1<2
14 80, 0, 0, 1<2

To determine the inverses 1 ê Hx - wL  (mod x2 + x + a )  in (11.1) we use the Mathematica package
Algebra`PolynomialExtendedGCD`

<<Algebra`PolynomialExtendedGCD`

and  the  Mathematica  function  PolynomialExtendedGCD.  For  instance,  1 ê Hx - a 3L  (mod
x2 + x + a ) can be found by

x =.;
PolynomialExtendedGCD@x − a3, x2 + x + aD

81, 880, 1, 0, 1<2 + x 81, 1, 1, 1<2, 81, 1, 1, 1<2<<
With the logarithm table above we can rewrite these coefficients as follows:

0.1 + 1. a + 0. a + 1 a 3 = a 10 , 

1.1 + 1. a + 1. a 2 + 1. a 3 = a 6 .

It follows from (A.8) that Hx - a 3L.Ha 10 + a 6 xL  +a 6.GHxL  = 1, 

i.e.   1 ê Hx - a 3L = a 10 + a 6  x.  This  can  be  checked  with  the  Mathematica  function
PolynomialMod

Clear@xD;
PolynomialMod@Hx − a3L Ha10 + a6 xL, x2 + x + aD
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81, 0, 0, 0<2
We express all  the inverses 1 ê Hx - wL ,  w œ GFH24L ,  in this way as polynomials g0

HwL + g1
HwL x,  by

means of  

Clear@xD;
PolynomialExtendedGCD@x, x2 + x + aD
Do@Print@PolynomialExtendedGCD@x − ai, x2 + x + aDD, 8i, 0, 14<D

81, 880, 0, 1, 1<2 + x 80, 0, 1, 1<2, 80, 0, 1, 1<2<<81, 8x 80, 0, 1, 1<2, 80, 0, 1, 1<2<<81, 880, 1, 0, 1<2 + x 80, 1, 1, 0<2, 80, 1, 1, 0<2<<81, 880, 0, 0, 1<2 + x 81, 0, 1, 0<2, 81, 0, 1, 0<2<<81, 880, 1, 0, 1<2 + x 81, 1, 1, 1<2, 81, 1, 1, 1<2<<81, 881, 0, 1, 0<2 + x 81, 1, 1, 1<2, 81, 1, 1, 1<2<<81, 8x 80, 0, 0, 1<2 + 80, 1, 1, 0<2, 80, 0, 0, 1<2<<81, 881, 0, 0, 0<2 + x 81, 1, 1, 0<2, 81, 1, 1, 0<2<<81, 881, 0, 1, 0<2 + x 81, 0, 1, 1<2, 81, 0, 1, 1<2<<81, 880, 1, 1, 0<2 + x 81, 1, 1, 0<2, 81, 1, 1, 0<2<<81, 8x 81, 0, 1, 0<2 + 81, 0, 1, 1<2, 81, 0, 1, 0<2<<81, 8x 80, 0, 0, 1<2 + 80, 1, 1, 1<2, 80, 0, 0, 1<2<<81, 881, 0, 1, 1<2 + x 81, 1, 0, 0<2, 81, 1, 0, 0<2<<81, 880, 0, 1, 1<2 + x 80, 1, 1, 0<2, 80, 1, 1, 0<2<<81, 880, 0, 0, 1<2 + x 81, 0, 1, 1<2, 81, 0, 1, 1<2<<81, 880, 1, 1, 1<2 + x 81, 1, 0, 0<2, 81, 1, 0, 0<2<<
and put them as columns 

ikjjjjjg0
HwL

g1
HwL y{zzzzz  in a 2ä 16  matrix H . Note that 1 ê Hx - a 3L  appears as ikjjja 10

a 6
y{zzz  in

column 5, because the first column corresponds to w = 0, the second column has index w = 1, etc.

H =
ikjjj a 14 0 a 10 a 3 a 10 a 9 a 13 1 a 9 a 13 a 11 a 8 a 11 a 14 a 3 a 8

a 14 a 14 a 13 a 9 a 6 a 6 a 3 a 7 a 11 a 7 a 9 a 3 a 12 a 13 a 11 a 12
y{zzz

Here, we have made use of the log table of GFH24L , computed earlier.

The defining equation in (11.1) can be rewritten as ‚
wœGFH24L cw Hg0

HwL + g1
HwL xL ª 0 Hmod x2 + x + a L , 
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or, equivalently, asJ‚
wœGFH24L cw  g0

HwLN + J‚
wœGFH24L cw  g1

HwLN x ª 0 Hmod x2 + x + a L . 

So, we have two linear equations for c = HcwLwœGFH24L :‚
wœGFH24L cw  g0

HwL = 0 and         ‚
wœGFH24L cw  g1

HwL = 0.

These two equations can be efficiently denoted by

H.cT = 0T .

Expressing each power of a as binary linear combination of 1, a , a 2 , and a 3  (or using the output
of the PolynomialExtendedGCD-calculations directly) gives the 8ä16 binary matrix H ' :

H ' =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0
0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1
1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1
1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1
0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1
1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0
1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
.

So, another way to describe G Hx2 + x + a , GFH24LL  is

C = 8c œ 80, 1<16 » H '.cT = 0T }.

It is not difficult to check that C  is a binary, linear code of length 16, dimension 7 and minimum
distance 5.

We call a matrix H  whose nullspace is a particular linear code C  a parity check matrix of C . We
write

(11.3)C = 8c œ 80, 1<n » H .cT = 0T <.
The syndrome of a received vector r  is defined by: sT = H .rT .

The  number  of  irreducible  polynomials  of  degree  t  over  GFH2mL  is  about  2m.t ê t  (see  Corollary
B.18).  So,  a  randomly  selected  polynomial  of  degree  t  over  GFH2mL  will  be  irreducible  with
probability  1 ê t .  Since  fast  algorithms  for  testing  irreducibility  (see  [Berl68],  Ch.  6  or  [Rabi80])
exist, one can find an irreducible polynomial of degree t  over GFH2mL , just like in Algorithm 9.3,
by repeatedly guessing and testing. 

11.2 The McEliece Cryptosystem
Based on the theory of error-correcting codes, McEliece [McEl78] proposed the following secrecy
system. 
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11.2.1 The System

É Setting Up the System

1)  Each  user  U  chooses  a  suitable  Goppa  code  of  length  nU = 2mU  and  with  error-correcting
capability  tU .  To  this  end,  user  U  selects  a  random,  irreducible  polynomial  pU HxL  of  degree  tU
over  GFH2mU L  and  makes  a  generator  matrix  GU  of  the  corresponding  Goppa  code
GHpU HxL, GFH2mU LL . The size of GU  is kU µ nU . 

2)  User  U  chooses  a  random,  dense  kU µ kU  nonsingular  matrix  SU  and  a  random  nU µ nU

permutation matrix PU  and computes

(11.4)  GU
* = SU  GU  PU .

3) User U  makes GU
*  and tU  public, but keeps GU , SU , and PU  secret.

É Encryption

Suppose that user Alice wants to send a message to user Bob. She looks up Bob's publicly known
parameters GB

*  (of size kB µ nB ) and tB  represents  her message as a binary string m  of length kB .
Next Alice chooses a random vector e   (error pattern) of length nB  with at most tB  coordinates are
equal to 1. As encryption of m  Alice sends to Bob

(11.5)  r = m.GB
* + e .

(One usually says: the weight of e  is at most tB , denoted by wH  HeL § tB , where the weight function
w  counts the number of non-zero coordinates in a vector.)

É Decryption

Upon receiving c , Bob computes with his secret permutation matrix PB

r.PB
-1 =

H11.5L m.GB
* HPBL-1 + eHPBL-1  =

H11.4L  m.SB GB PB PB
-1 + e '  = Hm.SBL GB + e '.

where e ' = e.PB
-1  is a permutation of e , so it also has weight H § tLB . With the decoding algorithm

of the Goppa code GHpU HxL, GFH2mU LL  Bob can efficiently decode r.PB
-1 . He will find e '  as error

pattern and can retrieve m.SB .  Multiplication of this expression on the right with SB
-1  (known to

Bob) yields the originally transmitted message m œ 80, 1<kB .
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11.2.2 Discussion

É Summary and Proposed Parameters

The McEliece cryptosystem introduced in the previous section can be summarized as follows.

Public GU∗ and tU of all users U
GU∗ has size kU ×nU

Secret pU  HxL, SU, and PU by each user U

Property SU−1 GU∗ PU is the generator
matrix of the Goppa code
defined by pU  HxL of degree tU

Format of message
of Ann to Bob

m ∈ 80, 1<kB
Encryption c = m.GB∗ + e,

weight of e is ≤ tB
Decryption compute c' = c.PB−1

decode c' to find m' = m.SB
compute m'.SB−1 = m

Table 11.1

The McEliece cryptosystem

The reason that an error pattern e  is introduced in (11.5), is of course to make it impossible for the
cryptanalyst to retrieve m from c  by a straightforward Gaussian elimination process.

McEliece suggests in his original proposal [McEl78] to take mB = 10  (so nB = 1024) and tB = 50
(so kB º 1025 - 50 µ 10 = 524). 

É Heuristics of the Scheme

The heuristics behind this scheme are not difficult to guess. Take a sufficiently long, binary, linear
block code,  that  can correct  a large  number,  say t ,  of  errors  and for  which an efficient  decoding
algorithm exists. The code should belong to a large class of codes, making it impossible to guess
which  particular  code  has  been  selected.  Let  n  be  the  length  of  the  code  and  k  its  dimension.
Manipulate  the  generator  matrix  to  such an  extent,  that  the  resulting  matrix  looks  like  a  random
k µ n  matrix  of  full  rank.  The  decoding  complexity  of  a  randomly  generated  code  with  these
parameters  should  be  infeasible.  In  the  next  section  the complexity  of  several  decoding methods
will be discussed.
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In [BerMT77] it  is  shown that the general  decoding problem of linear codes, i.e.  how to find the
closest codeword to any word of length n , is NP-complete. We shall not explain what this notion
means exactly. We refer the interested reader to [GarJ79]. 

Here, it suffices to know that this characterization implies that no known algorithm can decode an
arbitrary  word  to  its  closest  codeword  neighbor  in  a  running  time  that  depends  in  a  polynomial
way on the size of the input. 

Moreover,  if  one  were  to  find  such  an  algorithm,  it  could  be  adapted  to  solve  a  large  class of
equally hard problems. 

É Not a Signature Scheme

The  encryption  function  of  the  McEliece  cryptosystem  maps  binary  k -tuples  to  binary  n-tuples.
This  mapping  is  not  surjective.  Indeed,  for  the  proposed  parameter  set  the  number  of  vectors of
length 1024 at distance § 50 to a codeword is

2k  „
i=0

50
 Jn

i
N º 2524 „

i=0

50
 J1024

i
N º 2808.4.

which is an ignorable fraction of the total number of 1024-length words. So, the (secret) function
SU  mentioned  in  Property  PK4  (in  Subsection  7.1.1)  is  not  defined  for  most  words  in  80, 1<n .
Consequently, the McEliece system can not be turned into a signature scheme. See, also Table 7.2.

11.2.3 Security Aspects

We  shall  now  discuss  the  security  of  the  McEliece  cryptosystem  by  analyzing  four  possible
attacks  on  the  specific  parameters  that  McEliece  suggests.  (The  most  powerful  attack  at  this
moment seems to be [CanS98].)

n = 1024; k = 524; t = 50;

É Guessing SB  and PB

As a cryptanalyst,  one may try to guess SB  and PB  to calculate GB  from GB
*  by means of (11.4).

Once GB  has been recovered, it is not so difficult for the cryptanalyst  to find the defining Goppa
polynomial  pU HxL  of  the  Goppa  code  GHpU HxL, GFH2mU LL  that  has  GB  as  generator  polynomial.
One can now follow the decryption algorithm of Bob to find the transmitted message m. 

However  the  number  of  invertible  matrices  SB  and  permutation  matrices  PB  is  so  astronomical
(¤i=0

k-1 H2k - 2iL  resp.  n !),  that  the  probability  of  success  of  this  attack  is  smaller  than  the
probability of correctly guessing vector m  directly.
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É Exhaustive Codewords Comparison

The cryptanalyst  can compare the received vector r  with all  2k  codewords in the code generated
by GB

* . Let c  be the closest codeword. It is at distance § t  from r  (by the encryption rule (11.5))
and  is  unique  because  the  minimum distance  of  the  code  is  at  least  2 t + 1.  It  also  follows  from
(11.5)  that  c = m.GB

* .  With  a  simple  Gaussian  elimination  process  one  can  now  retrieve  the
transmitted message m from  c.

This approach involves the following number of comparisons!

N@2k, 5D

5.4918×10157

Example 11.2 (Part 1) 

Consider the binary code of length n = 7 and dimension k = 4, generated by

G =

i

k

jjjjjjjjjjjj

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

y

{

zzzzzzzzzzzz
;

and suppose that r = H1, 1, 0, 0, 1, 0, 1L  is a intercepted ciphertext which is a codeword c  plus an
error vector of weight at most 1 (so t = 1).  

We shall compare r with two codewords (instead of 2k = 16) and use again the Mod function:

r = 81, 1, 1, 0, 1, 0, 1<;
i1 = 81, 1, 1, 1<;
c = Mod@i1.G, 2D
Mod@r − c, 2D

81, 1, 1, 1, 1, 1, 1<
80, 0, 0, 1, 0, 1, 0<

So, c = i1.G lies at distance ¥2 from r, which is too much.
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i2 = 81, 0, 1, 0<;
c = Mod@i2.G, 2D
Mod@r − c, 2D

81, 0, 1, 0, 1, 0, 1<
80, 1, 0, 0, 0, 0, 0<

Now  c = i2.G  lies  at  distance  1  from  r  and  we  conclude  that  H1, 0, 1, 0L  was  the  transmitted
information.

É Syndrome Decoding

The cryptanalyst may compute the parity check matrix HB
*  corresponding to GB

*  from the equation
HB

* .GB
* = O  (see (11.3)). It  has rank n - k .  Next, generate all  error vectors e  of weight at most t ,

compute the syndrome HB
* eT  for each of them, and put these in a table.

For  the intercepted  vector  r  one first  computes the syndrome sT = H .rT .  From the table  one can
find the corresponding error vector e . Subtracting e  from r  one gets the codeword c = m.GB

*  (see
(11.5)). With a simple Gaussian elimination process one can now retrieve the transmitted message
m from this vector c.

The work load of this attack is „
i=0

50
 Jn

i
N:

NA‚
i=0

50

Binomial@n, iD, 5E

3.3623×1085

Example 11.2 (Part 2)

The parity check matrix of the code introduced in Example 11.2 is given by

H =
i

k

jjjjjjj

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

y

{

zzzzzzz;

MatrixForm@HD
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ikjjjjjj 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

y{zzzzzz
as can be checked with the Mathematica function Transpose (and MatrixForm) as follows

U = Mod@G.Transpose@HD, 2D;
MatrixForm@UD

i
kjjjjjjjjjjj
0 0 0
0 0 0
0 0 0
0 0 0

y
{zzzzzzzzzzz

Next,  we generate all  error vectors e  of weight  § 1  and compute their syndrome HB
* eT .  We put

these in a table. Apart from the Mathematica functions Mod, Do, and Print, we also make use of
ReplacePart,  which  replaces  the  i-th  coordinate  of  e  by  the  specified  value  (here  its
compliment).

e = 80, 0, 0, 0, 0, 0, 0<;
Print@e, " ", Mod@H.e, 2DD;
Do@ 8er = ReplacePart@e, Mod@e@@iDD + 1, 2D, iD,

Print@er, " ", Mod@H.er, 2DD<,
8i, 1, 7<D80, 0, 0, 0, 0, 0, 0< 80, 0, 0<81, 0, 0, 0, 0, 0, 0< 81, 1, 0<80, 1, 0, 0, 0, 0, 0< 81, 0, 1<80, 0, 1, 0, 0, 0, 0< 80, 1, 1<80, 0, 0, 1, 0, 0, 0< 81, 1, 1<80, 0, 0, 0, 1, 0, 0< 81, 0, 0<80, 0, 0, 0, 0, 1, 0< 80, 1, 0<80, 0, 0, 0, 0, 0, 1< 80, 0, 1<

With this table it is now easy to find a codeword at distance § 1 from r.

r = 81, 1, 1, 0, 1, 0, 1<;
Mod@H.r, 2D
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81, 0, 1<
This is the syndrome corresponding to e = H0, 1, 0, 0, 0, 0, 0L , so the closest codeword is given by

e = 80, 1, 0, 0, 0, 0, 0<;
Mod@r − e, 2D

81, 0, 1, 0, 1, 0, 1<
Since the generator matrix G  in this example has the form HI4 » PL , we can recover the transmitted
information m from the first four coordinates in c: 

m = H1, 0, 1, 0L .

É Guessing k  Correct and Independent Coordinates

The cryptanalyst selects k  random positions and hopes that they are not in error, i.e. he hopes that
e  is zero on these k  positions. If the restriction of matrix GB

*  to these k  positions still has rank k ,
one can find a candidate m ' for the information vector m  with a Gaussian elimination process. 

If the rank is less than k  it will very likely still be close to k  (see Problem 11.2). So, the Gaussian
elimination process will either lead to only a few possibilities for m ' or to no solution at all. 

For  each  possible  candidate  m '  compute  m '.Gb
*  and  check  if  it  lies  at  distance  § t  from  the

intercepted vector r . If so, one has found the correct m .

The  probability  that  the  k  positions  are  correct  is  about  H1 - t ênLk .  The  Gaussian  elimination
process involves k3  steps. So, the expected workload of this method is

N@k3 H1 − tênL−k, 5D

3.5504×1019

Although this attack is the most efficient thus far, it is still not a feasible attack.

Example 11.2 (Part 3)

Guessing that coordinates 2, 4, 5, and 7 are error-free in Example 11.2 we use the Mathematica
functions Transpose  and MatrixForm  to get the restriction G' of the generator matrix G  to
this guess and the restriction r' of the intercepted vector r of Example 11.2 to this guess.
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G =

i

k

jjjjjjjjjjjj

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

y

{

zzzzzzzzzzzz
;

Guess = 82, 4, 5, 7<
RestrG = Transpose@GD @@ GuessDD ;
MatrixForm@Transpose@RestrGDD

82, 4, 5, 7<
i
kjjjjjjjjjjj
0 0 1 0
1 0 1 1
0 0 0 1
0 1 1 1

y
{zzzzzzzzzzz

r = 81, 1, 1, 0, 1, 0, 1<;
rRestr = r@@GuessDD

81, 0, 1, 1<
We use the Mathematica functions LinearSolve, NullSpace, and Transpose  to see if the
equation 

LinearSolve@RestrG, rRestr, Modulus −> 2D
NullSpace@RestrG, Modulus −> 2D

80, 1, 0, 0<
8<

has a solution.

Apparently the restriction of G  to the four coordinates has full rank. The solution H0, 1, 0, 0L  gives
rise to a codeword that has distance ¥ 2 to r .

m1 = 80, 1, 0, 0<;
Mod@r − m1.G, 2D

81, 0, 1, 0, 0, 0, 0<
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Let us now try another guess.

Guess = 81, 3, 6, 7<;
RestrG = Transpose@GD @@ GuessDD ;
MatrixForm@Transpose@RestrGDD

i
kjjjjjjjjjjj
1 0 1 0
0 0 0 1
0 1 1 1
0 0 1 1

y
{zzzzzzzzzzz

r = 81, 1, 1, 0, 1, 0, 1<;
rRestr = r@@GuessDD

81, 1, 0, 1<
LinearSolve@RestrG, rRestr, Modulus −> 2D
NullSpace@RestrG, Modulus −> 2D

81, 0, 1, 0<
8<

The solution H1, 0, 1, 0L  now turns out to generate a codeword at distance § 1 to r.

m = 81, 0, 1, 0<;
Mod@r − m.G, 2D

80, 1, 0, 0, 0, 0, 0<
We conclude that H1, 0, 1, 0L  was the transmitted information.

To  let  Mathematica  make  guesses  one  first  has  to  load  the  package
DiscreteMath`Combinatorica`

<<DiscreteMath`Combinatorica`

and one can then use the Mathematica function RandomKSubset.
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RandomKSubset@81, 2, 3, 4, 5, 6, 7<, 4D

82, 3, 4, 6<
É Multiple Encryptions of the Same Message 

It  is  not safe to encrypt the same message several times with the same encryption matrix GB . To
see this,  let  us consider two different encryptions of the same message m ,  say  r = m.GB

* + e  and
r ' = m.GB

* + e'  (see  (11.5)).  On  the  coordinates  where  r  and  r '  disagree,  we  know  for  sure  that
either e  or e '  has a 1. On the coordinates  where r  and r '  agree, we know almost for sure that both
r  and r '  are error-free.

To be more precise, if the error vectors e  and e '  are truly randomly chosen, as they should be, one
expects the following valuesHei, ei'L # coordinatesH0, 0L Hn − tL2 ênH0, 1L or H1, 0L 2 t Hn − tLênH1, 1L t2 ên
For  instance,  when  the  parameters  are  n = 1024  and  t = 50,  one  expects  ei = ei ' = 1  on  roughly
502 ê 1024 º 2.44 coordinates.

Also, one expects 

n = 1024; t = 50;
N@Hn − tL2 ên, 3D

926.

coordinates where r  and r '  agree. At most three of these coordinates are likely to be corrupted.

By removing in every possible way t2 ê n  coordinates from the coordinate set where r and r ' agree,
one almost surely finds a coordinate set that is error free and on which the matrix GB

*  still has full
rank (see Problem 11.2). With a simple Gaussian elimination process one recover m  from r .

When the same message has been encrypted more than two times, it  is  correspondingly easier  to
break the system.
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11.2.4 A Small Example of the McEliece System 

Example 11.1 (Part 2)

The  Goppa  code  G Hx2 + x + a , GFH24LL  of  Example  11.1  has  a  generator  matrix  G  that  can  be
computed from the parity check matrix H  by means of the Mathematica function Nullspace.

H =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0
0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1
1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1
1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1
0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1
1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0
1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

;

G = NullSpace@H, Modulus −> 2D;
MatrixForm@GD

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0
1 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0
0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0
0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0
1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
The generator matrix G  of  G Hx2 + x + a , GFH24LL  will  be transformed into G* = S.G.P,  where S
is an invertible matrix and P a permutation matrix, as follows:
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S =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

;

P =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

;

Gstar = Mod@S.G.P, 2D;
MatrixForm@GstarD

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1
1 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0
1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0
1 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0
1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
A possible encoding of the information sequence H1, 1, 0, 0, 1, 0, 0, 1L  is given by
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m = 81, 1, 0, 0, 1, 0, 0, 1<;
err = 80, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0<;
cw = Mod@m.Gstar + err, 2D

81, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0<
Note that errors have been introduced at coordinates 5 and 9.

An eavesdropper has no efficient algorithm to find the information vector m from the word cw.

The legitimate receiver will first compute cd = cw.P-1  with the Mathematica function Inverse.

PInv = Inverse@P, Modulus −> 2D;
cd = cw.PInv

81, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1<
Next,  this  vector  has  to  be  decoded  with  a  decoding  algorithm  of  the  Goppa  code
G Hx2 + x + a , GFH24LL .  Such a method has not been discussed here. The outcome turns out to be
the vector m' = 81, 0, 0, 0, 1, 1, 1, 0< .  This can be checked by computing m'.G  and compare that
with cd. The difference is an error vector err' of weight 2 which is exactly err.P-1 .

mpr = 81, 0, 0, 0, 1, 1, 1, 0<;
errpr = Mod@mpr.G − cd, 2D
err.PInv

80, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0<
80, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0<

To find m, the legitimate receiver computes m'.S-1 .

mpr = 81, 0, 0, 0, 1, 1, 1, 0<;
InvS = Inverse@S, Modulus −> 2D;
Mod@mpr.InvS, 2D

81, 1, 0, 0, 1, 0, 0, 1<
This is indeed the original message.

254 FUNDAMENTALS OF CRYPTOLOGY



11.3 Another Technique to Decode Linear Codes
A large  research  effort  has  been  made in  the  past  to  find  decoding  algorithms  for  general  linear
codes. The McEliece cryptosystem has only intensified this quest. Most of these algorithms are of
the type that was discussed before: find k  coordinates where the generator matrix has full rank and
where the received vector is error free. Such a technique is called information set decoding.

Here we describe a technique introduced by Van Tilburg [vTbu88] (see also [LeeB88]).

Algorithm 11.2 Bit Swapping Technique
Let  G  be  the  generator  matrix  of  a  binary  code  C  of  length  n ,  dimension  k ,  and
minimum distance d . 
Let r = c + e  be a received vector, where c œ C  (say c = m.G) and e has weight at most t ,
with 2 t + 1 § d  .

Step  1:  Apply  suitable  elementary  row  operations  and  a  column  permutation  to  G  to
bring G  in so-called standard form i.e.  S.G.P = HIk » AL . 
Put r ' = r.P  and write r ' = Hr1 ', r2 'L , where r1 '  has length k .
Note that r = m.G.P + e.P = m.S-1HIk » AL + e ' , where e  and e ' have the same weight.

Step 2:  Put c ' = r1 '.HIk » AL . The first k  coordinates of  c ' and r ' are identical.

Step 3:  If  c '  and r '  differ  in at  most t  coordinates,  conclude  that  the first  k  coordinates
are error-free. Compute m  from r ' = m.S-1  with Gaussian elimination.
Let the algorithm terminate.

Step  4:  If  c '  and  r '  differ  in  more  than  t  coordinates,  pick  a  random  row  index
i, 1 § i § k , and column index j, 1 § j § n - k , with Ai, j ∫ 0. Construct a new matrix G
from HIk » AL  by interchanging the i-th and the Hk + jL-th column of G  (the i-th column of
Ik  is swapped with the j-th column of A). 
Return to Step 1, but use there only elementary row operations with the i-th row to bring
the matrix in standard form again. 

Let us demonstrate one cycle of the above algorithm. We continue with Example 11.2.

Example 11.2 (Part 4)

G =

i

k

jjjjjjjjjjjj

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

y

{

zzzzzzzzzzzz
;

MatrixForm@GD
r = 81, 1, 1, 0, 1, 0, 1<
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i
kjjjjjjjjjjj
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

y
{zzzzzzzzzzz81, 1, 1, 0, 1, 0, 1<

The matrix G is already in standard form. We also see that the first four coordinates of r  lead to a
codeword c' that has distance 2 to r .

r1 = Take@r, 4D
cc = Mod@r1.G, 2D
Mod@r − cc, 2D

81, 1, 1, 0<
81, 1, 1, 0, 0, 0, 0<
80, 0, 0, 0, 1, 0, 1<

To make a swap we pick G2,5  as non-zero entry from columns 5-7 in G. We perform a swap of the
2-nd and 5-th column of G, by using the function:

ColumnSwap@B_, i_, j_D := Module@8U, V<, U = Transpose@BD;
V = U@@iDD; U@@iDD = U@@jDD; U@@jDD = V; Transpose@UDD

G1=ColumnSwap[G,2,5];
MatrixForm[G1]

i
kjjjjjjjjjjj
1 1 0 0 0 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 1 0 1 0 1 1

y
{zzzzzzzzzzz

To bring this in systematic form we use the Mathematica function RowReduce.

G2 = RowReduce@G1, Modulus −> 2D;
MatrixForm@G2D
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i
kjjjjjjjjjjj
1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

y
{zzzzzzzzzzz

In  order  to  analyze  the  complexity  of  the  bit-swapping  algorithm,  we  let  PrHl + u » lL  denote  the
conditional  probability  that  exactly   l + u  of  the  first  k  positions  of  e  are  in  error  after  a  swap
given that precisely l  were in error before the swap (u = -1, 0, 1). 

Let a = min 8t, k< . Then the following straightforward relations hold:

(11.6)  PrHl - 1 » lL = lÅÅÅÅk µ n-k-t+lÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn-k , if 1 § l § a,

(11.7)  PrHl + 1 » lL = k-lÅÅÅÅÅÅÅÅÅk µ t-lÅÅÅÅÅÅÅÅÅÅn-k , if 1 § l § a - 1,

(11.8)  PrHl » lL=9 1 - PrHl - 1 » lL - PrHl + 1 » lL,
1 - PrHl - 1 » lL, if 1 § l § a - 1,

if l = a.

Example 11.3 (Part 1)

Consider a (binary) code with parameters n = 23, k = 12, and t = 3. Then a = min 8k, t< = 3.  The values of
PrHl - 1 » lL  and  PrHl + 1 » lL  can  be  computed  (and  printed)  from (11.6)  and  (11.7)  with  the  Mathematica
functions Min, Do, and Print.

n = 23; k = 12; t = 3;
a = Min@k, tD;
PrDown@l_D := l∗Hn − k − t + lLêHk∗Hn − kLL;
PrUp@l_D := Hk − lL∗Ht − lLêHk∗Hn − kLL;
Do@
Print@"PrH", i − 1, "»", i, "L=", PrDown@iDD, 8i, a, 1, −1<D;

Print@"and"D;
Do@Print@"PrH", i + 1, "»", i, "L=", PrUp@iDD,
8i, a − 1, 1, −1<D

PrH2»3L=
1
cccc
4

PrH1»2L=
5

ccccccc
33

PrH0»1L=
3

ccccccc
44

and

PrH3»2L=
5

ccccccc
66

PrH2»1L=
1
cccc
6

Note that the probability of a successful swap gets smaller for smaller values of l .
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Lemma 11.3
Let Nl, 1 § l § a , denote the expected number of swaps needed to pass from a state with
l  errors to a state with l - 1 errors. 
Then, the Nl 's can be computed recursively by

(11.9)  Na = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅPrHa-1»aL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1-PrHa»aL ,

(11.10)  Nl-1 = 1+PrHl»l-1L NlÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅPrHl-2»l-1L .

Proof:

The  first  equality  in  equation  (11.9)  follows  directly  from  the  definition  of  PrHa - 1 » aL .  The
second equality follows from (11.8).

To show (11.10), we note that from state l - 1  there are three possible directions for the algorithm
to follow:

i) with probability PrHl - 2 » l - 1L  it goes to state l - 2 in one step.

ii)  with  probability  PrHl - 1 » l - 1L  it  stays  in  state  l - 1  and  so  one  can  expect  the  algorithm  to
reach state l - 2 in 1 + Nl-1  steps. 

iii) With probability PrHl » l - 1L  it goes back to state l  and so one expects it to reach state l - 2  in
1 + Nl + Nl-1  steps.

The above proves the following recurrence relation

Nl-1 = PrHl - 2 » l - 1L .1 + PrHl - 1 » l - 1L.81 + Nl-1< +PrHl » l - 1L.81 + Nl + Nl-1< ,

which reduces to (11.10) because PrHl - 2 » l - 1L = 1 - PrHl - 1 » l - 1L-PrHl » l - 1L .

Ñ

Note that in the calculations of Nl  only probabilities of the form PrHi - 1 » iL  play a role.

Example 11.3 (Part 2) 

Continuing  with  Example  11.3,  we  see  that  the  values  of  Nl  can  be  computed  recursively  with
(11.9) and (11.10).

Numb@aD = 1êPrDown@aD;
Do@Numb@i − 1D = H1 + PrUp@i − 1D∗ Numb@iDLê PrDown@i − 1D,
8i, a, 2, −1<D

Do@Print@"NumbH", i, "L=", Numb@iDD, 8i, a, 1, −1<D

NumbH3L=4

NumbH2L=
43
ccccccc
5
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NumbH1L=
1606
ccccccccccccc
45

Theorem 11.4
The  expected  number  of  swaps  for  the  bit  swapping  algorithm  to  find  k  error-free
coordinates is given by

(11.11)  „
j=1

a
 

ikjjjkjy{zzz 
ikjjjn-k
t- j

y{zzzÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅikjjjnty{zzz  ⁄l=1
j Nl .

Proof:

The expected number of steps to reach state 0 when one starts in state j , 1 § j § a , is given by the
expected number of steps  to reach state  j - 1  from state  j ,  plus  the expected  number of steps  to
reach state j - 2 from state j - 1, etc. This explains the inner sum in (11.11): 

N j + N j-1 + … + N1 .

The probability  of  starting  in  state  j  is  equal  to  the  probability  that  a  randomly selected  k  tuple
contains j  errors.  This probability  is equal to the fraction of the number of t -tuples out of n  that
have intersection j  with a given k -tuple (and intersection t - j  with the other n - k  positions). So,
this probability is given byikjjjkjy{zzz 

ikjjjn-k
t- j

y{zzzÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅikjjjnty{zzz .

Now, take the product of the two factors above and sum it over all values of j .

Ñ

Example 11.3 (Part 3)

It  follows from Theorem 11.4  that  the  expected  number of  swaps that  are  needed in a  code with
n = 23,  k = 12,  and  t = 3  (as  introduced  in  Example  11.3)  to  get  12  error-free  coordinates  is
given by: 

NS = „
j=1

a

HBinomial@k, jD∗Binomial@n − k, t − jDê Binomial@n, tDL 

‚
l=1

j

Numb@lD;

N@NS, 5D
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37.455

The above bit swapping algorithms gives a significant improvement (also asymptotically) over the
methods explained in Subsection 11.2.3. For the strongest result in this area we refer the reader to
[BaKT99].

11.4 The Niederreiter Scheme
The Niederreiter scheme [Nied86] is a variation of the McEliece cryptosystem. It applies the very
same idea to the parity check matrix of a linear code. The scheme is summarized in the Table 11.2
below.

So,  again  we  have  a  Goppa  code  GHpU HxL, GFH2mLL ,  (see  (11.1))  defined  by  user's  U  Goppa
polynomial pU HxL  over GFH2mL  of degree tU . Let HU  be a parity check matrix of this code. It has
size HnU - kU L µ nU , where kU  is the dimension of the code.

The  code  GHpU HxL, GFH2mLL  is  tu -error  correcting  which  implies  that  every  vector  y  of  weightH § tLU  has  a  unique  syndrome  HU .y .  Existing  decoding  algorithms  for  Goppa  codes  find  y
efficiently from its syndrome.

Just like in the McEliece system, the structure of the Goppa code has to be hidden from the matrix
HU . This is done by computing

(11.12)  HU
* = SU  HU  PU ,

where SU  is a HnU - kU L µ HnU - kU L  invertible matrix and PU  a permutation matrix of size nU  (see
(11.4)).

The matrix HU
*  has to be made public, together with the value tU .

If  Alice  wants  to  send  a  message  to  Bob,  she  looks  up  Bob's  public  parameters  HB
*  and  tB .  She

represents her message by means of a (column) vector m  of weight § tB . She computes v = HB
*.m

and sends that as her ciphertext to Bob.

Bob first  multiplies  v  on  the  left  with  SB
-1 .  He  obtains  v ' = SB

-1 m = HB HPB mL  by  (11.12).  Since
PB m  is  a  permutation  of  m ,  and  thus  also  of  weight  H § tLB ,  the  decoding  algorithm  of  Bob's
Goppa code will find m ' = PB m  efficiently. The message m  can now be recovered by multiplying
m '  on the left with PB .
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Public HU∗ and tU of all users U
HU∗ has size HnU − kUL ×nU

Secret pU  HxL, SU, and PU by each user U

Property SU−1 HU∗ PU is the parity check
matrix of the Goppa code
defined by pU  HxL of degree tU

Format of message
of Ann to Bob

m ∈ 80, 1<nB
weight HmL ≤ tB

Encryption v = HB∗.m

Decryption compute v' = SB−1.v
use decoding algorithm to

find m ' with HB∗.m' = v'
compute m'.PB−1 = m

Table 11.2

The Niederreiter cryptosystem

11.5 Problems

Problem 11.1
What  is  the  probability  that  k  columns  in  a  random  k µ n  binary  matrix  have  rank  k ?  How  about  the
probability that k + 1 columns in this matrix have rank?
Compute these two probabilities for n = 16 and k = 5.

Problem 11.2
Let  C  be  a  linear  code  of  length  n = 23  and  dimension  k = 12.  Assume  that  at  most  three  errors  have
occurred. What is the complexity of the various attacks described in Subsection 11.2.3.

Problem 11.3M

Let  C  be  a  linear  code  of  length  11  and  dimension  6.  Suppose  that  two errors  have  occurred.How many
swaps are expected to get 6 error-free coordinates if one follows  Algorithm 11.2?
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12 Knapsack Based Systems

12.1 The Knapsack System

12.1.1 The Knapsack Problem

In  [MerH78],  Merkle  and  Hellman  propose  a  public  key  cryptosystem  that  is  based  on  the
difficulty of solving the knapsack problem. Since then, other knapsack related cryptosystems have
been suggested,  most  of  which turned  out  to  be  insecure.  An exception,  up to  now, is  the  Chor-
Rivest scheme proposed in [ChoR85], but in [Vaud98] it is shown that the suggested parameters in
[ChoR85] are also insecure.

Definition 12.1
Let  a1, a2, …, an  be  a  sequence  of  n  positive  integers.  Let  also  S  be  an  integer.  The
question if the equation

(12.1)  x1 a1 + x2 a2 + … + xn an = S

has a solution with each xi  in 80, 1<  is called the knapsack problem.

Note  that  we  do  not  ask  for  a  solution  of  (12.1),  the  question  is  only  if  there  exists  a  solution.
Finding  a  80, 1<-solution  to  (12.1)  is  of  course  at  least  as  difficult  as  just  finding  out  whether  a
solution exists.

For  large  n  the  knapsack  problem  is  intractable  to  solve.  In  fact  it  has  been  shown  that  the
knapsack problem is NP-complete (see [GarJ79] or a very short discussion in Subsection 11.2.2).  

For some sequences 8ai<i=1
n  it  is  not difficult to find a 80, 1<-solution to (12.1),  resp. to show that

no  such  solution  exists.  For  example,  with  the  sequence  ai = 2i-1 ,1 § i § n ,  equation  (12.1)  will
have a solution if and only if 0 § S § 2n - 1. Finding the solution is very easy in this case. 

A much more general class of sequences 8ai<i=1
n  exists, for which (12.1) is easily solvable. This is

the class of so-called super-increasing sequences.

A sequence 8ai<i=1
n  is called super-increasing, if for all 1 § k § n , 

(12.2)  ⁄i=1
k-1 ai < ak .
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Algorithm 12.1 solves the knapsack problem for super-increasing  sequences.  It  actually  finds the
solution  8xi<i=1

n  for  each  right  hand  side  S  for  which  (12.1)  is  solvable.  The  idea  is  very  simple:
since ⁄i=1

n-1 ai < an , it follows that in a solution

xn = 1 ó S ¥ an .

Now,  subtract  xn an  from  S  and  determine  xn-1  in  the  same  way.  So,  recursively  for
k = n - 1, n - 2, …, 1 

xk = 1 ó HS - ⁄i=k+1
n xi.aiL ¥ ak .

If at the end S - ⁄i=1
n xi.ai = 0  one has found the solution to  (12.1), otherwise one may conclude

that (12.1) does not admit a solution.

Algorithm 12.1 Solving the knapsack problem for a super-increasing sequence.
input 8xk<k=1

n  a super-increasing sequence of positive integers,
S  integer

initialize k = n
while k ¥ 1do begin

if S ¥ ak  then xk = 1 else xk = 0,
put S = S - xk.ak ,
put k = k - 1
end

if  S = 0  then print 8xk<k=1
n  else print "no solution"

Example 12.1 (Part 1)

Consider  the  super-increasing  sequence  8ai<i=1
6 = 822, 89, 345, 987, 4567, 45678<  and  the  right  hand  side

S = 5665. To see if (12.1) has a solution we apply Algorithm 12.1.  

Because S < a6 , we get x6 = 0. Next, we see that S ¥ a5 , so we have x5 = 1. We subtract a5  from S  and get
1098. We see that this new value of S  satisfies S ¥ a4 , so x4 = 1, etc. The final solution is 81, 1, 0, 1, 1, 0< . 

Below the same process  is  written in Mathematica.  We make use of  the  functions  Length,  While,  If,
and  Join.  The  solution  8xi<i=1

6  is  formed  by  prepending  each  newly  found  value  xi  to  8xi+1, …, x6< ,
i = 6, 5, …, 1.

KnapsackForSuperIncreasingSequence@a_List, S_D :=

Module@8n, x, X, T<,
n = Length@aD; X = 8<; T = S;
While@n ≥ 1,

If@T ≥ a@@nDD, x = 1, x = 0D;
T = T − x∗a@@nDD;
X = Join@8x<, XD; n = n − 1D;

If@T != 0, Print@"No solution"D, XDD
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a = 822, 89, 345, 987, 4567, 45678<; S = 5665;
X = KnapsackForSuperIncreasingSequence@a, SD

81, 1, 0, 1, 1, 0<
Indeed

X.a

5665

12.1.2 The Knapsack System

É Setting Up the Knapsack System

The  knapsack  cryptosystem,  as  proposed  in  [MerH78]  is  based  on  the  apparent  difficulty of
solving the knapsack problem and the ease of solving this problem for super-increasing sequences.

Each  user  U  makes a  super-increasing  sequence  8ui<i=1
n

U  of  length  nU .  Next,  U  selects  integers
WU  and NU  such that

(12.3)  NU > ⁄i=1
n

U ui

and

(12.4)  gcdHWU , NU L = 1.

User U  computes the numbers

(12.5)  ui ' = HWU .ui mod NU L , 1 § i § n,

and makes the sequence 8ui '<i=1
nU  known as his public key. 

As a precalculation for the decryption, user U  also computes WU
-1 mod NU . 

The number WU
-1 mod NU  can be computed with the extended version of Euclid's Algorithm (Alg.

A.8).  Indeed,  since  gcdHWU , NU L = 1,  this  algorithm  will  give  X  and  Y  such  that
1 = X .WU + Y .NU . It follows that X .WU ª 1 Hmod NU L , i.e. X = WU

-1 .

Each  user  keeps  the  super-increasing  sequence  8ui<i=1
n

U  and  the  numbers  WU ,  HWU L-1 ,  and  NU

secret.

Example 12.1 (Part 2)

We  continue  with  the  parameters  of  Example  12.1.  So,  Bob  chooses8bi<i=1
6 = 822, 89, 345, 987, 4567, 45678<  as  his  super-increasing  sequence.  Further,  he  selects
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NB = 56789, which satisfies NB > ⁄i=1
6 bi  and WB = 12345 which is coprime with NB .

Next, he calculates bi ' = HWB bi mod NBL . Here, we do this with the Mathematica function Mod. To
check the conditions above we need the GCD function.

b = 822, 89, 345, 987, 4567, 45678<;
WB = 12345; NB = 56789;

‚
i=1

6

b@@iDD < NB

GCD@WB, NBD == 1
bb = Mod@WB∗ b, NBD

True

True

844434, 19714, 56639, 31669, 44927, 36929<
So, 8bi '<i=1

6 = {44434,19714,56639,31669,44927,36929} is the public key.

For this small value of nB  it already takes some effort to solve the knapsack problem (try 101077).

The number WB
-1 mod NB  can be found with the ExtendedGCD and Mod functions.

WB = 12345; NB = 56789;
Mod@ExtendedGCD@WB, NBD, NBD

81, 839750, 3704<<
It follows that WB

-1 = 39750. Indeed

WBinverse = 39750;
Mod@WB∗ WBinverse, NBD

1
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É Encryption

Suppose  that  Alice  wants  to  send  a  message  to  Bob.  She  looks  up  the  public  encryption  key8bi '<i=1
nB  of  Bob.  Next,  she  represents  her  message by a binary vector  Hm1, m2, …, mnBL  of  length

mB  (or by more vectors of this length if the messages is too long). 

Alice will send to Bob the ciphertext

(12.6)  C = ⁄i=1
n

B mi.bi ' .

Example 12.1 (Part 3)

We  continue  with  the  parameters  of  Example  12.1.So,  Bob's  public  key  is  given  by8bi '<i=1
6 = 844434, 19714, 56639, 31669, 44927, 36929< .

Let  Alice's  message  be  8mi<i=1
6 = 81, 1, 0, 0, 0, 1< .  Then  the  ciphertext  that  she  will  send  will  be⁄i=1

6 mi.bi ' = 101077.

bb = 844434, 19714, 56639, 31669, 44927, 36929<;
m = 81, 1, 0, 0, 0, 1<;
CipherText = m.bb

101077

É Decryption

When  Bob  receives  a  ciphertext  C  he  will  first  multiply  it  with  WB
-1  and  reduce  the  answer

modulo NB  (both are his secret parameters). It follows that

WB
-1.C ª

H12.6L
WB

-1.⁄i=1
n

B mi.bi ' ª
H12.5L ⁄i=1

n
B mi.bi Hmod NBL .

Inequality (12.3) implies that ⁄i=1
n

B mi.bi < NB . So, we can rewrite the above equation as follows:

(12.7)  ⁄i=1
n

B mi.bi = HWB
-1.C mod NBL .

Since  the  sequence  8bi<i=1
n

B  is  super-increasing,  Bob  can  now  apply  Algorithm  12.1  withHWB
-1.C mod NBL  as right hand side to recover the message 8mi<i=1

n
B

Example 12.1 (Part 4)

We continue with the parameters of Example 12.1.

Assume  that  Bob  has  received  C = 101077.  First  Bob  computes  HWB
-1.C mod NBL   with

WB
-1 = 39750 and NB = 56789. 
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CipherText = 101077;
S = Mod@WBinverse∗CipherText, NBD

45789

He  gets  45789.  To  solve  (12.1)  ⁄i=1
6 mi.bi = S ,  he  can  use  the

KnapsackForSuperIncreasingFunction defined earlier. 

b = 822, 89, 345, 987, 4567, 45678<; S = 5665;
X = KnapsackForSuperIncreasingSequence@b, SD

81, 1, 0, 1, 1, 0<
É A Further Discussion

The knapsack system is summarized in the table below.

Table 12.1

Public 8ui'<i=1
nU  of all users

Secret to U 8ui<i=1
nU , WU−1, NU

Properties ui' ≡ WU.ui Hmod NUL,8ui'<i=1
nU super − increasing,
gcd HWU, NUL = 1

Message for B 8mi<i=1
nB

Encryption C = ⁄i=1
nBmi .bi'

Decryption by B Apply Algorithm 12.1 to8ui'<i=1
nU and  WB−1.C mod NB

The Knapsack Cryptosystem

Even though the knapsack cryptosystem does not have the signature property, for a short while it
gained an enormous popularity.  The main reason is the low complexity of its  implementation. In
applications, both encryption and decryption can take place at very high data rates.

The  authors  [MerH78]  recommend  the  users  to  take  length  nU = 100,  a  sequence  8ui<i=1
n

U
satisfyingH2i - 1L .2100 < ui < 2i .2100 , 1 § i § 100,

(it will automatically be super-increasing), and a modulus NU  such that

2101 + 1 < NU < 2202 .
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Note that also (12.3) is satisfied.

It  is  further  recommended  that  user  U  makes  a  permuted  version  8ui '<i=1
n

U  public  instead of8ui '<i=1
n

U  itself  to  disguise  the  order  of  the  original  super-increasing  sequence.   In  this  way,  a
cryptanalyst  has  no  information  about  which  element  ui '  in  the  public  knapsack  came from (the
smallest knapsack element) u1 , for instance. 

The idea of multiplying a super-increasing sequence with a constant WU  modulo NU  is of course
to obtain a knapsack that looks random. To increase this effect and thus to increase the security of
the knapsack cryptosystem, [MerH78] advises to iterate this multiplication. 

Hence,  each  user  U  also  selects  NU
' > ⁄i=1

n
U ui '  and  1 < WU

' < NU
'  with  gcdHWU

' ,NU
' )=1,

computes ui ' ' ª WU
' .ui ' Hmod NU

' L , 1 § i § nU , and makes 8ui ' '<i=1
n

U  public instead of 8ui '<i=1
n

U .

It  makes  sense  to  iterate  this  process  of  modulo-multiplication,  as  is  illustrated  in  the  following
example.

Example 12.2

Let  n = 3  and  consider  8ui<i=1
3 = 85, 10, 20< .  Multiplying  this  sequence  with  17  modulo  47  gives8ui '<i=1

3 = 838, 29, 11< . Multiplying this sequence with 3 modulo 89 gives 8ui ' '<i=1
3 = 825, 87, 33< .

These calculations can be verified with the Mod function. 

u = 85, 10, 20<
uu = Mod@17 u, 47D
uuu = Mod@3 uu, 89D

85, 10, 20<
838, 29, 11<
825, 87, 33<

It  is  impossible  to  find  integers  W  and  N  that  map  8ui<i=1
3  directly  into  8ui ' '<i=1

3 .  Indeed  the
congruence relations

5 W ª 25 Hmod NL ,
10 W ª 87 Hmod NL

imply  that  N  divides  87 - 2 µ 25 = 37.  Since  37  is  a  prime,  it  follows  that  N = 37.  It  also
follows that W = 5. These values of W  and N  however violate the third congruence relation

20 W ª 33 Hmod NL .

This  shows  that  an  iteration  of  modulo-multiplications  can  not  always  be  replaced  by  a  single
modulo-multiplication.
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The above example also demonstrates something else.  Note that  the second iteration mapped the
not-super-increasing  knapsack 838, 29, 11<  into  825, 87, 33< ,  which  after  a  reordering  is  a  super-
increasing sequence.

This also makes it clear that cryptanalyst Eve does not have to guess the original integers WU  and
NU  (and  also  WU

'  and  NU
'  in  the  iterated  case)  to  convert  the  public  key  back  into  a  super-

increasing  sequence.  Eve  can  also  decrypt  the  ciphertext,  if  she  is  able  to  obtain  another  super-
increasing sequence from 8ui '<i=1

n
U  (resp. 8ui ' '<i=1

n
U ).

These observations demonstrate two important things:

1) Iteration does not necessarily increase the security of the system.

2) It may be easier for a cryptanalyst to map the public knapsack into a super-increasing 
sequence other than the original.

Some  critics  of  the  knapsack  cryptosystem  did  not  trust  the  linearity  of  the  system.  Their
intuition/experience told them that the knapsack cryptosystem was bound to be broken. 

The reader  should  remember that  the  general  knapsack  problem is  NP-complete.  This  implies  in
particular  that  no  known  algorithm  solves  it  in  polynomial  time.  However,  the  property  of  NP-
completeness has never been proved for the restriction of the knapsack problem to the subclass of
knapsacks,  obtained  by  a  single  modulo-multiplication  of  a  super-increasing  sequence.  In  1982,
Shamir [Sham82]  showed that  the  single  iteration version of the knapsack system can be broken
with  very  high  probability  in  polynomial  time.  This  attack  was  later  generalized  by  others  (see
[Adle83] and [Bric85])

In  Section  12.2,  an  outline  of  the  much more general  attack  by Lagarias  and Odlyzko [LagO83]
will be given.

12.2 The L3-Attack

12.2.1 Introduction

In  the  original  knapsack  cryptosystem  it  is  assumed  that  the  secret  sequence  8ui<i=1
nU  is  super-

increasing.  However,  this  is  not  crucial  for  a  knapsack-based  cryptosytem.  It  only  makes  the
decryption easy, because of Algorithm 12.1. The only essential requirement is that the plaintext-to-
ciphertext mapping 8mi<i=1

nU öC  in (12.6) is one-to-one.

Since the general knapsack problem is NP-complete, no known algorithm solves it in polynomial
time.  Still,  it  is  quite  possible  that  polynomial-time  algorithms  do  exist,  which  solve  with  some
positive  probability  any  knapsack  problem  in  a  large  subclass  of  knapsack  problems.  Such  an
algorithm would make the knapsack system unsuitable for cryptographic purposes. 
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In  this  section,  we  shall  often  use  the  vector  notation  u = Hu1, u2, …, unL  for  a  knapsack  8ui<i=1
n .

Before  we  give  an  outline  of  the  Lagarias  and  Odlyzko  attack  (also  called  the  L3 -attack)
[LagO83], we have to define a few new notions.

Definition 12.2
The density dHuL  of a knapsack  u = Hu1, u2, …, unL  is defined by

dHuL = nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅmax1§i§n log2 ui
.

Example 12.3

For  instance,  the  density  of  the  knapsack  822, 89, 345, 987, 4567, 45678<  is  6 ê log2 45678 º 0.39,  as  can
be checked with the Mathematica functions Max, Log, Length, and N.

a = 822, 89, 345, 987, 4567, 45678<;
N@Length@aDê Log@2, Max@aDD, 2D

0.39

The  density  dHuL  serves  as  measure  for  the  information  rate  of  a  knapsack  system.  Indeed,  the
numerator is the number of message bits that are stored in the sum C  of the knapsack (see (12.6)).
The  denominator  is  a  good  approximation  of  the  average  number  of  bits  needed  for  the  binary
representation of C . For instance, with ui = 2i-1 , 1 § i § n , the density is n ê Hn - 1L º 1as it should
be.

We  shall  show  further  on  that  the  Lagarias  and  Odlyzko  attack  is  more  likely  to  break  the
knapsack system if its density is smaller.

This  may  sound  like  a  heavy  restriction,  but  one  should  realize  that  nobody  likes  to  use  a
cryptosystem that has a non-trivial positive chance to be broken.

12.2.2 Lattices

Definition 12.3
Let 8v1, v2, …, vn<  be a set of vectors in n  that are linearly independent  over  .  Then
the set of all integer linear combinations of 8v1, v2, …, vn<  is called an integer lattice. In
formula:

L = 8⁄i=1
n  ai.vi » ai œ , 1 § i § n<

or
L = .v1 + .v2 + … + vn .

We say that  the n  independent  vectors v1, v2, …, vn  form a basis  for the lattice L .  Note that the
basis of a lattice is certainly not unique. Normally, the order of the basis vectors does not matter,
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but in the sequel such an order will matter. We shall use the notation @v1, v2, …, vnD  to indicate a
particular ordering.

Example 12.4 

Consider  the  lattice  L  in   2  with  basis  u = H3, 1L  and  v = H1, 2L .  It  consists  of  all  points  of  the  form
a .H3, 1L + b .H1, 2L , with a , b œ  . Below part of this lattice is depicted.

u
v

Figure 12.1

Lattice in 2  with basis H3, 1L  and H2, 1L
For the L3 -attack that we shall describe later on, it is of great importance to find a vector in L of
short  length,  or  even  better  to  find  a  complete  basis  of  short  vectors  for  L.  For  this  reason,  we
need to study basis transformations more carefully. 

The  Gram-Schmidt  process  is  a  well  known  algorithm  from  linear  algebra  to  transfer  a  basis8v1, v2, …, vn<  of a linear (sub)space into an orthogonal basis,  i.e.  in a basis 8u1, u2, …, un<  with
the property  that  all  vectors  ui  are  orthogonal  to  each other,  i.e.  Hui, u jL = 0,  for  i ∫ j .  It  goes as
follows:

u1 = v1 ,
u2 = v2 - m1,2 u1 ,
u3 = v3 - m1,3 u1 - m2,3 u2 ,

ª

un = vn - m1,n u1 - m2,n u2 - … - mn-1,n un-1 .

where

mi, j =
Hv j,uiLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHui,uiL , 1 § i § j § n .

272 FUNDAMENTALS OF CRYPTOLOGY



Example 12.5 

To demonstrate the Gram-Schmidt process we take v1 = H3, 4, 2L , v2 = H2, 5, 2L , and v3 = H1, 2, 6L  in 3 . 

v1={3,4,2};v2={2,5,2};v3={1,2,6};
u1=v1
u2=v2-((u1.v2)/(u1.u1))u1
u3=v3-((u1.v3)/(u1.u1))u1-((u2.v3)/(u2.u2))u2

83, 4, 2<
9−

32
ccccccc
29

, 25
ccccccc
29

, −
2

ccccccc
29

=
9−

24
ccccccc
19

, −
24
ccccccc
19

, 84
ccccccc
19

=
This  can  also  be  done  in  Mathematica.  We  first  load  the  Mathematica  package
LinearAlgebra`Orthogonalization`  and  then  run  GramSchmidt.  The  result  will  be
orthonormal basis, i.e.  we obtain a set of n  orthogonal vectors  ui  that  have been further divided
by their length to give them unit-length.

<<LinearAlgebra`Orthogonalization`

v1={3,4,2};v2={2,5,2};v3={1,2,6};
{u1,u2,u3}=GramSchmidt[{v1,v2,v3}]

99 3
ccccccccccccè!!!!!!29

, 4
ccccccccccccè!!!!!!29

, 2
ccccccccccccè!!!!!!29

=,9−
32

cccccccccccccccccè!!!!!!!!!!!1653
, 25

cccccccccccccccccè!!!!!!!!!!!1653
, −

2
cccccccccccccccccè!!!!!!!!!!!1653

=, 9−
2

ccccccccccccè!!!!!!57
, −

2
ccccccccccccè!!!!!!57

, 7
ccccccccccccè!!!!!!57

==
As  we  can  see  in  the  example  above,  the  vectors  ui ,  1 § i § n ,  will,  in  general,  no  longer  have
integer coordinates. In the context of integer lattices that is an undesirable situation. 

In  the  next  subsection  we  shall  discuss  an  (integer-valued)  basis  for  lattice  fl,  that  is  not
completely orthonormal, but has two other attractive properties. 
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12.2.3 A Reduced Basis

Let  »» u »»  denote  the  standard  Euclidean  norm  or  length  of  a  vector  u .  So,»» u »» = Hu, uL1ê2 = ⁄i=1
n HuiL2 . 

Definition 12.4
A basis 8v1, v2, …, vn<  of an integer lattice L is called y-reduced, where 1 ê4 < y < 1, if
the  orthogonal  basis  8u1, u2, …, un<  obtained  from  8v1, v2, …, vn<  through  the  Gram-
Schmidt process satisfies»» ui + mi,i-1 ui-1 »»2  ¥ y. »» ui-1 »»2 , 2 § i § n ,H » mLi, j » § 1 ê2, 1 § i § j § n .

An  alternative  definition  of  a  y-reduced  basis  can  be  given  as  follows.  Let  Vk  be  the  k -
dimensional linear subspace of n , spanned by 8v1, v2, …, vk<  or, equivalently, by 8u1, u2, …, uk< .

Let  Vk
¦  be  the  orthogonal  complement  of  Vk .  Define  v j

HkL ,  k + 1 § j § n ,  as  the  projection  of  v j

onto Vk
¦ . In particular, vk+1

HkL = uk+1 .  Then it can be shown (see [LagO83]) that the two conditions
in Definition 12.4 are equivalent to

(12.8)   »» vi
Hi-2L »»2  ¥ y. »» vi-1

Hi-2L »»2 = y. »» ui-1 »»2 , 2 § i § n ,

resp.

(12.9)   »» v j
HiL - v j

Hi-1L »» § 1ÅÅÅÅÅÅ2 »» vi
Hi-1L »» , 1 § i § j § n .

Note that (12.8) implies that the projection of vi  onto Vi-2
¦  should not be too small in size (when

compared with the length of ui-1 ). The inequality in (12.9) says that the projection of  v j  onto ui  is
relatively small.

These  two  statements  can  be  interpreted  by  saying  that  the  vectors  in  a  y-reduced  basis  are of
comparable size and all point in different directions.

In the sequel, y  will always be 3/4. The L3 - Algorithm (see [LenLL82]) is a very effective way to
find  a  y-reduced  basis  for  a  lattice  L.  It  will  not  be  described  in  full  detail  here  (see  however
Subsection 12.2.5). We quote the following facts from [LenLL82].

Theorem 12.2
Let  8v1, v2, …, vn<  be  a  basis  of  an  integer  lattice  L.  in  n  and  let  B = max1§i§n »»vi ||.
Then the L3 -lattice  basis  reduction  algorithm produces  a  reduced basis  8w1, w2, …, wn<
for L in about n6Hlog BL3  bit operations.

Theorem 12.3
Let 8w1, w2, …, wn<  be a reduced basis for an integer lattice L. 
Then »» w1 »»2  § 2n-1.min 8 »» x »»2 » x œ L \ 80<< .
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In fact, Prop.1.12 in [LenLL82] shows that no vector in a reduced basis can be very long.

12.2.4 The L3 -Attack

We can  now present  the  idea  behind  the  L3 -attack.  We  want  to  find  a  solution  to  the  knapsack
problem ⁄i=1

n xi ai = C  (see (12.1)). 

The idea  of the  attack  will  be  to  convert  the  parameters  of the knapsack problem into a basis of
some  integer  lattice  L.  Then  we  find  a  short  vector  in  this  lattice  with  the  L3 -lattice  basis
reduction  algorithm.  The  hope  will  be  that  this  short  vector  can  be  transformed  back  into  the
solution 8xi<i=1

n of (12.1). 

L3 -attack on ⁄i=1
n ai xi = S .

Step 1:

Define the vectors 

(12.10)  

v1 = H1, 0, …, 0, −a1L
v2 = H0, 1, …, 0, −a2L

ª
vn = H0, 0, …, 1, −anL
vn+1 = H0, 0, …, 0, SL

Together they form a basis for a Hn + 1L-dimensional lattice L in n+1 .

Note that for the solution 8xi<i=1
n one has ⁄i=1

n  xi vi + vn+1 = Hx1, x2, …, xn, 0L .

So,  this  vector  has  length  è!!!n ,  which  is  relatively  very  short,  e.g.,  if  the  knapsack  has  length
n = 100, we have »» ⁄i=1

n  xi vi + vn+1 »» § 10.

Step 2:

Find a reduced basis 8w1, w2, …, wn<  for L with the L3 -algorithm ([LenLL82]).

Step 3:

Check if  one  of the  n + 1  "short"  vectors  wi ,  1 § i § n + 1,  has  the property  that  HwiLn+1 = 0  and
that each of the first n  coordinates is either 0 or a, for some constant a.

If  so,  check  if  the  vector  1ÅÅÅÅÅ
a

 HHwiL1, HwiL2, …, HwiLnL   is  a  solution  of  (12.1).  If  it  does,  STOP,
otherwise continue with Step 4.

Step 4:

Repeat Steps 1, 2 and 3 with S  replaced by ⁄i=1
n ai - S .  If  these steps result  in a solution 8xi '<i=1

n

for this new knapsack problem then 8xi<i=1
n , defined by xi = 1 - xi ' , 1 § i § n  , will be the solution

of the original knapsack.
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Example 12.6 

Consider the knapsack problem with 8ai<i=1
10 = {541,400,259,1059,895,590,498,973,41,649} and S = 4517.

Let  us  first  make  the  vectors  vi ,  1 § i § 10,  as  indicated  by  (12.10).  We  use  the  Mathematica  functions
Transpose, Append, IdentityMatrix, Do, Table, and MatrixForm.

a = 8541, 400, 259, 1059, 895, 590, 498, 973, 41, 649<;
s = 4517;
aux = Transpose@ Append@IdentityMatrix@10D, −aDD;
Do@v@iD = aux@@iDD, 8i, 1, 10<D;
v@11D = Append@Table@0, 810<D, sD;
Table@ v@iD, 8i, 1, 11<D êê MatrixForm

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 0 0 0 0 0 0 −541
0 1 0 0 0 0 0 0 0 0 −400
0 0 1 0 0 0 0 0 0 0 −259
0 0 0 1 0 0 0 0 0 0 −1059
0 0 0 0 1 0 0 0 0 0 −895
0 0 0 0 0 1 0 0 0 0 −590
0 0 0 0 0 0 1 0 0 0 −498
0 0 0 0 0 0 0 1 0 0 −973
0 0 0 0 0 0 0 0 1 0 −41
0 0 0 0 0 0 0 0 0 1 −649
0 0 0 0 0 0 0 0 0 0 4517

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
The vectors 8v1, v2, …, v10<  form the basis of a lattice L.

Next we use the Mathematica function LatticeReduce to find a reduced basis.

LatticeReduce@ Table@v@iD, 8i, 1, 11<DD

881, −2, 1, 0, 0, 0, 0, 0, 0, 0, 0<,8−1, 0, −2, 1, 0, 0, 0, 0, 0, 0, 0<, 80, 1, −1, 1, −2, 1, 0, 0, 0, 0, 0<,81, −1, −1, 0, −1, 0, 0, 1, 1, 0, −1<,81, 1, −2, 0, 0, 1, 0, −1, −1, 0, 1<,81, 1, −1, 0, 0, −2, 1, 0, 0, 0, 0<, 81, −1, 0, 0, 1, 0, −2, 0, −1, 0, 1<80, 1, 0, −1, 0, 1, −1, 0, −2, 1, 0<,80, 0, −1, −1, −1, 1, 0, 1, 0, 1, 1<,81, −1, 0, 0, 0, 1, 0, 0, −2, −1, 0<, 81, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0<<
We  see  that  only  the  last  output  is  a  two-valued  vector  on  its  first  10  coordinates.  One  of  the
values  is  indeed  0,  the  other  value  is  a=1.  Trying  out  8ai<i=1

10 = 81, 1, 0, 1, 1, 0, 0, 1, 0, 1<  gives
indeed ⁄i=1

n ai xi = S .
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x = 81, 1, 0, 1, 1, 0, 0, 1, 0, 1<;
a.x == S

True

The computing time of Steps 1 and 3 in the L3 -attack is ignorable. Therefore, the running time of
this algorithm is essentially (twice) the running time of the  L3 -algorithm, as given by in Theorem
12.2. There is in no guarantee that the L3 -algorithm will find a solution of the knapsack problem.
However the authors of [LagO83] give the following analysis of the L3 -algorithm.

Theorem 12.4
Let B ¥ 2H1+ bL n2  for some constant b > 0  and knapsack length n . Let KHn, BL  denote the
number of knapsacks 8ai<i=1

n  satisfying 
1) 1 § ai § B  for all 1 § i § n ,
2) the L3 -attack will find a {0,1}-solution 8xi<i=1

n  for (12.1) for each right hand side S  for
which there exists such a solution.
Then

KHn, BL = BnH1 - eHBLL ,

where
0 < eHBL < C1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

BC2-3 Hln nLên
for some constant C1  and where C2 = 1 - H1 + bL-1 > 0.

Theorem  12.4  states  that  for  any  b > 0  and  n  sufficiently  large  one  can  solve  the  knapsack
problem for almost all knapsacks 8ai<i=1

n  with density

dH8ai<i=1
n L § nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅlog2  B < 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1+bL n .

With some additional work [LagO83], the inequality above can be weakened to

dH8ai<i=1
n L < H1 - eL 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅn.log2  4ê3 .

for any fixed e > 0 and n . This inequality is probably not the best possible one.

12.2.5 The L3 -Lattice Basis Reduction Algorithm

Recall that the L3 -algorithm  must find a basis 8v1, v2, …, vn<  for an integer lattice that meets the
requirement given in Definition 12.3:»» ui + mi,i-1 ui-1 »»2  ¥ y. »» ui-1 »»2 , 2 § i § n ,HmLi, j » § 1 ê2, 1 § i § j § n ,
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where mi, j =
Hv j,uiLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHui,,uiL .

The L3 -algorithm makes use of the following procedure:

Procedure reduce@k, lD
Input 1 § l < k
Compute ml,k

If HmLl,k » > 1 ê 2 then begin
r = d0.5 + ml,kt
vk := vk - r.vl

end

The L3 -algorithm now runs as follows:

L3 -Algorithm
Input 8v1, v2, …, vn< , basis of integer lattice
Initialize k=2
While k § n  do

begin
reduceHk, k - 1L
compute »» uk »» , »» uk-1 »»  and mk-1,k

if »» uk  »»2  < Hy - mk-1,k
2 L. »» uk-1 »»2  

then  begin exchange vk  and vk-1

k := max 82, k - 1<
         end

           else  begin reduceHk, lL  for l = k - 1, …, 2, 1
k = k + 1

        end
end

For  further  reading  see  [LenLL82].  Notice  that  only  the  basis  8v1, v2, …, vn<  is  adjusted  in  this
algorithm. No vector ui  enters the reduced basis, they are only used in the calculations.
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12.3 The Chor-Rivest Variant
The  Chor-Rivest  scheme  [ChoR85]  is  a  knapsack  based  cryptosystem  that  does  not  convert  a
secret  knapsack,  for  which  the  knapsack  problem is  easy  to  solve,  into  the  public  knapsack,  for
which the knapsack problem should be intractable. It does make use of the standard conversion of
integers to binary sequences of fixed length. Further, it employes a fixed constant, a fixed choice
of  an  irreducible  polynomial,  a  fixed  choice  of  a  primitive  element,  a  fixed  permutation,  and  an
exponentiation in a finite field for which the logarithm problem is tractable. 

In  [Vaud98],  it  is  shown  that  the  parameters  suggested  in  [ChoR85]  are  not  secure.  The  author
gives  suggestions  to  repair  the  original  proposal.  Here  we shall  only  explain  the  original  idea of
the Chor-Rivest scheme.

É Setting Up the System

1) Each user U  selects a finite field GF HqL  for which the logarithm problem is feasible (also
by  the  cryptanalyst).  For  instance,  in  view  of  the  Pohlig-Hellman  Algorithm  explained  in
Subsection 8.3.1, this can be achieved by letting q - 1  have only small prime factors. Further, the
characteristic p  of GFHqL , so q = pk  for some k , should satisfy p > k .

To  represent  GFHqL ,  U  uses  a   random  irreducible  polynomial  f HxL  of  degree  k  over  p  The
elements of GFHqL  can be represented by p-ary polynomials of degree < k  (see Theorem B.15).

Note that, for reasons of clarity, we have omitted the subscript U  in the above choices by U ).

2) User  U  selects  a  random  primitive  element  a  in  GFHqL .  Primitive  means  that  each  non-
zero element in GFHqL  can be written as some power ai  of a, where i < q - 1. Note that a, being
an element in GFHqL ,  is also a p-ary polynomial of degree less than k .

3) For each i œ p , user U  determines the discrete logarithm of the field elements x + i  with
respect  to  the  primitive  element  a.  In  other  words,  one  needs  to  find  exponents  Ui ,  i œ p ,
satisfying 

(12.11)  aUi ª x + i Hmod f HxLL .

 This is feasible by our assumption in 1).

4) Finally,  user  U  has to  select  a  random permutation pU  of  80, 1, …, p - 1<  and a random
element DU , 0 § D < q - 1. He computes the numbers

(12.12)   ui ª UpHiL + DU Hmod q - 1L .

and makes these numbers u0, u1, …, up-1  public together with the value q = pk . 

(The reader should recall that q - 1  is the order of the multiplicative group of GFHqL , see Theorem
B.20).
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Example 12.7 (Part 1)

Bob selects the finite field GFH73L , so p = 7  and k = 3. An irreducible, binary polynomial f HxL  of degree 3
over  7  can  be  found  with  the  Mathematica  function  IrreduciblePolynomial ,  once  the  package
Algebra`FiniteFields` has been loaded.

<<Algebra`FiniteFields`

p = 7; k = 3; q = pk;
f = IrreduciblePolynomial@x, p, kD

4 + x + 2 x2 + x3

So, f HxL = x3 + 2 x2 + x + 4. It turns out that w = x  is a primitive element in GFH73L . This can be
checked as follows. From q - 1 = 73 - 1 = 11 µ 31, we see that the order of any element is either
1, 11, 31, or 342 (see Theorem B.5). But w = x  does not have order 11 or 31, as can be checked
with  the  following  calculations.  (We  use  the  GF-function.  Note  that  f342  represents
GFH73L = 7@xD ê H f HxLL .) 

f341 = GF@7, 84, 1, 2, 1<D;
om = f341@80, 1<D;
om11

om31

86, 1, 3<783, 3, 6<7
To get a random primitive element a in GFH73L , Bob raises w to the power i  with gcdHi, q - 1L = 1
(see Lemma B.4). We use the functions Random, GCD, and While.

i = q − 1;
While@GCD@i, q − 1D != 1, i = Random@Integer, 81, q − 2<DD;

i

239

We find i=239. The random primitive element will be a = w i , which is 3 + 4 x + 5 x2  by
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a = omi

83, 4, 5<7
It follows from 83 µ 239 ª 1 Hmod q - 1L  that w = a 83 .

To determine the numbers Bi  satisfying a Bi ª x + i Hmod f HxLL  we use

B = Table@Mod@83∗FieldInd@om + iD, q − 1D, 8i, 0, p − 1<D

883, 101, 175, 90, 170, 321, 213<
We conclude that B0 = 83, B1 = 101, B2 = 175, B3 = 90, B4 = 170, B5 = 321, B6 = 213. 

This can be checked with:

B = 883, 101, 175, 90, 170, 321, 213<;
aB

880, 1, 0<7, 81, 1, 0<7, 82, 1, 0<7,83, 1, 0<7, 84, 1, 0<7, 85, 1, 0<7, 86, 1, 0<7<
A few more things need to be done by Bob. He has to select a random number D, 0 § D < q - 1,
and  a  random  permutation  p  of  80, 1, …, 6< .  We  load  the  Mathematica  package
DiscreteMath`Combinatorica` and use the function RandomPermutation.

<<DiscreteMath`Combinatorica`

RD = Random@Integer, 80, q − 2<D
pi = RandomPermutation@7D

244

86, 3, 7, 4, 5, 2, 1<
So, D = 244 and p = 86, 3, 7, 4, 5, 2, 1< , meaning that p H1L = 6, p H2L = 3 , …, p H7L = 1.

(The reader should watch out here. Mathematica labels the entries in a list starting with 1, while
we start with 0. )
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The public key is given by the sequence (12.12): bi = Bp HiL + D. We use the functions Table and
Mod.

BPerm = Table@B@@pi@@iDDDD, 8i, 1, 7<D
b = Mod@BPerm + RD, q − 1D

8321, 175, 213, 90, 170, 101, 83<
8223, 77, 115, 334, 72, 3, 327<

Bob makes 8bi<i=0
6 = 8223, 77, 115, 334, 72, 3, 327<  public and also k = 3.

É Encryption

Now  suppose  that  Alice  wants  to  send  a  secret  message  to  Bob.  She  looks  up  the  public
parameters b0, b1, …, bp-1  and k  of Bob. She calculates qB = pk . Alice's message is a number M

in between 1 and J p
k
N .

Alice  represents  her  message  (in  a  manner  that  is  shown  below)  as  a  binary  string
m0, m1, …, mp-1  of length p  and weight k  (exactly k  of the mi 's are equal to 1), so

(12.13)  ⁄i=1
p-1 mi = k .

Alice will send 

(12.14)  c = I⁄i=1
p-1 mi bi mod qBM .

Example 12.7 (Part 2)

Suppose that Alice wants to send a message to Bob. She looks up Bob's public parameters k = 3
and  8bi<i=0

6 = 8223, 77, 115, 334, 72, 3, 327<  (see  Example  12.7).  So,  she  knows  that  p = 7  (and
q = 73 = 341).

Let Alice's message be M = 19 (which indeed lies in between 1 and J7
3
N).

This can be represented by the binary sequence 8mi<i=0
6 = 80, 1, 1, 0, 1, 0, 0L , as shown

below.

The ciphertext c that Alice will send will be ⁄i=0
6 mi bi , which is 264 in this case.

m = 80, 1, 1, 0, 1, 0, 0<;
ct = m.b

264
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There is a recursive way to map a number M , 1 § M § J p
k
N , into a binary string  m0, m1, …, mp-1

of length p  and weight k . It makes use of the well-known identity:J p
k
N = J p - 1

k
N + J p - 1

k - 1
N .

If M > J p - 1
k

N , we put mp-1 = 1  and decrease M  by J p - 1
k

N . This new value will be in between 1

and J p - 1
k - 1

N  and can be described by a string m0, m1, …, mp-2  of length p - 1 and weight k - 1.

On the other hand, if M § J p - 1
k

N , put mp-1 = 0  and describe M  by a string m0, m1, …, mp-2 of

length p - 1 and weight k .

Algorithm 12.5 Conversion from M  to m0, m1, …, mp-1  of weight k

Input M , 1 § M § J p
k

N .

Initialize l = k

For i = 1 to p  do    if M > J p - i
l

N
        then  begin mp-i: = 1

M := M - J p - i
l

N
 l := l - 1

         end
    else mp-i: = 0

Example 12.8 

Let p = 7 and k = 3. Then J7
3
N = 35. 

To find  out  into  which binary  sequence of  length  7 and weight  3 the integer M = 19  will  be mapped,  we
follow  the  algorithm  below,  which  makes  use  of  the  Mathematica  functions  Table,  If,  Do,  and
Binomial.

p = 7; k = 3;
Me = 19;
l = k;
m = Table@0, 8i, 1, p<D;
Do@If@Me > Binomial@p − i, lD,

8m@@iDD = 1,
Me = Me − Binomial@p − i, lD, l = l − 1<D,

8i, 1, p<D;
m

80, 1, 1, 0, 1, 0, 0<
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É Decryption

Bob  receives  c ,  which  is  in  fact  c = I⁄i=1
p-1 mi bi mod qBM  by  (12.14).  He  computes  C = c - k.DB

with his secret DB  (see (12.12)).

Next, Bob computes aC . Now note that in GFHqL:

aC = ac-k.DB = aI⁄i=1
p-1mi  biM-k.DB =

H12.12L
aH⁄i=1

p-1miHBpHiL+DBL-k.DB

=
H12.13L

a⁄i=1
p-1mi  BpHiL = ¤i=1

p-1 HaBpHiL Lmi =
H12.11L ¤i=1

p-1 Hx + pHiLLmi .

This means that

 aC ª ¤i=1
p-1 Hx + pHiLLmi Hmod f HxLL . 

Next,  we add a suitable multiple of f HxL  to aC  to make its polynomial representation monic. So,
for some b œ GFHqL: aHxL = aC + b. f HxL  is monic. 

Since also ¤i=1
p-1 Hx + pHiLLmi  is monic, the above in fact implies that

aHxL = ¤i=1
p-1 Hx + pHiLLmi .

It follows that mi = 1, 0 § i § p - 1, if and only if -pHiL  is a zero of aHxL .

We summarize the decryption process in the following algorithm.

Algorithm 12.6 Decryption of Chor-Rivest Cryptosystem by Bob
Input ciphertext c
Bob's Secret DB, k, a, f HxL, p .
Compute        C = c - k.DB  with secret DB  (see (12.12)).
Compute aC , where a is Bob's primitive element 
Add multiple of f HxL  to aC  to get monic aHxL
Put mi = 1 if and only if -pHiL  is a zero of aHxL .

Example 12.7 (Part 3)

We continue with Example 12.7. Assume that Bob receives the ciphertext c = 264. 

Bob's secret parameters are k = 3, D = 244, p = 86, 3, 7, 4, 5, 2, 1< , f HxL = 4 + x + 2 x2 + x3  and
a = 3 + 4 x + 5 x2 .

Bob subtracts k.D from c,

CT = Mod@ct − RD∗k, q − 1D

216

Next  he  raises  a  to  the  power  C.  To  write  this  as  a  polynomial  we  use  the  function
ElementToPolynomial.
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aCT

u = ElementToPolynomial@aCT, xD

82, 1, 3<7
2 + x + 3 x2

Next,  Bob  has  to  add  f HxL  to  get  the  monic  polynomial  aHxL .  We  use  the  function
PolynomialMod.

AX = PolynomialMod@u + f, 7D

6 + 2 x + 5 x2 + x3

We factor this by means of the function Factor.

Factor@AX, 8Modulus −> 7<D

8H2 + xL H4 + xL H6 + xL<
The  inverse  permutation  of  p  can  be  computed  with  InversePermutation  (in  the  package
DiscreteMath`Combinatorica`  that we have already loaded)

InversePermutation@piD

87, 6, 2, 4, 5, 1, 3<
We subtract 1 from these elements because p acts on 80, 1, …, 6<  instead of 81, 2, …, 7< . We get

InversePermutation@piD − 1

86, 5, 1, 3, 4, 0, 2<
From  this  we  see  that  the  numbers  2, 4,  and  6  are  mapped  to  1, 4,  and  2  under  p -1 .  In  other
words, p maps 1, 2, and 4 to 2, 4, resp. 6.

We conclude that the message vector has ones on the coordinates 1, 2, and 4 (and thus zeros on
the coordinates 0, 3, 5, and 6), i.e. the message vector is given by 8mi<i=0

6 = 80, 1, 1, 0, 1, 0, 0L . 
This is indeed equal to the value that was chosen during encryption.
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12.4 Problems

Problem 12.1
Solve the knapsack problem if the elements are given by 333, 41, 4, 172, 19, 3, 80, and 11 and if the total
size of the knapsack equals 227.

Problem 12.2
Solve the knapsack problem if the elements are given by 31, 32, 46, 51 63, 72 and 87 and if the total size of
the knapsack equals 227.

Problem 12.3 M

A  knapsack  cryptosystem  has  the  numbers  381,  424,  2313,  2527,  2535,  3832,  3879,  and  4169  as  public
key.  They  are  obtained  by  multiplying  the  elements  of  a  super-increasing  sequence  by  W = 4673  and
reducing the result modulo 5011.
Decrypt message 11678.

Problem 12.4
Let  p1, p2, …, pn  be  a  sequence  of  different  prime numbers  and let  P  be  their  product.  The numbers  ai ,
1 § i § n , are defined by ai = P ê pi . 
Let S = ⁄i=1

n xi.ai , where each element xi  is either 0 or 1.
Give a simple algorithm to recover the numbers xi , 1 § i § n , from S .

Problem 12.5 M

Let  C = 5738  be  the  ciphertext  obtained  through  a  knapsack  encryption  with   8ui<i=1
n

= 8437, 1654, 1311, 625, 1250, 1720, 663, 1420, 63, 319<  as public knapsack.
Apply the L3 -attack to find the plaintext.

Problem 12.6
Which integer will be mapped to the binary vector H1, 1, 0, 1, 1, 0, 1, 0, 1, 1L  by Algorithm 12.5?

Problem 12.7 M

Work  out  a  complete  Chor-Rivest  cryptosystem  example  (including  encryption  and  decryption)  for  the
parameters p = 11, k = 2. 
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13 Hash Codes & Authentication Techniques

13.1 Introduction
In  Section  1.1  we  mentioned  confidentiality  (privacy)  as  the  first  reason  why  people  use
cryptosystem.  Of course,  this  goal  is  very important  and it  does  lead to  interesting  mathematical
issues, but for the vast majority of data secrecy is not the user's prime concern.

Authentication and integrity on the other hand are almost always essential. Think, for instance, of
receivers of data files, E-mail messages, fax, etc. Violation of the confidentiality does (in general)
little harm, but significant damage may be done if somebody else is able to tamper with data files.

When studying authentication schemes one needs to distinguish between the following goals:

i) Does one want unconditional security or just computational security?

ii) Do the various parties trust each other or not?

iii) Is there a mutually trusted third party?

iv) Are the data files typically very long or just short?

v) Is confidentiality also an issue?

vi) Is the system intended for multiple use or just for single use?

The  first  two  distinctions  especially,  have  lead  to  completely  different  research  areas.  The  main
topic of Section 13.3 will be authentication schemes with unconditional security. This means that
even with unlimited computing power the opponent  can not break the system.These schemes are
usually called authentication codes and a particular subclass of them is called A-codes. 

Computationally  secure  systems  are  based  on  mathematical  assumptions  like  the  infeasibility of
factoring  large  numbers  or  of  taking  discrete  logarithms.  These  methods  are  called  digital
signature schemes and have already been discussed in Sections 8.1.2, 8.2.1, 8.2.2, and 9.1.4.

If a file is very long and confidentiality is not an issue a very common technique to add proof of
authenticity and/or integrity to it, is to send it just like it is and then add a relatively short sequence
of bits (e.g. 100-200) that depend in an intricate way on all the bits in the original message. This
tail  should be proof that  the message indeed came from the assumed sender and that  its contents
have not been changed.

The standard way to realize this is to hash  the file in a cryptographically secure way into a short
sequence and compute a signature on this hash value. It  is  the signature of the hash value that is
appended to the original file. If an authentication scheme is slow in its implementations (as is the

Hash Codes & Authentication Techniques 287



case with digital signature schemes), this two-step approach may make them very practical.

In  many  applications,  the  hash  function  also  makes  use  of  a  secret  key  that  sender  and  receiver
share.  These  systems,  which  are  called  Message  Authentication  Codes  (MAC's)  are  not
unconditionally  secure,  because somebody with unlimited computing power can, in principle,  try
out all keys.

Hash functions and MAC's are the topic of Section 13.2.

13.2 Hash Functions and MAC's
We do not intend to give a formal description of various types of hash codes. For our purposes, a
global understanding of these codes and their properties suffices.

A hash function (or hash code) is a mapping h  from * , the set of all sequences of symbols from
an  alphabet   ,  to  m ,  where  m  is  some  fixed  positive  integer.  So,  each  sequence  over   (of
arbitrary  length)  will  be  mapped  to  a  sequence  over    of  length  m .  In  typical  applications
 = 80, 1<  and the value of m  ranges somewhere between 64 and 256.

Since one normally wants very fast implementations of hash functions h , we also require that it is
easy to evaluate the hash value for any sequence over  .

To make a hash function cryptographically secure, one often requires one or more of the following
properties to hold.

H1: The hash function h  is a one-way function (see Section 7.1.2), i.e. for almost all outputs b
it is computationally infeasible to find an input a œ *  such that b = hHaL . 

H2: The hash function h  is weak collision resistant. This means that for a given value of a  it is
computationally infeasible to find a second value a ' œ * , a ∫ a ' , such that hHaL = hHa 'L .

H3: The  hash  function  h  is  strong  collision  resistant  This  means  that  it  is  computationally
infeasible to find a pair of values  a, a ' œ * , a ∫ a ' , such that hHaL = hHa 'L .

The implications of these requirements may be clear to the reader. For instance, H2 implies that if
the hash values hHaL  of a file a  is protected by a digital signature, one can not replace it by another
file a '  with the same hash value, simply because it is infeasible to find such an a ' .

Property H3 is even much stronger and makes it possible to convince a judge that the system has
been compromised.

Example 13.1 

Consider  m = 1  and  = n . To hash a = Ha0, a1, …, alL  one simply takes b = H⁄i=0
l ai mod nL . This hash

value depends on all symbols in a  and is easy to compute, but it does not meet any of the requirements H1-
H3.

288 FUNDAMENTALS OF CRYPTOLOGY



Example 13.2 

Consider again  m = 1  and  = n . To hash a = Ha0, a1, …, alL  one computes b = IH⁄i=0
l aiL2 mod nM . If n

is a large composite number, property H1 will hold, because taking square roots modulo such an integer n
is considered to be infeasible (see Theorem 9.18). 

With the Mathematica functions Mod and Length this hash function can be easily evaluated.

h@inputfile_List, nn_IntegerD :=

ModA
i

k
jjjjj ‚

i=1

Length@inputfileD
inputfile@@iDD

y

{
zzzzz
2

, nnE

n = 989;
in = 8189, 632, 900, 722, 349<;
h@in, nD

955

Properties  H2 and H3 are not  met,  because -a  will  have the same hash value as a.  Also,  when
one  coordinate  is  increased  and  the  next  one  decreased  by  the  same  amount,  the  hash  value
remains the same.

alternative = Mod@−in, nD
h@alternative, nD

8800, 357, 89, 267, 640<
955

Even  if  a  hash  function  meets  properties  H1-H3,  it  is  still  possible  to  intercept  a  transmissionHa, hHaLL  and  replace  it  with  another  file  Ha ', hHa 'LL .  For  this  reason,  one  sometimes  wants  to
introduce  a  secret  key,  shared  by sender  and receiver.  The hash  function  h  will  now be  called  a
message  authentication  code  (MAC)  and  is  a  function  of  * µ  to  m ,  where    is  the  key
space, just as in conventional cryptosystems.

Example 13.3 

Let  m = 64  and  = 2 . With DESkHuL  we denote a DES encryption of a block u  of length under key k  .
Assume that k  is the key that Alice and Bob share.

Now, consider a binary file 8a1, a2, …, al<  of length l  that Alice is going to send to Bob. Alice first pads it
with  sufficient  zeros  to  make  the  length  a  multiple  of  64.  Let  L  be  this  new length.  To  compute  the  hash
value on 8a1, a2, …, aL<  Alice follows the following algorithm:
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Algorithm 13.1 Using DES as Message Authentication Code

input binary string 8a1, a2, …, aL< , padded to make 64 » L .

initialize h = 80, 0, …, 0<õúúúúúúúúúúúúúù ûúúúúúúúúúúú64

for i = 0 to HL ê64L - 1 do h = DESkHh ∆ 8a64 i+1, a64 i+2, …, a64 i+64<L
output hash value h

The receiver duplicates the above calculations to verify that the file has not been changed and was
indeed sent by Alice.

Of course, we could have used any other block cipher instead of DES in this example.

It is also possible to use a block cipher as a keyless hash function. To this end one also makes the
key a public parameter.

The implicit assumption when using a block cipher for authentication purposes is that for a fixed
key it behaves as a random permutation on the input set. Also, one hopes that the block cipher is
cryptographically  secure.  In  the  next  section,  authentication  codes  will  be  discussed  that  are  not
based on any mathematical assumption.

There are  many different  standards for hash functions.  The reader  is  referred to [MeOoV97] and
[Schn96].

13.3 Unconditionally Secure Authentication Codes

13.3.1 Notions and Bounds

No authentication scheme can give an absolute guarantee that an accepted message comes from a
particular  user,  say  Alice.  For  instance,  there  is  always  a  small  probability  that  a  (randomly  or
otherwise) generated sequence could have been made by Alice, but in fact was not. It will then be
accepted by others as a genuine document from Alice.

It  follows  that  it  is  necessary  to  define  and  compute  the  probability  of  a  successful  fraud.
However,  in  such  computations  there  is  an  essential  difference  between  assuming  the
computational security of certain problems (as we do in public key cryptosystems), or not making
any further assumptions at all (unconditional security). This last situation will be the topic of this
section.

We  shall  assume  that  Alice  and  Bob  trust  each  other  and  have  agreed  upon  a  secret  key.  This
assumption is not really necessary, but then the notion of a trusted third party (like an arbitrator)

290 FUNDAMENTALS OF CRYPTOLOGY



must be introduced.

Let us start with a simple example.

Example 13.4

Alice wants to send a single bit of information (a yes or a no) to Bob by means of a word of length 2. Alice
and Bob have 4 possible keys available. Alice and Bob make use of the following matrix:

Table 13.1

 

key \ sent 00 01 10 11
1 0 1 - -
2 1 - 0 -
3 - 0 - 1
4 - - 1 0

Authentication Code for two messages.

So, message 1 will be sent as word 11 under the third key.

The probability that somebody else can successfully impersonate Alice is 1/2, because only two of
the  four  words  in  800, 01, 10, 11<  are  possible  as  transmitted  word under  the  joint  secret  key  of
Alice and Bob.

An opponent Eve who tries to replace a transmitted message by another one will  know that only
two keys can possibly have been used, but she does not know which one. So, the probability of a
successful  substitution  is  also  1/2.  For  instance,  if  Eve  intercepts  01,  she  knows  that  either
message 1 was sent (under key 1) or message 0 was sent (under key 3). In the first case, she needs
to transmit 00 and in the second case it should be 11, therefore, she succeeds with probability 1/2.

The above scheme even gives secrecy, because every transmitted word can come from message 0
or from message 1 (both with probability 1/2).

The general definition of an authentication code (we deviate here from the standard notation in the
theory of authentication codes in order to avoid confusion with the standard notation in the theory
of error-correcting codes) is as follows:

Definition 13.1
An authentication  code  is  a  triple  H,  , L  and  a  mapping  f : µ Ø   such  that
for all m, m ' œ   and for all k œ 

(13.1)  fkHmL = fkHm 'L   ï m = m ' .

The set  is called the message set,  the key set, and  the codeword set.

An authentication code can be depicted by a table U  with the rows indexed by the keys k  in  ,
the  columns  indexed  by  the  codewords  c  in    and  entry  Hk, cL  in  U  given  by  m  if  an  m œ 
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exists such that fkHmL = c  (such an m  is unique by (13.1)) and by a hyphen if such an m  does not
exist. We shall call this table the authentication matrix of the code.

In Example 13.4 above,  = 80, 1< ,  = 81, 2, 3, 4<  and  = 800, 01, 10, 11< . The authentication
matrix of this code is given by Table 13.1.

Condition (13.1) implies that fk  is an injective mapping for each possible key.

When Bob receives codeword c œ   from Alice, he will accept it as a signed version of message
m œ  , where m  is uniquely determined by fkHmL = c . Here k  is the key that Alice and Bob have
agreed  upon.  To  make  the  system practical,  fk  should  be  easily  invertible  for  each  key.  To  this
end, fk  (and ) will often have a much simpler structure.

Definition 13.2
An A-code is a triple H,  ,  L  and a mapping g : µ Ø  .
Given  key  k œ  ,  message  m œ   will  be  transmitted  as  Hm, tL ,  where  t = gkHmL  is
called the authenticator of m .

By  taking  fkHmL = Hm, gkHmLL  and   = ä  we  see  that  an  A-code  is  a  special  case  of  an
authentication code. 

A good authentication  code is  designed in such a way that  fraudulent  words c̀  are spread evenly
over  ,  while the subset of words that the legitimate receiver expects,  knowing the common key
k œ  , is only a fraction of this set.

Thus the aim of an authentication code is that not only Bob, but also an arbitrator,  can check the
authenticity of a properly made c  (in the case of an A-code by verifying that gkHmL = t , in the case
of  a  general  authentication  code  by  checking  that  c  is  in  the  image  space  of  fk ),  but  an
impersonator  who  does  not  know  the  key  has  only  a  small  probability  of  getting  a  word  c̀
accepted. An attack by an impersonator is called an impersonation attack.

The  same  should  be  true  if  the  enemy  wants  to  replace  a  genuine  codeword  c  (made  with  the
proper key) by another one, say c̀ , that represents a different message. This kind of attack is called
a  substitution  attack.  Note  that  in  this  case,  some  information  on  the  key  is  available  to  the
opponent. We shall not discuss systems in which the same key can be safely used more than once
by the legitimate users.

In  the  following  definitions  we  shall  assume  that  keys  will  be  chosen  from    with  a  uniform
distribution and that messages will be chosen from  with a uniform distribution.

Let us assume that a general authentication code is being used by Alice and Bob. To maximize the
probability  of  a  successful  impersonation,  the  opponent  can  do  no  better  than  select  and  send  a
codeword  c œ   that  will  have  the  highest  probability  of   being  accepted  by  the  legitimate
receiver. This is the case if for the maximum number of keys k œ   the codeword c  will be in the
image space of fk .
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Another way of saying this  is that  one looks for the column in the authentication matrix that has
the maximum number of non-hyphen entries. The column index c of that column will be sent.

Definition 13.3
The probability PI  is the maximum probability of a successful impersonation attack, i.e.

(13.2)  PI = maxcœ
»8kœ »cœ fk HL<»ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ» »

In  Example  13.4,  each  codeword  is  the  image  of  a  message  under  exactly  two  of  the  four  keys
(each column counts two non-hyphens). So, PI = 2 ê4 = 1 ê 2.

In  case  of a  substitution  attack  one has  intercepted  a codeword c œ  .  This  restricts  the possible
keys that  may have been used by sender and receiver  to 8k œ  » c œ fkHL< .  The best attack for
the opponent is to search among those codewords that are possible with these keys for the one that
occurs the most often. 

A  different  way  of  saying  this  is  that  in  the  authentication  matrix  of  the  code  one  looks  at  the
column under the intercepted c  and removes all  rows from the matrix that have a hyphen in that
column (these  rows  are  indexed  by  a  key  that  can  not  have  been  used).  Also  delete  the  column
indexed by c . Among the remaining columns one looks for the one with the largest number of non-
hyphen entries. The column index c ' of that column will be substituted for c .

Definition 13.4
The probability PS  is the maximum probability of a successful substitution attack, i.e.

(13.3)  PS = maxc,c'œ,c'∫c  »8kœ »cœ fk HL & c'œ fk HL<»ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»8kœ »cœ fkHL<»
In Example 13.4, each codeword is the image of a message under exactly two of the four keys. For
each  of  these  two  keys,  the  other  possible  message  will  be  mapped  to  a  distinct  codeword.  So,
PS = 1 ê 2. 

The  maximum  of  the  two  probabilities  in  (13.2)  and  (13.3)  is  often  called  the  probability of
successful deception. In formula

(13.4)  PD = max 8PI , PS< .

Since  an  authentication  function  fk  is  injective  for  each  k œ  ,  it  follows  that  exactly  » »
codewords  must  be  authentic  for  any  given  key.  In  other  words,  it  follows  that  each  row of  the
authentication matrix U  of an authentication code has exactly » »  non-hyphen entries. Since U
has  » »  rows and  » »  columns it  follows  that  the  average  number  of  non-hyphen entries  over
the  columns  of  U  is  » » µ » » ê » » .   So,  the  maximum fraction  of  non-hyphen  entries  per
column is at least » » ê » » .  This proves the following theorem.
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Theorem 13.2
The maximum probability PI  of a successful impersonation in an authentication scheme
for H,  , L  satisfies

PI ¥ »»ÅÅÅÅÅÅÅÅÅÅ»» .

Similarly, in the case of the substitution attack the restriction of the authentication matrix U  to the
rows where an intercepted codeword c  has non-hyphen entries consists  of » 8k œ  » c œ fkHL< »
rows,  each  with  » » -1  non-hyphen  entries.  After  deleting  the  column  indexed  by  c ,  this
restriction  has  » » -1  columns.  So,  the  average  value  of  the  relative  frequency  of  non-hyphen
entries in this restriction of U  is H » » -1L ê H »  » -1L . This proves the following bound.

Theorem 13.3
The maximum probability PS  of a successful substitution in an authentication scheme forH,  , L  satisfies

PS ¥ »»-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ»»-1 .

If the messages and keys are not uniformly distributed over the message space and key space, it is
still  possible  to  derive lowerbounds  on  PI ,  PS ,  and PD .  In these  lowerbounds,  functions appear
that  we  have  discussed  in  Chapter  5.  For  the  proofs  of  the  next  two  theorems,  we  refer  the
interested reader to [Joha94b].

Theorem 13.4
Let M , K , and C  denote random variables defined on , , and , related by a function
f : µ Ø  ,  satisfying  (13.1).  Further,  let  HHX » Y L  and  IHX ; Y L  denote  the
conditional entropy function resp. the mutual information function. Then

(13.5)  PI ¥ 2-IHC;KL .
(13.6)  PS ¥ 2-HHK»CL .
(13.7)  PD ¥ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!» » .

The bound in (13.7) is called the square root bound. Authentication codes meeting this bound are
called perfect.

Theorem 13.5
A necessary condition for an authentication code to be perfect is that… … §

è!!!!!!!!!!» » + 1.
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For  further  reading  on  authentication  codes,  we  refer  the  reader  to  [GilMW74],  [MeOoV97],
[Schn96], and [Simm92].

13.3.2 The Projective Plane Construction

In [GilMW74] one can find a nice description of a perfect authentication scheme. We first need to
describe what a projective plane is, before we can explain this construction

É A Finite Projective Plane

A  projective  plane  is  a  kind  of  geometric  object  that  differs  somewhat  from  planes  in  regular
Euclidean geometry. It is defined in a formal way by a set of axioms, that among others does not
allow for parallel lines! After the definition we shall give a construction of these projective planes
that will explain the name "projective".

We start with a finite set , whose elements are called points. Further,  is a collection of subsets
 Õ  ,  called  lines.  We shall  say  that  a  point  P  "lies"  on  a  line  ,  if  P œ  .  Also,  two lines  may
"intersect"  in  a  point,  etc.,  so,  we  adopt  all  the  regular  terminology  from  geometry.  To  avoid
trivialities, we shall assume that all lines contain at least two points (H œ LïH »  » ¥ 2L). 

Definition 13.5
The pair H, L  is called a finite projective plane if the following axioms hold:

PP-1: There are at least four points, no three of which lie on the same line.
PP-2: For every pair of points there is a unique line going through them.
PP-3: Every pair of lines intersect in a unique point.

Property  PP-1  is  there  to  avoid  the  following  object  in  our  considerations.  All  lines  have
cardinality  two  and  go  through  the  same  point  (depicted  below)  except  for  one  line  which  goes
through the remaining points
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Theorem 13.6
Let H, L  be a projective plane. Then there exists a constant n ,  called the order  of the
plane, such that:

PP-4 Every line contains exactly n + 1 points.
PP-5 Every point lies on exactly n + 1 lines.
PP-6 » » = » » = n2 + n + 1.

Proof: 

Proof of PP-4: Every line contains exactly n + 1 points.

Our first step is to show the claim that each point in  lies on at least three different lines. Let us
start with four points P, Q, R , and S  no three of which are colinear (see PP-1). For each of these
points, any of the other three defines a unique line through them by PP-2. For a point T  not on any
of the lines going through two of the points P, Q, R , and S , the claim is also trivial (each of these
four points defines a unique line through T ). We leave it as an exercise to the reader to prove the
claim for a point that is on one of the six lines going through two of the points P, Q, R , and S .

Now, consider  an  arbitrary  point  P .  We know that  at  least  three  lines  go through it.  Let  Q  be  a
point on one of these lines, say on line . We shall show that all the other lines through P  have the
same cardinality. To this end, let A0 = P, A1, A2, …, Am  be the points on line  through P  (where
 ∫ ) and let B0 = P, B1, B2, …, Bn  be the points on line  through P  (where  ∫  ,  ∫ ). We
need to show that m = n .

P

Bn

Am

Q

Ai

Bp HiL
A1

B1

A2

B2

n

m

1- 1

For  each  0 § i § m  there  is  a  unique  line  through  Q  and  Ai  by  PP-2.  By  PP-3  this  line  will
intersect  in a point, say BpHiL . This is a one-to-one mapping, because a line through Q  and BpHiL
can not intersect  in two points (by PP-3). We conclude that m ¥ n . By interchanging the role of
 and  we may conclude that m = n .

So,  all  the  lines  through  P ,  except  possibly  for  the  line  that  also  meets  Q ,  have  the  same
cardinality n + 1. By putting Q  on one of the other lines through P , say , and repeating the above
argument, we may conclude that all lines through P  have cardinality n + 1. 
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Let  U  be  another  point.  For  exactly  the  same reason  as  above,  all  the  lines  through U  have the
same cardinality,  say u + 1.  However one of these lines  also goes through P  by PP-2.  It  follows
that u = n .

Proof of PP-5: Every point lies on exactly n + 1 lines.

Consider  a  point  P  and  a  line    not  through  P .  Let  the  points  on    be  numbered
M1, M2, …, Mn+1 . Each point Mi  on  together with P  defines a unique line passing through them
(property  PP-2).  These  lines  are  all  different  by  the  uniqueness  property  in  PP-2.  On  the  other
hand, every line through P  must intersect  in a unique point. We conclude that n + 1  lines pass
through P .

Proof of PP-6:  » » = » » = n2 + n + 1.

Consider  a  point  P .  There  are  n + 1  lines  through P ,  each  containing  n  other  points.  This  gives
rise to 1 + Hn + 1L n  points. There are no other points in  by PP-2.

Similarly,  consider  a  line .  There are n + 1  points  on it,  each being on n  other  lines.  This gives
rise  to  1 + Hn + 1L n  lines.  There  are  no other  lines  in    by PP-3.  (Notice  the  symmetry between
points and lines in Definition 13.5.)

Ñ

Example 13.5 

Take n = 2. Then  » » = » » = 7.  Each line contains three points and each point lies on three lines. This
projective plane is depicted in the following figure.

1
2

3 4

5 6

7

P1 P3

P6

P5P7

P2

P4

Ê Ê

Ê

ÊÊ

Ê

Ê

The 7 lines in this figure are the three outer edges, the three bisectors and the circle in the middle.
So,  consists of the following seven lines:

1 = 8P1, P2, P3< ,  2 = 8P1, P4, P5< , 
3 = 8P1, P6, P7< ,  4 = 8P2, P4, P6< , 
5 = 8P2, P5, P7< ,  6 = 8P3, P4, P7< , 
7 = 8P3, P5, P6< .

The projective plane of order 2 is unique and is called the Fano plane.
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A projective plane is often described by means of its incidence matrix. This the matrix A  of which
the rows are indexed by the lines  œ  , the columns by the points P œ   and where 

AP, = 9 1
0

if P on ,
otherwise.

The incidence matrix of the Fano plane (with the labeling given in the figure above) is

A =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

;

The properties  in  Definition 13.5 and Theorem 13.6 can be directly  translated  into  the following
matrix requirements.

PP-2 Every two different columns of A  have inner product 1.
PP-3 Every two different rows of A  have inner product 1.
PP-4 Every row of A  has n + 1 ones.
PP-5 Every column of A  has n + 1 ones.
PP-6 Matrix A  has n2 + n + 1 rows and columns.

These properties can be summarized in the formula

(13.8)   A.AT = AT .A = n.I + J . 

where  J  is  the  all-one  matrix  of  size  Hn2 + n + 1L µ Hn2 + n + 1L  and  I the  identity  matrix  (of  the
same size). 

For  the  example  above  we  can  check  this  with  the  Mathematica  functions  Transpose  and
MatrixForm.

MatrixForm@A.Transpose@ADD
MatrixForm@Transpose@AD.AD

i
k
jjjjjjjjjjjjjjjjjjjjjjjjj
3 1 1 1 1 1 1
1 3 1 1 1 1 1
1 1 3 1 1 1 1
1 1 1 3 1 1 1
1 1 1 1 3 1 1
1 1 1 1 1 3 1
1 1 1 1 1 1 3

y
{
zzzzzzzzzzzzzzzzzzzzzzzzz
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i
k
jjjjjjjjjjjjjjjjjjjjjjjjj
3 1 1 1 1 1 1
1 3 1 1 1 1 1
1 1 3 1 1 1 1
1 1 1 3 1 1 1
1 1 1 1 3 1 1
1 1 1 1 1 3 1
1 1 1 1 1 1 3

y
{
zzzzzzzzzzzzzzzzzzzzzzzzz

É A General Construction of a Projective Plane

There is  a general construction of projective planes of order  q ,  where q  is  a prime power. There
are other constructions of projective planes, but they all have an order that is a prime power. It has
been shown that no projective plane exists of order 6 and 10.

Let  V H3, qL  denote  a  3-dimensional  vectorspace  over  GF HqL ,  the  finite  field  of  q  elements.  Its
elements  are  vectors  a = Ha1, a2, a3L  with  ai  in  GFHqL .  The  cardinality  of  V H3, qL  is  q3 .  Let
0 = H0, 0, 0L .

Each line through 0 can be described by a non-zero vector a : 

(13.9)  8la » l œ GFHqL< .

Of course,  non-zero scalar  multiples of a  will  give rise to the same line in V H3, qL .  So, there areHq3 - 1L ê Hq - 1L =  q2 + q + 1 different lines through 0. 

Similarly, a plane through 0 in V H3, qL  can be described by a non-zero vector u : 

(13.10)  8Ha1, a2, a3L œ V H3, qL » a1 u1 + a2 u2 + a3 u3 = 0< .

Again, non-zero scalar multiples of u  will  give rise to the same plane in V H3, qL ,  therefore, there
are  Hq3 - 1L ê Hq - 1L =  q2 + q + 1  different  planes  through  0.  A different  way  to  describe  a  plane
through 0 is 8la + mb » l œ GFHqL, m œ GFHqL< .

Each  non-zero  point  on  a  plane  through  0  defines  a  line  through  0.  As  before,  non-zero  scalar
multiples  of this  point  define the same line.  We conclude that  there  are Hq2 - 1L ê Hq - 1L  = q + 1
lines (through 0) on a plane (through 0).

Each  line  8la » l œ GFHqL<  can  be  embedded  in  a  plane  8la + mb » l œ GFHqL, m œ GFHqL<  by
selecting any of the q3 - q  points  not on the line. Of course,  not all  these planes are different.  A
particular  plane  containing  8la » l œ GFHqL<  can  be  obtained  by  any  of  the  q2 - q  points  in  the
plane not on the line. It follows that each line Hthrough 0L  lies on exactly Hq3 - qL ê Hq2 - qL  = q + 1
planes Hthrough 0L .

Theorem 13.7
Let  be the set of lines through 0  in V H3, qL , where q  is prime power, and let  be the
set of planes through 0 in V H3, qL . Then H, L  is a projective plane of order q .
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Remark 1:

It is easy to get confused here. The projective points correspond to lines in V H3, qL  (through 0) and
the projective lines correspond to planes in V H3, qL  (through 0).

Remark 2:

Note that we have already verified the properties PP-4, PP5, and PP-6 mentioned in Theorem 13.6.

Proof: 

Proof of PP-1:

The four lines through 0 and each of the points H1, 0, 0L ,  resp. H0, 1, 0L , H0, 0, 1L , H1, 1, 1L  define
four projective points in , no three of which lie on a projective line. The reason is that no three of
these four points in V H3, qL  lie on the same plane through 0.

Proof of PP-2:

Let  P  and  Q  be  two  different  projective  points,  and  let  them  be  defined  by  the  lines8la » l œ GFHqL<  and 8lb » l œ GFHqL<  in  V H3, qL .  There  is  exactly  one plane containing these two
lines,  namely  8la + mb » l œ GFHqL, m œ GFHqL< .  This  plane  defines  the  unique  projective  line
through P  and Q .

Proof of PP-3:

Let  and  be two different projective lines. They correspond to two planes in V H3, qL  through 0. 
The line of intersection of these two planes is a line through 0, which defines the unique 
projective point on both  and .

Ñ

There are different techniques of generating a set of q2 + q + 1  non-zero points in V H3, qL  that will
give  rise  to  different  lines  and  planes  through  0  in  V H3, qL  (see  (13.9)  and  (13.10)),  i.e.  to
q2 + q + 1 different projective points and projective planes.

A nice way, as we shall see in the following example, is to take a primitive element in GFHq3L , say
w,  represent  it  as  vector  in  V H3, qL ,  and  take  as  points  the  elements  1, w, …, wq2+q .  Indeed,  let
a = wHq3-1LêHq-1L = wq2+q+1 .  Since  w  has  order  q3 - 1,  it  follows  that  a  has  order  q - 1.  It  also
follows  that  80, 1, a, …, aq-2< = GFHqL  (see  Theorem  B.29  and  the  Remark  at  the  end of
Subsection  B.4.6).  This  means  that  for  each  1 § j § q - 2  the  points  wi  and  wi+ jHq3-1LêHq-1L  in
V H3, qL  give rise to the same projective point and thus we only have to consider 1, w, …, wq2+q . 

Example 13.6 

Take q = 3. To find a primitive polynomial of degree 3 over GFH3L , we first have to load the Mathematica
package Algebra`FiniteFields`. After that we can apply the function FieldIrreducible.

<< Algebra`FiniteFields`
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m = 3; p = 3;
FieldIrreducible@GF@p, mD, xD

1 + 2 x2 + x3

So,  GFH33L  can  be  described  by  the  set  of  ternary  polynomials  modulo  f HxL = x3 + 2 x2 + 1.  Let
w œ GFH33L  be a zero of f HxL . Since f HxL  is a primitive polynomial, it follows that w has order 26.
This can be checked with

f27 = GF@3, 81, 0, 2, 1<D;
om = f27@80, 1, 0<D;
om2

om13

80, 0, 1<382, 0, 0<3
The element a = w Hq3-1LêHq-1L  is w13 = 2 in this case. Indeed, 80, 1, a < = GFH3L .

So,  the  32 + 3 + 1 = 13  projective  points  can  be  found  by  computing  w i ,  0 § i < 13.  In  this
example, we take the equivalent set 1 § i § 13 to keep the output uniform in appearance.

Do@Print@omiD, 8i, 1, 13<D80, 1, 0<380, 0, 1<382, 0, 1<382, 2, 1<382, 2, 0<380, 2, 2<381, 0, 1<382, 1, 1<382, 2, 2<381, 2, 1<382, 1, 0<380, 2, 1<3
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82, 0, 0<3
To  check  if  a  projective  point  w i = Ha1, a2, a3L  lies  on  the  projective  line  defined  by
w j = Hu1, u2, u3L  (see  (13.10)), we need to check if a1 u1 + a2 u2 + a3 u3 = 0. In Mathematica this
can be done as follows (the @@1DD  removes the subscript in the presented output).

i = 5; j = 12;
a = omi@@1DD
b = omj@@1DD
Mod@a.b, 3D == 0

82, 2, 0<
80, 2, 1<
False

So,  we are  now ready to  generate  the  projective  plane of  order  3.  We present  it  by  means of  its
incidence matrix.

A = Table@If@Mod@Homi@@1DDL.Homj@@1DDL, 3D == 0, 1, 0D,
8i, 1, 13<, 8j, 1, 13<D;

MatrixForm@
AD

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 1 1 0 0 0 1 0 0 0 0 0 1
1 0 0 0 1 0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 1 0 1 1 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 1 1 0 0
0 0 0 1 0 0 0 0 0 1 0 1 1
1 0 1 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 1 1 0
0 0 1 0 1 1 0 0 0 1 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0 1
1 1 0 0 0 1 0 0 0 0 0 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
We can check the properties PP-2, PP3 and PP4, PP5 by computing (see (13.8))

MatrixForm@A.Transpose@ADD
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i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

4 1 1 1 1 1 1 1 1 1 1 1 1
1 4 1 1 1 1 1 1 1 1 1 1 1
1 1 4 1 1 1 1 1 1 1 1 1 1
1 1 1 4 1 1 1 1 1 1 1 1 1
1 1 1 1 4 1 1 1 1 1 1 1 1
1 1 1 1 1 4 1 1 1 1 1 1 1
1 1 1 1 1 1 4 1 1 1 1 1 1
1 1 1 1 1 1 1 4 1 1 1 1 1
1 1 1 1 1 1 1 1 4 1 1 1 1
1 1 1 1 1 1 1 1 1 4 1 1 1
1 1 1 1 1 1 1 1 1 1 4 1 1
1 1 1 1 1 1 1 1 1 1 1 4 1
1 1 1 1 1 1 1 1 1 1 1 1 4

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
É The Projective Plane Authentication Code

Definition 13.6
Let H, L  denote a projective plane. Let  be one of the projective lines.
The  corresponding  authentication  code  H,  , L  is  defined  by   =  ,
 =  \ 8P » P on < ,  =  \ 8<  and the mapping 

fPHQL  is the unique line  through P  and Q , P œ  , Q œ  .

In words, the message set  consists of the points on , the key space  consists of all points not
on , the code set  consists of all lines in , except for  itself.

Finding the message back from the received codeword  is quite easy. Just intersect  = fPHQL  with
. Their intersection point is the message.

That the above scheme defines an authentication code is easy to check. Its parameters are given in
the following theorem.

Theorem 13.8
The A-code defined by a projective plane of order n  has parameters » » = n + 1, » » = n2 , »  » = n2 + n .

The probabilities of success for the impersonation and substitution attack are given by

PI = PS = 1ÅÅÅÅn .

The reader may want to check the above theorem on the Fano plane below. The four  points not on
  form the  key  space  ,  the  three  points  on    the  message  space  ,  and  the  other  six  lines  the
codeword set . 
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

Proof of Theorem 13.8: 

The parameters in this theorem follow directly from Theorem 13.6.

To compute PI , we observe that an opponent can do no better than to select as a codeword a line 
(∫)  that  contains  as  many  points  outside    (these  are  the  possible  keys)  as  possible.  However,
this number of points outside  is independent of the choice of . It is n  by PP-4. So, by (13.2),

PI = nÅÅÅÅÅÅÅÅÅ» » = nÅÅÅÅÅÅÅn2 = 1ÅÅÅÅn .

Similarly, if the opponent has observed codeword   (not equal to ), there are still n  keys (points
on    but  not  on  )  possible.  Let  P  be  the  intersection  of    with  .  To  replace  it  with  another
message (point Q  on ) the opponent can do no better than select a line  through such a point Q
with as many points on  as possible. But by PP-2 this number is 1, independent of the choice of 
and , namely the unique point of intersection of  and . So, by (13.3),

PS = 1ÅÅÅÅn .

Ñ

The authentication  codes coming from projective planes,  are perfect  because PI ,  PS ,  and PD  are
all 1 ê n ,  which is equal to 1 ëè!!!!!!!!!!» » . 

Moreover,  » » = n + 1 =
è!!!!!!!!!!» » + 1,  so,  Theorem  13.5,  tells  us  that  the  message  set  is of

maximal size given this key set.

A  construction  of  authentication  codes  by  means  of  shift  register  sequences  can  be  found  in
[Joha94a].  Its  implementation  is  simpler  than  the  projective  plane  construction  above.  For  large
message sets, e.g. data files, the codes discussed in Section 13.3.4 may be more practical.
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13.3.3 A-Codes From Orthogonal Arrays

Definition 13.7
An  orthogonal  array  OAHn, k, lL  is  a  k µ Hl.n2L  matrix  of  n  symbols,  such  that  in  any
two rows every possible pair of symbols occurs exactly l times.
The number l is called the index of the orthogonal array and k  its depth. 

Note that the above implies that each symbol occurs exactly l.n  times in each row.

Example 13.7 (Part 1)

An example of an OAH4, 5, 1L  is given by

U =

i

k

jjjjjjjjjjjjjjjjj

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0
0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2
0 1 2 3 3 2 1 0 1 0 3 2 2 3 0 1

y

{

zzzzzzzzzzzzzzzzz

;

The following theorem shows how orthogonal arrays define A-codes in a natural way.

Theorem 13.9
Let U  be an orthogonal  array OAHn, k, lL .  Let the rows of U  be indexed by the set 
and  the  columns  by  the  set  .  Further,  put   = 81, 2, …, n< .  Define  the  mapping
g : µ Ø   by gkHmL = Um,k .  Then g  defines an A-code with parameters: » » = k ,» » = l.n2 , » » = n .
Further

PI = PS = 1 ên .

Proof: The parameters of this A-code follow from those of U .

The  chance  that  an  impersonation  attack  succeeds  is  1 ên ,  because  each  symbol  occurs  equally
often in a row of U .

The probability of a successful substitution attack is also 1 ê n . The reason is that each intercepted
authenticator  occurs  l  with  each possible  symbol,  no matter  which message was intercepted  and
which message one wants it to be replaced with.

Ñ

Example 13.7 (Part 2)

For instance, in the matrix U  defined above, message 4 under key 13 will be authenticated by
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m = 4; k = 13;
U@@4, 13DD

1

When,  message  4  is  intercepted  with  authenticator  1,  one  knows  that  the  key  is  among82, 8, 11, 13< . Mathematica can find these positions with the functions Flatten and Position.

l = Flatten@Position@U@@4DD, 1DD

82, 8, 11, 13<
Each  other  row  has  all  four  symbols  on  these  four  locations.  This  can  be  checked  with  the
functions  MatrixForm  and Transpose.  The  [[l]]  below gives  the  restriction  of  the  matrix  to
the rows indexed by the elements of the list l.

SubU = Transpose@UD @@ l DD ;
MatrixForm@Transpose@SubUDD

i
k
jjjjjjjjjjjjjjjj
0 1 2 3
1 3 2 0
1 2 0 3
1 1 1 1
1 0 3 2

y
{
zzzzzzzzzzzzzzzz

There is a great deal of literature on orthogonal arrays. See [Hall67] or [BeJL86] for constructions,
bounds and existence results.  For instance, it is known that an OAHq, q + 1, 1L  exist for all prime
powers q , because orthogonal arrays with these parameters exist if and only if projective planes of
order q  exist (see Theorem. 13.7 for a construction of a projective plane of order q) .

Below we give a sketch of the proof of this result. 

Let H, L  be a projective plane of order q . Pick any of the lines  in . Number the points on  by
P1, P2, …, Pq+1  and the other points by Q1, Q2, …, Qq2 . 

Let i , 1 § i § q + 1, be the collection of all lines through Pi  except for  itself. By PP-5, each i

has cardinality q . Number the lines in each i  from 1 to q .

Define Ui, j ,  1 § i § q + 1, 1 § j § q2 , as k , where k ,  1 § k § q ,  is  the index of the unique line in
i  that meets Q j  (which is the unique line in  through Pi  and Q j ). Then U  is an OAHq, q + 1, 1L .

Example 13.8

Consider the incidence matrix A of the projective plane of order 3 in Example 13.6. 
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A =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 1 1 0 0 0 1 0 0 0 0 0 1
1 0 0 0 1 0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 1 0 1 1 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 1 1 0 0
0 0 0 1 0 0 0 0 0 1 0 1 1
1 0 1 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 1 1 0
0 0 1 0 1 1 0 0 0 1 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0 1
1 1 0 0 0 1 0 0 0 0 0 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

;

We define a function RowSwap to perform row exchanges in  a matrix.

RowSwap@B_, i_, j_D :=

Module@8U, V<, U = B; V = U@@iDD; U@@iDD = U@@jDD; U@@jDD = V; UD

Next we perform some column permutations on A  to get a line  as top row with all its points on
the left. We use the Transpose function.

B = Transpose@AD;
B = RowSwap@B, 1, 7D; B = RowSwap@B, 4, 13D;
B = Transpose@BD;
MatrixForm@BD

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0 1 1 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 1
0 1 0 0 0 0 0 1 0 1 1 0 0
0 0 0 1 0 0 0 0 0 1 0 1 1
0 0 1 0 0 0 1 1 0 0 0 0 1
1 0 0 0 1 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 1 1 0
0 0 1 0 1 1 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 1 1 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Next we perform a number of row exchanges to get the subsets i  nicely aligned H1  will appear
in rows 2, 3, 4, 2  in rows 5, 6, 7, etc).
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BB = B;
BB = RowSwap@BB, 2, 8D; BB = RowSwap@BB, 6, 11D;
BB = RowSwap@BB, 7, 13D;
BB = RowSwap@BB, 8, 13D;
MatrixForm@BBD

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 0 0 1 0
1 0 0 0 0 0 1 0 1 1 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 1
0 1 0 0 0 0 0 1 0 1 1 0 0
0 1 0 0 1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0 0 0 1 0
0 0 1 0 0 0 1 1 0 0 0 0 1
0 0 1 0 0 0 0 0 1 0 1 1 0
0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 1 1
0 0 0 1 0 1 0 1 1 0 0 0 0
0 0 0 1 1 0 1 0 0 0 1 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
The last 9 columns define the orthogonal array OAH3, 4, 1L . For instance, column 5 minus its first
entry  looks  like  H1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1L .  This  vector  is  the  concatenation  of  four  three-
tuples, each containing one 1. It will be mapped to four entries in 81, 2, 3< , depending on whether
the  1  is  on  the  first  coordinate,  the  second,  or  the  third,  therefore,  column 5  will  be  mapped  toH1, 2, 3, 3L . 

In this way the last 9 columns are mapped with the Mathematica functions Table, If, and Do to
the 4 µ 9 matrix:

U = Table@0, 8i, 1, 4<, 8j, 1, 9<D;
Do@b = 8BB@@2 + Hi − 1L∗3, jDD,

BB@@3 + Hi − 1L∗3, jDD, BB@@4 + Hi − 1L∗3, jDD<;
U@@i, j − 4DD = If@b == 81, 0, 0<,

1, If@b == 80, 1, 0<, 2, 3DD,
8i, 1, 4<, 8j, 5, 13<D;

MatrixForm@UD

i
kjjjjjjjjjjj
1 3 2 1 2 2 3 1 3
2 3 3 1 2 1 1 3 2
3 3 1 1 2 3 2 2 1
3 2 3 2 2 1 3 1 1

y
{zzzzzzzzzzz
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This is indeed an OAH3, 4, 1L  and hence it defines an A-code with » » = 4, » » = 9, » » = 3
and PI = PS = 1 ê3.

Note that the last 9 columns in U  (or A) can be further permuted to get

i

k

jjjjjjjjjjjj

1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
1 3 2 3 2 1 2 1 3
2 3 1 1 2 3 3 1 2

y

{

zzzzzzzzzzzz
;

13.3.4 A-Codes From Error-Correcting Codes

In [JohKS93] it is shown how authentication codes can be constructed from error-correcting codes
(EC-codes) and vice versa. In this subsection we shall show how to convert an EC-code to an A-
code. Our description is slightly different from the original one.

Let C  be any Hn, » C », dH )  EC-code over GFHqL ,  i.e.  C  is  a subset  of V Hn, qL ,  the n-dimensional
vectorspace over GFHqL , with minimum Hamming distance dH . The latter means that all elements
in  C ,  which  are  called  codewords,  differ  in  at  least  dH  coordinates  from  each  other.  The
dimension n  of V Hn, qL  is also called the length of C . 

Let C  have the additional property that

(13.11)  c œ C ï c + l1 œ C , for all l œ GFHqL ,

where 1 stands for the all-one vector.

For  instance,  any  linear  code  containing  the  all-one  vector  satisfies  (13.11).  Note  that  (13.11)
implies that q  divides the cardinality of C .

The relation ~ defined on C  by 

(13.12)  c ~ c '     if and only if      c - c ' = l1    for some l œ GFHqL ,

defines  an  equivalence  relation  on  C .  Let  M  be  a  subcode  of  C ,  containing  one  representative
from  each  equivalence  class.  So,  M  has  cardinality  » C » ê q  and
C = 8m + l .1 » m œ M , l œ GFHqL< . 

Let  mi ,  0 § i < » C » êq ,  be  any  enumeration  of  the  codewords  in  M .   As  message set    for  the
authentication  code  that  we  are  constructing,  we  take   = 80, 1, …, H » C » êqL - 1< .  This  means
that  we  have  a  1-1  correspondence  between  the  subcode  M  and  the  index  set  .  It  is  often
convenient not to distinguish between these two sets. So, from now on we shall speak of message
mi  instead of message i .

Example 13.9 (Part 1)

Consider the binary linear code C  with generator matrix
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G =

i

k

jjjjjjjjjjjj

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

y

{

zzzzzzzzzzzz
;

This means that C  consists of the 16 vectors in the (binary) linear span of the rows. It is easy to
check  that  different  codewords  in  C  differ  in  at  least  3  coordinates.  This  makes  C  a  H7, 16, 3L
code in V H7, 2L . Some readers may recognize C  as a Hamming code.

That the all-one word is in C  can easily be checked.

inf = 81, 1, 1, 1<;
Mod@inf.G, 2D

81, 1, 1, 1, 1, 1, 1<
It follows that C satisfies (13.11).

As subcode M  of C  we take all codewords in C  with first coordinate equal to 0. So, M  consists of
the linear span of the lower three rows of G. The message set  = 80, 1, …, 7<  will be identified
with M .

The key set    of the authentication code that  we are constructing,  will  consist  of the pairs Hi, lL
with 1 § i § n  and l œ GFHqL . So,  = 81, 2, …, n< µ GFHqL  and » » = n.q .

The authenticator gk  HmL  of message m œ M  under key k = Hi, lL  is simply given by 

(13.13)  gk  HmL = mi + l .

So, the authenticator set  is just GFHqL .

Theorem 13.10
Let C  be an Hn, » C », dH L  code satisfying (13.11).  Let   be a subcode of C  containing
one element of each equivalence class under relation (13.12). 
Let   = 81, 2, …, n< µ GFHqL  and   = GFHqL .  Further,  gk  HmL : µ ö  is  defined
by (13.13).
Then H,  ,  L  is an A-code with parameters

(13.14)  » » = » C » êq , » » = n.q , » » = q .
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(13.15)  PI = 1 êq , PS § 1 - dH ên .

Remark:

To make PS  acceptably low, one needs EC-codes with dH  close to n .  For q-ary codes this  is  no
problem, as we shall see in Example 13.10. Of course, q  also needs to be large.

Proof of Theorem 13.10:

The parameters in (13.14) follow immediately from the construction.

To compute PI , we note that an opponent who wants to impersonate the sender needs to find the
right  authenticator  for  his  message  m ' .  However,  for  each  coordinate  1 § i § n  the  set8mi + l » l œ GFHqL<  is  equal  to  GFHqL .  In  other  words,  each  symbol  occurs  equally  often  as
authenticator  of m ' .  So,  the probability  that  the opponent will  choose the correct  authenticator  is
1 êq ,  independent  of  the  choice  of  the  authenticator  and  independent  of  the  message  m '  that  the
opponent tries to transmit. This proves that PI = 1 êq .

An opponent who wants to replace an authenticated message Hm, tL , (where t = gk  HmL) by another
authenticated  message,  knows  that  the  key  in  use  is  from  a  set  of  n  possible  keys  Hi, lL .  To  be
more precise, for each coordinate 1 § i § n  there is exactly one value of l such that mi + l = t .

The optimal strategy for the opponent who wants to substitute  another authenticated message forHm, tL  is  to  find a  message m ' ,  m ' ∫ m ,  such that  in  gk  Hm 'L = t '  for  as  many of  those  n  keys  as
possible. This symbol t '  is the authenticator for m '  that will be accepted most likely. 

It  remains  to  show  that  t '  will  be  accepted  in  at  most  n - dH  cases,  which  implies  that  the
probability  of  a  successful  substitution  is  at  most  Hn - dHL ên = 1 - dH ên .  This  assertion  follows
from » 8Hi, lL œ 81, 2, …n< µ GFHqL » HmLi + l = t & Hm 'Li + l = t ' < »

= » 81 § i § n » Hm - m 'Li = t - t ' < »
 
 = n - dH  Hm - m ', Ht - t ' L 1L
 
 § n - dH ,

because  m - m '  and  Ht - t ' L 1  are  different  words  in  the  code  C  (m  and  m '  are  in  different
equivalence classes).

Ñ

Example 13.9 (Part 2)

To  illustrate  the  second  part  of  the  proof  above,  we  continue  with  the  code  of  Example  13.9.  If
Alice  wants  to  send  message  7,  she  finds  m  with  the  Mathematica  function  IntegerDigits
from:
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mes = 7;
inf = IntegerDigits@mes, 2, 4D
m = Mod@inf.G, 2D

80, 1, 1, 1<
80, 1, 1, 1, 0, 0, 1<

(Remember that all messages had their first coordinate equal to 0.) 

Suppose,  that  Alice  and  Bob  have  agreed  upon  key  H3, 1L, .  Then  Alice  will  append  the
authenticator t = HmL3 + 1 ª 0 Hmod 2L  to her message, therefore, Alice will send

i = 3; lam = 1;
8mes, Mod@m@@iDD + lam, 2D<

87, 0<
Opponent  Eve,  observing  this  codeword,  can  conclude  that  the  key  is  in  the  set8Hi, lL » 1 § i § 7, mi + l ª t Hmod 2L< =  8H1, 0L, H2, 1L, H3, 1L, H4, 1L, H5, 0L, H6, 0L, H7, 1L< .  To  verify
this, we use the Mathematica functions Table and Mod.

t = 0;
T = Table@8i, Mod@t − m@@iDD, 2D<, 8i, 1, 7<D

881, 0<, 82, 1<, 83, 1<, 84, 1<, 85, 0<, 86, 0<, 87, 1<<
Suppose now that Alice wants to send message 5. The corresponding codeword m'  is given by

mes' = 5;
inf' = IntegerDigits@mes', 2, 4D;
m' = Mod@inf'.G, 2D

80, 1, 0, 1, 0, 1, 0<
If  Eve  chooses  t ' = 0  as  authenticator  she  has  a  probability  of  4 ê7  of  getting  her  message
accepted,  because  exactly  four  of  the  possible  keys  would  lead  to  this  authenticator.  With
authenticator  t ' = 1  this  probability  is  3 ê7.  (We  use  the  Mathematica  functions  Length  and
Intersection to test this.) 
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t' = 0;
T' = Table@8i, Mod@t' − m'@@iDD, 2D<, 8i, 1, 7<D
Length@Intersection@T, T'DD

881, 0<, 82, 1<, 83, 0<, 84, 1<, 85, 0<, 86, 1<, 87, 0<<
4

Example 13.10 

The q-ary Reed-Solomon code of dimension k  (see [MacW77]) has length n = q - 1  and minimum distance
dH = n - k . By multiplying each coordinate with a suitable constant, one may assume that 1 œ C. Theorem
13.10 gives an A-code with parameters:» » = qk-1, » » = Hq - 1L q, » » = q.

PI = 1 êq , PS § k ê Hq - 1L .

The  method  explained  in  this  section  is  certainly  not  the  only  way  to  make  A-codes  from  EC-
codes. It does have the property that each impersonation attack has the same probability of success
(namely 1 ê q).

Since  every  message  can  have  each  symbol  in   = GFHqL  as  authenticator,  it  follows  that  the
codeword set  has cardinality » » .q . This implies that Theorem 13.2 holds with equality. 

In [JohKS93] the authors also show how to convert an A-code into an error-correcting code.
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13.4 Problems

Problem 13.1
Prove that properties PP-1,PP2,PP3 in Definition 13.5 imply that a projective plane also contain four lines,
no three of which go through the same point. 

Problem 13.2
Prove that the Fano plane is unique (apart from a relabelling of the points and lines) .

Problem 13.3
Compare  the  Projective  Plane  Authentication  Code  construction  (see  Definition  13.6)  with  the
authentication code with  =  =  = q  defined by the one-time pad, i.e. möc  with c ª m + k Hmod qL .
Also, answer this question when   is a random subset of q  of size è!!!q .

Problem 13.4
Check that the rows of the incidence matrix in Example 13.6 can be permuted in such a way that the matrix
becomes a circulant (each row is cyclic shift to the right of the previous row).

Problem 13.5 M

Use the same technique as in Example 13.6, to determine the top row of an incidence matrix of a projective
plane of order 5.
Cycle this row around and check that it does define a projective plane of order 5.

Problem 13.6 M

Convert the orthogonal array OAH4, 5, 1L  in Example 13.7 into a projective plane of order 4.

Problem 13.7
Show that condition (13.11) in Theorem 13.10 can be replaced by the requirement that C  contains at least
one codeword of weight n . 

Problem 13.8 M

Repeat Example 13.9 (both parts) for the ternary H11, 36, 5L  code generated by 

G =

i

k

jjjjjjjjjjjjjjjjjjjjjjj

2 0 1 2 1 1 0 0 0 0 0
0 2 0 1 2 1 1 0 0 0 0
0 0 2 0 1 2 1 1 0 0 0
0 0 0 2 0 1 2 1 1 0 0
0 0 0 0 2 0 1 2 1 1 0
0 0 0 0 0 2 0 1 2 1 1

y

{

zzzzzzzzzzzzzzzzzzzzzzz

;
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14 Zero Knowledge Protocols
Cryptographic  protocols  are  exchanges  of  data  between  two or  more  parties  following a  precise
order and format with the goal of achieving a particular security. Of course, the above definition is
not very precise, but we have already seen some examples of cryptographic protocols. One is the
identity  verification  protocol  in  Subsection  4.1.2,  another  is  the  Diffie-Hellman  key  exchange
protocol in Subsection 8.1.2 and a few others are mentioned in Section 8.2.

A zero-knowledge proof is a technique to convince somebody else that one has certain knowledge,
without  having  to  reveal  even  a  single  bit  of  information  (or  a  fraction  thereof)  about  that
knowledge.  As  a  consequence,  the  verifier  nor  any  passive  eavesdropper  gains  any  information
from taking part in any number of executions of the protocol.

One may think of using a zero-knowledge protocol in the situation that one wants to use an ATM
to  withdraw  money  from  a  bank  account.  Instead  of  having  to  enter  a  PIN-code  it  should  be
enough to convince the teller  that  one knows this  PIN-code.  One wants to do this  in  such a way
that no information about the PIN-code is released. In the next section, we shall give an example
of how this can be done. In Section 14.2, another identity verification will be presented.

14.1 The Fiat-Shamir Protocol
As in Subsection 4.1.2, we are again in the situation that a smart card wants to convince a smart
card reader that it is genuine. A trusted party that has to issue these cards selects a large composite
number n ,  for instance n  is  the product of two large primes p  and q ,  just  as in the RSA system.
The number n  is a system parameter known to all parties.

The  security  of  the  Fiat-Shamir  protocol  [FiaS87]  will  be  based  on  the  assumption  that  taking
square  roots  modulo  a  large  composite  number  n  is,  in  general,  intractable.  This  is  the  same
assumption that was made in the Rabin variant of the RSA system (Section 9.5). In Theorem 9.18,
it  was shown that the problem of finding a square root modulo a composite number is as hard as
factoring it.

The  trusted  party  computes  an  identity  number  ID  for  the  smart  card  that  should  have  the
additional property that 

(14.1)ID ª s2 Hmod nL
for some integer s . The number ID may be computed from the name of the card holder and other
relevant data, but a few bits should be left open for the trusted party to complete in order to make
ID the square of an integer modulo n  (ID has to be a quadratic residue mod p  and mod q).  
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The  trusted  party  computes  the  square  root  s  of  ID  (it  can  do  this,  because  it  knows  the
factorization of n , see Subsection 9.5.3) and stores s  in a segment of the memory of the smart card
that is not accessible from the outside world.

One round of the Fiat-Shamir Protocol is depicted in Figure 4.1 below.

Figure 14.1

Smart Card Card Reader

knows s, ID, n knows n

|
ID

generates a random r
computes t = Hr2 mod nL

|
t

selects random e from 80, 1<
{

e

computes u = Hr.se mod nL
|

u

checks if u2 ≡ t.IDe Hmod nL
Fiat-Shamir identification protocol (one round)

The smartcard  or  card  holder  makes the  identity  number ID known to  the  card  reader.  To prove
that the card was indeed issued by the trusted party, the card wants to convince the card reader that
it knows s , the square root of ID modulo n . 

To this end, the card generates a random number r , computes its square 

(14.2)t = Hr2 mod nL
and  sends  that  to  the  card  reader.  In  the  jargon  of  this  field,  t  is  called  a  witness  to  the  card's
knowledge of r .

The card reader selects a random number e  from 80, 1<  and presents that as a challenge to the card.

How the protocol responds to the challenge depends on the value of e .

If  e = 0,  the  card  simply  sends  the  random  number  r  back.  The  card  reader  then  checks  if  its
square is indeed equal to the value t  that it received earlier from the card.

If e = 1, the card computes u = r.s , the product of the random number r  and the secret square root
s , and sends u  to the card reader. The card reader checks if u2  is indeed equal to t µ ID modulo n ,
which should be the case, since t ª r2 Hmod nL  and ID ª s2 Hmod nL .

In  Figure  14.1,  these  two  alternatives  are  combined  in  the  response  u = Hr.se mod nL .  The  card
reader checks if

(14.3)   u2 ª t.IDe Hmod nL .
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It  may  be  clear  that  if  the  card  can  supply  r  (when  e = 0)  and  at  the  same  time  can  supply  r.s
(when e = 1L , it must know the square root s  of ID. It is also clear that if the smart card fails the
test in (14.3), the card reader will reject the smart card.

If an unauthorized smart card knows beforehand the value of the challenge e , it can fool the card
reader.  This  is  obvious  in the e = 0  case.  In  this  case,  the  smart  card  takes  a  random r ,  presents
t = Hr2 mod nL  as  witness  and  later  presents  r  itself  as  response.  The  secret  square  root  s  never
played a role in these calculations.

If  the  illegitimate  card  knows  that  the  challenge  will  be  1,  it  generates  a  random  r ,  computes
t ª r2 ê ID Hmod nL  and  presents  this  value  of  t  to  the  card  reader.  After  having  received  the
challenge  e = 1,  the  smart  card  will  present  u = r .  The  card  reader  checks  (see  (14.3))  if  u2  is
congruent to t.ID modulo n . This is obviously the case with u = r  and t ª r2 ê ID Hmod nL .

Note that the unauthorized card can not meet the challenge if he makes the wrong guess about the
challenge.  So,  it  will  be  caught  with  probability  1/2,  if  the  smart  card  selects  its  challenge  at
random.

For this reason, smart card and card reader will run k  times through the above protocol, where k  is
a  security  parameter.  A  smart  card  that  does  not  know  the  value  of  s  can  guess  the  k  random
challenges with probability H1 ê2Lk , so it will be caught with probability 1 - H1 ê 2Lk . 

The  card  should  not  use  the  same  random  number  r  twice,  because  as  soon  as  the  card  reader
knows both r  and r.s  (through u), it can calculate the secret square root s .

The idea of proving certain things without revealing any information about it is counter-intuitive,
but very powerful. There is a growing field of applications of zero-knowledge proofs.

Examples are electronic voting schemes that make it possible to cast votes in an anonymous way.
On the other hand, the voter will be caught when attempting to vote twice. In these schemes, it can
be checked that all votes have been counted in the final tally.

Another application is a payment system that allows you to withdraw money from your account in
digital  form  and  spend  it  anonymously.  Even  your  own  bank  can  no  longer  trace  it  to  you.
However, if you try to double spend the money, your identity can be recovered.

14.2 Schnorr's Identification Protocol
Schnorr's  identity  verification  protocol  [Schn91]  is  based  on  the  difficulty  of  the  discrete
logarithm  problem  (Table  8.1).  As  in  the  Diffie-Hellman  scheme,  all  participants  share  some
parameters. First  of all  there is a finite field GF HqL  (this could be q ,  if q  is prime) and a prime
divisor  p  of  q - 1.  Let  w  be  a  primitive  element  of  GFHqL  and  take  a = wHq-1Lêp .  Then  a  is  a
primitive p-th root of unity. This means that 1, a, …, ap-1 are all different and that ap = 1.
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Example 14.1 (Part 1)

Let p = 104729  and q = 8 p + 1 = 837833. Take w = 3  and a = w Hq-1Lêp = w8 = 6561. To check that q  is
prime and that w = 3  is a primitive element in q  (which makes a a primitive p-th root of unity), we use
the Mathematica functions Prime, PrimeQ, and the function MultiplicativeOrder (defined in Appendix D,
but standard  in Mathematica 4) which computes the multiplicative order of an element..

MultiplicativeOrder@a_, n_D := If@GCD@a, nD == 1,
Divisors@ EulerPhi@nD D êê.

8x_, y___< −> If@PowerMod@a, x, nD == 1, x, 8y<D D;

p = Prime@10000D
q = 8 p + 1
PrimeQ@qD
om = 3; MultiplicativeOrder@om, qD
al = om8

104729

837833

True

837832

6561

Each  participant  P  (P  for  prover)  selects  a  random secret  exponent  xP ,  computes  yP = axP ,  and
makes this  value  public.  It  is  assumed that  other  participants  are  able  to verify  that  yP  is  indeed
P 's public parameter. This can be realized if a trusted authority signs yP  or if the public values are
posted  on  a  trusted  "bulletin  board".  If  someone  else,  say  V  for  Verifier,  wants  to  check  P 's
identity  yP  he  does  this  by checking that  P  knows the  corresponding  xP .  Of course,  P  does  not
want  release  the  secret  value  of  xP  to  anyone.  Therefore,  he  uses  a  cryptographic  protocol  to
convince V  that he has knowledge of xP .

Example 14.1 (Part 2)

Prover  P  has  identity  number  yP = 693  and  secret  exponent  xP = 18126.  Indeed,
a 18126 ª 693 Hmod qL .
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xP = 18126; yP = 693;
PowerMod@al, xP, qD == yP

True

Schnorr's  identification  protocol  goes  as  follows.  The  verifier  is  presented  with  P 's  identity
number  yP .  Next,  prover  P  generates  a  random  exponent  r ,  0 § r < p ,  computes  · = ar  and
presents this value ·  to the verifier V  as a witness to his secret xP . The verifier selects a random
number  s ,  0 § s < p ,  and  hands  this  to  P  as  challenge.  Prover  P  responds  by  computing
u = r + s.xP  and gives this value to V .  The verifier checks that au = ·.HyPLs . This relation should
hold, because au = ar+s.xP = ar.HaxPLs = ·.HyPLs . This scheme is depicted in the following diagram.

Figure 14.2

Prover Verifier

knows xP, yP, p, q, α knows p, q, α

|
yP

generates random r from P
computes ρ = αr

|
ρ

selects random s from P

{
s

computes u = r + s.xP
modulo p

|
u

checks if αu = ρ.HyPLs
Schnorr's identification protocol

Example 14.1 (Part 3)

In the input below, the above protocol is executed. The Mathematica functions Random, Mod, and
PowerMod are used

r = Random@Integer, pD; rho = PowerMod@al, r, qD;
Print@"witness is ", rD
s = Random@Integer, pD; Print@"challenge is ", sD
u = Mod@r + s∗xP, pD; Print@"response is ", uD
PowerMod@al, u, qD == Mod@rho∗PowerMod@yP, s, qD, qD

witness is 36431
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challenge is 29041

response is 65643

True

Of  course,  the  prover  will  only  be  able  to  give  the  right  response  if  he  knows  xP  satisfying
axP = yP . If he does not know xP ,  he can guess the correct value of u  with probability 1 ê p . The
value of p  will  be very large to make the discrete  logarithm problem intractable  (see Subsection
8.1.1).

Note that in the relation u = r + s.xP  only the values u  and s  are known to V . In other words, the
random value r  makes sure that no information on xP  is leaked to V . This observation also shows
that  the  prover  should  not  use  the  same  random  number  r  twice.  Indeed,  from  two  relations
u1 = r + s1.xP  and u2 = r + s2.xP  with known s1, s2, r1 ,  and r2  the verifier can easily determine r
and the secret xP . One has xP = Hu1 - u2L ê Hs1 - s2L .

Example 14.1 (Part 4)

For the same witness, we generate a second challenge and response.

ss = Random@Integer, pD; Print@"second challenge is ", ssD
uu = Mod@r + ss∗xP, pD; Print@"second response is ", uuD
PowerMod@al, u, qD == Mod@rho∗PowerMod@yP, s, qD, qD

second challenge is 62706

second response is 21550

True

To find xP  we compute xP = Hu1 - u2L ê Hs1 - s2L:

Mod@Hu − uuL∗PowerMod@s − ss, −1, pD, pD

18126

The value 18126 is indeed the secret exponent xP  of the prover.

14.3 Problems

Problem 14.1M

Duplicate Example 14.1 for p = 113. Find a suitable value for q .
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15 Secret Sharing Systems

15.1 Introduction
In this chapter we shall not introduce a new cryptosystem, but we shall discuss a related topic. We
start with an example from [Liu68].

''Eleven scientists are working on a secret project. They wish to lock up the documents in a 
cabinet so that the cabinet can be opened if and only if six or more of the scientists are present. 
What is the smallest number of locks needed? What is the smallest number of keys to the locks 
each scientist must carry?''

Clearly, for each 5-tuple of scientists there has to be at least one lock, that can not be opened by
them. Also each of the six remaining scientists has a key of that lock. More than one such lock per

5-tuple is  not  needed. So,  J11
5

N   locks are needed and each scientist  carries  J11 - 1
5

N  keys.  These

numbers can be calculated with the Mathematica function Binomial.

Binomial@11, 5D
Binomial@11 − 1, 5D

462

252

The  solution  above  is  of  course  not  very  practical.  Similarly,  the  described  situation  is  not  very
realistic.  However,  there  exists  very  real  situations  where  one  wants  to  share  some  sensitive
information among a group of people, in such a way that only certain privileged coalitions are able
to recover the secret information. Examples are a masterkey of a payment system or a private key
that one does not want to store in a single place.

In  a  general  setting,  if  P  is  a  privileged  group  of  people,  meaning  that  they  should  be  able  to
recover  the  secret  data,  then  any  other  group  containing  P  as  a  subgroup,  should  also  be
privileged. Also, if N  is not privileged then any subset of N  should not be privileged.
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Definition 15.1
An  access  structure  HU , , L  consists  of  finite  set  U  (of  users),  and  two  disjoint
collections    and    of  subsets  of  U  (  for  the  privileged  subsets  and    for  the  non-
privileged) with the property that  

P œ , P Õ B Õ U ï B œ  ,
N œ  , A Õ N ï A œ  .

In the example above, U = 81, 2, …, 11< ,  consists of all subsets of U  of size at least 6 and  of
all the other subsets of U . It is a special case of what is generally called a threshold scheme.

It is often convenient to list only the set of the minimal elements of  , denoted by  - , which can
be obtained from   by leaving out each element of  that properly contains another element of .
Similarly, one often represents  by the subset  +  consisting of its maximal elements. 

An access structure is called complete or perfect if each subset of U  is either in P  or in N . 

Definition 15.2
Let  S  be  a  random  variable  defined  on  a  finite  set  .  Assume  that  S  is  uniformly
distributed on . 
Let U  be a collection of n  participants, each having obtained a particular element Si  out
of  from some trustworthy authority. Further, let  HU , , L  be an access structure.
Then the collection 8Si<iœU  is called a secret sharing scheme for  HU , , L  if it satisfies
the following two properties:

[SSS1] each privileged group P  of participants (Pœ) can compute the secret S .
[SSS2] each non-privileged group N  of participants (Nœ) can not compute any

information on S .

The value Si  (to be called the share of i) should be interpreted as partial information of participant
i  on  the  secret  S .  In  information  theoretical  notation  (see  Chapter  5),  SSS1  and  SSS2  can  be
reformulated as

[SSS1] H  HS » 8Si<iœP L = 0 for any Pœ.

[SSS2] HHS » 8Si<iœN L = HHSL  for any Nœ.

Note that in secret sharing schemes that are not perfect, there may be coalitions ,  – ‹ , of
participants  that  are  able  to  recover  some information on the  secret  S  (so,  HHS » 8Si<iœ L < HHSL)
without being privileged.
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15.2 Threshold Schemes
A secret sharing scheme 8Si<1§i§n  is called an Hn, kL-threshold scheme, if  consists of all subsets
of U  of cardinality ¥ k  and  consists of all subsets of U  of cardinality § k - 1.  By definition, a
threshold  scheme  is  a  perfect  secret  sharing  scheme.  Properties  SSS1  and  SSS2  can  be
reformulated as

[TS1] Knowledge of  k  or more different Si 's makes S  computable.

[TS2]  Knowledge  of  at  most  k - 1  different  Si 's  leaves  the  secret  S  completely  undetermined,
more precisely all possible values in  are still equally likely.

Shamir  describes  (see  [Sham79])  the  following  general  construction  of  Hk, nL-threshold  schemes
when  is a finite field GF HqL , where q  has to be larger than n . Here, we shall assume that q  is a
prime  number,  say  q = p ,  in  which  case    is  just  p ,  the  set  of  integers  modulo  p .  The
generalization to GFHqL  will be immediate.

This system is based on the well known fact that a line is uniquely defined by any two points on it,
that  a  parabola  is  uniquely  defined  by three  points  on it,  etc.  In  general,  a  polynomial  of  degree
k - 1 is uniquely determined by any k  points on it.

Construction 15.1
Let  the  participants  be  labeled  from  1  to  n  and  let  S œ p ,  p > n ,  be  the  secret  data.
Consider the polynomial

(15.1)  f HxL = S + a1 x + a2 x2 + … + ak-1 xk-1 ,

of degree at most k - 1, of which the coefficients a j , 1 § j § k - 1, are selected by some
trustworthy  authority  in  an  independent,  random way from p .  Participant  i ,  1 § i § n ,
is given as his share Si  the pair 

(15.2)  Si = Hi, f HiL mod pL .

Example 15.1 (Part 1)

In  order  to  construct  a  (10,4)-threshold  scheme  for  secret  S = 17  in  19 ,  we  hide  the  secret  in  the
polynomial f HxL  (note the use of the Mathematica function Mod)

Clear@fD;
f@x_D := Mod@17 + 7 x + 12 x2 + 5 x3, 19D
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where the coefficients of x j ,1 § j § 3, are selected at random from 19 .

The values of the shares can be computed with the Mathematica function Table.

Table@8i, f@iD<, 8i, 1, 10<D

881, 3<, 82, 5<, 83, 15<, 84, 6<, 85, 8<,86, 13<, 87, 13<, 88, 0<, 89, 4<, 810, 17<<
To check that the values Si, 1 § i § n , given by (15.2), form a Hn, kL-threshold scheme, we have to
check the two conditions TS1 and TS2.

Ad TS1: 

Suppose  that  participants  i1 ,  i2 ,  …,  ik  combine  their  shares  Si1 = Hi1, f Hi1LL ,  Si2 = Hi2, f Hi2LL ,  …,
Sik = Hik, f HikLL .  With  the  LaGrange  Interpolation  Formula,  it  is  quite  easy  to  determine  f HxL .
Indeed, 

(15.3)  f HxL = ‚
u=1

k
 f HiuL ‰l=1,l∫u

k
 x-ilÅÅÅÅÅÅÅÅÅÅÅÅiu-il

.

since the expression on the right hand side has degree k - 1, just as f HxL  does by (15.1), and since
the right hand side takes on value Si j = f Hi jL  for x = i j , 1 § j § k , just as f HxL  does.

Note  that  by  (15.1),  the  secret  S  is  given  by  f H0L ,  therefore,  in  the  calculation  of  the  Lagrange
Interpolation Formula, one can take x = 0 right from the start.

Example 15.1 (Part 2)

Suppose that participants 1, 3, 6, and 9 want to retrieve the secret S . They pool their shares H1, 3L ,H3, 15L , H6, 13L , and H9, 4L . 

The  LaGrange  Interpolation  Formula  can  be  performed  with  the  Mathematica  function
InterpolatingPolynomial.  The  function  PolynomialMod  is  used  for  the  reduction
modulo 19. 

PolynomialMod@InterpolatingPolynomial@
881, 3<, 83, 15<, 86, 13<, 89, 4<<, xD, 19D

17 + 7 x + 12 x2 + 5 x3

The value of the secret S  is the constant term in this expression. So, S = 17.

Ad TS2: 

Suppose that  shares Si1 ,  Si2 ,  …, Sil ,  are known for some l < k .  It  follows from (15.1)  and (15.3)
that  there  are exactly  qk-l-1 polynomials  gHxL  satisfying gHiuL = Siu ,  1 § u § l ,  and with any fixed
value for gH0L .

324 FUNDAMENTALS OF CRYPTOLOGY



Indeed,  for  any  fixed  value  of  gH0L  and  any  fixed  group  of  k - l - 1other  participants  and  any
given set of imaginary values of their shares, there is unique gHxL  meeting all requirements. This is
a direct consequence of the LaGrange Interpolation Formula.

Example 15.1 (Part 3)

Suppose  that  participants  1,  3,  and 9 attempt  to  retrieve  secret  S  by  pooling  their  shares  H1, 3L ,H3, 15L  and H9, 4L . 

Then  the  secret  S  can  still  take  on  any  value  (and  each  of  these  values  is  still  equally  likely).
Indeed,  adding  the  pair  H0, SL  to  the  above  three  shares  leads  to  a  unique  polynomial  throughH0, SL  and  the  three  shares.  This  follows  from  the  LaGrange  Interpolation  formula  and  can  be
checked as follows. 

Clear@xD
Table@ 8S, PolynomialMod@ InterpolatingPolynomial@

880, S<, 81, 3<, 83, 15<, 89, 4<<, xD, 19D<,
8S, 0, 18< D êê TableForm

0 2 x + x2

1 1 + 9 x + 5 x2 + 7 x3

2 2 + 16 x + 9 x2 + 14 x3

3 3 + 4 x + 13 x2 + 2 x3

4 4 + 11 x + 17 x2 + 9 x3

5 5 + 18 x + 2 x2 + 16 x3

6 6 + 6 x + 6 x2 + 4 x3

7 7 + 13 x + 10 x2 + 11 x3

8 8 + x + 14 x2 + 18 x3

9 9 + 8 x + 18 x2 + 6 x3

10 10 + 15 x + 3 x2 + 13 x3

11 11 + 3 x + 7 x2 + x3

12 12 + 10 x + 11 x2 + 8 x3

13 13 + 17 x + 15 x2 + 15 x3

14 14 + 5 x + 3 x3

15 15 + 12 x + 4 x2 + 10 x3

16 16 + 8 x2 + 17 x3

17 17 + 7 x + 12 x2 + 5 x3

18 18 + 14 x + 16 x2 + 12 x3

Remark 1:

In the generalization to arbitrary fields GF HqL,  the n  participants are labeled by different non-zero
field elements ai , 1 § i § n,  and the share Si  of the i-th participant will be the pair Hai, f HaiLL .
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A way to realize this is to choose a primitive element (generator) a œ GFHqL , label the participants
from 1 to n  and give the i-th participant as share the pair Hi, f HaiLL .

Remark 2:

The threshold scheme explained here assumes a trustworthy authority. It is also a system that can
be used only once. As soon as participants have exchanged their shares to retrieve the secret, these
shares are compromised. A new set of shares has to be set up for later use. In the literature one can
find proposals that relax these conditions.

15.3 Threshold Schemes with Liars
In  [McEl81]  a  variant  of  the  construction  above  is  proposed,  that  can  handle  the  situation  that
some  of  the  participants  provide  false  information,  so  the  share  they  provide  does  not  have  the
correct value. Some participants may want to do this to prevent others from getting access to the
secret  data.  It  will  turn  out  that  it  takes  two extra  shares  to  recover  the  secret  for  each  incorrect
share that is contributed. So, if k + 2 t  participants pool their shares to recover the secret, at most t
of the shares should be false.  

Construction 15.2
Let S  be a secret from GFHqL , for some prime power q , and let a1, a2, …, an ,  n § q - 1,
be  a  list  of  n  different  non-zero  elements  in  GFHqL ,  e.g.  ai = ai ,  1 § i § n ,  for  some
primitive element a in GFHqL .
Consider  f HxL = S + a1 x + a2 x2 + … + ak-1 xk-1 ,  where  the  coefficients  a j ,
1 § j § k - 1, are randomly selected from GFHqL . 
The  pair  Hai, f HaiLL  will  be  the  share  Si  of  the  i-th  participant.  Suppose  that  k + 2 t
participants (k + 2 t § n) pool their shares and assume that at most t  of these are incorrect.
Then each of these participants can efficiently compute f HxL  and recover secret S .
Moreover the incorrect shares can be identified.

Proof:  The  polynomial  f HxL ,  used  to  compute  the  shares,  is  of  degree  § k - 1  and  has  the
additional  property  that  at  least  k + t  of  the  correct  shares  lie  on  it.  Could  there  be  another
polynomial,  say  gHxL ,  with  the  same  properties?  The  answer  is  no.  Indeed,  since  there  are  only
k + 2 t  shares, any two subsets of at least k + t  correct shares must have an intersection of at least
k  (honest) shares. These k  shares lie on f HxL  and on gHxL . Since both f HxL  and gHxL  have degree at
most k - 1, it follows that f HxL = gHxL .

To determine f HxL  the participants can try out all possible functions of degree § k - 1  through k
of  the  shares  until  a  function  passes  through  ¥ k + t  of  them.  Of  course,  this  is  not  an  efficient
way. For an efficient technique, the theory of error-correcting codes is needed (as in Chapter 11).
The shares that are defined above in fact define codewords H f Ha1L, f Ha2L, …, f HanLL  in a so-called
shortened Reed-Solomon code with parameters @n, k, n - k + 1D . 

We  refer  the  reader,  who  is  not  familiar  with  this  theory,  to  [MacWS77],  Chapter  11.  Both  the
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Berlekamp-Massey algorithm or the Euclidean algorithm give efficient ways to decode this code.
In  the  context  of  our  problem,  where  k + 2 t  shares  are  known,  one  has  to  interpret  the  other
n - k - 2 t  shares as erasures. If the number of erasures plus twice the number of errors is less than
the  minimum  distance  of  a  code,  one  can  still  correct  these  errors  and  erasures.  HereHn - k - 2 tL + 2. t  is  indeed  less  than  n - k + 1.  Efficient  algorithms  exists  (see  [Berl68],  Section
10.4 and [SugK76]) to correct these errors and erasures for Reed-Solomon codes.

Ñ

Remark 1: By taking t = 0 Construction 15.2 reduces to Construction 15.1.

Remark 2:  If  only  k + 2 t - 1  shares  are  available  and  t  of  them are  incorrect,  then  f HxL   is  not
necessarily  uniquely  determined.  For  instance,  it  is  possible  that  of k + 2 t - 1  shares  all  of  them
except the first t  lie on one polynomial of degree k - 1, while all these shares except the last t  lie
on another polynomial of degree § k - 1 (the intersection of the shares sets has cardinality k - 1).

In this case, there is however partial information on the secret.

Example 15.2

Consider k = 3, t = 1 and p = 17.

Of  the  four  shares  H1, 4L, H2, 1L, H3, 5L, H4, 4L,  each  three  define  a  parabola,  leaving  the  other  point  as
incorrect value.

PolynomialMod@
InterpolatingPolynomial@881, 4<, 82, 1<, 83, 5<<, xD, 17D
PolynomialMod@InterpolatingPolynomial@
881, 4<, 82, 1<, 84, 4<<, xD, 17D

PolynomialMod@InterpolatingPolynomial@
881, 4<, 83, 5<, 84, 4<<, xD, 17D

PolynomialMod@InterpolatingPolynomial@
882, 1<, 83, 5<, 84, 4<<, xD, 17D

14 + 12 x + 12 x2

10 + x + 10 x2

2 + 11 x + 8 x2

12 + 8 x + 6 x2

Of the 17 possible secrets four are possible, all with equal probability.
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15.4 Secret Sharing Schemes
Although  there  is  a  lot  of  literature  on  secret  sharing  schemes,  there  are  also  many  central
questions that still need to be answered. For this reason, we only discuss one example of a secret
sharing  scheme.  The  reader  is  referred  to  [Bric89]  and  [Dijk97]  to  find  a  discussion  of  various
generalizations  of  the  technique  explained  here.  For  a  general  introduction  to  secret  sharing
schemes we refer to [Stin95].

Assume  that  we  have  as  access  structure  the  set  HU , , L  with  U = 81, 2, 3, 4< ,
- = 881, 2<, 82, 3<, 83, 4<<  and  + = 881, 3<, 81, 4<, 82, 4<< .  This  means  that  any  subset  of  U
containing both users 1 and 2, or users 2 and 3, or users 3 and 4 is a privileged set, while any other
combination of users is non-privileged. Figure 15.1 depicts this situation.

∅

81< 82< 83< 84<
81,2< 81,3< 81,4< 82,3< 82,4< 83,4<

81,2,3< 81,2,4< 81,3,4< 82,3,4<
81,2,3,4<Ê

Ê Ê Ê Ê

Ê Á Á Ê Á Ê

Á Á Á Á

Á

Figure 15.1

An Access Structure with Four Participants
è  means privileged, é means non-privileged

The secret sharing scheme for this access structure will be set up in two steps. In the first step we
want to share one bit (or byte or string) of information among the four participants. 

Let  s  be  a  secret  bit  that  we  want  to  share  among  the  participants  of  our  access  structureHU , , L .  The trusted authority selects  two random bits a  and b  and gives the following shares
to the participants: 

participant share
1 a
2 s + a, b
3 s + b
4 b

Figure 15.2

A Secret Sharing Scheme with One Secret Bit
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The  +  sign  stands  for  addition  modulo  2.  The  reader  may  easily  verify  that  this  scheme  meets
requirements  SSS1 and SSS2.  For instance,  participants  1 and 2 can compute s  from a + Hs + aL ,
where a  comes from 1 and s + a  from 2.

Example 15.3

For  instance,  if  the  Trusted  Authority  wants  to  share  secret  s = 1  among  the  four  participants,  he  may
choose a = 1 and b = 0. The shares of 1, 2, 3, 4 will be 1, resp.  (0,0), 1, 0.

Participants 2 and 4 can not recover s, because they only know s + a  and b  (twice). Participants 3 and 4
can recover the secret s  by adding their shares s + b and b: 1 + 0 = 1. 

We see that in the scheme of Figure 15.2 participant 2 has to store twice as many bits as is the size
of the secret.  This  ratio  can be improved by superimposing a permuted version of the scheme to
itself. 

Hence,  now  we  consider  a  secret  consisting  of  two  bits  s1 and  s2 .   The  trusted  authority  selects
four random bits a, b, c , and d . He gives the following shares to the participants: 

Figure 15.3

participant share
1 a, c
2 s1 + a, s2 + c, b
3 s1 + b, s2 + d, c
4 b, d

A Secret Sharing Scheme with Two Secret Bits

In this scheme, the ratio between the size of the secret and the size of the longest share (this ratio
is  called  information  rate)  is  2 ê3.  It  can  be  shown that  such  a  ratio  is  always  at  most  1.  Secret
sharing schemes that have an efficiency rate equal to 1 are called ideal. 

There is a general matrix description of constructions of the above type. We shall explain it again
for the example above.

The secret sharing system is described by the matrix GTA  of the trusted authority and the matrices
Gi  of the participants  1, 2, 3,  and 4.  The first  two columns are labeled by the secret  bits  (s1  and
s2 ) and the next four columns by the random variables (a, b, c , and d ). Each row of Gi  represents
one entry of the share of participant i  (expressed in terms of the secret bits and the random bits).
The same holds for GTA , where we view s1, s2  as his share.
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GTA = J 1 0 0 0 0 0
0 1 0 0 0 0

N;

Gp1 = J 0 0 1 0 0 0
0 0 0 0 1 0

N;

Gp2 =
i

k

jjjjjjj

1 0 1 0 0 0
0 1 0 0 1 0
0 0 0 1 0 0

y

{

zzzzzzz;

Gp3 =
i

k

jjjjjjj

1 0 0 1 0 0
0 1 0 0 0 1
0 0 0 0 1 0

y

{

zzzzzzz;

Gp4 = J 0 0 0 1 0 0
0 0 0 0 0 1

N;

To see that  these matrices indeed represent  the secret  sharing scheme we multiply them with the
vector Hs1, s2, a, b, c, dL .

Clear@a, b, c, d, s1, s2D;
vec = 8s1, s2, a, b, c, d<;
GTA.vec
Gp1.vec
Gp2.vec
Gp3.vec
Gp4.vec

8s1, s2<
8a, c<
8a + s1, c + s2, b<
8b + s1, d + s2, c<
8b, d<

We get  the secret  of the trusted authority  and the shares  of all  the participants,  so this  is  exactly
the scheme that we had above. 

The properties of a secret sharing scheme can now be translated as follows. 
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Theorem 15.3
Full  rank  matrices  GTA  and  Gi ,  i œ U ,  describe  a  secret  sharing  scheme  for  access
structure  HU , , L  if and only if
i) for each privileged set A œ   each row of GTA  lies in the linear span of the rows of the
matrices Gi , i œ A ,
ii) for each non-privileged set B œ   no row of GTA  lies in the linear span of the rows of
the matrices Gi , i œ B .

To  check  that  the  first  row of  GTA  lies  in  the  linear  span  of  the  rows  of  G1  and  G2  we  use  the
Mathematica  package  LinearAlgebra`MatrixManipulation`  and  the  functions
AppendColumns, MatrixForm, LinearSolve, and Transpose.  

<< LinearAlgebra`MatrixManipulation`;

u = GTA@@1DD
M = AppendColumns@Gp1, Gp2D;
MatrixForm@MD
LinearSolve@Transpose@MD, u, Modulus −> 2D

81, 0, 0, 0, 0, 0<
i
k
jjjjjjjjjjjjjjjj
0 0 1 0 0 0
0 0 0 0 1 0
1 0 1 0 0 0
0 1 0 0 1 0
0 0 0 1 0 0

y
{
zzzzzzzzzzzzzzzz

81, 0, 1, 0, 0<
This shows that the first row of GTA  is the modulo-2 sum of the first row of G1  and the first row of
G2 .

Similarly, one can verify that s2  can not be recovered by participants 1 and 3 in this way: the 2-nd
row (and also the 1-st) of GTA  is not in the linear span of the rows of G1  and G3 . 

u = GTA@@2DD
M = AppendColumns@Gp1, Gp3D;
MatrixForm@MD
LinearSolve@Transpose@MD, u, Modulus −> 2D

80, 1, 0, 0, 0, 0<
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i
k
jjjjjjjjjjjjjjjj
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 1 0 0
0 1 0 0 0 1
0 0 0 0 1 0

y
{
zzzzzzzzzzzzzzzz

LinearSolve::nosol :  
Linear equation encountered which has no solution.

LinearSolve@880, 0, 1, 0, 0<, 80, 0, 0, 1, 0<, 81, 0, 0, 0, 0<, 80, 0, 1, 0, 0<,80, 1, 0, 0, 1<, 80, 0, 0, 1, 0<<, 80, 1, 0, 0, 0, 0<, Modulus → 2D
We conclude this section by remarking that  it  is  not  so much a problem to make a perfect  secret
sharing  scheme for  a  particular  access  structure,  as  it  is  to  make  an  efficient  one,  i.e.  with  high
information  rate.  Indeed,  an  inefficient  secret  sharing  scheme  for  a  particular  access
structure HU , , L  goes  as  follows.  Let  s  be  the  secret  to  be  shared.  For  each  A œ - ,  select
random bits ai

HAL , 1 § i § » A » , satisfying the binary congruence relation: ‚
i=1

»A»
ai

HAL ª s Hmod 2L , A œ - .

If u œ A , then participant u  gets one of these ai
HAL . 

In the example of U = 81, 2, 3, 4< ,  - = 881, 2<, 82, 3<, 83, 4<<  and + = 881, 3<, 82, 4<, 81, 4<<  we
get in this way as share for secret s:

participant share

1 a1
81,2<

2 a1
81,2< + s, a1

82,3<
3 a1

82,3< + s, a1
83,4<

4 a1
83,4< + s

A more compact way to denote this secret sharing scheme is 

participant share
1 a
2 a + s, b
3 b + s, c
4 c + s

This  scheme  has  efficiency  rate  1/2  and  uses  three  random  variables,  as  opposed  to  the  two
random variables in the scheme of Figure 15.2.
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15.5 Visual Secret Sharing Schemes
In visual secret  sharing schemes  the secret  to  be shared consists  of an image consisting of black
and  white  (or  of  colored)  pixels.  Here  we  shall  only  discuss  the  black  and  white  case,  where
"white"  should  be  understood  as  "transparent".  For  instance,  the  number  3  can  be  depicted  as
follows.

3

The shares consist of transparencies of the same shape also with black and white pixels. The idea
of a visual secret sharing scheme for an access structure  HU , , L   is that privileged subsets of
participants  should be able  to  determine the secret  by putting their  transparencies  on top of each
other, while non-privileged subsets should obtain no information on the secret from their shares. 

A visual secret sharing scheme can not be realized in a straightforward way. As soon as a pixel in
a particular  share  is  black, the corresponding pixel  in  the secret  will  also be black.  To solve this
problem, each pixel in the secret and in the shares will be subdivided in m  subpixels, where m  is
called the expansion factor of the scheme. The assumption will be that two visual threshold values
0 § a < b § 1exist such that:

è  if at most a.m  subpixels of a pixel are black, the pixel will be interpreted by the human eye as
white,

è  if at least b.m  subpixels of a pixel are black, the pixel will be interpreted as black.

If the number of black subpixels lies strictly between a.m  and b.m , we assume that the human eye
will not decide. The difference b-a is an indication for the level of contrast that is still present in
an  image  if  all  pixels  meet  one  of  the  above  two  requirements.  There  is  biological  evidence
supporting the assumption that it is the relative difference in light intensity that is of importance to
the human eye. See [VerT97] for a longer discussion.

In the context of visual secret sharing schemes, we have additional problems to face. For instance,
if  the  shares  of a  non-privileged  set  are  put  on top of  each other  and a  pixel  contains  more than
a.m  black subpixels, we know that the secret will be black at that place. Of course, such situations
have to be avoided.

It should be clear that once we have a visual secret sharing scheme for one pixel, we can use it for
the other pixels too, creating in this way a visual secret sharing scheme for the entire secret. 

Here,  we  shall  only  explain  a  visual  secret  sharing  scheme  for  a  Hn, 2L-threshold  scheme.  This
means that any two participants should be able to recover the secret, while a single person should
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have  no  information  at  all  about  even  one  pixel.  Before  we  do  so,  we  describe  the  simple  case
where  there  are  just  two  participants.  We  make  the  expansion  factor  m = 2.  Let  us  call  the
following two subdivisions of a pixel L and  R (for left black resp. right black):

L R
It is clear that L and R put atop each other gives a black pixel, while both L+L and R+R are still
half  white  and half  black.  Therefore,  we can make a construction with threshold  values a = 1 ê2
and b = 1.

Construction 15.4
To share  a  white  pixel,  the  trusted  authority  gives  with  equal  probability  either  to  both
participants L or to both participants R.
To  share  a  black  pixel,  the  trusted  authority  gives  with  equal  probability  to  one
participant L and to the other R.
This  gives  a  H2, 2L-visual  threshold  scheme  with  expansion  factor  m = 2  and  threshold
values a = 1 ê2 and b = 1.

Below we give an example of possible shares that participants 1 and 2 have for the secret number
3 above.

Share 1 Share 2

The reader can verify this by making transparencies of these two shares and putting them on top of
each other.

There  are  many  constructions  known  of  Hn, kL-visual  threshold  schemes.  We  shall  describe  a
general construction for k = 2. Each particular implementation of the construction will lead to its
own  values  for  the  expansion  factor  m  and  the  threshold  values  a  and  b.   It  makes  use  of  two
n µ m  matrices, MW  and MB ,  that will be used to distribute shares among the n  participants for a
white resp. black pixel. These matrices are further characterized by two values r  and l and have to
satisfy the following properties:

VTS1: Matrix MW  consists of n  identical copies of row 11 …1
õúúúúúúúù ûúúúúúr

 00 …00
õúúúúúúúúù ûúúúúúúm-r

.

VTS2: All row sums in MB  are equal to r .

VTS3: Every pair of rows in MB  has inner product l.

The numbers m, a, b, r , and l will be related. They can not take on any value.
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Example 15.4 (Part 1)

Take n = 4 and m = 6 . Let the matrices MW  and MB  be given by 

MW =

i

k

jjjjjjjjjjjj

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

y

{

zzzzzzzzzzzz
;

MB =

i

k

jjjjjjjjjjjj

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

y

{

zzzzzzzzzzzz
;

Note that MW  and MB  satisfy properties VTS1-VTS3 for r = 3 and l = 1.

The matrices MW  and MB  define two classes of n µ m  matrices:

 W = 8 MW .P » P is a m µ m permutation matrix< ,

 B = 8 MB.P » P is a m µ m permutation matrix< .

To  distribute  the  shares  for  a  particular  pixel,  the  trusted  authority  takes  either  MW  or  MB ,
depending  on  whether  the  pixel  is  white  or  black,  permutes  the  columns  in  a  random  way  and
gives the i-th row to participant i , 1 § i § n .

Participant j  makes the j-th subpixel white or black, depending on whether the j-th coordinate of
his share is 0 or 1. 

Example 15.4 (Part 2)

Suppose  that  the  pixel  that  needs  to  be  shared  is  black.  The  trusted  authority  selects  a  random
permutation  P  with  the  Mathematica  package  DiscreteMath`Permutations`  and  the  function
RandomPermutation as follows

<<DiscreteMath`Permutations`

RP = RandomPermutation@6D

83, 6, 4, 2, 1, 5<
This  gives  rise  to  the  following  permutation  matrix  (we  use  the  functions  Table,  Do,  and
MatrixForm):
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P = Table@0, 8i, 1, 6<, 8j, 1, 6<D;
Do@P@@j, RP@@jDDDD = 1, 8j, 1, 6<D;
MatrixForm@PD

i
k
jjjjjjjjjjjjjjjjjjjj
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0

y
{
zzzzzzzzzzzzzzzzzzzz

Multiplying MB  on the right with P gives the matrix

PMB = MB.P;
MatrixForm@PMBD

i
kjjjjjjjjjjj
0 0 1 1 0 1
1 1 1 0 0 0
0 1 0 0 1 1
1 0 0 1 1 0

y
{zzzzzzzzzzz

Putting the six subpixels  in a 3 µ 2  array in rowwise order,  we get  the following four shares for
this black pixel: 

Share 1 Share 2 Share 3 Share 4

The reader can easily check that any two of these shares,  when put atop of each other,  will  give
five black subpixels and one white.

If the original pixel would have been white, we would have had 

PMW = MW.P;
MatrixForm@PMWD
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i
kjjjjjjjjjjj
0 0 1 1 0 1
0 0 1 1 0 1
0 0 1 1 0 1
0 0 1 1 0 1

y
{zzzzzzzzzzz

This means that all four shares would have looked like

Each Share

Since each row in both MW  and MB  has the same number of ones (namely r) and since W  and
B  are made from these by multiplying them on the right by all possible permutation matrices, it
follows that each vector of length m  and weight r  occurs equally likely as a share for a white pixel
as for a black pixel. This shows that our construction has as lower visual threshold value a = r êm .

Because  MW  is  multiplied  by  a  permutation  matrix,  it  follows  from  VTS1  that   when  two
participants have shares of a white pixel and they combine them, they do not gain anything. 

On the  other  hand,  any two rows of  MB  have weight  r  by VTS2  and  inner  product  l  by VTS3.
This  remains so if  MB  is  multiplied by a permutation matrix.  It  follows that  any two shares of a
black  pixel  have  2 r - l  entries  equal  to  one.  In  the  example  above  r = 3  and  l = 1,  giving
2 r - l = 5  ones in any combination of two shares.We conclude that the construction by means of
W  and B  has a higher visual threshold value b = H2 r - lL êm .

We have proved the following general construction:

Construction 15.5
Let MB  be an n µ m  matrix satisfying properties VTS2 and  VTS3 for certain values of r
and  l.  Let  MW  be  of  the  form  given  by  VTS1.  Further,  let  W  and  B  be  the  sets
obtained  from  MW  resp.  MB  by  multiplying  them  on  the  right  with  all  possible
permutation matrices.
Then  a  random  choice  of  a  matrix  from  W  in  case  of  a  white  pixel  and  a  random
choice  of  a  matrix  from  B  leads  to  Hn, 2L-visual  threshold  scheme  with  expansion
factor m  and threshold values a = r êm  and b = H2 r - lL êm .
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Corollary 15.6
Take  any  n  and  let  u  be  some  value  in  between  2  and  n - 1.  Let  MB  be  the  matrix

consisting of all columns of length n  and weight u  . Then MB  has m = Jn
u
N  columns.

Moreover, every row of MB  has weight r = Jn - 1
u - 1

N  and any two rows have inner product

l = Jn - 2
u - 2

N .

This  defines  a  Hn, 2L-visual  threshold  scheme  with  expansion  factor  m = Jn
u
N  and

threshold values a = u ên  and b = H2 n - u + 1L ênHn - 1L .

By  taking  n = 4  and  u = 2  in  the  above  corollary,  one  gets  the  construction  of  Example  15.4.

Indeed,  m = Jn
u
N = J4

2
N = 6,  r = Jn - 1

u - 1
N = J3

1
N = 3  and  l = Jn - 2

u - 2
N = J2

0
N = 1.  The  visual  threshold

values are given by a = 2 ê4 = 1 ê2 and b = 5 ê 6.

A  disadvantage  of  the  family  of  constructions  described  in  the  Corollary  above,  is  the  high
expansion factor m .

A reader  who is  familiar  with the theory of block designs and t -designs may have guessed from
conditions  VTS2  and  VTS3  that  these  notions  often  play  a  role  in  the  construction  of  a  visual
threshold scheme. We shall explain one particular construction.

Let p  be any prime number. We recall from Definition A.9 that an integer u , 1 § u < p , is called a
quadratic  residue  (QR)  if  the  congruence  relation  x2 ª u Hmod pL  has  a  solution  in  p .  How  to
determine if a number u  is a quadratic residue is explained in Section A.4. With Mathematica one
can do this with the function JacobiSymbol, which will output 1 if and only if u  is a QR.

For instance, that x2 ª 12 Hmod 13L  has a solution (namely ≤5L  follows from 

u = 12; m = 13; JacobiSymbol@u, mD

1

The Jacobi symbol is normally denoted by I uÅÅÅÅÅp M  or just by cHuL , if there is no confusion about the
value of p . Actually, the value of cHuL  is defined to be 0, when u = 0 and -1 when 1 § u < p  and
u  is not QR.
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Corollary 15.7
Let p  be any prime that is congruent to 3 mod 4. Define the p µ p  matrix MB  byHMBLi, j = 9 1,

0,
if j - i is QR,

otherwise.

Then  every  row of  MB  has  weight  r = Hp - 1L ê2  and  any  two rows have  inner  product
l = Hp - 3L ê4.
This defines a Hn, 2L-visual threshold scheme with expansion factor m = n   and threshold
values a = Hp - 1L ê 2 p  and b = H3 p - 1L ê4 p .

Proof:

Fixing a row index i  of MB  we see that j - i , 0 § j < p , takes on all values in p . It follows from
Theorem A.20 that each row in MB  has weight Hp - 1L ê 2.

Now consider the matrix C = HcH j - iLL0§i, j<p . Matrix MB  can be obtained from C  by replacing all
its -1-entries by 0. Consider two rows of C  and let them be indexed by i1  and i2 . Note that 

cHi1 - i2L =
Th.A .21

cH-1L cHi2 - i1L =
Cor.A .24

- cHi2 - i1L .

This   means  that  the  matrix  C  is  skew-symmetric  and  that  the  i2 -th  entry  in  row  i1  is  equal  to
minus the i1 -th entry in row i2 . We conclude that, apart from a reordering of the coordinates, rows
i1 and i2  will look like

 0
ô1

-1
  +1
ô1

0
  +1 … + 1
õúúúúúúúúúúù ûúúúúúúúúúa

+1 … + 1
  +1 … + 1
õúúúúúúúúúúù ûúúúúúúúúúb

-1 … - 1
  -1 … - 1
õúúúúúúúúúúù ûúúúúúúúúúc

+1 … + 1
  -1 … - 1
õúúúúúúúúúúù ûúúúúúúúúúd

-1 … - 1
 

where the two rows may have been interchanged.

The  inner  product  of  rows  i1  and  i2  in  MB  is  given  by  the  value  of  a  (since  all  -1's  in  C  are
replaced by 0 to get MB ). To find the values a, b, c, d  we calculate first

(15.4)   ⁄ j=0
p-1 cH j - i1L cH j - i2L = ‚

j=0

p-1
cH jL cI j - Ii2 - i1LM = -1.

The first  equality follows from the substitution j - i1 Ø j ,  the second one follows from Theorem
A.22, since i1 T i2 mod p .

Hence, we have the following relations:

 2 + a + b + c + d = p , (C  has p  columns),
a - b - c + d = -1, (from (15.4)),
1 + a + b = Hp - 1L ê2, (apply Thm. A.20 to the first row),
a + c = Hp - 1L ê2, (apply Thm A.20 to the second row).

These  equations  have  a  unique  solution:  a = b = d = Hp - 3L ê 4  and  c = Hp + 1L ê4.  We  conclude
that the inner product of two different rows in MB  is Hp - 3L ê4.

The Corollary is now a direct consequence of Construction 15.5.

Ñ
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Example 15.5

Take  p = 13.  The  matrix  MB  can  be  made  with  the  Mathematica  functions  JacobiSymbol,  If,  and
Array as follows: 

p = 11;
A@i_, j_D := If@JacobiSymbol@j − i, pD == 1, 1, 0D;
MB = Array@A, 8p, p<D;
MatrixForm@MBD

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 1 0 1 1 1 0 0 0 1 0
0 0 1 0 1 1 1 0 0 0 1
1 0 0 1 0 1 1 1 0 0 0
0 1 0 0 1 0 1 1 1 0 0
0 0 1 0 0 1 0 1 1 1 0
0 0 0 1 0 0 1 0 1 1 1
1 0 0 0 1 0 0 1 0 1 1
1 1 0 0 0 1 0 0 1 0 1
1 1 1 0 0 0 1 0 0 1 0
0 1 1 1 0 0 0 1 0 0 1
1 0 1 1 1 0 0 0 1 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
So,  we  have  a  H11, 2L-visual  secret  sharing  scheme  with  expansion  factor  m = 11  and  threshold
values a = Hp - 1L ê2 p = 5 ê11 and b = H3 p - 1L ê4 p = 8 ê11.
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15.6 Problems

Problem 15.1M

 Set up a Shamir H5, 3L-threshold scheme for the secret 15 in GFH17L .
Show how participants 1,2 and 3 can recover the secret.
Show that  for  participants  1  and 2  together  each element in  GFH17L  is  an equally  likely  candidate  for  the
secret.

Problem 15.2M

Consider a Shamir H7, 4L-threshold scheme in GFH23L , where the participants 1, 3, 4, and 6 pool their sharesH1, 13L , H3, 19L , H4, 19L , and H6, 6L  to retrieve the secret S . What will this secret be?
Suppose that participant 5 shows his share H5, 3L . Why is one of these five people lying?
Let  all  also  participants  1  and 8  contribute  there  share:  H2, 4L  and H8, 12L .  Determine the  liar  and  the real
secret.

Problem 15.3M

Construct  a  H7, 4L-threshold  scheme  over  the  finite  field  GFH16L = GFH2L@aD ê Ha4 + a + 1L  (see  Theorem
B.15).
What are the shares of the participants for secret S = H1, 0, 1, 1L  which stands for the field element a13 ?
Show in detail how participants 2, 4, 5, 7 recover S .

Problem 15.4
Consider the following scheme over 3 :

participant share
1 a, b, c + s2
2 a + s1, b, c
3 b + s1, c − s2, d
4 b, d + s2

Give the matrix description of this scheme.
Prove  that  it  is  a  secret  sharing  scheme  for  access  structure  HU , , L  with  U = 81, 2, 3, 4< ,
 = 881, 2<, 82, 3<, 83, 1<, 83, 4<<  and  = 881, 4<, 82, 4<, 83<< .
What is the information rate of this scheme? Is it perfect? Is it ideal?

Problem 15.5
Make  a  visualization  of  a  set  of  possible  shares  for  a  black  pixel  in  H7, 2L-visual  threshold  scheme,  as
constructed in Corollary 15.7. 
What is the expansion factor of this scheme and what are its visual threshold values?
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Appendix A Elementary Number Theory
A.1 Introduction
Let  denote the set of natural numbers,  the set of integers, and  the set of real numbers.

An integer d divides an integer n, if n = k d  for some k œ  . We shall denote this by d » n . If such
an integer k does not exist, d does not divide n. This will be denoted by d I n .

To check if the integer d divides the integer n, the Mathematica  function IntegerQ can be used
in the following way.

n = 16851; d = 123; IntegerQ@nêdD
True

The Mathematica function Divisor gives a list of all divisors of a number n. For instance:

n = 16851; Divisors@nD
81, 3, 41, 123, 137, 411, 5617, 16851<

An  integer  p,  p > 1,  is  said  to  be  prime,  if  1  and  p  are  its  only  positive  divisors.  With  p1 = 2,
p2 = 3, p3 = 5, … we introduce a natural numbering of the set of prime numbers. 

Valuable Mathematica functions in this context are Prime and PrimeQ:

k = 35; Prime@kD
149

generating the 35-th prime number.

n = 1234567; PrimeQ@nD
False

telling if the input (here 1234567) is prime.

Elementary Number Theory 343



Theorem A.1 Euclid 

There are infinitely many prime numbers.

Proof: Suppose the contrary. Let p1, p2, …, pk  be the set of all primes. Next, we observe that the
integer  H¤i=1

k piL + 1  is  not  divisible  by  any  of  the  primes  p1, p2, …, pk .  Let  n  be  the  smallest
integer n  that  is  not divisible  by any of the primes p1, p2, …, pk .  It  can not be a prime number,
because it is not in the list p1, p2, …, pk .  It follows that n  has a non-trivial factor d . But then this
factor d  is divisible by at least of the primes p1, p2, …, pk  and so does n . A contradiction.

Ñ

Between two consecutive primes there can be an arbitrary  large gap  of non-prime numbers. For
example, the n - 1 elements in the sequence n ! + 2, n! + 3, …, n! + n  are divisible by respectively
2, 3, …, n . Therefore none of them is prime.

Definition A.1
The function p HnL  counts the number of primes less than or equal to n.

In Mathematica, this function is denoted by PrimePi[n].

n = 100; PrimePi@nD
25

The next  theorem [see [HarW45],  p.91] ,  which we shall  not  prove,  tells  us something about the
relative frequency of the prime numbers in .

Theorem A.2 The Prime Number Theorem

limnØ¶
pHnLÅÅÅÅÅÅÅÅÅÅÅÅÅÅnêln n = 1.

n = 1000000; PrimePi@nDêHnêLog@nDL êê N

1.08449

Two important definitions are those of the greatest common divisor and least common multiple of
two integers.

Definition A.2
The greatest common divisor of two integers a  and b , not both equal to zero, is the 
uniquely determined, positive integer d , satisfying
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(A.1)d  divides both a  and b

and

(A.2)if f  divides both a  and b , then f  also divides d .

The greatest common divisor of a  and b  is denoted by gcdHa, bL , or just Ha, bL .

Definition A.3
The least common multiple of two integers a  and b  is the uniquely determined, positive 
integer m , satisfying

(A.3) m  is divisible by both a  and b

and

(A.4)if n  is divisible by both a  and b  then n  is a multiple of m .

The least common multiple of two integers a  and b  is denoted by lcm@a , bD  or just @a, bD .

To show the existence of gcd,  we introduce the set

U = 8x.a + y.b » x œ , y œ , x.a + y.b > 0< .

Let m denote the smallest element in U. We shall show that m  satisfies (A.1) and  (A.2). Clearly, if
f  divides  both  a  and  b  then  f  also  divides  m.  So,  m  does  satisfy  (A.2).  Now,  write  a = q m + r,
0 § r < m   (subtract  or  add   m  sufficiently  often  from  (resp.  to)  a  until  the  remainder  r  lies  in
between  0  and  m - 1).  If  r ∫ 0,  then  r œ U  (since  both  a  and  m  are  in  U).  This  contradicts  the
assumption on the minimality of m. So, r = 0, which means that m divides a. Similarly, m divides
b. So, m satisfies (A.1) too.

The uniqueness of gcdHa, bL  follows from (A.1) and  (A.2).  Indeed, if d and d'  both satisfy (A.1)
and (A.2), it follows that d » d '  and d ' » d .  Since both d  and d '  are positive, it follows that d = d ' .

In a similar way, the existence and uniqueness of lcm@a, bD  can be proved.

Alternative definitions of gcdHa, bL  and lcm@a, bD  are:

gcdHa, bL  is the largest integer dividing both a  and b
lcm@a, bD  is the smallest positive integer divisible by both a  and b .
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The functions GCD and LCM can be evaluated by Mathematica as follows:

a = 12345; b = 67890; GCD@a, bD
15

a = 12345; b = 67890; LCM@a, bD
55873470

If two integers have a gcd equal to 1, we say that they are coprime. A consequence of the above is
the following important theorem.

Theorem A.3
Let a  and b  be in . Then there exist integers u  and v , such that

gcdHa, bL = u.a + v.b .

In particular, if a  and b  are coprime, there exist integers u  and v , such that

u.a + v.b = 1.

The following lemma seems too obvious to need a proof.

Lemma A.4
Let d  divide a product a b  and let the gcd of d and a  be 1. Then d  divides b .

Proof:  Since  gcdHd, aL = 1,  Theorem  A.3  implies  that  x d + y a = 1,  for  some  integers  x and  y .
So, x d b + y a b = b . Since d  divides a b , it follows that d  also divides x d b + y a b  which equals
b .

Ñ

Corollary A.5
Let p  be prime and let p  divide  ¤i=1

k ai , where ai  in  , 1 § i § k . 
Then p  divides at least one of the factors ai , 1 § i § k .

Proof: Use Lemma A.4 and induction on k .

Ñ

With an induction argument the following theorem can now easily be proved.
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Theorem A.6 Fundamental Theorem of Number Theory
Any positive integer has a unique factorization of the form¤i pi

e
i , ei œ  .

Let a =  ¤i  pi
ei , ei  in  and b =  ¤i  HpiL fi , fi  in . Then one easily checks that

(A.5)gcdHa, bL = ¤i pi
min 8ei, fi<

(A.6)lcm@a, bD = ¤i pi
max 8ei, fi<

(A.7)gcdHa, bL lcm@a, bD = a b .

The  Mathematica  expression  FactorInteger@nD  gives  the  factorization  of  an  integer  n .  The
outcome is a list of pairs. Each pair contains a prime divisor of n  and its exponent.

FactorInteger@123456789D
883, 2<, 83607, 1<, 83803, 1<<
a = 21375; b = 89775;
FactorInteger@aD
FactorInteger@bD
FactorInteger@GCD@a, bDD
FactorInteger@LCM@a, bDD
GCD@a, bD LCM@a, bD == a b

883, 2<, 85, 3<, 819, 1<<
883, 3<, 85, 2<, 87, 1<, 819, 1<<
883, 2<, 85, 2<, 819, 1<<
883, 3<, 85, 3<, 87, 1<, 819, 1<<
True
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A.2 Euclid's Algorithm
Let a  and b  be two positive integers with b ¥ a . Clearly, any divisor of a  and b  is a divisor of a
and b - a  and vice versa. So, gcdHa, bL = gcdHa, b - aL . Writing b = q.a + r , 0 § r < a , one has for
the  same  reason  that  gcdHa, bL = gcdHr, aL .   If  r = 0  (and  b = q.a),  we  may  conclude  that
gcdHa, bL = a ,  otherwise  we  continue  in  the  same  way  with  a  and  r .  So,  we  write  a = q '.r + r ' ,
0 § r ' < r ,  have  gcdHa, bL = gcdHr ', rL ,  etc.,  until  one  of  the  arguments  indeed  divides  the  other.
This algorithm is an extremely fast way of computing the gcd of two integers and it is known as
Euclid's Algorithm.

Algorithm A.7 Simple Version of Euclid's Algorithm
input a, b  positive integers
while  b > 0  do begin

put r  as the remainder of the a  after division by b .
(So, write a = q.b + r , 0 § r < b .)
put a = b
put b = r
end

output  a

With the Mathematica functions While, Floor, and Print, the above algorithm runs like this

a = 1645; b = 861;
While@b ≠ 0, r = a − Floor@aê bD∗ b; 8a, b< = 8b, r<; Print@8a, b<DD8861, 784<8784, 77<877, 14<814, 7<87, 0<

If  one  also  wants  to  find  the coefficients  u  and v  satisfying Theorem A.3,  this  algorithm can be
adapted as described below. Note that by leaving out the lines involving the integers ui  and vi , this
(extended) algorithm reduces to the simple version above.
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Algorithm A.8 Extended Version of Euclid's Algorithm
input b ¥ a > 0
initialize s0 = b ; s1 = a ;

u0 = 0; u1 = 1; v0 = 1 ; v1 = 0; n = 1
while sn > 0 do begin

put  n = n + 1;
write sn-2 = qn sn-1 + sn , 0 § sn < sn-1
put un = qn un-1 + un-2 ;

put vn = qn vn-1 + vn-2 ;
end

put u = H-1Ln un-1 ; v = H-1Ln-1 vn-1 ;

(A.8)gcdHa, bL = sn-1 = u.a + v.b

Again Mathematica knows this extended version of Euclid's Algorithm as a standard function. It is
called ExtendedGCD.

a = 861; b = 1645; ExtendedGCD@a, bD
87, 8107, −56<<

Note that in the example above one indeed has that

7 = gcd(861,1645) = 107×861 -  56×1645

Proof of Algorithm A.8:

First  observe  that  the  elements  sn ,  n ¥ 1,  form  a  strictly  decreasing  sequence  of  non-negative
integers. So the algorithm will terminate after at most b  iterations. Later in this paragraph we shall
analyze how fast Euclid's Algorithm really is. 

From the recurrence relation sk = sk-2 - qk sk-1  the algorithm it follows that

gcdHa, bL = gcdHs0, s1L = gcdHs1, s2L = … = gcdHsn-1, snL = gcdHsn-1, 0L = sn-1 .

This proves the first equality in (A.8). We shall now prove that for all k ,  0 § k § n ,H-1Lk-1 uk a + H-1Lk  vk b = sk .

Note that substitution of k = n - 1 in this relation proves the second equality in (A.8).

For k = 0  and k = 1  the above relation holds by our choice of the initialization values for u0 , u1 ,
v0  and v1 . We now proceed by induction. It follows from the recurrence relations in the algorithm
and from the induction hypothesis, that 
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sk = sk-2 - qk  sk-1 = 8H-1Lk-3 uk-2 a + H-1Lk-2 vk-2 b< - qk 8H-1Lk-2 uk-1 a + H-1Lk-1 vk-2 b< =

=H-1Lk-1 Huk-2 + qk uk-1L a + H-1Lk  H vk-2 + qk vk-1L b = H-1Lk-1 uk a + H-1Lk vk b.

Ñ

Of course there is  no need to keep all  the previously calculated values of sk ,  uk  and vk  stored in
the  program.  Only  the  last  two of each  together  with  qk  will  suffice.  The reason for  introducing
them in the algorithm was only to facilitate the readability of the proof above.

With the Mathematica functions While, Floor, and Print, the above algorithm runs like this:

b = 1645; a = 861;
n = 1;
so = b; sn = a;
uo = 0; un = 1;
vo = 1; vn = 0;
While@sn ≠ 0,
Print@H−1Ln−1, "×", un, "×", a, " + ", H−1Ln, "×",
vn, "×", b, "=", snD; q = Floor@soêsnD;
n = n + 1; 8so, sn, uo, un, vo, vn< =8sn, so − q ∗sn, un, q ∗un + uo, vn, q ∗vn + vo<D
1×1×861 + −1×0×1645=861

−1×1×861 + 1×1×1645=784

1×2×861 + −1×1×1645=77

−1×21×861 + 1×11×1645=14

1×107×861 + −1×56×1645=7

We  would  like  to  conclude  this  section  by  saying  something  about  the  complexity  of  Euclid's
Algorithm.  It  may be  clear  that  this  algorithm is  at  it  slowest  if  at  each  step  the  quotient  qk  has
value 1 (if possible). This is the case if sk-2 = sk-1 + sk   for all 2 § k § n - 1 and that sn-2 = 2 sn-1 ,
sn = 0. In other words, the smallest value of b  (and arbitrary 0 < a < b) such that the evaluation of
gcdHa, bL  takes  n - 1  steps  is  given  by  b = Fn  and  a = Fn-1 ,  where  the  8Fi<i¥0  sequence  is  the
famous sequence of Fibonacci numbers defined by F0 = 0, F1 = 1, Fi+2 = Fi+1 + Fi  for i ¥ 0.

By letting  Mathematica  operate  repeatedly  on a list  of  two consecutive  Fibonnacci  numbers (the
function Nest  is  used for this),  one gets the following method to evaluate these numbers (in the
example F100  and F101  are computed):
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f@8u_, v_<D := 8v, u + v<
n = 100; Nest@f, 80, 1<, nD
8354224848179261915075, 573147844013817084101<

This could also have been done directly with the function Fibonacci.

Fibonacci@100D
354224848179261915075

The reader may check the above analysis in the following way.

GCDiterations@n_Integer?Positive, m_Integer?PositiveD :=

Block@ 8 a = n, b = m, r, t = 0<,
While@ b > 0, r = Mod@a, bD;8a, b, t< = 8b, r, t + 1<D; tD

n = 100;
GCDiterations@Fibonacci@nD, Fibonacci@n − 1DD
98

Table@ GCDiterations@ Fibonacci@nD, Fibonacci@n − 1D D,8n, 2, 100< D
81, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98<

Note that the GCDiterations algorithm above does not affect the values of a  and b  (contrary to our
implementation of the simple version of Euclid's algorithm). It also makes use of the Mathematica
function Mod that will be discussed in the next section.

Plugging  in  Fn = c f n  in  the  defining  recurrence  relation  of  the  Fibonacci  numbers,  so  in
Fi+2 = Fi+1 + Fi ,  leads to the quadratic equation f 2 = f + 1, which has as zero's: 1≤

è!!!!5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 . Without
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proof we state the following upperbound on the complexity of Euclid's Algorithm. The reader may
prove it with induction on b (distinguish the cases a § bÅÅÅÅÅf  and bÅÅÅÅÅf < a § b).

Theorem A.9 Complexity of Euclid's Algorithm
Let a and b be positive integers, b ¥ a , b ∫ 1, and let f = 1 +

è!!!!5ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 . Then the number of 
iterations, that Euclid's Algorithm will need to compute gcdHa, bL  is at most  log f  b .

a = Fibonacci@100D; b = Fibonacci@99D;
GCDiterations@a, bD
Ceiling@Log@H1 + Sqrt@5DLê 2 , bDD
98

98

A.3 Congruences, Fermat, Euler, Chinese Remainder Theorem

A.3.1 Congruences

Definition A.4
Two integers a  and b  are said to be congruent to each other modulo m , if their difference 
b - a  is divisible by m . This is denoted by

a ª b Hmod mL .

The  Mathematica  function  Mod@a, m]  gives  the  unique  integer  r, 0 § r < m ,  such  that
a ª r Hmod mL .

a = 12345; m = 13; Mod@a, mD
8

An  easy  test  if  the  integers  a  and  b  are  congruent  of  each  other  modulo  m  is  given  by  the
following example:

m = 13; a = 12345; b = 103579; Mod@a − b, mD == 0
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True

Definition A.5
A set of m  integers a1, a2, …, am  is called a complete residue system modulo m , if each 
integer  is congruent to (exactly) one of the elements ai , 1 § i § m , modulo m .

The most commonly used complete residue systems modulo m  are the sets  80, 1, … , m - 1<  and81, 2, …, m< . With the Mathematica functions Range and Table one can generate these systems.

m = 10;
Table@i, 8i, 0, m − 1<D
Range@mD
80, 1, 2, 3, 4, 5, 6, 7, 8, 9<
81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

Clearly the m  integers ai , 1 § i § m , form a complete residue system modulo m  if and only if for
each pair 1 § i , j § m  one has that

(A.9)ai ª a j Hmod mL ï i = j

The congruence relation ª modulo defines an equivalence relation (see  Definition B.5 ) on . A
complete residue system is just a set of representatives of the m  equivalence classes.

Lemma A.10
Let k a ª k b Hmod mL  and gcdHk, mL = d . Then

 a ª b Hmod m êdL .

Proof: Write k = k ' d  and m = m ' d  with gcdHk ', m 'L = 1. It follows from k a - k b = x m , for some
x œ  ,   that  k ' Ha - bL = x m ' .  Since gcdHm ', k 'L = 1,  it  follows from Lemma A.4 that  m ' » Ha - bL ,
i.e. a ª b Hmod m 'L .

Ñ

Lemma A.11
Let a1, a2, …, am  be a complete residue system modulo m  and let gcdHk, mL = 1.
Then k a1, k a2, …, k am  is also a complete residue system modulo m .

Proof: We use criterion (A.9). By Lemma A.10,  k ai ª k a j Hmod mL  implies that ai ª a j Hmod mL .
This in turn implies that i = j .

Ñ
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A.3.2 Euler and Fermat

Often  we  shall  only  be  interested  in  representatives  of  those  residue  classes  modulo  m ,  whose
elements have coprime with m . The number of these classes is denoted by the following function.

Definition A.6
The Euler's Totient Function f (see Euler)  is defined by

fHmL = » 8 0 § i < m » gcdHi, mL = 1 < » .
In words, fHmL  is the number of integers in between 0 and  m - 1 that are coprime with 
m .

In Mathematica, this function can be evaluated with the EulerPhi@nD  function. For instance

m = 15; EulerPhi@mD
8

corresponding to the eight elements: 1, 2, ,4, 7, 8, 11, 13, and 14. Later on in this section, we see
how the function f(m) can be efficiently computed.

Theorem A.12
For all positive integers m  ⁄d»m jHdL = m .

It is quite easy to see  in an example which of the m integers in between 1 and m  are contributing
to which term fHdL  with d » m . When m = 15, we have the divisors 1, 3, 5 and 15 of m. The eight
elements 1, 2, ,4, 7, 8, 11, 13, 14  all have gcd 1 with 15 (note that fH15L = 8) , the four ( = fH5L)
elements 3, 6, 9, 12 have gcd = 3  with 15, the two ( = fH3L) elements 5, 10 have gcd = 5  and the
single ( = fH1L) element 0 has gcd = 15. 

Proof of Theorem A.12:

Let d  divide m . By writing r = i d  one sees immediately that the number of elements r , 0 § r < m ,
with  gcdHr, mL = d  is  equal  to  the  number  of  integers  i  with  0 § i < mÅÅÅÅÅd and  gcdHi, mÅÅÅÅÅd L = 1,
therefore, this number is fH mÅÅÅÅÅd L .

On  the  other  hand,  gcdHr, mL  divides  n  for  each  integer  r ,  0 § r < m .  It  follows  that„d»m fH mÅÅÅÅÅd L = m . This statement is equivalent to what needs to be proved.

Ñ
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The following non-standard Mathematica  statement  evaluates  sums of function values  f @dD  over
all divisors d  of a given integer m . 

DivisorSum@f_, m_D := Plus @@ Hf ê@ Divisors@mDL
One can use this function to check Theorem A.12.

m = 15; DivisorSum@EulerPhi, mD
15

Definition A.7
A set of fHmL  integers r1, r2, …, rfHmL  is called a  reduced residue system modulo m  if 
each integer j  with gcdH j, mL = 1, is congruent to (exactly) one of the elements ri , 
1 § i § fHmL .

A reduced residue system can be quite easily generated by means of the following newly defined
functions. 

CoPrimeQ@n_Integer, m_IntegerD := GCD@n, mD == 1

CoPrimeQ@35, 91D
CoPrimeQ@36, 91D
False

True

CoPrimes@n_Integer?PositiveD :=

Select@ Range@nD, CoPrimeQ@n, #D & D
CoPrimes@15D
81, 2, 4, 7, 8, 11, 13, 14<

Analogously to Lemma A.11 one has the following lemma.
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Lemma A.13
Let r1, r2, …, rfHmL  be a reduced residue system modulo m and let gcdHa, mL = 1.
Then a r1, a r2, …, a rfHmL  is also a reduced residue system modulo m .

With  the  above  lemma one  can  easily  prove  that  the  classes  in  a  reduced  residue  system form a
multiplicative group (see Subsection B.1.1).

Theorem A.14 (see Euler)
Let a  and m  be two integers that are coprime. Then

ajHmL ª 1 Hmod mL .

It is quite easy to check this theorem in concrete cases.

m = 12345; a = 11111; GCD@m, aD
EulerPhi@mD
Mod@a^EulerPhi@mD, mD
1

6576

1

Exponentiations  modulo  some  integer  can  be  performed  much  faster  in  Mathematica  with  the
PowerMod@a, b, mD  function,  which  reduces  all  intermediate  results  in  the  computation  of  ab

modulo m .:

m = 123456789; a = 1111111111; GCD@m, aD
PowerMod@a, EulerPhi@mD, mD
1

1

Proof: Let r1, r2, …, rfHmL  be a reduced residue system modulo m . By Lemma A.13

‰
i=1

f HmL
ri ª ‰

i=1

fHmL Ha riL ª afHmL ‰
i=1

f HmL
ri Hmod mL.

356 APPENDICES



Since  each  factor  ri  is  coprime with  m,  one  can  divide  both  hands  by ¤i=1
fHmL ri  by Lemma A.10.

This results in 1ª afHmL  (mod m).

Ñ

Let  p  be  a  prime  number.  Since  every  integer  i,  1 § i < p ,  is  coprime  with  p,  it  follows  that
fHpL = p - 1. Euler's Theorem implies the next theorem for all values of a  except for a 's that are a
multiple of p. For these values, the statement in the next theorem is trivially satisfied. 

Theorem A.15 Fermat's Little Theorem
Let p  be a prime number and let a  be any integer. Then

ap ª a Hmod pL .

This can easily be checked in individual cases with the Mathematica function PowerMod.

p = 98947; a = 12345; PrimeQ@pD
PowerMod@a, p, pD == a

True

True

As  we  have  just  observed,  fHpL = p - 1  for  prime.  Because  exactly  one  of  every  p  consecutive
integers is divisible by p, we have the following stronger result:

(A.10)fHpeL = pe - Hpe ê pL = pe-1Hp - 1L = peikjj1 -
1
ÅÅÅÅÅÅ
p

y{zz .

Definition A.8
A function f : ö  is said to be multiplicative, if for every pair of positive integers m  
and n

gcdHm, nL = 1 ï f Hm.nL = f HmL f HnL .

Lemma A.16
Euler's Totient function fHmL  is multiplicative.

Proof: Let m  and n  be coprime and let a1, a2, … , afHmL  and  b1, b2, … , bfHnL   be reduced residue
systems modulo m  resp. n . It suffices to show that the fHmL fHnL  integers n.ai + m.b j , 1 § i § fHmL
and   1 § j § fHnL ,  form a  reduced  residue  system modulo m n .  It  is  quite  easy  to  check  that  the
integers  n.ai + m.b j , 1 § i § fHmL  and  1 § j § fHnL ,  are all distinct modulo m n  and that they are
coprime with m n . (Use Lemma A.15 and formula (A.9)).
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It  remains  to  verify  that  any  integer  k  with  gcdHk, m.nL = 1,  is  congruent  to  n.ai + m.b j  modulo
m n  for some  1 § i § fHmL  and  1 § j § fHnL .

From Lemma A.13 we know that integers i  and j , 1 § i § fHmL  and  1 § j § fHnL , exist for which

k ª n.ai Hmod mL and k ª b j Hmod nL.
This implies that both m  and n  divide k - n.ai - m .b j . Since gcdHm, nL = 1, it follows from (A.4)
and (A.7), that also m.n  divides k - n.ai - m.b j . 

Ñ

Theorem A.17
fHmL = m ‰

p prime, p»m I1 - 1ÅÅÅÅÅp M .

Proof:  Combine (A.10) and Lemma A.16.

Ñ

In Section A.5 we shall see how a direct counting argument also proves Theorem A.17. 

With  the  Mathematica  functions  Length  and  EulerPhi  and  the  function  CoPrimes  (which
makes use of CoPrimeQ) defined above one can check Theorem A.17 as follows:

m = 15;
Length@CoPrimes@mDD
EulerPhi@mD
8

8

A.3.3 Solving Linear Congruence Relations

The  simplest  congruence  relation,  that  one  may  have  to  solve,  is  the  single,  linear  congruence
relation

(A.11)a x ª b Hmod mL
Theorem A.18
The linear congruence relation a x ª b Hmod mL  has a solution x  if and only if gcdHa, mL  
divides b .
In this case the number of different solutions modulo m  is gcdHa, mL .
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Proof:  That  gcdHa, mL » b  is  a  necessary  condition  for  (A.11)  to  have  a  solution  x  is  trivial.  We
shall now prove that it is also a sufficient condition.

Let  d = gcdHa, mL  and  write  a = a ' d ,  m = m ' d  and  b = b ' d ,  where  gcdHa ', m 'L = 1.  By  Lemma
A.11,  the  congruence  relation  a ' x ª b ' Hmod m 'L  has  a  unique  solution  x '  modulo  m ' .  Clearly,  a
solution  x  of  a x ª b Hmod mL  satisfies  x ª x ' Hmod m 'L .  So,  each  solution  x   modulo  m  can  be
written as x ' + i m ' ,  0 § i < d . Write a ' x ' = b ' + u m ' , u œ  . Then for each 0 § i < d , 

aHx ' + i m 'L = d a ' x ' + i d a ' m ' = d b ' + u d m ' + i a ' m = b + Hu + ia 'L m.

Hence, the numbers x ' + i m ' , 0 § i < d , represent all the solutions modulo m  of a x ª b Hmod mL .

Ñ

The solution of a x ª b Hmod mL ,  gcdHa, mL = 1, can easily be found with the extended version of
Euclid's Algorithm. Indeed, from u a + v m = 1 (see Theorem A.3), it follows that u a ª 1 Hmod mL .
So,  the  solution  x  is  given by b u Hmod mL .  If  gcdHa, mL = 1,  one often writes  a-1  for  the  unique
element u satisfying u a ª 1 Hmod mL .

Example A.1 (Method 1)

To solve 14 x ª 26 Hmod 34L , we note that gcdH14, 34L = 2, which indeed divides 26. 

We first solve 7 x' ª 13 Hmod 17L . With the extended version of Euclid's Algorithm we find 
5 ÿ 7 + H-2L 17 = gcdH7, 17L = 1. So, 7 ÿ 5 ª 1 Hmod 17L  and x'  can be computed from 
x' ª 7-1 ÿ 13 ª 5 ÿ 13 ª 14 Hmod 17L .

By the theorem  above, 14 x ª 26 Hmod 34L  has the numbers 14 and 14+17=31 as solutions modulo 34.

ExtendedGCD@7, 17D
Mod@5∗13, 17D
81, 85, −2<<
14

Example A.2 (Method 2)

To solve 123456789 x ª 135798642 (mod 179424673), we first check if gcd(123456789, 179424673) 
divides 135798642. Next, we compute 123456789-1  mod 179424673 and then compute 
123456789-1 ÿ 135798642 which gives 21562478 as solution .

Instead  of  using  Euclid's  Algorithm  to  compute  123456789-1  mod  179424673,  we  can  also  use
Euler's  Theorem.  Indeed,  af HmL ª 1 Hmod mL  implies  that   a afHmL-1 ª 1 Hmod mL  and  thus  that
a-1 ª afHmL-1 Hmod mL .
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GCD@148953050, 179424673D
PowerMod@123456789, EulerPhi@179424673D − 1, 179424673D
1

172609538

So,  the  number  172609538  is  the  multiplicative  inverse  of  123456789  modulo  179424673.  The
solution x of the congruence relation 123456789 x ª 135798642 Hmod 179424673L  is given by:

Mod@135798642 ∗172609538, 179424673D
21562478

We can check this:

Mod@123456789∗21562478, 179424673D
135798642

The  Mathematica  function  PowerMod  computes  the  multiplicative  inverse  of  a  number  very
efficiently in the following way:

PowerMod@123456789, −1, 179424673D
172609538

The  Mathematica  function  Solve  gives  all  the  solutions  of  the  congruence  relation
a x ª b Hmod mL , if they do exist. 

Clear@xD;
Solve@ 812 x == 8, Modulus == 16<, xD
88Modulus → 16, x → 2<, 8Modulus → 16, x → 6<,8Modulus → 16, x → 10<, 8Modulus → 16, x → 14<<

To get only the solutions, one can execute
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x ê. Solve@ 812 x == 8, Modulus == 16<, xD
82, 6, 10, 14<

The reader is invited to try

x ê. Solve@ 813 x == 1, Modulus == 16<, xD
Solve@ 812 x == 7, Modulus == 16<, xD

A.3.4 The Chinese Remainder Theorem

We  shall  now  discuss  the  case  that  x  has  to  satisfy  several,  linear  congruence  relations
simultaneously,  say ai x ª bi Hmod miL  with gcdHai, miL » bi  for 1 § i § k .  Dividing the i-th relation
by di = gcdHai, miL , 1 § i § k , one gets as before the congruence relation ai ' x ' ª bi ' Hmod m 'L , with
gcdHai

', mi
'L = 1.  By  the  proof  of  Theorem  A.18,  a  solution  of  this  congruence  relation  is

equivalent to a solution of one of the d  congruence relations ai ' x ª bi ' + jmi ' Hmod miL , 0 § j < d .
In view of this, we restrict our attention to the case that gcdHai, miL = 1 for all i , 1 § i § k .

Theorem A.19 The Chinese Remainder Theorem
Let mi , 1 § i § k , be k  pairwise coprime integers. Further, let ai , 1 § i § k ,  be integers 
with gcdHai, miL = 1. Then the system of k  simultaneous congruence relations

(A.12)ai x ª bi Hmod miL, 1 § i § k,

has a unique solution modulo ¤i=1
k mi  for all possible k-tuples of integers b1, b2, …, bk .

Proof:  Suppose that x '  and x ' '  both form a solution. Then ai Hx ' - x ' 'L ª 0 Hmod miL , 1 § i § k . By
Lemma A.4,  mi  divides x ' - x ' '  for all 1 § i § k .  It follows that x ' ª x ' ' Hmod ¤i=1

k miL . Hence, if
the k  congruence relations have a simultaneous solution, it will be unique modulo ¤i=1

k mi .

On  the  other  hand,  since  there  are  as  many  different  values  for  x  modulo  ¤i=1
k mi  as  there  are

possible   k-tuples  of  reduced  right  hand  sides  b1, b2, …, bk  there  must  be  a  one-to-one
correspondence between them.

Ñ
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The proof above does not give an efficient algorithm to determine the solution of (A.12). We shall
now explain how this can be done.

Let 1 § i § k  and let ui  be the unique solution modulo ¤i=1
k mi  of

(A.13)ai ui ª 1 Hmod miL ,

(A.14)a j ui ª 0 Hmod miL , 1 § j § k , j ∫ i .

With Euclid's Algorithm ui  is easy to determine. Indeed from (A.14) it follows that ui is a multiple
of  mHiL defined  by  ¤ j, j ∫ i  m j ,  say  ui = r mHiL  for  some  0 § r < mi .  The  value  of  r  follows  from
(A.13).  Indeed, r is the solution of  ai r mHiL ª 1 Hmod miL . Hence

ui = 9Hai mHiLL-1 Hmod miL= mHiL.
The numbers ui , 1 § i § k , can be stored using at most k log2 m  bits of memory space. 

The solution of (A.12) is now given by

x = u1 b1 + u2 b2 + … + uk  bk.

Example A.3

To solve

3 x ª 7 Hmod 11L 2 x ª 9 Hmod 13L  12 x ª 5 Hmod 17L
we rewrite these congruences as

x ª 3-1 ÿ 7 Hmod 11L x ª 2-1 ÿ 9 Hmod 13L x ª 12-1 ÿ 5 Hmod 17L
which reduces to

x ª 4 ÿ 7 Hmod 11L x ª 7 ÿ 9 Hmod 13L  x ª 10 ÿ 5 Hmod 17L
i.e.

x ª 6 Hmod 11L x ª 11 Hmod 13L  x ª 16 Hmod 17L .

Next we compute the solutions of 

u1 ª 1 Hmod 11L u1 ª 0 Hmod 13L  u1 ª 0 Hmod 17L
u2 ª 0 Hmod 11L u2 ª 1 Hmod 13L  u2 ª 0 Hmod 17L
u3 ª 0 Hmod 11L u3 ª 0 Hmod 13L  u3 ª 1 Hmod 17L .

Writing  u1 = l1 ÿ 13 ÿ 17,  u2 = l2 ÿ 11 ÿ 17,  u3 = l3 ÿ 11 ÿ 13,  we  find  with  Theorem  A.18,   (or  the
Solve  function)  that   l1 ª 1 Hmod 11L ,  l2 ª 8 Hmod 13L ,  l3 ª 5 Hmod 17L  and  thus  that
u1 ª 221 Hmod 11 ÿ 13 ÿ 17L , u2 ª 1496 Hmod 11 ÿ 13 ÿ 17L , u3 ª 715 Hmod 11 ÿ 13 ÿ 17L .

We conclude that x ª 6 ÿ 221 + 11 ÿ 1496 + 16 ÿ 715 ª 50 Hmod 11 ÿ 13 ÿ 17L .
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To solve congruence relations xi ª bi Hmod miL , 1 § i § k , with all the mi 's mutually prime with the 
Chinese Remainder Theorem with Mathematica, we first read the package 
NumberTheory`NumberTheoryFunctions` 

<<NumberTheory`NumberTheoryFunctions`

Such  a   system  can  now  be  solved  with  the  Mathematica  function
ChineseRemainderTheorem  that is available in the above package. We demonstrate this by
determining u1 , u2 , and u3  in the above example.

ChineseRemainderTheorem@81, 0, 0<, 811, 13, 17<D
ChineseRemainderTheorem@80, 1, 0<, 811, 13, 17<D
ChineseRemainderTheorem@80, 0, 1<, 811, 13, 17<D
221

1496

715

When considering the system of congruence relations ai xi ª bi Hmod miL , 1 § i § k , where the mi 's
are  relatively  prime  and  where  gcdHai, miL = 1  for  1 § i § k ,  it  is  quite  easy  for  Mathematica  to
reduce  this  system to  the  equivalent  system  xi ª ai

-1 bi Hmod miL ,  1 § i § k ,  which  can  be  solved
with the Chinese Remainder Theorem function. We use the functions PowerMod and Mod for this
reduction. They operate equally well on vectors (coordinatewise) as on numbers. 

We demonstrate this with the parameters of the example above. 

a = 83, 2, 12<; b = 87, 9, 5<; m = 811, 13, 17<;
b = Mod@b∗PowerMod@a, −1, mD, mD
ChineseRemainderTheorem@b, mD
86, 11, 16<
50
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A.4 Quadratic Residues
Let  p  be  an  odd  prime.  The  quadratic  congruence  relation  a x2 + b x + c ª 0 Hmod pL ,
a T 0 Hmod pL ,  can  be  simplified  by  dividing  the  congruence  relation  by  a  followed  by  the
substitution  x Ø x - b ê H2 aL .  In  this  way,  a x2 + b x + c ª 0 Hmod pL  reduces  to  a  quadratic
congruence relation of the type:

(A.15)x2 ª u Hmod pL
Definition A.9
Let p  be an odd prime and u  an integer not divisible by p . Then u  is called a quadratic 
residue (QR), if (A.15) has an integer solution, and quadratic non-residue (NQR), if 
(A.15) does not have an integer solution.

Definition A.10
Let p  be an odd prime and u  an integer. The Legendre symbol I uÅÅÅÅp M  is defined byI uÅÅÅÅÅp M  = 

looomnooo +1
-1

0
    

if u is a quadratic residue mod p,
if u is a quadratic nonresidue mod p,
if p divides u.

If there is no confusion about the actual choice of the prime number p , one often writes c
(u) instead of I uÅÅÅÅÅp M .

The Legendre symbol is a special case of the following function.

Definition A.11
Let m = Pi HpiLei  be an odd integer and let u  be an integer with gcdHu, mL = 1.
Then the Jacobi symbol ( uÅÅÅÅÅÅm ) is defined byI uÅÅÅÅÅÅm M = ‰

i
I uÅÅÅÅÅÅÅpi

Mei

where I uÅÅÅÅÅp M  denotes the Legendre symbol.

The  Jacobi  symbol  (and  a  fortiori  the  Legendre  symbol)  can  be  evaluated  with  the  standard
Mathematica  function  JacobiSymbol@u, m].  So,  we  can  check  if  12  is  a  quadratic  residue
modulo 13 (indeed  52 ª 12 Hmod 13L) by means of the Jacobi Symbol[12, 13] which should give
value 1.

u = 12; m = 13; JacobiSymbol@u, mD
1

We want to derive some properties of the Legendre symbol.

Let a2 ª u Hmod pL . Then,  also Hp - aL2 ª u Hmod pL . The polynomial x2 - u  has at most two zeros
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in GFHpL  (see Theorem B.15), so modulo p  there can not be more than two different solutions to
x2 ª u Hmod pL . It follows that the quadratic residues modulo p are given by the integers

 i2 Hmod pL , 1 § i § p-1ÅÅÅÅÅÅÅÅÅÅÅ2 ,

or, alternatively, by the integers Hp - iL2 Hmod pL , 1 § i § p-1ÅÅÅÅÅÅÅÅÅÅÅ2 . We conclude that there are exactly
p-1ÅÅÅÅÅÅÅÅÅÅÅ2  QR's and p-1ÅÅÅÅÅÅÅÅÅÅÅ2  NQR's. This proves the first of the following two theorems.

Theorem A.20
Let p be an odd prime. Then, exactly p-1ÅÅÅÅÅÅÅÅÅÅÅ2  of the integers 0, 1, …, p - 1 are quadratic 
residue and p-1ÅÅÅÅÅÅÅÅÅÅÅ2  are quadratic non-residue. In formula⁄u=0

p-1 cHuL = 0.

The  reader  can  check  the  above  theorem  in  concrete  examples  by  means  of  the  following  two
Mathematica functions.

p = 17;‚
i=0

p−1

JacobiSymbol@i, pD
0

ListQuadRes@p_D :=

Select@Range@pD, JacobiSymbol@#1, pD == 1 &D
p = 17;
ListQuadRes@pD
81, 2, 4, 8, 9, 13, 15, 16<

Theorem A.21
Let p  be an odd prime. Then for all integers u  and v

cHu.vL = cHuL. cHvL .

Proof: This theorem will be a trivial consequence of Theorem A.23 later on. We shall present here
a more elementary proof.

If p  divides u  or v  the assertion is trivial, because both hands are equal to zero.  The proof in case
that p  does not divide u  or v   is split up in three cases.

Case 1: u  and v  are both QR.
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Then  u ª a2 Hmod pL  and  v ª b2 Hmod pL ,  for  some  integers  a  and  b .  It  follows  that
u.v ª Ha.bL2 Hmod pL . So u.v  is QR.

Case 2: Exactly one of u  and v  is QR, say u  is QR and v  is NQR.

Suppose  that  also  u.v  is  QR.  Then  there  exist  integers  a  and  b  such  that  u ª a2 Hmod pL  and
u.v ª b2 Hmod pL . Since a T 0 Hmod pL , it follows that v ª Hb ê aL2 Hmod pL . A contradiction!

Case 3: Both u  and v  are NQR.

From  Lemma  A.11  we  know  that  i ÿ u ,   i = 1, 2, … , p - 1,  runs  through  all  non-zero  elements
modulo p . For the p-1ÅÅÅÅÅÅÅÅÅÅÅ2  values of i  for which i  is QR, we have by Case 2 that i.u  is NQR. So, for
the p-1ÅÅÅÅÅÅÅÅÅÅÅ2  values of i  for which i  is NQR, it follows that i.u  is QR. So u.v  is QR.

Ñ

Although  the  next  theorem  will  never  be  used  in  this  textbook,  we  do  mention  it,  because  it  is
often needed in related areas in Discrete Mathematics.

Theorem A.22
Let p be an odd prime. Then, for every integer v⁄u=0

p-1 cHuL. cHu + vL = 9 p - 1,
-1,

if p divides v,
otherwise.

Proof:  If  p  divides  v ,  the  statement  is  trivial.  When  p  does  not  divide  v ,  one  has  by  Theorem
A.21 and Theorem A.20 that⁄u=0

p-1  cHuL cHu + vL = ⁄u=1
p-1 cHuL cHu + vL = ⁄u=1

p-1 cHuL cHuL cH1 + v êuL =⁄u=1
p-1 cH1 + v êuL = ⁄w∫1  cHwL = –1 + ⁄w=0

p-1 cHwL = –1

Ñ

Let  u  be  QR,  say  u ª a2 Hmod pL .  By  Fermat's  Theorem  u
p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ª ap-1 ª 1 Hmod pL .  So,  the  p - 1ÅÅÅÅÅÅÅÅÅÅÅÅ2

QR's  are  zero  of  the  polynomial  x
p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 - 1  over  GFHpL .  Since  a  polynomial  of  degree  p – 1ÅÅÅÅÅÅÅÅÅÅÅÅ2  over

GF(p) has at most p - 1ÅÅÅÅÅÅÅÅÅÅÅÅ2  different zeros in GFHpL  (see Theorem B.15), one has in GFHpL:

(A.16)xHp-1Lê2 - 1 = ¤u is QR Hx - uL.
It  also  follows  that  u

p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ∫ 1,  if  u  is  NQR.  Since  Iu p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 M2
ª 1 Hmod pL  by  Fermat's  Theorem and

since y2 ª 1 Hmod pL   has only 1 and –1 as roots, it follows that u
p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ª –1 Hmod pL ,  if u  is NQR.

This proves the following theorem for all u  coprime with p . For p » u  the theorem is trivially true.

Theorem A.23
Let p  be an odd prime. Then for all integers u ,I uÅÅÅÅÅp M ª uHp-1Lê2 Hmod pL .
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Corollary A.24
Let p  be an odd prime. ThenI -1ÅÅÅÅÅÅÅÅp M = 9 +1,

-1,
if p ª 1 Hmod 4L,
if p ª 3 Hmod 4L.

Proof: H-1L p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 = 1 if and only if p ª 1 Hmod 4L .

Ñ

Another value of the Legendre symbol that we shall need later on is I 2ÅÅÅÅÅp M .
Theorem A.25
Let p be an odd prime. ThenI 2ÅÅÅÅÅp M = 9 +1,

-1,
if p ª ≤1 Hmod 8L,
if p ª ≤3 Hmod 8L.

Proof:

2
p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2  ¤k=1

p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 k ª ¤k=1

p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 H2 kL ª
ikjjj¤k=1

e p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 u H2 kLy{zzz ÿ
ikjjj¤k=1+e p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 up-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 H2 kLy{zzz ª

H–1L p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 - e p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 u.ikjjj¤k=1
e p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 u H2 kLy{zzz.ikjjj¤k=1+e p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 up-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Hp–2kLy{zzz ª H–1L p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 - e p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 u. ikjjj¤k=1

p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ky{zzz Hmod pL .

Dividing both hands in the above relation by ¤k=1

p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 k  yields

2
p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ª H–1L p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 - e p-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 u Hmod pL .

The assertion now follows from Theorem A.23.

Ñ

We recall the definition of the Jacobi symbol in terms of the Legendre symbol

(A.17)J u
ÅÅÅÅÅÅÅ
m

N = ‰
i
ikjj u

ÅÅÅÅÅÅÅÅ
pi

y{zzei
, where m = ‰

i
 pi

ei .
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Theorem A.26
Let m and n be odd integers. Then the following relations hold for the Jacobi symbol

i) I uÅÅÅÅÅÅm M = I u-mÅÅÅÅÅÅÅÅÅÅÅm M ,

ii) I u vÅÅÅÅÅÅÅÅm M = I uÅÅÅÅÅÅm M I vÅÅÅÅÅÅm M ,

iii) I uÅÅÅÅÅÅÅÅÅm n M = I uÅÅÅÅÅÅm M I uÅÅÅÅn M ,

iv) I -1ÅÅÅÅÅÅÅÅm M = 1  if and only if m ª 1 Hmod 4L ,

v) I 2ÅÅÅÅÅÅm M = 1  if and only if m ª ≤1 Hmod 8L .

Proof:  The  first  two  relations  hold  for  the  Legendre  symbol  and,  by  (A.17),  also  for  the  Jacobi
symbol. The third relation is a direct consequence of (A.17).

To see that the fourth relation is a direct consequence of (A.17) and Corollary A.24, it suffices to
observe  that  a  product  of  an  odd  number  of  integers,  each  congruent  to  3  modulo  4,  is  also
congruent to 3 modulo 4, while for an even number the product will be 1 modulo 4. The proof of
the last relation goes analogously (now use Theorem A.25). 

Ñ

One more relation is needed to be able to compute H uÅÅÅÅÅm L  fast. We shall not give its proof, because
the theory goes beyond the scope of this book. The interested reader is referred to Theorem 99 in
[HarW45] or Theorem 7.2.1 in [Shap83].

Theorem A.27 (Quadratic Reciprocity Law by Gauss)
Let m  and n  be odd coprime integers. ThenI mÅÅÅÅÅn M I nÅÅÅÅÅm M = H–1L Hm-1L Hn-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4

With  the  relations  in  Theorem  A.25,  Theorem  A.26,  and  Theorem  A.27  one  can  evaluate  the
Jacobi symbol very quickly.

Example A.4I 12703ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ16361 M =A .27  I 16361ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ12703 M =
A .26 iL

 I 3658ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ12703 M =
A .26 iiL

 I 2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ12703 M ÿ I 1829ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ12703 M =
A .26 vL & A .27

= I 12703ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1829 M =
A .26 iL

 I 1729ÅÅÅÅÅÅÅÅÅÅÅÅ1829 M =A .27  I 1829ÅÅÅÅÅÅÅÅÅÅÅÅ1729 M =
A .26 iL

 I 100ÅÅÅÅÅÅÅÅÅÅÅÅ1729 M =
A .26 iiL

 I 2ÅÅÅÅÅÅÅÅÅÅÅÅ1729 M2 ÿ I 25ÅÅÅÅÅÅÅÅÅÅÅÅ1729 M
= I 25ÅÅÅÅÅÅÅÅÅÅÅÅ1729 M =A .27  I 1729ÅÅÅÅÅÅÅÅÅÅÅÅ25 M =

A .26 iL
 I 4ÅÅÅÅÅÅÅ25 M =

A .26 iiL
 I 2ÅÅÅÅÅÅÅ25 M2 = 1.

It should be easy for the reader to verify that the above method has roughly the same complexity
as Euclid's Algorithm. 

Of course we could have evaluated H 12703ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ16361 L  directly with Mathematica, as we have seen before.
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JacobiSymbol@12703, 16361D
1

A.5 Continued Fractions
Quite often one wants to approximate a real number by means of a rational number. For instance,
many people use 22/7 as an approximation of p.  A better approximation of p  is already given by
333/106 and again better is 355/113. One has to increase the denominator to 33102 to get the next
improvement.

NAPi −
22
ccccccc
7

E
NAPi −

333
cccccccccc
106

E
NAPi −

355
cccccccccc
113

E
NAPi −

103993
cccccccccccccccccc
33102

E
−0.00126449

0.0000832196

−2.66764× 10−7

5.77891×10−10

It is the theory of continued fractions that explains how to get such good approximations.  

Definition A.12
A finite continued fraction is an expression of the form

(A.18)
a0 + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a1+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a2+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ… + …ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

am-1+ 1ÅÅÅÅÅÅÅÅÅÅÅÅam
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where a0 œ   and ai œ  , 1 § i § m .
It will often be denoted by the sequence @a0, a1, …, amD . 

If m Ø ¶  in (A.18), we speak of an infinite continued fraction. It has the form

a0 + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a1+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a2+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a3 + 1ÅÅÅÅÅÅÅÅÅÅ…

and will be shortened to @a0, a1, a2, …D . 

Clearly, each finite continued fraction represents a rational number. One can find it by simplifying
the continued fraction  step  by step,  starting  with  am-1 + 1ÅÅÅÅÅÅÅÅam

= am-1  am+amÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅam
,  1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

am-1+ 1ÅÅÅÅÅÅÅÅÅÅam
= amÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅam-1  am+am

,

etc.

In Mathematica this can be achieved with the function Normal.

NormalA3 +
1

ccccccccccccccccccccccccccccc
7 + 1ccccccccccccccccccc

15+ 1cccccccccccccccc
1+ 1ccccccccccc292

E
103993
cccccccccccccccccc
33102

We  shall  now  show  that  the  opposite  is  also  true:  each  rational  number  has  a  finite  continued
fraction.

Lemma A.28
Each rational number has a finite continued fraction.

Proof:  Let  a êb ,  b > 0,  represent  a  rational  number.  We  apply  the  simple  version  of  Euclid's
Algorithm  (Alg.  A.7)  to  the  pair  Ha, bL ,  so  we  put  s0 = a ,  s1 = b ,  and  compute  recursively
si = qi si+1 + si+2 ,  with 0 § si+2 < si+1 ,  until  sm+2 = 0  (and thus sm = qm sm+1 )  for some integer  m .
Then

aÅÅÅÅb = s0ÅÅÅÅÅÅs1
= q0  s1+s2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅs1

= q0 + 1ÅÅÅÅÅÅÅÅÅÅÅÅs1ês2
= q0 + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅq1  s2+s3ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅs2

= q0 + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
q1+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅs2ês3

=…

… = q0 + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
q1+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ…+ …ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

qm-1+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅsmêsm+1

= q0 + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
q1+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ…+ …ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

qm-1+ 1ÅÅÅÅÅÅÅÅÅÅÅÅqm

.

We conclude that a ê b  has @q0, q1, …, qmD  as continued fraction.

Ñ

It is important to observe that the representation of a rational number as a finite simple continued
fraction, where all the qi 's (i ¥ 1) are positive,  is not completely unique. Although the manner in
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which  the  qi ' s  are  calculated  with  the  simple  version  of  Euclid's  Algorithm  (see  proof  above)
gives a unique value of the qi 's, it is clear that in the last step we have qm ¥ 2, since sm+1 < sm . 

As  the  last  term  in  the  expansion  is  a  positive  integer,  and  not  equal  to  one,  we  can  therefore
rewrite the last term as follows: 

1
cccccc
qm

=
1

ccccccccccccccccccccccccccccccccHqm − 1L + 1ccc1 .

This shows that  @q0, q1, ..., qmD has the same value as @q0, q1 ..., qm - 1, 1D.
The last term in a continued fraction can be chosen in such a way as to make the number of terms
in the expansion either even or odd, if that would be convenient.

Formula (A.18) suggests the following way of computing a continued fraction of a number a.

Algorithm A.29
The continued fraction of a number a can be computed by

initialize a0 = a
compute recursively ai = dait  and 

ai+1 = 1 ê Hai - aiL , for i ¥ 0,
output @a0, a1, a2, …D .

Example A.5

Consider a = 11 ê9. Then we get

Clear@aD;
alpha = 11ê9; α@0D = alpha;
a@0D = dα@0Dt
α@1D = 1êHα@0D − a@0DL;
1

To get the next term, we compute

a@1D = dα@1Dt
α@2D = 1êHα@1D − a@1DL;
4

We continue with
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a@2D = dα@2Dt
α@3D = 1êHα@2D − a@2DL;
2

Power::infy :  Infinite expression 1
cccc
0

encountered.

We conclude that a2 = a2  and thus that the continued fraction is given by @1, 4, 2D . We can check
this quite easily:

NormalA1 +
1

cccccccccccccc
4 + 1ccc

2

E
11
ccccccc
9

To  let  Mathematica  compute  the  continued  fraction  of  a  number,  first  the  package
NumberTheory`ContinuedFractions` has to be loaded.

<<NumberTheory`ContinuedFractions`

To  find  the  continued  fraction  of  a  rational  number,  one  can  use  the  function
ContinuedFraction.

ContinuedFraction[135/159]

0 +
1

cccccccccccccccccccccccccccccccccccccccccccccccc
1 + 1cccccccccccccccccccccccccccccccccccccc

5+ 1ccccccccccccccccccccccccccccc
1+ 1ccccccccccccccccccccc

1+ 1ccccccccccccc
1+ 1cccc2

If a is not rational, one has to include the number of terms that one wants to see.

ContinuedFraction[Pi, 11]
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3 +
1

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
7 + 1cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

15+ 1ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1+ 1cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

292+ 1cccccccccccccccccccccccccccccccccccccccccccccc
1+ 1cccccccccccccccccccccccccccccccccccccc

1+ 1ccccccccccccccccccccccccccccc
1+ 1ccccccccccccccccccccc

2+ 1ccccccccccccc
1+ 1cccc3

To express such a continued fraction as a regular fraction, one can use the Mathematica  function
Normal again.

Normal[ContinuedFraction[Pi, 11]]

4272943
ccccccccccccccccccccc
1360120

If a continued fraction is given in the form @a0, a1, …, amD , one gets the regular continued fraction
by  means  of  the  function  ContinuedFractionForm.  The  reader  should  know  that  in
Mathematica the numbering of the indices starts with 1, 2, etc.

AA={3,7,15,1,292};
ContinuedFractionForm[AA]

3 +
1

cccccccccccccccccccccccccccccccccccccccc
7 + 1ccccccccccccccccccccccccccccc

15+ 1cccccccccccccccccc
1+ 1cccccccccc292

To obtain the continued fraction of a number a in the form @a0, a1, …, amD , one can just appends
[[1]] to the function ContinuedFraction@a, nD . 

ContinuedFraction[Pi, 11][[1]]

83, 7, 15, 1, 292, 1, 1, 1, 2, 1<
Definition A.13
The k -th convergent Ck  of a continued fraction @a0, a1, …, amD , 0 § k § m , is defined by @a0, a1, …, akD .

These  convergents  can  be  quite  easily  evaluated  with  the  functions  Table,  Normal,  Take,
ContinuedFractionForm, and Length.
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AA={3,7,15,1,292};
Table[Normal[ContinuedFractionForm[Take[AA,i]]],{i,1,Length
[AA]}]

93, 22
ccccccc
7

, 333
cccccccccc
106

, 355
cccccccccc
113

, 103993
cccccccccccccccccc
33102

=
Each convergent, being a rational number, can be written as pk ê qk . The values of pk  and qk  can
be found with the Mathematica functions Numerator and Denominator.

C5=Normal[ContinuedFraction[Pi,5]]
p5=Numerator[C5]
q5=Denominator[C5]

103993
cccccccccccccccccc
33102

103993

33102

The  next  theorem gives  a  nice  relation  between  a  continued  fraction  and  its  convergents.  To  be
able to shorten the proof, we shall relax our usual restriction of the integrality of the ai 's.

Theorem A.30
Let 8ai<i¥0  be a finite or infinite sequence of reals, all positive with the possible 
exception of a0 .
Let Ck = pk êqk  be defined by @a0, a1, …, akD  as in (A.18). Then, the numbers pk  and 
qk  satisfy the recurrence relation

p0 = a0 , p1 = a0 a1 + 1,
q0 = 1, q1 = a1 ,
pk = ak  pk-1 + pk-2  , k ¥ 2,
qk = ak  qk-1 + qk-2 , k ¥ 2.

Proof: The proof is by induction on k .

For k = 0, we have p0ÅÅÅÅÅÅÅq0
= C0 = a0 = a0ÅÅÅÅÅÅÅ1 , so indeed p0 = a0  and q0 = 1.

For k = 1, we have p1ÅÅÅÅÅÅÅq1
= C1 = @a0, a1D = a0 + 1ÅÅÅÅÅÅÅa1

= a0 a1+1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa1
, so indeed p1 = a0 a1 + 1 and q1 = a1 .

Assume that the theorem has been proved up to a certain value of k . So, 

Ck = @a0, a1, …, akD = pkÅÅÅÅÅÅÅqk
= ak  pk-1+pk-2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅak  qk-1+qk-2

.
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Now substitute ak Ø ak + 1 êak+1  above. Then 

Ck+1 =
def.

 @a0, a1, …, ak, ak+1D =
Def. A .12

 Aa0, a1, …, ak + 1ÅÅÅÅÅÅÅÅÅÅÅÅak+1
E

=
induct. Jak+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅak+1

N pk-1+pk-2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅJak+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅak+1

N qk-1+qk-2
 = ak+1Hak  pk-1+pk-2L+pk-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅak+1Hak  qk-1+qk-2L+qk-1

 

=
rec.rel. ak+1  pk+pk-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅak+1  qk+qk-1

=
rec.rel. pk+1ÅÅÅÅÅÅÅÅÅÅÅÅÅqk+1

.

Ñ

A small result, that we need later, is the inequality 

(A.19)qk ¥ Fk ,

where  Fk  is  the  k -th  Fibonnaci  number,  defined  by  F0 = 0,  F1 = 1,  and  the  recurrence  relation
Fk = Fk-1 + Fk-2 ,  k ¥ 2.  The  inequality  qk ¥ Fk  follows  with  an  easy  induction  argument  from
q0 > 0,  q1 ¥ 1,  and  the  recurrence  relation  qk = ak  qk-1 + qk-2  in  which  ak ¥ 1  (use
qk ¥ qk-1 + qk-2 ).

Lemma A.31
Let Ck = pk êqk  be the k -th convergent of a continued fraction. Then

pk  qk-1 - pk-1 qk = H-1Lk-1

Proof:  The  proof  is  again  by  induction  on  k .  For  k = 1  we  have  by  Theorem  A.30  that
p1 q0 - p0 q1 = Ha0 a1 + 1L µ 1 - a0 µ a1 = 1.

To prove the step from k  to k + 1 we use the recurrence relation in Theorem A.30: 

pk+1 qk - pk  qk+1 =
Thm. A .30 Hak+1 pk + pk-1L qk - pkHak+1 qk + qk-1L =

pk-1 qk - pk  qk-1 =
ind. H-1L H-1Lk-1 = H-1Lk.

Ñ

Corollary A.32
Let Ck = pk êqk  be the k -th convergent of a continued fraction. Then

gcdHpk, qkL = 1,

Proof:  This  is  an  immediate  consequence  of  pk-1 qk - pk  qk-1 = H-1Lk-1 .  Indeed,  each  number
dividing pk  and qk  must also divide -1.

Ñ
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Theorem A.33
Let Ck = pk êqk  be the k -th convergent of a finite or infinite continued fraction @a0, a1, …D . Then

(A.20)Ck - Ck-1 = H-1Lk-1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk-1  qk

, k ¥ 1,

(A.21)Ck - Ck-2 = ak H-1LkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk-2  qk
, k ¥ 2.

(A.22)C0 < C2 < C4 < …… < C5 < C3 < C1 .

For an infinite continued fraction, the strictly increasing bounded sequence of the even 
convergents has the same limit as the strictly decreasing bounded sequence of the odd 
convergents.

Proof: By Lemma A.31 and Theorem A.30 

Ck - Ck-1 = pkÅÅÅÅÅÅÅqk
- pk-1ÅÅÅÅÅÅÅÅÅÅÅÅÅqk-1

= pk  qk-1-pk-1  qkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk-1  qk
= H-1Lk-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk  qk-1

Ck - Ck-2 = pkÅÅÅÅÅÅÅqk
- pk-2ÅÅÅÅÅÅÅÅÅÅÅÅÅqk-2

= pk  qk-2-pk-2  qkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk-2  qk

 = Hak  pk-1+pk-2L qk-2-pk-2Hak  qk-1+qk-2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk-2  qk
 
= ak  pk-1  qk-2-ak  pk-2  qk-1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk-2  qk

= ak H-1LkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk-2  qk
.

This  proves  (A.20)  and  (A.21).  That  the  even  convergents  form  a  strictly  increasing  sequence
follows  from  (A.21),  which  implies  that  C2 k - C2 k-2 > 0  (the  ai 's  are  positive).  For  the  same
reason, the odd convergents are strictly decreasing.

To show that each even convergent, say C2 i ,  is less that any odd convergent, say C2 j+1 , we first
observe that C2 k+1 - C2 k > 0 by (A.20). We combine this with the  above to get

C2 i < C2 i+2 j < C2 i+2 j+1 < C2 j+1 .

Finally, by (A.19) and (A.20), for k ¥ 2

 H » CLk - Ck-1 » = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqk-1  qk
§ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅFk-1  Fk

§ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHk-1L2
thus, the difference between two consecutive convergents tends to zero as k  tends to infinity. This
shows that the limit of the even convergents must be the same as the limit of the odd convergents.

Ñ

Example A.6

Below we have listed the first 10 convergents of p  in their natural ordering. 
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<<NumberTheory`ContinuedFractions`

Do@Print@k − 1, " ",
N@Normal@ContinuedFraction@Pi, kDD, 16DD, 8k, 1, 9, 2<D

Print@π, " ", N@Pi, 16DD
Do@Print@k − 1, " ",
N@Normal@ContinuedFraction@Pi, kDD, 16DD, 8k, 10, 2, −2<D

0 3.

2 3.141509433962264

4 3.141592653011902

6 3.141592653467437

8 3.141592653581078

π 3.141592653589793

9 3.141592653591404

7 3.141592653618936

5 3.141592653921421

3 3.141592920353983

1 3.142857142857143

The next two theorems will be stated without their proofs. These can be found in any introduction
to continued fractions, e.g. [Rose84], but the arguments are too technical for our purposes. 

Theorem A.34
Let Ck = pk êqk  be the k -th convergent of a finite or infinite continued fraction 
a = @a0, a1, …D  and suppose that » a - r ê s » < » a - pk êqk » . 
Then s > qk .

For instance, since 355ccccccc113 is a convergent of p, we now know that only rationals with a denominator
greater than 113 may lie closer to p than 355ccccccc113 does.

Theorem A.35
Let a œ   and let r ê s  (with gcdHr, sL = 1) be a rational such that » a - r ê s » < 1 ê2 s2 . 
Then r ê s  is a convergent of the continued fraction expansion of a.

This theorem says that a rational number r ê s  that lies at distance at most 1 ê 2 s2  from a number a
will appear as convergent in the continued fraction of that number. 
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A.6 Möbius Inversion Formula, the Principle of Inclusion and 
Exclusion

A.6.1 Möbius Inversion Formula

Often  in  Discrete  Mathematics  a  function  f  is  defined  in  terms  of  another  function,  say  g .  The
question is,  how g  can be expressed in terms of f .  With the theory of partially ordered sets and
the  (generalized)  Möbius  Inversion  Formula  one  can  frequently  solve  this  problem (see  Chapter
IV  in  [Aign79]).  In  this  section  we  shall  discuss  two  important  special  cases.They  both  follow
from the theory, mentioned above, but it turns out that they can also be proved directly.

Often we shall need an explicit factorization of an integer n. We no longer want the strict ordering
of the prime numbers given by p1 = 2, p2 = 3, etc.. However, different subscripts will still denote
different prime numbers.

Definition A.14
Let n = ¤i=1

k HpiLei , ei > 0, 1 § i § k , where the pi 's are different primes. Then the 
Möbius function m HnL  (Möbius) is defined by

m(n) = 
looomnooo 1 if n = 1,

0 if ei ≥ 2 for some 1 ≤ i ≤ k,H−1Lk if all ei are equal to 1.

In other words, mHnL is the multiplicative function satisfying m H1L = 1, m HpL = –1, and m HpiL = 0,
i ¥ 2, for any prime p . Mathematica has the standard function MoebiusMu@n] to evaluate m HnL . 

n = 30; MoebiusMu@nD
−1

The Möbius function is defined in this peculiar way to have the following property.

Lemma A.36
Let n  be a positive integer. Then⁄d»n mHdL = : 1 if n = 1,

0 if n > 1.

Proof:  For  n = 1  the  assertion  is  trivial.  For  n > 1  we  write  as  above  n = ¤i=1
k pi

ei ,  ei > 0,
1 § i § k . Then k > 0 and thus⁄d»n mHdL = ⁄d » p1

e
1  p2

e
2. . . pk

e
k

m HdL = ⁄d » p1  p2. . . pk
 m HdL =

  = 1 + ⁄l=1
k  ⁄1§i1<i2< . . . < il§k m Hpi1  pi2 ÿ ÿ ÿ pil L
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  = „
l=1

k
 Jk

l
N H-1Ll = H1 – H1LLk = 0.

Ñ

The reader may want to check the above lemma by means of:

DivisorSum@f_, m_D := Plus @@ Hf ê@ Divisors@mDL
m = 100; DivisorSum@MoebiusMu, mD
0

Lemma A.37
Let m  and n  be two positive integers such that m  divides n . Then⁄d, m»d»n mHn êdL = : 1 if m = n,

0 if otherwise.

Proof:  Let  n = n ' m .  For  each  d  with  m » d » n ,  we  write  d = d ' m .  Then⁄d, m»d»n  m Hn ê dL = ⁄d ' » n'  m Hn ' ê d 'L ,   which by Lemma A.36 is  1 for  n ' = 1,  (i.e.  m = n),  and is  0
for n ' > 1.

Ñ

Theorem A.38 Möbius Inversion Formula
Let f  be a function defined on  and let the function g  on  be defined by

gHnL = ⁄d»n f HdL, n œ  ,

Then, for all n œ   

f HnL = ⁄d»n mHdL gHn êdL = ⁄d»n mHn êdL gHdL .

Proof: By the definition of gHnL  and Lemma A.37⁄d»n m Hn êdL gHdL = ⁄d»n m Hn êdL ⁄e»d f HeL = ⁄e»n f HeL ⁄d, e»d»n m Hn êdL = f HnL.
Ñ
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Corollary A.39 Multiplicative Möbius Inversion Formula
Let F  be a function defined on  and let the function G  on  be defined by

gHnL = ¤d»n f HdL, n œ  ,

Then for all n in 

f HnL = ¤d»n mHdL gHn êdL = ¤d»n mHn êdL gHdL .

Proof: Substitute gHnL = log HGHnLL  and f HnL = log HFHnLL  in the Möbius Inversion Formula.

Example A.7

From Theorem A.12 we know that Euler's Totient Function satisfies⁄d»n fHdL = n. 

It  follows  from  the  Möbius  Inversion  Formula  (Thm.  A.38)  that  for  n = ¤i=1
k HpiLei ,  ei > 0,

1 § i § k ,

fHnL = ‚
d»n  m HdL nÅÅÅÅÅd =

= nÅÅÅÅ1 – ‚
1§ i§k

 nÅÅÅÅÅÅÅpi
+ ‚

1§ i< j§k
 nÅÅÅÅÅÅÅÅÅÅÅÅÅpi  p j

– … + H–1Lk  nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp1  p2ÿÿÿ pk
=

= n I1 - 1ÅÅÅÅÅÅÅpi
M I1 - 1ÅÅÅÅÅÅÅÅp2

M ÿ ÿ ÿ I1 - 1ÅÅÅÅÅÅÅpk
M.

This proves Theorem A.17 in a different way.

Theorem B.17 in Section B.3 will show a nice application of the Multiplicative Möbius Inversion
Formula.

A.6.2 The Principle of Inclusion and Exclusion

We shall conclude this section with another useful principle. To develop some intuition, consider
the integers  in  between 0 and p.q - 1,  where p  and q  are different  primes.  We want  to evaluate
f Hp.qL  directly, i.e. we want to count the number of integers i , 0 § i < p.q , that are coprime with
p.q .  Of  course,  this  number  is  p q  minus  the  number  of  integers i ,  0 § i < p.q ,  that  have  a
nontrivial factor in common with p.q , i.e. that are divisible by p  or q . There are q  multiples of p
in the range 0, 1, …, p.q - 1 and similarly p  multiples of q . However, one of the multiples of p  is
also a multiple of q , namely 0 itself. We conclude that 

fHp.qL = p.q – p – q + 1 = Hp - 1L Hq - 1L = p.q I1 - 1ÅÅÅÅÅp M I1 - 1ÅÅÅÅq M ,

as it should be according to Theorem A.17.
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Theorem A.40 The Principle of Inclusion and Exclusion
Let S  be a finite set with N  elements. Suppose that the elements in S  can satisfy certain 
properties PHiL , 1 § i § k . 
Let NHi1, i2, … , isL  be the number of elements in S  that satisfy properties 
PHi1L, PHi2L, … , PHisL , where 1 § i1 < i2 < ÿ ÿ ÿ < is § k , 1 § s § k , (and possibly also 
some of the other properties). 
Let NHØL  denote the number of elements in S  that satisfy none of the properties PHiL ,  
1 § i § k .
Then

NHØL = N - ⁄1§i§k NHiL + ⁄1§i< j§k NHi, jL - … + H-1Lk  NH1, 2, …, kL .

Proof: An element s in S that satisfies exactly r  of the k properties is counted

1 – J r
1
N + J r

2
N – … + H–1Lr Jr

r
N = H1 –1Lr = 9 1

0
if r = 0,
if r ∫ 0.

times in the right hand side, just as in the left hand side. 

Ñ

We leave it as an exercise to the reader to prove Theorem A.17 directly from the definition of the
Euler Totient Function and the above principle (Hint: Let pi , 1 § i § k , denote the prime numbers
that divide n , take S = 80, 1, …, n–1< , and say that element s œ S  has property PHiL , 1 § i § k , if s
is divisible by pi .)
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A.7 Problems

Problem A.1M

Let ¤i=1
k pi

ai  be the prime factorization of an integer n. How many different divisors does n have? 
For n = 1000, check your answer with the Mathematica function DivisorSigma@k, nD  which computes ⁄d»n  dk  (use k = 0).

Problem A.2M

Compute u  and v  such that gcd H455, 559L = 455 u + 599 v .

Problem A.3
Prove that gcd Ham - 1, an - 1L = agcdHm,nL - 1 for every positive integer a . (Hint: reduce the pair 8m, n< , 
m ¥ n,  to 8m - n, n<  and then follow the simple version of Euclid's Algorithm).

Problem A.4M

a) Check that 563 is a prime number. 
b) Use Euclid's algorithm to compute 11-1  (mod 563).
c) Solve 11 x  ª 85 (mod 563).

Problem A.5
Find the solutions of 33 x ª 255 (mod 1689).  Note that 1689 = 3×563 and use the results of Problem A.4.

Problem A.6
a) Determine f(100). Check the result with the EulerPhi function. 
b) Compute the two least significant digits of 20042004  without using the computer.

Problem A.7M

Solve the system of congruence relations (hint: use Theorem A.19):
3 x  ª 2 (mod 11), 7 x  ª  9 (mod 13), 4 x   ª 14 (mod 15).

Problem A.8M

Determine the Jacobi Symbol (7531, 3465).

Problem A.9
Use the Chinese Remainder Theorem to solve x2  ª  56 (mod 143). (Hint: first reduce it to several 
systems of linear congruence relations).
How many different solutions are there modulo 143?

Problem A.10
Determine the first five terms of the continued fraction of f , the largest zero of f 2 = f + 1. Determine 
also the first five convergents.
What do you conjecture about the other terms in the continued fraction of f ? Prove this conjecture (hint: 
use Algorithm A.29 and the definition of f ).

Problem A.11
Prove Theorem A.17 with the Principle of Inclusion and Exclusion (Thm. A.40) and the definition of 
the Euler function jHnL .
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Appendix B Finite Fields
Introductory Remarks

Most readers will be familiar with the algebraic structure of the sets of rational, real, and complex
numbers.  These  sets  have  all  the  properties  with  respect  to  addition  and  multiplication  that  one
may want them to have. They are called fields. 

In  discrete  mathematics,  in  particular  in  the  context  of  cryptology  and  coding  theory,  fields of
finite cardinality play a crucial role. In this chapter, an introduction will be given to the theory of
finite fields.

The outline of this is as follows:

In Section B.1, we recapitulate the basic definitions and properties of abstract algebra and of linear
algebra. In particular, we shall show that the set of integers modulo a prime number from a finite
field. In Section B.2, a general construction of finite fields will be given. In Section B.3 a formula
is  derived  for  the  number  of  irreducible  polynomials  over  a  given  finite  field.  This  shows  that
finite  fields  exist  whenever  the  size  is  a  power  of  a  prime.  An analysis  of  the  structure  of  finite
fields will be given in Section B.4. In particular, it will be shown that a finite field of size q  exists
if  and  only  if  q  is  a  prime  power.  Moreover,  such  a  field  is  unique,  its  additive  group  has  the
structure of a vector space and its multiplicative group has a cyclic structure.

B.1 Algebra
Although we assume that  the reader  is  already familiar  with all  notions discussed in this  and the
next subsection. we offer this summary as a service to the reader.

B.1.1 Abstract Algebra

É Set operations

Let S be a nonempty set. An operation *  defined on S  is a mapping from S µ S  into S. The image
of the pair Hs, tL  under *  is denoted by s * t .  Examples of operations are the addition +  in   and
the multiplication µ  in . The operation *  is called commutative if for all s  and t  in S:

S.1 s * t = t * s     for all s  and t  in S .

An element e in S that satisfies 

S.2 s * e = e * s     for all s  in S .
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will be called a unit-element of HS, *L . 
If HS, *L  has a unit-element, it will be unique. Indeed, suppose that e  and e '  both satisfy S.1. Then,
by using S.2 twice one gets

e = e * e ' = e '.

Example B.1

Take S  as the set of integers  and + (i.e. addition) as operation. This operation is commutative and H , +L  has 0 as unit-element.

Example B.2

Let S  be the set of 2 µ 2 real matrices with matrix  multiplication as operation. This operation is not 
commutative, e.g.

J 1 1
0 1

N.J 0 1
1 1

N == J 0 1
1 1

N.J 1 1
0 1

N
False

On the other hand,  this set S does have a unit-element, namely J 1 0
0 1

N . Compute for instance:

MatrixFormAJ a b
c d

N.J 1 0
0 1

NE
J a b
c d

N
É Group

Definition B.1
Let G be a non-empty set and *  an operation defined on G. Then, the pair HG, *L  is called 
a group, if
G1: Hg * hL * k = g * Hh * kL  for all g, h, k œ G  (associativity),
G2: G contains a unit element, say e ,
G3: for each g  in G an element h  in G exists such that g * h = h * g = e . 

This element is called the inverse of g  and often denoted by g-1.  

Property G1 tells us that there is no need to write brackets in strings like g * h * k . The element h
in  Property  G3  is  unique.  Indeed,  if  h  and  h '  both  satisfy  G3,  then
h = h * e = h * Hg * h 'L = Hh * gL * h ' = e * h ' = h '.  In  the  same  way  one  can  show  that  for  each
a, b œ G  the equations 
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a.x = b  and x.a = b

have a unique solution in G , namely 

x = a-1 b , resp. x = b.a-1 .

The  reader  easily  checks  that  H, +L  in  Example  B.1  shows  a  commutative  group.  Other  well-
known examples of commutative groups are: H, +L , H \ 80<, ÿL , and H, +L .

Example  B.2  does  not  yield  a  group  because  not  all  matrices  have  an  inverse  (e.g.  the  all-zero
matrix).

Let HG, *L  be a  group and H  a subset of G  with the property that  HH , *L  is  also a group, then H
will  be called a subgroup of G .  It  can be shown (see Problem B.3) that  H  is  a subgroup of G if
and only if

h1 h2
-1 œ H , for every h1, h2 œ H .

Let  m œ  ê 80<  and  define  m  = 8m k » k œ < .  Then  Hm , +L  is  a  commutative  subgroup ofH, +L , as one can easily check.

Example B.3

Let m œ  ê 80<  and define m
*   as the reduced residue system 

m
* = 80 § i < m » gcdHi, mL = 1< .  

The cardinality of set m
*  is j HmL  by Definition A.6.

It follows from Lemma A.13 that the product of two elements in m
*  can again be represented by an 

element in m
* . Clearly, 1 is en element of m

*  which is the unit element under this multiplication. That 
each element in m

*  has a multiplicative inverse follows from Theorem A.18 (note that with a œ m
*  one 

has that gcdHa, mL = 1 and thus the equivalence relation a x ª 1 Hmod mL  has a unique solution).

We conclude that the multiplicative group Hm
* , µL  is a commutative group of cardinality j HmL .

Commutative  groups are also called Abelian  groups. Quite often, Abelian groups are represented
in an additive way: the operation is denoted by a plus sign and the unit-element is called the zero
element (denoted with a zero). An abelian group in this notation is called an additive group. 

The most  commonly used  additive  group in this  introduction  will  be Hm, 0L ,  but  in  Chapter  10,
we shall see another example (see Theorem 10.2).

We shall now consider the more interesting situation that two operations are defined on a set. The
first will be denoted by g + h , the second by g ÿ h .
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É Ring

Definition B.2
The triple HR, +, ÿ L  is called a ring, if
R1: (R, +) is a commutative group.

Its unit-element will be denoted by 0.
R2: The operation · is associative.
R3: Distributivity holds, i.e. for all r, s, t œ R

r ÿ Hs + tL = r ÿ s + r ÿ t  and Hr + sL ÿ t = r ÿ t + s ÿ t .

From now on we shall often simply write g h  instead of g ÿ h . The (additive) inverse of an element
g  in  the group HR, +L  will  simply be denoted by -g ,  just  as  we write  2 g  for  g + g ,  and 3 g  for
g + g + g ,   etc.   Note that  0 really  behaves like a  zero-element,  because  for every r œ R  one has
that 0 r = Hr - rL r = r2 - r2 = 0 and similarly that r 0 = 0.

Suppose  that  the  operation  ·   is  commutative  on  R \ 80< .  Then  the  ring  HR, + , ÿ L  is  called
commutative.  Examples  of  commutative  rings  are  H, + , ÿ L,  H, + , ÿ L ,  H, + , ÿ L ,  but  alsoHm , + , ÿ L , when m ∫ 0.

Let HR, +, ÿ L  be a ring and S a subset of R with the property that HS, + , ÿ L  is itself a ring, then S
will be called a subring of R . Note that H6 , + , ÿ L  is a subring of H2 , + , ÿ L , which in turn is a
subring of H, + , ÿ L .

É Ideal

Definition B.3
A subring HS, + , ÿ L  of a ring HR, + , ÿ L  is called an ideal if 
I: for all r œ R  and s œ S  [r s œ S  and s r œ S ].

Let  m œ  \ 80< .  It  is  easy to check that  any integer  multiple of an m-tuple,  is  also an m-tuple.  It
follows that Hm , +, ÿ L  is an ideal in H, +, ÿ L . 

Now suppose that HR, ÿ L  has a unit-element, say e , then some elements in R  may have an inverse
in R   i.e.  an element b  such that  a b = b a = e .  This inverse,  which is  again unique,  is  called the
multiplicative  inverse  of  a  and  will  be  denoted  by  a-1 .  Clearly,  the  element  0  will  not  have  a
multiplicative inverse.  Indeed, suppose that r 0 = e  for some r œ R.  Then for each a œ R  one has
that a = a e = aHr 0L = Ha rL 0 = 0, i.e. R = 0. 

It follows from the above that HR, ÿ L,   when R ∫ 80< , can not be a group. However, HR \ 80<, ÿ L  may
very well have the structure of a group.
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É Field

Definition B.4
A triple HF, + , ÿ L   is called a field, if
F1: HF, +L  is a commutative group. Its unit-element is denoted by 0. 
F2: HF, ÿ L  is a group. The multiplicative unit-element is denoted by e.
F3: Distributivity holds.

Unlike  some  rings,  a  field  can  not  have  so-called  zero-divisors,  i.e.  elements  f  and  g,  both
unequal  to  0,  whose  product  f g  is  equal  to  0.  Indeed,  suppose  that  f g = 0  and  f ∫ 0.  Then,
g = e g = H f -1 f L g = f -1H f gL = f -1 0 = 0, so every element in F  is zero.

If a subring HK, + , ÿ L  of a field HF, + , ÿ L  has the structure of a field, we shall call it a subfield ofHF, + , ÿ L.
Examples  of  fields  are  the  rationals  H, + , ÿ L ,  the  reals  H, + , ÿ L ,  and  the  complex  numbersH, + , ÿ L , each one being a subfield of the next one. 

We speak of a finite group HG, * L , ring HR, + , ÿ L , or field HF, + , ÿ L  of order n , if G ,  resp. R,  and
F  are finite sets of cardinality n.  For finite fields it is customary to denote the cardinality by q.  

In this chapter, we shall study the structure of finite fields. It will turn out that finite fields of order
q  only  exist  when q  is  a  prime  power.  Moreover,  these  finite  fields  are  essentially  unique  for  a
fixed prime power  q.  This  justifies  the  widely  accepted  notation  q  or  GFHqL  (where  GF stands
for Galois Field after the Frenchman Galois) for a finite field of order q.  Examples of finite fields
will follow in Section B.2.

Analogously  to  commutative  rings,  we  define  a  commutative  field  HF, + , ÿ L  to  be  a  field,  for
which  HF \ 80 », ⋅ L  is  commutative.  The  following  theorem  will  not  be  proved,  but  is  very
important [Cohn77, p. 196].

Theorem B.1 Wedderburn
Every finite field is commutative.

É Equivalence Relations

Definition B.5
Let U  be a set. Corresponding to any subset P  of UxU, one can define a relation ~  on 
U  by 

for all u, v œ U @ u ~ v ó Hu, vL œ P D.  
An equivalence relation is a relation with the additional properties:
E1: for all u œ U @ u ~ u D  (reflexivity), 
E2: for all u, v œ U @ u ~ v ï v ~ u D  (symmetry),
E3: for all u, v, w œ U @ Hu ~ v fl v ~ wL ï u ~ w D  (transitivity).
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Let U  be the set of straight lines in the (Euclidean) plane. Then "being parallel or equal" defines
an equivalence relation. 

In  Section  A.3  we  have  seen  another  example.  There  U =   and  for  a  fixed  m, m ∫ 0, the
relation ª  was defined by a ª b Hmod mL  if and only if m  divides a - b.

Let  ~  be  an  equivalence  relation  defined  on  a  set  U .  A  non-empty  subset  W of  U  is  called  an
equivalence class, if

E1L ∀v,w∈W @ v ∼ w D,
E2L ∀w∈W ∀u∈U\W @ ¬ Hu ∼ wLD.

It  follows from the properties above, that an equivalence class consists of all elements in U ,  that
are in relation ~ with a fixed element in U .  Clearly, the various equivalence classes of U  form a
partition of U .  The equivalence class containing a particular element w,  will be denoted by < w > .

Let HR, + , ÿ L  be a commutative ring with (multiplicative)  unit-element e  and let HS, + , ÿ L  be an
ideal in HR, + , ÿ L . We define a relation ª  on R   by

(B.1)a ª b Hmod SL ó Ha - b œ SL
The reader can easily verify that (B.1) defines an equivalence relation. Let R ê S  (read: R  modulo
S ) denote the set of equivalence classes. On R êS  we define two operations by:

< a > + < b > := < a + b > , a, b ∈ R,

< a > ⋅ < b > := < a b > , a, b ∈ R.

It is easy to verify that these definitions are independent of the particular choice of the elements a
and b  in the equivalence class < a >  and < b > .  We leave it as an exercise to the reader to prove
the following theorem.

Theorem B.2
Let HR, + , ÿ L  be a commutative ring and let HS, + , ÿ L  be an ideal in HR, + , ÿ L . With the 
above definitions HR êS, + , ÿ L  is a commutative ring with unit-element. 

The ring HR ê S, + , ÿ L  is called a residue class ring of R  modulo S.  In the next section we will see
applications of Theorem B.2.
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É Cyclic Groups

Before we conclude this section, there is one more topic that needs to be discussed. Let HG, L  be a
finite group and let a  be an element in G \ 8e<.  Let a2, a3, …,  denote a a , a a a , etc.  Consider the
sequence of elements e, a, a2, …,  in G . Since G  is finite, there exists a unique integer n  such that
the  elements  e, a, a2, … , an-1  are  all  different,  while  an = a j  for  some j, 0 § j < n .  It  follows
that an+1 = a j+1,  etc..  We shall now show that j = 0,  i.e. that an = e.  Suppose that j > 0. Then it
would  follow from  an = a j  that   an-1 = a j-1 .  However,  this  contradicts  our  definition  of  n.  We
conclude that the n  elements ai, 0 § i < n,  are all distinct and that an = e.

It is now clear that the elements e, a, a2, … , an-1  form a subgroup H  in G.  Such a (sub)group H
is  called  a  cyclic  subgroup  of  order  n.  We  say  that  the  element  a  generates  H  and  that  a  has
(multiplicative) order n . 

Since all elements in a cyclic group are a power of the same element, it follows that a cyclic group
is commutative. 

Lemma B.3
Let HG, L  be a group and a  an element in G  of order n.  Then, for all mœ

am = e ó n » m .

Proof:

Write m = q n + r , 0 § r < n.Then, am = e,  iff  ar = e,  i.e. iff r = 0, i.e. iff n » m.

Ñ

It follows that an element a  in G  has order d  if and only if ad = e  and  adêp ∫ e  for every prime
divisor p  of d .

To find the multiplicative order of an integer a  in m
*  (so gcdHa, mL = 1), it  follows from Euler's

Theorem  (Thm.  A.14)  and  Lemma  B.3  that  one  only  has  to  check  the  divisors  of  jHmL .  The
following module does this  in an efficient way. It  makes use of the Mathematica  functions GCD,
Divisors,  EulerPhi,  and  PowerMod.  In  Mathematica  4,  MultiplicativeOrder  is  a
standard function.

MultiplicativeOrder@a_, m_D :=

If@GCD@a, mD == 1, Divisors@ EulerPhi@mD D êê.8x_, y___< −> If@PowerMod@a, x, mD == 1, x, 8y<D D;
a = 2; m = 123456789;
n = MultiplicativeOrder@a, mD
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6855006

Lemma B.4
Let HG, ÿ L  be a group and a  an element in G  of order n.  For k > 0, element ak has order

nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅgcdHk, nL .

Proof:

Let m  be the order of a.  Since k ê gcdHk, nL  is an integer, it follows thatHakLnêgcdHk, nL = HanLkêgcdHk, nL = ekêgcdHk, nL = e.

From Lemma B.3,  we  conclude  that  m  divides  n êgcdHk, nL.  To  prove  the  converse,  we  observe
that HakLm = e . Lemma B.3 implies that n  divides k m.  Hence, n êgcdHk, nL  divides m.

Ñ

Continuing with the same parameters as above, we have for instance:

k = 3;
MultiplicativeOrder@ak, mD
n ê GCD@k, nD
2285002

2285002

Analogous  to  (B.1),  one  can  define  for  every  subgroup  HH , ÿ L  of  a  finite  group  HG, ÿ L  an
equivalence relation ~ by 

a ~ b  iff ab-1 œ H .

The equivalence classes are of the form 8 h a » h œ H <
as  one  can  easily  check.  They  all  have  the  same cardinality  as  H .  It  follows  that  the  number of
equivalence  classes  is  »G»ÅÅÅÅÅÅÅÅ»H » .  As  a  consequence  » H »  divides  » G » .  This  proves  the  following
theorem.

Theorem B.5
Let HG, ÿ L  be a finite group of order n . Then every subgroup HH , ÿ L  of  HG, ÿ L  has an 
order dividing n . Also every element a, a ∫ e , in G  has an order dividing n.
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B.1.2 Linear Algebra

É Vector Spaces and Subspaces

Let  denote an arbitrary field.

Definition B.6
A vector space over  is a set V  of objects which can be added and multiplied by 
elements of  such that the result is again in V . Besides, the following properties must be 
satisfied:
1. Hu + vL + w = u + Hv + wL  for all u, v, w œ V ,
2. there is a zero-element in V , i.e. an element o  such that v + o = o + v = v  for all v œ V ,
3. for every v e V  there is an element -v  in V  such that v + H-vL = H-vL + v = o ,
4. u + v = v + u  for all u, v œ V ,
5. aHu + vL = a u + a v  for all u, v œ V  and a œ  ,
6. Ha + bL v = a v + b v  for all a, b œ   and v œ V ,
7. Ha bL v = aHb vL  for all a, b œ F  and v œ V ,
8. 1. v = v  for all v œ V , where 1 denotes the unit-element of the field .

It is customary to call the elements of a vector space vectors although they need not be vectors in
the heuristic sense.

Examples of vector spaces over  are:

i) n , the set of n-tuples over  

ii) 8 f HxL œ @xD » degH f HxLL < n< , the set of polynomials over  of degree less than n . 

Often, it is clear from the context over which field a vector space is defined. In that case, the field
will no longer be mentioned. 

Definition B.7
A subset W of a given vector space V is called a linear subspace of V if W itself is a 
vector space with the operations already defined in V.

In order to determine whether a given subset of a vector space is a subspace, it is not necessary to
check all eight vector space properties. For instance property 1 holds for all u, v, w œ W  because it
is satisfied a fortiori by all elements in V . We have

Theorem B.6
A subset W  of a vector space V  is a linear subspace of V  if and only if
(i)   o œ W ,
(ii)  u + v œ W  for all u, v œ W ,
(iii) a u œ W  for all u œ W  and a œ  .

Every vector space V  has two so-called trivial subspaces: 8o<  and V .
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Let V  be a vector space and let v1, v2, … , vn  be elements of V . An expression of the type

a1 v1 + a2 v2 + … + an vn  with ai œ 

is called a linear combination of v1, v2, … , vn .

The set of all linear combinations of v1, v2,  … , vn  is a subspace of V , which is called the subspace
spanned by v1, v2, … , vn , and will be denoted by  < v1, v2,  … , vn > .

É Linear Independence, Basis and Dimension

Probably  the  most  important  concept  when  dealing  with  vector  spaces  is  the  concept  of  linear
(in)dependency.

Definition B.8
A set of vectors v1, v2,  … , vn  in a vector space V  is  linearly independent if the equation 
a1 v1 + a2 v2 + … + an vn = o  has only the trivial solution a1 = 0, a2 = 0, … , an = 0. If 
the set of vectors is not linearly independent it is linearly dependent.

Suppose  that  the  set  of  vectors  v1, v2,  … , vn  is  linearly  dependent.  Then,  there  is  a  linear
combination a1 v1 + … + an vn = o  where at least one ai  ∫ 0. This enables us to write

vi = ai
-1 Ha1 v1 + … + ai-1 vi-1 + ai+1 vi+1 + … + an vnL .  Thus,  we  get  a  different  description of

linear dependency.

Theorem B.7
A set of vectors v1, v2,  … , vn  in a vector space V  is linearly dependent if and only if at 
least one of these vectors can be expressed as a linear combination of the other vectors.

This  implies  in  particular  that  any  set  of  vectors  that  includes  the  zero-vector  o  is  linearly
dependent.

Theorem B.8
Suppose that the vectors v1, v2,  … , vn  are linearly independent. If we replace one of 
these vectors by the sum of this vector and a linear combination of the other vectors, the 
resulting set of vectors is again linearly independent.

Now let W  be a subspace of a vector space V , and let 8w1, w2, … , wn< Õ W .

Definition B.9
The set 8w1, w2,  … , wn<  is a basis for W  if
(i) this set of vectors is linearly independent,
(ii) < w1, ... ..., wn > = W , i.e. any w œ W  is a linear combination of w1, w2,  … , wn .

In particular, if W = V  we have a basis for  the vector space V  itself.

For instance, if V = n  the following set of vectors is a basis for V :
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 e1 = H1, 0, … , 0L, e2 = H0, 1, 0, … , 0L, … , en = H0, … , 0, 1L . 

This basis is usually called the standard basis.

In the definition we considered only a finite  basis.  Not every vector  space is  spanned by a finite
number of vectors. Take for example  =  , and V  is the vector space of all real-valued functions
on .

It  can  be  proved  that  in  every  vector  space  a  basis  exists.  Here  we will  be  concerned  only  with
vector  spaces  which  are  spanned  by  a  finite  number  of  vectors.  The  following  theorem  is  very
important.

Theorem B.9
Suppose one basis of a subspace W  of a vector space V  has n  vectors, and another basis 
has m  vectors. Then n = m .

A basis  for  a  vector  space  is  not  uniquely  determined;  however,  in  the  case  of  a  finite  basis  the
number of vectors in a basis is uniquely determined.

Definition B.10
If a vector space has a basis with n vectors we call n  the dimension of this vector space. 
The dimension of the zero vector space 8o<  is defined to be 0.

É Inner Product, Orthogonality

Let V be a vector space over the field .

Definition B.11
An inner product on V is a bilinear map V×V Ø . It is denoted by (u,v), where u  and v  
are vectors in V . 

Bilinear means that the following properties should hold for all u,v,w œ V and a œ .

(u+v,w) = (u,w)+(v,w) and (u,v+w) = (u,v)+(u,w)

(au,v) = a(u,v) = (u,av)

This  is  a  very  general  definition  of  an  inner  product.  If  in  particular    =    or    =    usually
additional  properties  are  required.  For  instance,  in  real  vector  spaces  one  wants Hu, uL  to  be
positive  definite,  i.e.  Hu, uL > 0  for  all  vectors  u ∫ o .  In  this  case,  the  length  or  norm  of  u  is
defined by è!!!!!!!!!!!Hu, uL  and often denoted by »» u »» .
If V = n  then the standard inner product is defined by

(B.2)(u,v) = u1 v1 + u2 v2 + … + un vn .
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Definition B.12
(i)   Two vectors u and v in V are called orthogonal if (u,v) = 0.
(ii)  Two subspaces U and W of V are called orthogonal if (u,w) = 0 for all u œ U and w œ 
W.

If the field  is finite then there may exist nonzero vectors u such that (u,u) = 0. For instance, in
the  vector  space   n ,  where   = 80, 1< ,  with  standard  inner  product,  any  vector  u  with  an  even
number of nonzero coordinates is orthogonal to itself.

Let  U  be  a  subspace  of  V.  In  many  applications  it  is  useful  to  consider  the  set  of  all  vectors
orthogonal to U.

Definition B.13
The orthogonal complement of a subspace U of V, denoted by U¦ , is the set of all 
vectors which are orthogonal to all vectors of U.

In formula:

U¦ = 8v œ U » Hu, vL = 0 for all u œ U< .

The following properties hold for subspaces U and W of a finite dimensional vector space V.

Theorem B.10
i) The orthogonal complement of a subspace is a subspace itself, i.e. HU¦L¦ = U
ii) dimHU¦L = dimHV L - dimHU L .
iii) If U Õ W, then W¦  Õ U¦

iv) HU › V L¦  = U¦  + V¦ .

In the case where V = n , with standard inner product, we have a simple representation of U¦ . Let8u1, u2, …, um<  be  a  basis  for  U,  and let  A be the  m µ n-matrix  with  rows u1  ,......,  um .  Then we
have:

                                                          v œ U¦   ó   AvT  = oT ,

where  the  superscript  T  denotes  the  transpose  of  a  vector,  i.e.  the  column  vector  with  the  same
coordinates as v  has.

Definition B.14
A basis 8v1, v2, ..., vm<  of a vector space V  is called self-orthogonal if all the inner 
products Hvi, v jL , i ∫ j , are zero.
It is called self-orthonormal, if in addition H »» vLi »» = 0 for 1 § i § m .
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B.2 Constructions
The  set  of  integers  modulo  m, m œ  \ 80<,  that  was  introduced  in  Section  A.3,  can  also  be
described  as  the  residue  class  ring  H êm , + , ÿ L  (see  Theorem  B.2),  since  Hm , + , ÿ L  is  an
ideal in the commutative ring H, + , ÿ L . This residue class ring is commutative and has < 1 >  as
multiplicative unit-element. The ring H ê m , + , ÿ L  is often denoted by Hm, + , ÿ L .

Theorem B.11
Let m  be a positive integer. The ring Hm, + , ÿ L  is a finite field with m  elements if and 
only if m  is prime.

Proof: 

fl  Suppose  that  m  is  composite,  say  m = a b,  a > 1,  and  b > 1.  Then
< 0 > = < a b > = < a > < b > ,  while  < a > ∫ < 0 >  and  < b > ∫ < 0 > .  So  the  ringHm, + , ÿ L  has zero-divisors and thus it can not be a field.

›  Now  suppose  that  m  is  prime  (See  also  the  Example  B.3).  We  have  to  prove  that  for  every
equivalence  class  < a >, < a > ∫ < 0 >,  there  exists  an  equivalence  class  < b > ,  such  that
< a > < b > = < 1 > .  For this  it  is  sufficient  to show that for any a  with m I a ,  there  exists an

element b , such that a b ª 1 Hmod mL .This however follows from Lemma A.13 or Theorem A.18.

Ñ

For  convenience,  one  often  leaves  out  the  brackets  around  the  representatives  of  equivalence
classes, therefore with a  one really means < a > . 

Later we shall see that for p  prime, Hp, + , ÿ L   is essentially the only finite field with p  elements.
We shall denote it by Hp, + , ÿ L . In information and communication theory one often works with
2 , which just consists of the elements 0 and 1. 

We are now going to construct finite fields q  for q = pm , p  prime.

Let HF, +, ÿ L  be a commutative field (not necessarily finite) and let F@xD  be the set of polynomials
over F , i.e. the set of expressions

f HxL = f0 + f1 x + f2 x2 + … + fn xn .

where fi œ F , 0 § 0 § n,  and n œ  . The largest value of i  for which fi ∫ 0  is called the degree of
f HxL .

Addition and multiplication of polynomials is defined in the natural way.

(B.3)⁄i fi xi + ⁄i gi xi = ⁄i H fi + giL xi .

(B.4)H⁄i fi xi L H ⁄ j g j x jL = ⁄k H⁄i+ j=k fi g jL xk .
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Example B.4

Let F = 2  and consider f HxL = 1 + x2 + x3  and gHxL = 1 + x + x3 . Then f HxL + gHxL = x + x2 and 
f HxL gHxL = 1 + x + x2 + x3 + x4 + x5 + x6 .

In Mathematica we can perform these calculations the function PolynomialMod as follows

p = 2; f = 1 + x2 + x3; g = 1 + x + x3; PolynomialMod@f + g, pD
PolynomialMod@f∗g, pD
x + x2

1 + x + x2 + x3 + x4 + x5 + x6

It is now straightforward to verify the next theorem.

Theorem B.12
Let HF, + , ÿ L  be a commutative field. Then HF@xD, + , ÿ L  is a commutative ring with 
unit-element.

Analogously  to  the  concepts  defined  in  Appendix  A  for  the  set  of  integers,  one  can  define  the
following notions in HF@xD, + , ÿ L:  divisibility,  reducibility  (if  a polynomial can be written as the
product of two polynomials of lower degree), irreducibility (which is the analog of primality), gcd,
lcm, the unique factorization theorem (the analog of the fundamental theorem in number theory),
Euclid's Algorithm, congruence relations, etc. We leave the details to the reader. 

The  following  Mathematica  functions  can  be  helpful  here:  PolynomialMod  (which  also
reduces  one  polynomial  modulo  another),   Factor,  PolynomialGCD,  PolynomialLCM.
Their usage is demonstrated in the following examples: 

p = 2; f = 1 + x + x2 + x7; g = 1 + x + x3;
PolynomialMod@f, g, Modulus −> 2D
x + x2

Factor@x11 − 1, Modulus −> 3D
H2 + xL H2 + 2 x + x2 + 2 x3 + x5L H2 + x2 + 2 x3 + x4 + x5L
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PolynomialGCD@1 + x3, 1 + x2, Modulus −> 2D
1 + x

PolynomialLCM@1 + x3, 1 + x2, Modulus −> 2D
H1 + x2L H1 + x + x2L

With  the  package  Algebra`PolynomialExtendedGCD`  one  can  use  the  Mathematica  function
PolynomialExtendedGCD:

<< Algebra`PolynomialExtendedGCD`

PolynomialExtendedGCD@1 + x3, 1 + x2, Modulus −> 2D
81 + x, 81, Mod@x, 2D<<

One particular consequence of Theorem B.12 is stated in the following theorem and its corollary.

Theorem B.13
Let aHxL  and bHxL  be two polynomials in F@xD  . Then there exists polynomials uHxL  and 
vHxL  in FHxL   such that

uHxL aHxL + vHxL bHxL = gcdHaHxL, bHxLL.
Corollary B.14
Let aHxL  and f HxL   be two polynomials in F@xD , such that gcdHaHxL, f HxLL = 1. Then, the 
congruence relation 

aHxL uHxL ª 1 (mod fHxLL
has a unique solution modulo f HxL .

The  solution  of  the  above  congruence  relation  can  again  be  found  with
PolynomialExtendedGCD. Indeed, from

PolynomialExtendedGCD@1 + x2, 1 + x + x4, Modulus −> 2D
81, 81 + x + x3, x<<

we  can  conclude  that  the  congruence  relation  H1 + x2L uHxL ª 1 Hmod 1 + x + x4L  has  the  solution
1 + x + x3 , as one can easily check with:
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PolynomialMod@H1 + x2L H1 + x + x3L, 1 + x + x4, Modulus −> 2D
1

Another important property of F@xD   is given in the following theorem.

Theorem B.15
Any polynomial of degree n, n > 0, in F@xD   has at most n  zeros in F.

Proof: For n = 1 the statement is trivial. We proceed by induction on n . 

Let u œ F  be a zero of a polynomial f HxL  of degree n  over F  (if no such u  exists, there is nothing
to prove). Write f HxL = Hx - uL qHxL + rHxL , degreeHrHxLL < degreeHx - uL = 1. It follows that rHxL  is a
constant,  say  r .  Substitution  of  x = u  in  the  relation  above  shows  that  t = 0.  We  conclude  that
f HxL = Hx - uL qHxL . 

Now qHxL  has degree n - 1, thus, by the induction hypothesis,  qHxL  has at most n - 1  zeros in F .
Since a field can not have zero-divisors, we know that each zero of f HxL  is either a divisor of x - u
or a zero of qHxL . It follows that f HxL  has at most n  zeros in F .

Ñ

Let sHxL  be a non-zero polynomial in F@xD . It is easy to check that the set

 8 aHxL sHxL » aHxL œ F <.
forms an ideal in the ring  HF@xD, +, ÿ L . We denote this ideal by HsHxLL  and say that sHxL  generates
the ideal HsHxLL .

Conversely,  let  HS, +, ÿ L  be  any  ideal  in  HF@xD, +, ÿ L ,  with  S ∫ F@xD .  Further,  let  sHxL  be  a
polynomial  of  lowest  degree  in  S .  Take  any  other  polynomial  f HxL  in  S  and  write
f HxL = qHxL sHxL + rHxL ,  degreeHrHxLL <  degreeHsHxLL .  With  properties  I  and  R1,  we  then  have  that
also rHxL  is also an element of S . From our assumption on sHxL  we conclude that rHxL = 0  and thus
that sHxL  divides f HxL .

It follows from the above discussion that any ideal in the ring HF@xD, +, ÿ L  is generated by a single
element! A ring with this property is called a principal ideal ring.

From now on we shall restrict ourselves to finite fields. Up to now we have only seen examples of
finite fields p , with p  prime.

Let  f HxL œ p@xD  of  degree  n .  We shall  say that  f  is  a  p-ary  polynomial.  Let  f HxL   be  the ideal
generated by f HxL .  From Theorem B.2 we know that Hp@xD ê H f HxLL, + , ÿ L  is  a commutative ring
with unit-element < 1 > . It contains pn  elements, represented by the p-ary polynomials of degree
< n .
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Theorem B.16
Let Hp, + , ÿ L  be a finite field with p  elements. Let f HxL  be a polynomial of degree n  
over p . Then, the commutative ring Hp@xD ê H f HxLL, + , ÿ L   is a finite field with 
pn elements if and only if f HxL  is irreducible in p@xD .

Proof: (Compare with Theorem B.11 and its proof.) 

ï  Suppose  that  f HxL = aHxL bHxL ,   with  degreeHaHxLL > 0  and  degreeHbHxLL > 0.  Then
< aHxL > < bHxL > = < aHxL bHxL > = < f HxL > = < 0 > ,  while  < aHxL > ∫ < 0 >  and
< bHxL > ∫ < 0 > .   So, Hp@xD ê H f HxLL, + , ÿ L   is  a ring with zero-divisors.  Hence it can not be a

field.

ì  On  the  other  hand,  if  f HxL  is  irreducible,  any  non-zero  polynomial  aHxL  of  degree < n   will
have  a  multiplicative  inverse  uHxL  modulo  f HxL  by  Corollary  B.14.  For  this  uHxL  one  has
< aHxL > < uHxL > = < 1 > . It follows that Hp@xD ê H f HxLL, + , ÿ L  is a field. We know already that
it contains pn elements.

Ñ

Example B.5

Let q = 2. The field 2  consists of the two elements 0 and 1. Let f HxL = 1 + x + x3 . Then H2@xD ê H1 + x + x3L, + , ÿ L  is a finite field with 23 = 8 elements. These eight elements can be represented by 
the eight binary polynomials of degree < 3.  Addition and multiplication have to be performed modulo 
1 + x + x3 .  For instance

 H1 + x + x2L x2 ª x2 + x3 + x4 ª Hx + 1L H 1 + x + x3L + 1 ª 1 Hmod 1 + x + x3L . 

Thus,  x2  is the multiplicative inverse of 1 + x + x2  in the field H2@xD ê H1 + x + x3L, + , ÿ L .

In  Mathematica  one  can  find  an  irreducible  polynomial  over  p ,  p
prime,  with  the  function  IrreduciblePolynomial  for  which  the  package
Algebra`FiniteFields` needs to be loaded first.

<< Algebra`FiniteFields`

p = 3; deg = 11; IrreduciblePolynomial@x, p, degD
1 + x9 + 2 x10 + x11

In  Mathematica  the  field  defined  by  the  p-ary  polynomial  f HxL  of  degree  can  be  described  by
GF@p, 8 f0, f1, … , fm<D .  Addition,  subtraction,  multiplication,  and division can be performed as
follows:
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f32 = GF@2, 81, 0, 1, 0, 0, 1<D;
f32@81, 0, 1, 0, 0<D + f32@80, 1, 1, 0, 1<D
f32@81, 0, 1, 0, 0<D − f32@80, 1, 1, 0, 1<D
f32@81, 0, 1, 0, 0<D ∗f32@80, 1, 1, 0, 1<D
f32@81, 0, 1, 0, 0<Dê f32@80, 1, 1, 0, 1<D
81, 1, 0, 0, 1<281, 1, 0, 0, 1<280, 0, 1, 0, 0<281, 0, 1, 1, 0<2

or as follows:

f32 = GF@2, 81, 0, 1, 0, 0, 1<D;
x = f32@80, 1, 0, 0, 0<D;
x5

x6 + x10

x16 ∗x16

x25 êx22
81, 0, 1, 0, 0<281, 1, 0, 1, 1<280, 1, 0, 0, 0<280, 0, 0, 1, 0<2

Two questions that arise naturally at this moment are:

1)  Does  an  irreducible,  p-ary  polynomial  f HxL  of  degree  n  exist  for  every  prime number  p  and
every integer n? If so, then we have proved the existence of finite fields q  for all prime powers q

2) Do other finite fields exist?

The  first  question  gets  an  affirmative  answer  in  the  next  section.  The  second  question  gets  a
negative answer in Section B.4.
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B.3 The Number of Irreducible Polynomials over GF(q)
In  this  section  we  want  to  count  the  number  of  irreducible  polynomials  over  a  finite  field  q .
Clearly, if f HxL  is irreducible, then so is a f HxL , for a œ q \ 80< . Also the ideals (f(x)) and (a f(x))
are  the  same,  when  a œ q \ 80< ,  therefore,  we  shall  only  count  so-called  monic  polynomials of
degree n , i.e. polynomials, whose leading coefficient (the coefficient of xn ) is equal to 1.

Definition B.15
IqHnL  = # q-ary,  irreducible, monic polynomials of degree n ,

IHnL  =I2HnL  = # binary, irreducible polynomials of degree n .

To  develop  some  intuition  for  our  counting  problem,  we  start  with  a  brute  force  attack  for  the
special case that q = 2. We shall try therefore to determine IHnL .

There are only two binary polynomials of degree 1, namely

x   and  x + 1.

By definition, both are irreducible. Thus, IH1L = 2. 

By taking all possible products of x  and x + 1, one finds three reducible polynomials of degree 2: 

x ÿ x = x2 , x ÿ Hx + 1L = x2 + x, and Hx + 1L2 = x2 + x . 

Since  there  are  22 = 4  binary  polynomials  of  degree  2,  it  follows  that  there  exists  only  one
irreducible

polynomial of degree 2, namely 

x2 + x + 1.

So, IH2L = 1.

Each  3-rd  degree,  reducible,  binary  polynomial  can  be  written  as  a  product  of  the  lower  degree
irreducible  polynomials  x, x + 1  and  x2 + x + 1.  In  this  way,  one  gets  xiHx + 1L3-i,  0 § i § 3,Hx2 + x + 1L x ,  and  Hx2 + x + 1L Hx + 1L .Since  there  are  23 = 8  binary  polynomials  of  degree  3,  we
conclude that there are

8 - 4 - 2=2 irreducible, binary polynomials of degree 3. So, IH3L = 2. 

The two binary, irreducible polynomials of degree 3 are:

x3 + x + 1 and x3 + x2 + 1.

At this  moment it  is  important to note that  for the counting arguments above,  we do not  have to
know the  actual  form of  the  lower  degree,  irreducible  polynomials.  We only  have  to  know how
many there are of a

certain degree.
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Indeed, to find IH4L  we can count the number of reducible, 4-th degree polynomials as follows:
number

− product of four 1 − st degree polynomials 5
− product of one 2 − nd degree polynomial and

two 1 − st degree polynomials
1 x3 = 3

− product of two 2 − nd degree polynomials 1
− product of one 3 − rd degree polynomial and

one 1 − st degree polynomial
2 x2 = 4

total = 13

It follows that there are 24 - 13 = 3 irreducible, binary polynomials of degree 4. So, IH4L = 3.

With some additional work one can find these three irreducible, 4-th degree polynomials:

x4 + x + 1, x4 + x3 + 1, and x4 + x3 + x2 + x + 1. 

Continuing in this way one finds with the necessary perseverance and precision that IH5L = 6  and
IH6L = 9, etc.

The  above  method  does  not  lead  to  a  proof  that  IHnL > 0  for  all  n œ  ,  let  alone  to  an
approximation of the actual value of IHnL .

We start all over again.

Let  piHxL, i = 1, 2, …,  be  an enumeration of all  q-ary,  irreducible,  monic polynomials,  such that
the  degrees  form  a  non-decreasing  sequence.  So,  the  first  IqH1L  polynomials  have  degree  1,  the
next IqH2L  polynomials have degree 2, etc..

Any q-ary, monic polynomial f HxL  has a unique factorization of the form¤i=1
¶ HpiHxLLei , ei œ , i ¥ 1.

where only finitely many ei 's are unequal to zero. It follows that f HxL  can uniquely be represented
by the sequence He1, e2, … L . Let ai  be the degree of pi (x) and let n  be the degree of f HxL . Then

e1 a1 + e2 a2 + … = n.

So, the polynomial f HxL  is in a unique correspondence with the termHza1Le1 Hza2Le2 …

in the expressionH1 + za1 + z2 a1 + … L H1 + za2 + z2 a2 + … L …
i.e. in ¤i=1

¶ H1 - zaiL-1 .
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Since there are exactly qn  q-ary, monic polynomials of degree n , the above proves that¤i=1
¶ H1 - zaiL-1 = 1 + q z + q2 z2 + … = H1 - q zL-1 ,

or equivalently¤i=1
¶ H1 - zaiL = H1 - q zL .

From  our  particular  ordering  we  know  that  ai = k  for  exactly  IqHkLvalues  of  i ,  thus,  the  above
relation can be rewritten as:‰

i=1

¶ H1 - zkLIqHkL = H1 - q zL .

Now take the logarithm of both sides and differentiate the outcome. One obtains:

qH1 - q zL-1 = ‚
k=1

¶
k IqHkL zk-1H1 - zkL-1 .

Multiplying both sides with z  yields⁄n=1
¶ qn zn = q zH1 - q zL-1 = ‚

k=1

¶
k IqHzL zkH1 - zkL-1 =

= ⁄k=1
¶ k IqHkL ⁄l=1

¶ zkl = ⁄n=1
¶ ⁄k»n k IqHkL zn .

Comparing the coefficients of z  on both sides gives the relation

(B.5)⁄k»n k IqHkL = qn .

Theorem B.17
IqHnL = 1ÅÅÅÅn ⁄d»n mHdL  qnêd .

Proof: Apply the Möbius Inversion Formula (Thm. A.38) to (B.5).

Ñ

We can evaluate IqHnL  quite easily in Mathematica (see DivisorSum and MoebiusMu)

DivisorSum@f_, n_D := Plus @@ Hf ê@ Divisors@nDL
q = 2; m = 4; DSM@d_D = MoebiusMu@dD∗ qmêd;HDivisorSum@DSM, mDLê m
3

It  is  now quite  easy  to  determine  the  asymptotic  behavior  of  IqHnL  and  to  prove  that  its  value  is
always positive.
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First of all, IqH1L = q ,  since all monic, polynomials of degree one are irreducible by definition. It
follows from (B.5) that

q + n IqHnL § ⁄k»n k IqHkL = qn .

Hence

(B.6)IqHnL § qn-qÅÅÅÅÅÅÅÅÅÅÅÅÅn .

On the other hand (B.5) and (B.6) imply that

qn = ⁄k»n k IqHkL § n IqHnL + ⁄k=0
dnê2t qk < n IqHnL + q1+nê2 .

Together with (B.6) this proves the first statement in the following theorem.

Theorem B.18
For all n  the number IqHnL  of monic, irreducible, n-th degree polynomials in q@xD  
satisfies

qn
ÅÅÅÅÅÅÅn  I1 - 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅqnê2-1 M § IqHnL § qn

ÅÅÅÅÅÅÅn  I1 - 1ÅÅÅÅÅÅÅÅÅÅÅÅqn-1 M ,
and

IqHnL > 0.

Proof:  That  IqHnL > 0  follows  directly  for  n ¥ 3.  For  n = 1  and  2,  this  follows  from  Theorem

B.17,  but  also  directly  from  IqH1L = q > 0  and  IqH2L = q2 - Jq + 1
2

N = Jq
2
N > 0.  as  one  can  easily

prove directly.

Ñ

Corollary B.19
IqHnL º qn

ÅÅÅÅÅÅÅn .

The  reader  may  want  to  verify  this  approximation  for  some  particular  cases  with  the  following
Mathematica input:

q = 2; m = 100; DSM@d_D = MoebiusMu@dD∗ qmêd;
N@HDivisorSum@DSM, mDLê qm, 40D
0.999999999999999111821579473501948675013

It  follows  from  this  corollary  that  a  randomly  selected,  monic  polynomial  of  degree  n  is
irreducible  with  a  probability  of  about  1 ên .  With  the  Mathematica  function  Factor  one  can
easily check if a particular polynomial is irreducible or not.
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Factor@1 + x + x2 + x3 + x4, Modulus −> 2D
1 + x + x2 + x3 + x4

B.4 The Structure of Finite Fields

B.4.1 The Cyclic Structure of a Finite Field

It follows from Theorem B.11, Theorem B.16 and Theorem B.18, that finite fields Hq, +, ÿ L  exist
for all prime powers q . If q  is a prime number q  can be represented by the integers modulo p . If
q  is  a  power  of  a  prime,  say  q = pm ,  q can  be  represented  by  p-ary  polynomials  modulo  an
irreducible polynomial of degree m.  We state the above as a theorem.

Theorem B.20
Let p  be a prime and q = pm , m ¥ 1.Then a finite field of order q  exists.

Later  in  this  section  we  shall  see  that  every  finite  field  can  be  described  by  the  construction of
Theorem  B.16.  But  first  we  shall  prove  an  extremely  nice  property  of  finite  fields,  namely  that
their multiplicative group is cyclic! By Theorem B.5, we know that every non-zero element in q

has a multiplicative order dividing q - 1.

Definition B.16
An element w  in a finite field of order q  is called an n-th root of unity if wn = e . 
An element w  is called a primitive n-th root of unity if it has order n . 
If w  is a primitive Hq - 1L-st root of unity, then w  is called a primitive element or 
generator of q .

Theorem B.21
Let Hq, +, ÿ Lbe a finite field and let d  be an integer dividing q - 1. Then q  contains 
exactly fHdL  elements of order d . 
In particular, Hq \ 80<, ÿ L  is a cyclic group of order q - 1, which contains fHq - 1L  
primitive elements.

Proof: By Theorem B.5, every non-zero element in q  has a multiplicative order d , which divides
q - 1.  On the other hand, suppose that q  contains an element of order d , d » Hq - 1L , say w . Then
all d  distinct powers of w are a zero of xd - e . It follows from Theorem B.15 that every d -th root
of  unity  in  q  is  a  power  of  w .  It  follows  from  Lemma  B.4  that  under  the  assumption  that  q

contains an element of order d, q will contain exactly fHdL  elements of order d , namely wi , with
GCD@i, dD = 1.
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Let aHdL  be the number of elements of order d  in q . Then the above implies that

i) aHdL = 0 or aHdL = fHdL
and also that 

ii) ⁄d»Hq-1L aHdL = q - 1. 

On  the  other  hand,  Theorem  A.12  states  that  ⁄d»Hq-1L fHdL = q - 1.  So,  we  conclude  that
aHdL = fHdL  for all d » Hq - 1L .

In particular, aHq - 1L = fHq - 1Lwhich means that q contains fHq - 1L  primitive elements and that
q \ 80<  is a cyclic group.

Ñ

To  check  if  a  particular  element  w  in  GFHqL  has  order  d ,  d » Hq - 1L ,  it  suffices  to  check  that
wd = 1 and that wdêp ∫ 1for every prime divisor of d . See also the discussion below Lemma B.3.

To find a primitive element in p , p  prime, the Mathematica  function PowerList can be used.
It finds a primitive element in p  and generates all its powers (starting with the 0-th). The second
element  in  this  list  is  the  primitive  element  itself.  First,  the  package  Algebra`FiniteFields`
needs to be loaded.

<< Algebra`FiniteFields`

p = 17; PrimeQ@pD
PowerList@GF@p, 1DD@@2DD
True

83<
Problems B.6 and B.10 indicate  an  efficient  way (due to Gauss)  to  find a primitive element  in a
finite field.

Corollary B.22
Every element w  in q  satisfies

wqn
= w , n ¥ 1.

Proof: For w = 0  the statement is trivially true. By Theorem B.5 or Theorem B.21, any w, w ∫ 0,
has  an order  dividing q - 1.  So,  it  satisfies  wq-1 = e  and thus also wq = w .  Since  wqn

= HwqLqn-1 ,
the proof now follows with an easy induction argument.
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Ñ

Corollary B.23
Let q  be a finite field. Then

xq - x = ¤wœq Hx - wL .

Proof: Every element w  in q  is a zero of xq - x  by Corollary B.22, therefore, the right hand side
above divides the left hand side.  Equality now follows because the expressions on both sides are
monic and of the same degree.

Ñ

Corollary B.23 will be used later as a tool to check if a certain element in fields containing  q  is
actually in q  itself.

Example B.6

Consider the finite field H2@xD ê H f HxLL, + , ÿ L  with f HxL = x4 + x3 + x2 + x + 1. It contains 24 = 16 elements, 
which can be represented by binary polynomials of degree <4. The element x, representing the class 
< x > ,  is not a primitive element, since x5 ª Hx + 1L f HxL + 1 ª 1 Hmod f HxLL .  So x has order 5 instead of 
15. With Mathematica this can be checked as follows:

f = 1 + x + x2 + x3 + x4;
PolynomialMod@x2, f, Modulus −> 2D
PolynomialMod@x3, f, Modulus −> 2D
PolynomialMod@x4, f, Modulus −> 2D
PolynomialMod@x5, f, Modulus −> 2D
x2

x3

1 + x + x2 + x3

1

The element x + 1  is primitive element (its order is 15), as one can see in Table B.1. It is also easy
to verify.  Indeed, x + 1  has an order dividing 15. So, one only has to check that Hx + 1L  raised to
the power 3 or 5 does not reduce to 1 modulo f HxL .

Finite Fields 407



f := 1 + x + x2 + x3 + x4;
PolynomialMod@Hx + 1L3, f, Modulus −> 2D
PolynomialMod@Hx + 1L5, f, Modulus −> 2D
PolynomialMod@Hx + 1L15, f, Modulus −> 2D
1 + x + x2 + x3

1 + x2 + x3

1

 Multiplication is easy to perform with Table B.1.  For instanceH1 + x + x2 + x3L Hx + x3L ª Hx + 1L3 Hx + 1L14 ªHx + 1L17 ª Hx + 1L2 ª x2 + 1 Hmod f HxLL .

The element x + 1 is a zero of the irreducible polynomial y4 + y3 + 1 sinceHx + 1L4 + Hx + 1L3 + 1 ª 0 Hmod f HxLL .

f := 1 + x + x2 + x3 + x4;
PolynomialMod@Hx + 1L4 + Hx + 1L3 + 1, f, Modulus −> 2D
0

Therefore, in H2@xD ê HgHxL, + , ÿ L  with gHxL = x4 + x3 + 1, the element x  is a primitive element. See
Table B.2.

1 x x2 x3

0 0 0 0 0H1 + xL0 1 0 0 0H1 + xL1 1 1 0 0H1 + xL2 1 0 1 0H1 + xL3 1 1 1 1H1 + xL4 0 1 1 1H1 + xL5 1 0 1 1H1 + xL6 0 0 0 1H1 + xL7 1 1 1 0H1 + xL8 1 0 0 1H1 + xL9 0 0 1 0H1 + xL10 0 0 1 1
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H1 + xL11 1 1 0 1H1 + xL12 0 1 0 0H1 + xL13 0 1 1 0H1 + xL14 0 1 0 1

Table B.1 H2@xD ê H1 + x + x2 + x3 + x4L, + , ÿ L  with primitive element 1 + x .

1 x x2 x3

0 0 0 0 0
1 1 0 0 0
x 0 1 0 0
x2 0 0 1 0

x3 0 0 0 1

x4 1 0 0 1

x5 1 1 0 1

x6 1 1 1 1
x7 1 1 1 0

x8 0 1 1 1

x9 1 0 1 0

x10 0 1 0 1

x11 1 0 1 1

x12 1 1 0 0

x13 0 1 1 0

x14 0 0 1 1

Table B .2 H2@xD ê H1 + x3 + x4L, +, ÿL with primitive element x

B.4.2 The Cardinality of a Finite Field

Consider  the  elements  e, 2 e, 3 e,  etc.  in  q .  Since  q  is  finite,  not  all  these  elements  can  be
different.  Also,  if  i e = j e ,  with  i < j ,  also  H j - iL e = 0.These  observations  justify  the  following
definition.

Definition B.17
The characteristic of a finite field q  with unit-element e , is the smallest positive integer 
c  such that c e = 0.

Theorem B.24
The characteristic of a finite field q  is a prime.
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Proof:  Suppose  that  the  characteristic  c  can  be  written  as  c ' c ' ' ,  where  c ' > 1  and  c ' ' > 1.  Then
0 = c e = Hc ' eL Hc ' ' eL ,  while  c ' ∫ 0  and  c ' ' e ∫ 0.  So,  c ' e  and  c ' ' e  are  zero-divisors.  This
contradicts the assumption that q  is a field.

Ñ

Definition B.18
Two finite fields Hq, +, µL  and Hq', ∆, ≈L  are said to be isomorphic, if there exists a 
one-to-one mapping y from q  onto q'  (so q = q ' ), such that for all w1  and w2  in q :
i) yHw1 + w2L = yHw1L ∆ yHw2L ,
ii) yHw1 µ w2L = yHw1L ≈ yHw2L .

In words, two fields are isomorphic if after renaming the elements in them they behave exactly the
same with respect to the operations addition and multiplication.

Lemma B.25
Let Hq, +, ÿ L  be a finite field with characteristic p . Then Hq +, ÿ L  contains a subfield 
which is isomorphic to Hp, +, L , i.e. to the integers modulo p .

Proof:  The subset  8i e » i = 0, 1, …, p - 1<  forms a subfield of Hq, +, ÿ L  which is  isomorphic  toHq, +, ÿ L  under the isomorphism yHi eL = i , 0 § i < p .

Ñ

In view of the lemma above, we can and shall from now on identify the subfield in Hq, +, ÿ L of
order  p  with  the  field  Hp, +, ÿ L .  The  subfield  p  is  often  called  the  ground  field  of  q .
Conversely, the field q  is called an extension field of p .

Theorem B.26
Let q  be a finite field of characteristic p . Then q  can be viewed as a vectorspace over 
p  and q = pm  for some integer m , m ¥ 1.

Proof: Let u1, u2, …, um be a basis of q over p , i.e. every element w in q  can be written as

w = a1 u1 + a2 u2 + … + am um ,

where ai œ p , 1 § i § m , and there is no dependency of the field elements ui  over p . It follows
that this representation is unique and thus q = H » Lq » = pm . 

Ñ

At this  moment we know that  finite  fields  q  can only exist  for  prime powers q .  Theorem B .20
states that q  indeed does exist for prime powers q . That all finite fields with the same value of q
are isomorphic to each other will be proved later.
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B.4.3 Some Calculus Rules over Finite Fields; Conjugates

Theorem B.27
Let w be an element in a finite field q  of characteristic p . Then in q@xDHx - wLp = xp - wp .

Proof: Let 0 < i < p . Then gcdHp, i!L = 1, soJ p
i
N ª pHp-1L …Hp-i+1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅi! ª 0 Hmod pL

and with the binomial theorem, we have that Hx - wLp = xp + H-wLp = xp - wp.

where the last equality is obvious for odd p , while for p = 2 this equality follows from +1 = -1.

Ñ

To demonstrate this we use again the Mathematica function PolynomialMod.

Clear@a, xD;
p = 2; m = 3;
PolynomialMod@Hx − aLpm, pD
a8 + x8

Corollary B.28
Let ai , 1 § i § k , be elements in a finite field q  of characteristic p . Then for every nH⁄i=1

k aiLpn
= ‚

i=1

k
ai

pn
.

a =.; b =.; c =.
p = 3; m = 3; PolynomialMod@Ha + b + cLpm, pD
a27 + b27 + c27

Proof: Use an induction argument on k  and on n . Start with Ha1 + a2Lp = a1
p + a2

p .

Ñ
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The following theorem often gives a powerful criterion to determine, whether an element in a field
q  of characteristic p , actually lies in the ground field p .

Theorem B.29
Let q  be a finite field of characteristic p . So, q = pm , m > 0, and q  contains p  as a 
subfield. Let w be an element in q . Then 

w œ p ó wp = w .

Proof: The p  elements in the subfield p  satisfy xp = x  by Corollary B.23. On the other hand, the
polynomial xp - x  has at most p  zeros in q  by  Theorem B.15.

Ñ

Let  w  be  an  element  in  q ,  a  field  of  characteristic  p ,  but  w  not  in  p .  Then  wp ∫ w  by  the
previous theorem. Still there is relation between wp  and w.

Theorem B.30
Let w be an element in a finite field q  of characteristic p . Let f HxL  be a polynomial over 
p ,  such that f HwL = 0. Then for all n œ 

f HwpnL = 0.

Proof:  Write f HxL = ⁄i=0
m fi xi ,  Since fi œ p ,  o § i § m ,  one has by Corollary B.22 and Theorem

B.29 that

0 = H f HwLLpn
= H⁄i=0

m fi wiLpn
= ‚

i=0

m H fi wiLpn
=

= ‚
i=0

m
fi

pn
 wi pn

= ‚
i=0

m
fi HwpnLi = f HwpnL.

Ñ

In   and   a  similar thing happens. If  f HxL  is  a polynomial over the reals and f HwL = 0, w œ  ,
then also f HwêêêL = 0, where wêêê  is the complex conjugate of w.

The following theorem states that the number of different elements wpi , i = 0, 1, …, only depends
on p  and the (multiplicative) order of  w.

Theorem B.31
Let w be an element of order n  in a finite field of characteristic p . Let m  be the 
multiplicative order of p  modulo n , i.e. pm ª 1 Hmod nL , with m > 0. Then, the m  
elements

w, wp, wp2 , … , wpm-1

are all different and wpm
= w .

The m  elements wpi , 0 § i § m - 1, are called the conjugates of w.
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Proof:  By Lemma B.3 (twice),  one has that  wpi
= wp j  if  and only if  pi ª p j Hmod nL ,  and thus if

and only if  pi- j ª 1 Hmod nL , i.e. if and only if i ª j Hmod mL .

Ñ

Example B.7

Consider Hq@xD ê H f HxLL, + , ÿ L  with f HxL = x4 + x3 + x2 + x + 1 (see Example B.6). The field element x has 
order 5. The multiplicative order of 2 modulo 5 is 4. So, x, x2, x22 , and x23 are all different, while x24 = x. 
Indeed, x4 ª x3 + x2 + x + 1 Hmod f HxLL , x8 ª x3 Hmod f HxLL , while x16 ª x Hmod f HxLL , as can be checked 
with the Mathematica functions Table and PolynomialMod: 

p = 2; m = 4; f = 1 + x + x2 + x3 + x4;

TableA PolynomialModAxpi, f, Modulus −> pE, 8i, 0, m< E êê
TableForm

x
x2

1 + x + x2 + x3

x3

x

B.4.4 Minimal Polynomials, Primitive Polynomials

Theorem B.32
Let q  be a finite field of characteristic p . Take n » Hq - 1L  and let w be an element of 
order n  in q . Further, let m  be the multiplicative order of p  modulo n .
Then the polynomial

(B.7)mHxL = ‰
i=0

m-1 Ix - wpiM
has its coefficients in p  and it is irreducible over p . It is called the minimal 
polynomial of w over p

Proof:  Clearly, mHxL  is a polynomial over q .  Write mHxL = ⁄i=0
m mi xi .  We have to show that the

coefficients  mi  are  in  the  ground  field  p .  To  this  end  we  shall  use  the  powerful  criterion of
Theorem B.29.

It follows from Theorem B.27 and Corollary B.22 (with n = 1) that
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HmHxLLp = ‰
i=0

m-1 Ix - wpiMp
= ‰

i=0

m-1 Ixp - wpi+1M =

=‰
i=1

m Ixp - wpiM = ‰
i=0

m-1 Ixp - wpiM = mHxpL .

Hence ⁄i=0
m mi xp i = mHxpL = HmHxLLp = H⁄i=0

m mi xiLp = ⁄i=0
m mi

p xp i .

Comparing  the  coefficients  of  xp i  on  both  hands  yields  mi = mi
p .  It  follows  from Theorem B.29

that mi œ p , 0 § i § m . So, mHxL  is a polynomial in p@xD .

From Theorem B.30 and Theorem B.31 it follows that no polynomial in p@xD  of degree less than
m  can have w as a zero. So, mHxL  is irreducible over p .

Ñ

Corollary B.33
Let w be an element of order n  in a finite field of characteristic p . Let mHxL   be defined 
as in Theorem B.32 and let f HxL  be any p-ary polynomial that has w as zero.
Then f HxL  is divisible by mHxL .

Proof: Combine Theorem B.30, Theorem B.31, and Theorem B.32.

Ñ

So, mHxL , as defined in Theorem B.32, is the monic polynomial of lowest degree over p , having w
as a zero. That is the reason why mHxL  is called the minimal polynomial of w over p . It has w and
all  the conjugates  of w  as  zeros.  The degree  of the minimal polynomial mHxL  of  an element  w  is
often simply called the degree of w over p .

If  mHxL  is  the  minimal  polynomial  of  a  primitive  element,  then  mHxL  is  called  a  primitive
polynomial.  Mathematica  finds a primitive polynomial of degree m  over p  in the variable z  by
means of the FieldIrreducible function.

<< Algebra`FiniteFields`

m = 6; p = 2;
FieldIrreducible@GF@p, mD, zD
1 + z5 + z6

Let f HxL  be a primitive polynomial over p  of degree m .  A table (like Table B.2) in which each
non-zero  element  in  the  finite  field  Hp@xD ê H f HxL, +, ÿ L is  represented  as  a  polynomial  in  x of
degree < m  and as a power of x  is called a log table of that field. These tables are very practical to
have when extensive calculations need to be done in the field. 
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These  logarithm  tables  can  be  made  quite  easily  by  Mathematica.  Depending  on  whether  one
wants Mathematica to select a suitable primitive polynomial or enter one's own, one can type : 

p = 2;
TableForm@PowerList@GF@p, 4DDD
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1
1 1 0 1
1 1 1 1
1 1 1 0
0 1 1 1
1 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0
0 1 1 0
0 0 1 1

or

p = 2;
TableForm@PowerList@GF@p, 81, 1, 0, 0, 1<DDD
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
1 1 0 1
1 0 1 0
0 1 0 1
1 1 1 0
0 1 1 1
1 1 1 1
1 0 1 1
1 0 0 1

To determine xi  in a field GF@p, mD  or, conversely, to find  i  such that xi  is equal to a particular
element  in  GF@p, mD ,  one  can  use  the  Mathematica  functions  FieldExp@GF@p, mD, iD ,  resp.
FieldInd[GF@p, mD @8list<D] (essential for this calculation is the assignment True to PowerListQ).

Finite Fields 415



PowerListQ@GF@2, 81, 1, 0, 0, 1<DD = True;
f16 = GF@2, 81, 1, 0, 0, 1<D;
FieldExp@f16, 5D
FieldInd@f16@80, 1, 1, 0<DD
80, 1, 1, 0<2
5

There are  several  ways to find the minimal polynomial of a  field  element.  We shall  demonstrate
two methods.

Method 1:

Let  a  be  a  zero of  the  binary primitive  polynomial  x5 + x2 + 1.  So,  a  has  order  31 and the
conjugates of a3  are a6 , a12 , a24 , and a17 . Then the minimal polynomial of a3  can be found
by:

f := 1 + a2 + a5;
PolynomialMod@Hx − a3L Hx − a6L Hx − a12L Hx − a24L Hx − a17L, f, Modulus −> 2D
1 + x2 + x3 + x4 + x5

Method 2: 

Let  a  be  a  zero  of  the  binary  primitive  polynomial  x5 + x2 + 1.  To  find  the  minimal
polynomial of b = a3 , we first compute 1,b , b2 , b3 , b4 , and b5 , using a5 + a2 + 1 = 0. 

f := 1 + a2 + a5; b = a3;
u0 = PolynomialMod@1, f, Modulus −> 2D
u1 = PolynomialMod@b, f, Modulus −> 2D
u2 = PolynomialMod@b2, f, Modulus −> 2D
u3 = PolynomialMod@b3, f, Modulus −> 2D
u4 = PolynomialMod@b4, f, Modulus −> 2D
u5 = PolynomialMod@b5, f, Modulus −> 2D
1

a3
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a + a3

a + a3 + a4

a + a2 + a3

1 + a + a2 + a3 + a4

We  use  the  Mathematica  function  CoefficientList  to  convert  the  coefficients  into
vectors. Note that we use the Join function to pad the output with zeros to make all vectors
of length 5. 

M = 8Join@CoefficientList@u0, aD, 80, 0, 0, 0<D,
Join@CoefficientList@u1, aD, 80<D,
Join@CoefficientList@u2, aD, 80<D,
CoefficientList@u3, aD, Join@CoefficientList@u4, aD, 80<D,
CoefficientList@u5, aD<;

MatrixForm@
MD

i
k
jjjjjjjjjjjjjjjjjjjj
1 0 0 0 0
0 0 0 1 0
0 1 0 1 0
0 1 0 1 1
0 1 1 1 0
1 1 1 1 1

y
{
zzzzzzzzzzzzzzzzzzzz

We need to find a linear dependency between 1, b, b2, b3, b4 , and b5 , say ⁄i=0
5 gi bi =0 with

gi Œ GFH2L .  To  this  end  we  use  the  Mathematica  functions  NullSpace  and  Transpose.
This leads to the minimal polynomial gHxL  of b.

NullSpace@Transpose@MD, Modulus −> 2D
881, 0, 1, 1, 1, 1<<

We conclude that b has minimal polynomial 1 + x2 + x3 + x4 + x5 .
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B.4.5 Further Properties

Let mHxL  be the minimal polynomial of an element w of degree m . It follows from Corollary B.33
that  the  pm  expressions  ⁄i=0

m-1 fi wi ,  fi œ p ,  0 § i § m ,   take  on  pm  different  values.  For  these
expressions  addition  and  multiplication  can  be  performed  just  as  in  (B.3)  and  (B.4),  where  the
relation mHwL = 0  has to be used to reduce the degree of the outcome to a value less than m  .It is
quite easy to check that one obtains a field, that is isomorphic to (q@xDêHmHxLL, +, ⋅ L . 

If mHxL  is primitive, one has that the elements 1, x, … , xHpm-2L  are all different modulo mHxL , just
as  the  elements  1, w, … , wHpm-2L  are  all  different.  See  for  instance,  Example  B.6,  where  the
primitive  element  w = 1 + x  has  minimal  polynomial  mHyL = 1 + y3 + y4 .  Table  B.2  shows  the
field (q@xDêHmHxLL, +, L .

Lemma B.34
Let mHxL  be an irreducible polynomial of degree m  over a field with p  elements and let n  
be a multiple of m . 
Then mHxL  divides xpn

- x .

Proof:  Consider  the  residue  class  ring  Hp@xD ê HmHxLL, +, ÿ L .  This  ring  is  a  field  with  q = pm

elements  by  Theorem  B.16.  The  field  element  < x >  is  a  zero  of  mHxL ,  since
mH < x >L = < mHxL > = < 0 > .  It  follows from Corollary  B.22 (n = 1L  that  < x >  is  a  zero of
xpn

- x , n ¥ 1. By Corollary B.33 we conclude that mHxL  divides xpn
- x .

Ñ

Also the converse of Lemma B.34 is true.

Theorem B.35
The polynomial xpn

- x  is the product of all irreducible, monic, p-ary polynomials of a 
degree dividing n .

Proof: Let m » n . There are IpHmL  irreducible polynomials of degree m  over p , all of which divide
xpn

- x  by  Lemma  B.34.  The  sum  of  their  degrees  is  m IpHmL .  Since⁄m»n m IpHmL = pn = degreeHxpn
- xL  by  (B.5),  it  follows  that  the  irreducible,  monic,  p-ary

polynomials of degree m , m » n , form the complete factorization of xpn
- x .

Ñ

Example B.8

p = 2, n = 4, 

I2H1L = 2, I2H2L = 1, I2H4L = 3 (see Section B.3).

x16 - x =  xHx + 1L Hx2 + x + 1L Hx4 + x3 + x2 + x + 1L Hx4 + x3 + 1L Hx4 + x + 1L
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p = 2; m = 4;
Factor@xpm − x, Modulus −> pD
x H1 + xL H1 + x + x2L H1 + x + x4L H1 + x3 + x4L H1 + x + x2 + x3 + x4L

Corollary B.36
Let f HxL  be an irreducible polynomial in p@xD  of degree m . Let m » n .Then, a finite field 
with pn  elements contains m  roots of f HxL .

Proof: By Theorem B.35, f HxL  divides xq - x ,  q = pn . On the other hand, xq - x = ¤wœq Hx - wL
by Corollary B.23.

Ñ

Theorem B.37
Let p  be a prime and m œ  . Then, the finite field pn  is unique, up to isomorphism.

Proof:  Write q = pm  and let  q  be  any finite  field of order  q .Let  f HxL  be  any irreducible,  p-ary
polynomial of degree m . We shall show that q  is isomorphic to p@xD ê H f HxLL . By Corollary B.36,
q  contains  m  zeros  of  f HxL .  Let  w  be  one  of  these  m  zeros.  Since  f HxL  is  irreducible  in  p@xD ,
there  is  no  lower  degree  polynomial  over  p  with  w  as  zero.  This  implies  that  the  m  elements
1, w, … , wm-1 are  independent  over  p ,  thus,  any  element  in  q  can  be  written  as  ⁄i=o

m-1 fi wi ,
fi œ p , 0 § i § m - 1. 

The isomorphism between q  and p@xD ê H f HxLL  is now obvious.

Ñ

Corollary B.38
pm  is (isomorphic to) a subfield of pn  if and only if m  divides n .

Proof: The following assertions are all equivalent;

i) m » n ,
ii) Hpm - 1L divides Hpn - 1L , 
iii) Hxpm

- xL  divides Hxpn
- xL , 

iv) ¤wœpm Hx - wL  divides ¤wœpn Hx - wL , 
v) pm  is a subfield of pn .

Ñ
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Example B.9

It follows from Corollary B.38 that 24  contains 22  as a subfield, while it does not contain 23  as a 
subfield. From Table B.2 one can easily verify that the elements 0, 1, x5 and x10  form a subfield of 
cardinality 22  in H2@xD ê Hx4 + x3 + 1L, + , ÿ L .

B.4.6 Cyclotomic Polynomials

Consider a finite field q  of characteristic p . So,  q = pm  for some m > 0. By Theorem B.5, every
element  in  q  has  an  order  dividing  q - 1.  Let  n » Hq - 1L  and  let  w  be  a  primitive  n-th  root of
unity  in  q .  For  instance,   w = aHq-1Lên ,  where  a  is  a  primitive  element  in  q .  Let  d » n  and  put
h = wnêd . Then h is a primitive d -root of unity. Clearly, the d  elements 1, h, … , hd-1 are a zero of
xd - 1. By Theorem B.15, no other element in q  is a zero of xd - 1.

Definition B.19
Let q = pm , p  prime. For any d » Hq - 1L  the p-ary cyclotomic polynomial QHdLHxL  is 
defined by 

QHdLHxL = ¤xœGFHqL of order q Hx - xL .

If x had order d , d » Hq - 1L , then by Lemma B.4 also x p  has order d . So, with x a zero of QHdLHxL
also its conjugates are zeros of QHdLHxL . It follows from Theorem B.32 that QHdLHxL  is the product of
some minimal polynomials over p  and thus that QHdLHxL  is a polynomial over p .

By Theorem B.21, QHdLHxL  has degree fHdL . Since w is a primitive n-th root of unity, it follows that

(B.8)
xn - 1 = ¤i=1

n-1 Hx - wiL = ¤xœq, x has order n Hx - xL =

= ¤d»n ¤xœq, x has order d Hx - xL = ¤d»n QHdLHxL .

Theorem B.39

QHnLHxL = ‰
d»n Hxd - 1LmHnêdL .

Proof: Apply the Multiplicative Möbius Inversion Formula (Corollary A.39) to (B.8).

Ñ

Example B.10

QH36LHxL = ‰
d»36

Hxd - 1Lm H36êdL =
Ix36-1M Ix6-1M

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHx18-1L Hx12-1L = x18+1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx6+1 = x12 - x6 + 1.

This can also be evaluated with Mathematica:

DivisorProduct@f_, n_D := Times @@ Hf ê@ Divisors@nDL
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n = 36; Clear@f, xD;
f@d_D := Hxd − 1LMoebiusMu@nêdD
DivisorProduct@f, nD êê Simplify

1 − x6 + x12

or directly with the Mathematica function Cyclotomic:

Cyclotomic@36, xD
1 − x6 + x12

If p = 2, one can write QH36LHxL = x12 + x6 + 1.

The expression for QHnLHxL  in Theorem B.39 seems to be independent of the finite field. This is not
really true, because in the evaluation of that expression the characteristic does play a role.

All  the irreducible  factors of QHdLHxL  have the same degree,  because all  the zeros  of QHdLHxL  have
the same order d .  Indeed, by Theorem B.32, each irreducible factor of  QHdLHxL  has as degree the
multiplicative order of p  modulo d .

In particular we have the following theorem.

Theorem B.40
The number of primitive, p-ary, monic polynomials of degree m  is

fHpm-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅm .

Proof:  A  primitive,  p-ary  polynomial  of  degree  m  divides  QHpm-1LHxL  and  this  cyclotomic
polynomial has only factors of this type. The degree of QHpm-1LHxL  is fHpm - 1L .

Ñ

Example B.11: p = 2

x16 - x = xHx15 - 1L = x QH1LHxLQH3LHxLQH5LHxLQH15LHxL
where

QH1LHxL  = x+1,
QH3LHxL  = x2 + x + 1,
QH5LHxL  = x4 + x3 + x2 + x + 1,
QH15LHxL  = (x4 + x + 1L Hx4 + x3 + 1L .

Indeed, there are f H15L ê4 = 2 primitive polynomials of degree 4. See also Example B.6.
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A way to find all primitive polynomials of degree m  over p  is to factor QHpm-1LHxL .

Example B.12

p = 2; m = 6; n = pm − 1;
Factor@Cyclotomic@n, xD, Modulus → pD
H1 + x + x6L H1 + x + x3 + x4 + x6L H1 + x5 + x6LH1 + x + x2 + x5 + x6L H1 + x2 + x3 + x5 + x6L H1 + x + x4 + x5 + x6L

Remark:

In this chapter we have viewed q , q = pm and p  prime, as an extension field of p ,  however all
the concepts defined in this  chapter can also be generalized to q@xD .  So, one may want to count
the number of irreducible polynomials of degree n  in q@xD  or discuss primitive polynomials over
q ,  etc.  We leave  it  to  the  reader  to  verify  that  all  the  theorems  in  this  appendix  can  indeed  be
generalized from p  and pm  to q  resp. qm  simply by replacing p  by q  and q  by qm.

Example B.13

The field 16  can be viewed as the residue class ring 4@xD ê Hx2 + x + a L , where a is an element in 4  
satisfying a 2 + a + 1.
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B.5 Problems

Problem B.1
Prove that H 8 x œ  » x2 œ , x ∫ 0<, ÿ L  is a group.

Problem B.2
Prove that the elements of a reduced residue class system modulo m  form a multiplicative group.

Problem B.3
Let HG, *L  be a group and H  a non-empty subset of G . Then HH , *L  is a subgroup of HG, *L  if and only if 
h1 * h2

-1 œ H  for every h1, h2 œ H .

Problem B.4
Prove that there are essentially two different groups of order 4 (hint: each element has an order dividing 4).

Problem B.5
Find an element of order 12 in the group H13

* , µ L . Which powers of this element have order 12. Answer 
the same question for elements of order 6, 4, 3, 2 and 1.

Problem B.6
Let HG, ÿL  denote a commutative group. Let a  and b  be two elements in G  of order m  resp. n .
a) Assume that gcdHm, nL = 1. Show that a ÿ b  has order m µ n .
b) Assume no longer that gcdHm, nL = 1. Determine integers s  and t  such that s » m , t » n , gcdHs, tL = 1, and 
lcm@s, tD = lcm@m, nD .
c) Construct an element in G  of order lcm@m, nD .

Problem B.7M

Find the multiplicative inverse of 1 + x2 + x3 Hmod 1 + x2 + x5L  over GFH2L  (hint1: Thm. B.13;  hint2). 

Problem B.8M

How many binary, irreducible polynomials (hint1: Def.B.15; hint2: Thm. B.17) are there of degree 7 and 
8?

Problem B.9
Make a log table of GFH2L@xD ê H1 + x2 + x5L  (hint: x  is a primitive element). Use this table to express 
x10 + x20  as power of x .

Problem B.10
Let a œ GFHqL  have order m , m < q - 1. What is the probability that a random non-zero element b œ GFHqL  
has an order n  dividing m? Give an upperbound on this probability.
Construct an element of order lcm@m, nD  (hint: see Problem B.6).
(In fact, this method leads to an efficient to find a primitive element in a finite field. It is due to Gauss.)

Problem B.11
Which subfields are contained in GF(625)? Let a be a primitive element in GF(625). Which powers of a 
constitute the various subfields of GF(625)? (Hint: Cor. B.38.)

Problem B.12
Prove that over GF(2):  Hx + yL2k+1 = x2k+1 + x2k .y + x.y2k

+ y2k+1.
(Hint: use Cor. B.28.)
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Problem B.13
How many binary, primitive polynomials are there of degree 10? (Hint: Thm. B.40.)

Problem B.14
Determine the binary, cyclotomic polynomial QH21LHxL  (hint: Thm. B.39). What is the degree of the binary 
factors of QH21LHxL .

Problem B.15
What is the degree of a binary, minimal polynomial of a primitive 17-th root of unity (hint: Thm. B.32)? 
How many such polynomials do exist? Prove that each is its own reciprocal. Determine these polynomials 
explicitly.

Problem B.16
The trace mapping Tr is defined on GFHpL , p  prime, by

TrHxL = x + xp + xp2
+ … + xpm-1.

a) Prove that TrHxL œ GFHpL , for every x œ GFHpmL  (hint: Thm. B.29). So, Tr is a mapping from GFHpmL  to 
GFHpL .
b) Prove that Tr is a linear mapping (hint: Cor. B.28).
c) Prove that Tr takes on every value in GFHpL  equally often (hint: use Theorem B.15).
d) Replace p  by q  in this problem, where q  is a prime power, and verify the same statements.
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Appendix C Relevant Famous Mathematicians
Euclid of Alexandria

Born: about 365 BC in Alexandria, Egypt

Died: about 300 BC

Euclid  is the most prominent mathematician of antiquity best known for his treatise on geometry
The Elements. The long lasting nature of The Elements must make Euclid the leading mathematics
teacher of all time.

Little is known of Euclid's life except that he taught at Alexandria in Egypt. The picture of Euclid
above is from the 18th Century and must be regarded as entirely fanciful. 

Euclid's most famous work is his treatise on geometry The Elements. The book was a compilation
of  geometrical  knowledge  that  became  the  centre  of  mathematical  teaching  for  2000  years.
Probably  no  results  in  The  Elements  were  first  proved  by  Euclid  but  the  organization  of  the
material and its exposition are certainly due to him.

The Elements begins with definitions and axioms, including the famous fifth, or parallel, postulate
that one and only one line can be drawn through a point parallel to a given line. Euclid's decision
to make this an axiom led to Euclidean geometry. It was not until the 19th century that this axiom
was dropped and non-euclidean geometries were studied.

Zeno of Sidon, about 250 years after Euclid wrote: ,,The Elements, seems to have been the first to
show that  Euclid's  propositions  were  not  deduced from the  axioms alone,  and Euclid  does  make
other subtle assumptions.”

The  Elements  is  divided  into  13  books.  Books  1-6,  plane  geometry:  books  7-9,  number  theory:
book  10,  's  theory  of  irrational  numbers:  books  11-13,  solid  geometry.  The  book  ends  with  a

Relevant Famous Mathematicians 425



discussion of the properties of the five regular polyhedra and a proof that there are precisely five.
Euclid's Elements is remarkable for the clarity with which the theorems are stated and proved. The
standard of rigour was to become a goal for the inventors of the calculus centuries later. 

More than one thousand editions of The Elements have been published since it was first printed in
1482. 

Euclid also wrote Data (with 94 propositions), On Divisions, Optics and Phaenomena which have
survived. His other books Surface Loci, Porisms, Conics, Book of Fallacies and Elements of Music
have all been lost. 

Euclid may not have been a first  class mathematician but the long lasting nature ofThe Elements
must make him the leading mathematics teacher of antiquity. 

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Euclid.html

Leonhard Euler

Born: 15 April 1707 in Basel, Switzerland

Died: 18 Sept 1783 in St Petersburg, Russia

Euler  made large  bounds  in  modern analytic  geometry  and trigonometry.  He made decisive  and
formative contributions to geometry, calculus and number theory.

Euler's father wanted his son to follow him into the church and sent him to the University of Basel
to  prepare  for  the  ministry.  However  geometry  soon  became his  favorite  subject.  Euler  obtained
his  father's  consent  to  change  to  mathematics  after  Johann  Bernoulli  had  used  his  persuasion.
Johann Bernoulli became his teacher. 

He  joined  the  St.  Petersburg  Academy  of  Science  in  1727,  two  years  after  it  was  founded  by
Catherine I the wife of Peter the Great.  Euler served as a medical lieutenant  in the Russian navy
from  1727  to  1730.  In  St  Petersburg  he  lived  with  Daniel  Bernoulli.  He  became  professor of
physics at the academy in 1730 and professor of mathematics in 1733. He married and left Johann
Bernoulli's  house  in  1733.  He  had  13  children  altogether  of  which  5  survived  their  infancy.  He
claimed that he made some of his greatest discoveries while holding a baby on his arm with other
children playing round his feet. 
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The publication of many articles and his book Mechanica (1736-37), which extensively presented
Newtonian dynamics in the form of mathematical analysis  for the first  time, started  Euler  on the
way to major mathematical work. 

In  1741,  at  the  invitation  of  Frederick  the  Great,  Euler  joined  the  Berlin  Academy  of  Science,
where he remained for 25 years.  Even while in Berlin he received part  of his  salary from Russia
and never got on well with Frederick. During his time in Berlin, he wrote over 200 articles, three
books  on  mathematical  analysis,  and  a  popular  scientific  publication  Letters  to  a  Princess  of
Germany (3 vols., 1768-72). 

In  1766  Euler  returned  to  Russia.  He  had  been  arguing  with  Frederick  the  Great  over  academic
freedom and Frederick was greatly angered at his departure. Euler lost the sight of his right eye at
the  age  of  31  and  soon  after  his  return  to  St  Petersburg  he  became  almost  entirely  blind  after  a
cataract  operation.  Because  of  his  remarkable  memory  was  able  to  continue  with  his  work  on
optics, algebra, and lunar motion. Amazingly after 1765 (when Euler was 58) he produced almost
half his works despite being totally blind. 

After his death in 1783 the St. Petersburg Academy continued to publish Euler's unpublished work
for nearly 50 more years. 

Euler  made  large  bounds  in  modern  analytic  geometry  and  trigonometry.  He  made  decisive  and
formative contributions  to geometry, calculus and number theory.  In number theory he did much
work in correspondence with Goldbach. He integrated Leibniz's differential calculus and Newton's
method  of  fluxions  into  mathematical  analysis.  In  number  theory  he  stated  the  prime  number
theorem and the law of biquadratic reciprocity. 

He  was  the  most  prolific  writer  of  mathematics  of  all  time.  His  complete  works  contains  886
books and papers. 

We owe to him the notations f(x) (1734), e for the base of natural logs (1727), i for the square root
of -1 (1777),  p for pi,  ⁄for summation (1755) etc. He also introduced beta and gamma functions,
integrating factors for differential equations etc. 

He  studied  continuum mechanics,  lunar  theory  with  Clairaut,  the  three  body  problem,  elasticity,
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acoustics,  the  wave  theory  of  light,  hydraulics,  music  etc.  He  laid  the  foundation  of  analytical
mechanics, especially in his Theory of the Motions of Rigid Bodies (1765).

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Euler.html

Pierre de Fermat

Born: 17 Aug 1601 in Beaumont-de-Lomagne, France

Died: 12 Jan 1665 in Castres, France

Pierre  Fermat's  father  was  a  wealthy  leather  merchant  and  second  consul  of  Beaumont-de-
Lomagne. Pierre had a brother and two sisters and was almost certainly brought up in the town of
his birth. Although there is little evidence concerning his school education it must have been at the
local Franciscan monastery.

He attended the University of Toulouse before moving to Bordeau in the second half of the 1620s.
In Bordeau he began his first serious mathematical researches and in 1629 he gave a copy of his
restoration of Apollonius's Plane loci to one of the mathematicians there. Certainly in Bordeau he
was in contact with Beaugrand and during this time he produced important work on maxima and
minima  which  he  gave  to  Etienne  d'Espagnet  who  clearly  shared  mathematical  interests  with
Fermat. 

From  Bordeau  Fermat  went  to  Orléans  where  he  studied  law  at  the  University.  He  received  a
degree in civil law and he purchased the offices of councillor at the parliament in Toulouse. So by
1631 Fermat was a lawyer and government official in Toulouse and because of the office he now
held he became entitled to change his name from Pierre Fermat to Pierre de Fermat. 

For the remainder of his life he lived in Toulouse but as well as working there he also worked in
his home town of Beaumont-de-Lomagne and a nearby town of Castres. From his appointment on
14 May 1631 Fermat worked in the lower chamber of the parliament but on 16 January 1638 he
was  appointed  to  a  higher  chamber,  then  in  1652  he  was  promoted  to  the  highest  level  at  the
criminal  court.  Still  further  promotions  seem  to  indicate  a  fairly  meteoric  rise  through  the
profession  but  promotion  was  done  mostly  on  seniority  and  the  plague  struck  the  region  in  the
early  1650s  meaning  that  many  of  the  older  men  died.  Fermat  himself  was  struck  down  by  the
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plague and in 1653 his death was wrongly reported, then corrected: 

I  informed you earlier  of  the death of  Fermat.  He is  alive,  and we no longer fear for his  health,
even though we had counted him among the dead a short time ago. 

The following report, made to Colbert the leading figure in France at the time, has a ring of truth: 

Fermat, a man of great erudition, has contact with men of learning everywhere.  But he is rather
preoccupied, he does not report cases well and is confused. 

Of  course  Fermat  was  preoccupied  with  mathematics.  He  kept  his  mathematical  friendship  with
Beaugrand after he moved to Toulouse but there he gained a new mathematical friend in Carcavi.
Fermat  met  Carcavi  in  a  professional  capacity  since  both  were  councillors  in  Toulouse  but  they
both shared a love of mathematics and Fermat told Carcavi about his mathematical discoveries.

 

In 1636 Carcavi  went  to Paris  as royal  librarian and made contact  with Mersenne and his group.
Mersenne's  interest  was  aroused  by  Carcavi's  descriptions  of  Fermat's  discoveries  on  falling
bodies,  and  he  wrote  to  Fermat.  Fermat  replied  on  26  April  1636  and,  in  addition  to  telling
Mersenne about errors which he believed that Galileo had made in his description of free fall, he
also  told  Mersenne  about  his  work  on  spirals  and  his  restoration  of  Apollonius's  Plane  loci.  His
work on spirals had been motivated by considering the path of free falling bodies and he had used
methods  generalised  from  Archimedes'  work  On  spirals  to  compute  areas  under  the  spirals.  In
addition Fermat wrote: 

I have also found many sorts of analyses for diverse problems, numerical as well as geometrical,
for the solution of which Viète's analysis could not have sufficed. I will share all of this with you
whenever  you  wish  and  do  so  without  any  ambition,  from  which  I  am  more  exempt  and  more
distant than any man in the world. 

It  is  somewhat  ironical  that  this  initial  contact  with  Fermat  and  the  scientific  community  came
through  his  study  of  free  fall  since  Fermat  had  little  interest  in  physical  applications of
mathematics.  Even  with  his  results  on  free  fall  he  was  much  more  interested  in  proving
geometrical theorems than in their relation to the real world. This first letter did however contain
two problems  on  maxima which  Fermat  asked  Mersenne  to  pass  on  to  the  Paris  mathematicians
and  this  was  to  be  the  typical  style  of  Fermat's  letters,  he  would  challenge  others  to  find  results
which he had already obtained.
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Roberval  and  Mersenne  found  that  Fermat's  problems  in  this  first,  and  subsequent,  letters  were
extremely  difficult  and  usually  not  soluble  using  current  techniques.  They  asked  him to  divulge
his  methods  and  Fermat  sent  Method  for  determining  Maxima  and  Minima  and  Tangents  to
Curved Lines, his restored text of Apollonius's Plane loci and his algebraic approach to geometry
Introduction to Plane and Solid Loci to the Paris mathematicians. 

His reputation as one of the leading mathematicians in the world came quickly but attempts to get
his  work  published  failed  mainly  because  Fermat  never  really  wanted  to  put  his  work  into  a
polished  form.  However  some  of  his  methods  were  published,  for  example  Hérigone  added  a
supplement  containing  Fermat's  methods  of  maxima  and  minima  to  his  major  work  Cursus
mathematicus.  The  widening  correspondence  between  Fermat  and  other  mathematicians  did  not
find universal praise. Frenicle de Bessy became annoyed at Fermat's problems which to him were
impossible.  He  wrote  angrily  to  Fermat  but  although  Fermat  gave  more  details  in  his  reply,
Frenicle de Bessy felt that Fermat was almost teasing him. 

However  Fermat  soon  became  engaged  in  a  controversy  with  a  more  major  mathematician  than
Frenicle  de  Bessy.  Having  been  sent  a  copy  of  Descartes'  La  Dioptrique  by  Beaugrand,  Fermat
paid it  little  attention since he was in the middle of a correspondence with Roberval and Etienne
Pascal over methods of integration and using them to find centres of gravity. Mersenne asked him
to give an opinion on La Dioptrique which Fermat did describing it as 

groping about in the shadows. 

He claimed that Descartes had not correctly deduced his law of refraction since it was inherent in
his  assumptions.  To  say  that  Descartes  was  not  pleased  is  an  understatement.  Descartes  soon
found  reason  to  feel  even  more  angry  since  he  viewed  Fermat's  work  on  maxima,  minima  and
tangents  as  reducing  the  importance  of  his  own  work  La  Géométrie  which  Descartes  was  most
proud of and which he sought to show that his Discours de la méthod alone could give. 

Descartes  attacked  Fermat's  method  of  maxima,  minima  and  tangents.  Roberval  and  Etienne
Pascal became involved in the argument and eventually so did Desargues who Descartes asked to
act as a referee. Fermat proved correct and eventually Descartes admitted this writing:- 

… seeing the last method that you use for finding tangents to curved lines, I can reply to it in no
other way than to say that  it  is  very good and that,  if  you had explained it  in this manner at the
outset, I would have not contradicted it at all.
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Did this end the matter and increase Fermat's standing? Not at all since Descartes tried to damage
Fermat's reputation.  For example,  although he wrote to Fermat praising his work on determining
the  tangent  to  a  cycloid  (which  is  indeed  correct),  Descartes  wrote  to  Mersenne  claiming  that  it
was incorrect and saying that Fermat was inadequate as a mathematician and a thinker. Descartes
was important and respected and thus was able to severely damage Fermat's reputation. 

The  period  from  1643  to  1654  was  one  when  Fermat  was  out  of  touch  with  his  scientific
colleagues in Paris. There are a number of reasons for this. Firstly pressure of work kept him from
devoting so much time to mathematics. Secondly the Fronde, a civil war in France, took place and
from 1648 Toulouse was greatly affected. Finally there was the plague of 1651 which must have
had  great  consequences  both  on  life  in  Toulouse  and  of  course  its  near  fatal  consequences  on
Fermat himself. However it was during this time that Fermat worked on number theory. 

Fermat  is  best  remembered  for  this  work  in  number  theory,  in  particular  for  Fermat's  Last
Theorem. This theorem states  that   xn + yn = zn  has no non-zero integer  solutions for x, y  and z
when n > 2. Fermat wrote, in the margin of Bachet's translation of Diophantus's Arithmetica 

I have discovered a truly remarkable proof which this margin is too small to contain. 

These  marginal  notes  only  became  known  after  Fermat's  son  Samuel  published  an  edition of
Bachet's translation of Diophantus's Arithmetica with his father's notes in 1670. 

It  is  now  believed  that  Fermat's  'proof'  was  wrong  although  it  is  impossible  to  be  completely
certain.  The  truth  of  Fermat's  assertion  was  proved  in  June  1993  by  the  British  mathematician
Andrew  Wiles,  but  Wiles  withdrew  the  claim  to  have  a  proof  when  problems  emerged  later  in
1993.  In  November  1994  Wiles  again  claimed  to  have  a  correct  proof  which  has  now  been
accepted. 

Unsuccessful  attempts  to  prove  the  theorem  over  a  300  year  period  led  to  the  discovery of
commutative ring theory and a wealth of other mathematical discoveries. 

Fermat's  correspondence  with  the  Paris  mathematicians  restarted  in  1654  when  Blaise  Pascal,
Etienne  Pascal's  son,  wrote  to  him to  ask  for  confirmation  about  his  ideas  on probability.  Blaise
Pascal knew of Fermat through his father, who had died three years before, and was well aware of
Fermat's  outstanding  mathematical  abilities.  Their  short  correspondence  set  up  the  theory of
probability and from this they are now regarded as joint founders of the subject. Fermat however,
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feeling his isolation and still wanting to adopt his old style of challenging mathematicians, tried to
change  the  topic  from  probability  to  number  theory.  Pascal  was  not  interested  but  Fermat,  not
realising this, wrote to Carcavi saying:

I  am delighted  to have had opinions conforming to those  of  M Pascal,  for I  have infinite  esteem
for his  genius...  the two of  you may undertake that  publication,  of  which I consent  to your being
the  masters,  you  may  clarify  or  supplement  whatever  seems  too  concise  and  relieve  me  of  a
burden that my duties prevent me from taking on. 

However Pascal was certainly not going to edit Fermat's work and after this flash of desire to have
his  work published Fermat  again  gave up the  idea.  He went  further  than ever  with his  challenge
problems however:

Two mathematical problems posed as insoluble to French, English, Dutch and all mathematicians
of Europe by Monsieur de Fermat, Councillor of the King in the Parliament of Toulouse. 

His  problems  did  not  prompt  too  much  interest  as  most  mathematicians  seemed  to  think  that
number  theory  was  not  an  important  topic.  The  second  of  the  two  problems,  namely  to  find  all
solutions of  N x2 + 1 = y2   for N  not a square, was however solved by Wallis and Brouncker and
they developed continued fractions in their solution. Brouncker produced rational solutions which
led  to  arguments.  Frenicle  de  Bessy  was  perhaps  the  only  mathematician  at  that  time  who  was
really interested in number theory but he did not have sufficient mathematical talents to allow him
to make a significant contribution.

 

Fermat posed further problems, namely that the sum of two cubes cannot be a cube (a special case
of Fermat's  Last  Theorem which may indicate  that  by this  time Fermat realised  that  his  proof of
the  general  result  was  incorrect),  that  there  are  exactly  two  integer  solutions  of  x2 + 4 = y   and
that  the  equation   x2 + 2 = y3   has  only  one  integer  solution.  He  posed  problems  directly  to  the
English.  Everyone  failed  to  see  that  Fermat  had  been  hoping  his  specific  problems  would  lead
them to discover, as he had done, deeper theoretical results. 

Around this time one of Descartes' students was collecting his correspondence for publication and
he turned to Fermat for help with the Fermat - Descartes correspondence. This led Fermat to look
again  at  the  arguments  he  had  used  20  years  before  and  he  looked  again  at  his  objections  to
Descartes'  optics.  In  particular  he  had  been  unhappy  with  Descartes'  description  of  refraction of
light and he now settled on a principle which did in fact yield the sine law of refraction that Snell
and  Descartes  had  proposed.  However  Fermat  had  now deduced  it  from a  fundamental  property
that  he  proposed,  namely that  light  always  follows the  shortest  possible  path.  Fermat's  principle,
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now  one  of  the  most  basic  properties  of  optics,  did  not  find  favour  with  mathematicians  at  the
time. 

In 1656 Fermat had started a correspondence with Huygens. This grew out of Huygens interest in
probability  and  the  correspondence  was  soon  manipulated  by  Fermat  onto  topics  of  number
theory.  This  topic  did  not  interest  Huygens  but  Fermat  tried  hard  and  in  New  Account  of
Discoveries in the Science of Numbers  sent to Huygens via Carcavi in 1659, he revealed more of
his methods than he had done to others. 

Fermat described his method of infinite descent and gave an example on how it could be used to
prove  that  every  number  of  the  form  4 k + 1   could  be  written  as  the  sum of  two  squares.  For
suppose some number of the form  4 k + 1   could not be written as the sum of two squares. Then
there is a smaller number of the form  4 k + 1   which cannot be written as the sum of two squares.
Continuing the argument will lead to a contradiction. What Fermat failed to explain in this letter is
how the smaller number is constructed from the larger. One assumes that Fermat did know how to
make this  step  but  again  his  failure  to  disclose  the method made mathematicians lose  interest.  It
was not until Euler took up these problems that the missing steps were filled in. 

Fermat is described as 

Secretive  and  taciturn,  he  did  not  like  to  talk  about  himself  and  was  loath  to  reveal  too  much
about  his  thinking.  ...  His  thought,  however  original  or  novel,  operated  within  a  range  of
possibilities limited by that [1600-1650] time and that [France] place. 

Carl B Boyer says:

Recognition  of  the  significance  of  Fermat's  work  in  analysis  was  tardy,  in  part  because  he
adhered  to  the  system  of  mathematical  symbols  devised  by  Francois  Viète,  notations  that
Descartes's  Géométrie  had  rendered  largely  obsolete.  The  handicap  imposed  by  the  awkward
notations  operated  less  severely  in  Fermat's  favourite  field  of  study,  the  theory  of  numbers,  but
here, unfortunately, he found no correspondent to share his enthusiasm. 

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Fermat.html
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Evariste Galois

Born: 25 Oct 1811 in Bourg La Reine (near Paris), France

Died: 31 May 1832 in Paris, France

Famous for his contributions to group theory, Evariste Galois produced a method of determining
when a general equation could be solved by radicals.

Galois'  father  Nicholas  Gabriel  Galois  and  his  mother  Adelaide  Marie  Demante  were  both
intelligent  and well  educated in philosophy, classical  literature and religion.  However there is  no
sign of any mathematical ability in any of Galois' family. His mother served as Galois' sole teacher
until  he was 12 years old. She taught him Greek, Latin and religion where she imparted her own
scepticism to her son. Galois' father was an important man in the community and in 1815 he was
elected mayor of Bourg-la-Reine. 

The starting point of the historical events which were to play a major role in Galois' life is surely
the storming of the Bastille on 14 July 1789. From this point the monarchy of Louis 16th was in
major difficulties  as the majority of Frenchmen composed their  differences and united behind an
attempt to destroy the privileged establishment of the church and the state. 

Despite  attempts  at  compromise  Louis  16th  was  tried  after  attempting  to  flee  the  country.
Following  the  execution  of  the  King  on  21  January  1793  there  followed  a  reign  of  terror  with
many  political  trials.  By  the  end  of  1793  there  were  4595  political  prisoners  held  in  Paris.
However  France  began  to  have  better  times  as  their  armies,  under  the  command  of  Napoleon
Bonaparte, won victory after victory. 

Napoleon became 1st  Consul in 1800 and then Emperor in 1804. The French armies continued a
conquest  of  Europe  while  Napoleon's  power  became  more  and  more  secure.  In  1811  Napoleon
was at the height of his power. By 1815 Napoleon's rule was over. The failed Russian campaign of
1812 was followed by defeats, the Allies entering Paris on 31 March 1814. Napoleon abdicated on
6 April  and Louis XVIII was installed as King by the Allies.  The year 1815 saw the famous one
hundred  days.  Napoleon  entered  Paris  on  March  20,  was  defeated  at  Waterloo  on  18  June  and
abdicated  for  the  second  time  on  22  June.  Louis  XVIII  was  reinstated  as  King  but  died  in
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September 1824, Charles X becoming the new King. 

Galois was by this time at school. He had enrolled at the Lycée of Louis-le-Grand as a boarder in
the  4  th  class  on 6  October  1823.  Even during  his  first  term there  was a  minor  rebellion  and 40
pupils  were  expelled  from  the  school.  Galois  was  not  involved  and  during  1824-25  his  school
record  is  good  and  he  received  several  prizes.  However  in  1826  Galois  was  asked  to  repeat  the
year because his work in rhetoric was not up to the required standard. 

February  1827 was a  turning point  in  Galois'  life.  He enrolled  in  his  first  mathematics class,  the
class of M. Vernier. He quickly became absorbed in mathematics and his director of studies wrote:

It  is  the  passion  for  mathematics  which  dominates  him,  I  think  it  would  be  best  for  him  if  his
parents  would allow him to study nothing but  this,  he is  wasting his  time here and does nothing
but torment his teachers and overwhelm himself with punishments. 

Galois'  school  reports  began  to  describe  him  as  singular,  bizarre,  original  and  closed  .  It  is
interesting  that  perhaps  the  most  original  mathematician  who  ever  lived  should  be  criticised  for
being original. M. Vernier reported however 

Intelligence, marked progress but not enough method. 

In  1828  Galois  took  the  examination  of  the  Ecole  Polytechnique  but  failed.  It  was  the  leading
University  of  Paris  and  Galois  must  have  wished  to  enter  it  for  academic  reasons.  However,  he
also wished to enter the this school because of the strong political movements that existed among
its students, since Galois followed his parents example in being an ardent republican. 

Back at  Louis-le-Grand,  Galois  enrolled  in  the  mathematics  class  of  Louis  Richard.  However  he
worked  more  and  more  on  his  own  researches  and  less  and  less  on  his  schoolwork.  He  studied
Legendre's Géométrie and the treatises of Lagrange. As Richard was to report 

This student works only in the highest realms of mathematics. 

In  April  1829  Galois  had  his  first  mathematics  paper  published  on  continued  fractions  in  the
Annales de mathématiques . On 25 May and 1 June he submitted articles on the algebraic solution
of equations to the Académie des Sciences. Cauchy was appointed as referee of Galois' paper. 
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Tragedy was to strike Galois for on 2 July 1829 his father committed suicide. The priest of Bourg-
la-Reine  forged  Mayor  Galois'  name  on  malicious  forged  epigrams  directed  at  Galois'  own
relatives.  Galois'  father  was  a  good  natured  man  and  the  scandal  that  ensued  was  more  than  he
could  stand.  He  hanged  himself  in  his  Paris  apartment  only  a  few  steps  from  Louis-le-Grand
where  his  son  was  studying.  Galois  was  deeply  affected  by  his  father's  death  and  it  greatly
influenced the direction his life was to take. 

A  few  weeks  after  his  father's  death,  Galois  presented  himself  for  examination  for  entry  to  the
Ecole Polytechnique for the second time. For the second time he failed, perhaps partly because he
took it  under  the worst  possible  circumstances  so  soon after  his  father's  death,  partly  because he
was never good at communicating his deep mathematical ideas. Galois therefore resigned himself
to enter the Ecole Normale, which was an annex to Louis-le-Grand, and to do so he had to take his
Baccalaureate  examinations,  something  he  could  have  avoided  by  entering  the  Ecole
Polytechnique. 

He passed, receiving his degree on 29 December 1829. His examiner in mathematics reported: 

This  pupil  is  sometimes  obscure  in  expressing  his  ideas,  but  he  is  intelligent  and  shows  a
remarkable spirit of research.

 

His literature examiner reported:

This is the only student who has answered me poorly, he knows absolutely nothing. I was told that
this student has an extraordinary capacity for mathematics. This astonishes me greatly, for, after
his examination, I believed him to have but little intelligence. 

Galois  sent  Cauchy  further  work  on  the  theory  of  equations,  but  then  learned  from  Bulletin  de
Férussac  of a posthumous article  by Abel which overlapped with a part  of his work. Galois then
took Cauchy's advice and submitted a new article On the condition that an equation be soluble by
radicals  in  February  1830.  The  paper  was  sent  to  Fourier,  the  secretary  of  the  Academy,  to  be
considered for the Grand Prize in mathematics. Fourier died in April 1830 and Galois' paper was
never subsequently found and so never considered for the prize.

 

Galois,  after  reading  Abel  and  Jacobi's  work,  worked  on  the  theory  of  elliptic  functions  and
abelian  integrals.  With  support  from  Jacques  Sturm,  he  published  three  papers  in  Bulletin  de
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Férussac  in  April  1830.  However,  he  learnt  in  June  that  the  prize  of  the  Academy  would  be
awarded the Prize jointly to Abel (posthumously) and to Jacobi, his own work never having been
considered. 

July 1830 saw a revolution. Charles 10th fled France. There was rioting in the streets of Paris and
the  director  of  École  Normale,  M.  Guigniault,  locked  the  students  in  to  avoid  them  taking  part.
Galois tried to scale the wall to join the rioting but failed. In December 1830 M. Guigniault wrote
newspaper  articles  attacking  the  students  and  Galois  wrote  a  reply  in  the  Gazette  des  Écoles  ,
attacking  M.  Guigniault  for  his  actions  in  locking  the  students  into  the  school.  For  this  letter
Galois was expelled and he joined the Artillery of the National Guard, a Republican branch of the
militia. On 31 December 1830 the Artillery of the National Guard was abolished by Royal Decree
since the new King Louis-Phillipe felt it was a threat to the throne. 

Two minor publications, an abstract in Annales de Gergonne (December 1830) and a letter on the
teaching of science in the Gazette des Écoles  ( 2 January 1831) were the last publications during
his  life.  In  January  1831  Galois  attempted  to  return  to  mathematics.  He  organised  some
mathematics classes in higher algebra which attracted 40 students to the first meeting but after that
the  numbers  quickly  fell  off.  Galois  was  invited  by  Poisson  to  submit  a  third  version  of  his
memoir on equation to the Academy and he did so on 17 January. 

On 18 April Sophie Germain wrote a letter to her friend the mathematician Libri which describes
Galois' situation. 

…  the  death  of  M.  Fourier,  have  been  too  much  for  this  student  Galois  who,  in  spite  of  his
impertinence,  showed  signs  of  a  clever  disposition.  All  this  has  done  so  much  that  he  has  been
expelled form École Normale. He is without money... They say he will go completely mad. I fear
this is true.

 

Late in 1830 19 officers from the Artillery of the National Guard were arrested and charged with
conspiracy to overthrow the government. They were acquitted and on 9 May 1831 200 republicans
gathered for a dinner to celebrate the acquittal. During the dinner Galois raised his glass and with
an  open  dagger  in  his  hand  appeared  to  make threats  against  the  King,  Louis-Phillipe.  After  the
dinner  Galois  was arrested  and held  in Sainte-Pélagie  prison.  At his  trial  on 15 June his defence
lawyer claimed that Galois had said

 

To Louis-Phillipe, if he betrays
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but the last words had been drowned by the noise. Galois, rather surprisingly since he essentially
repeated the threat from the dock, was acquitted.

 

The 14th July was Bastille Day and Galois was arrested again. He was wearing the uniform of the
Artillery  of  the  National  Guard,  which  was  illegal.  He  was  also  carrying  a  loaded  rifle,  several
pistols and a dagger. Galois was sent back to Sainte-Pélagie prison. While in prison he received a
rejection of his memoir. Poisson had reported that:- 

His argument is neither sufficiently clear nor sufficiently developed to allow us to judge its rigour. 

He  did,  however,  encourage  Galois  to  publish  a  more  complete  account  of  his  work.  While  in
Sainte-Pélagie  prison  Galois  attempted  to  commit  suicide  by  stabbing  himself  with  a  dagger  but
the other prisoners prevented him. While drunk in prison he poured out his soul

 

Do you know what I lack my friend? I confide it only to you: it is someone whom I can love and
love only in spirit. I have lost my father and no one has ever replaced him, do you hear me...?

 

In March 1832 a cholera epidemic swept Paris and prisoners, including Galois, were transferred to
the  pension  Sieur  Faultrier.  There  he  apparently  fell  in  love with  Stephanie-Felice  du Motel,  the
daughter  of  the  resident  physician.  After  he  was  released  on  29  April  Galois  exchanged  letters
with Stephanie, and it is clear that she tried to distance herself from the affair. 

The name Stephanie appears several times as a marginal note in one of Galois' manuscripts. 

Galois  fought  a  duel  with  Perscheux  d'Herbinville  on  30 May,  the  reason  for  the  duel  not  being
clear but certainly linked with Stephanie. 

You can see a note in the margin of the manuscript that Galois wrote the night before the duel. It
reads 

There is something to complete in this demonstration. I do not have the time. (Author's note).

 

It  is  this  which  has  led  to  the  legend  that  he  spent  his  last  night  writing  out  all  he  knew  about
group theory. This story appears to have been exaggerated. 
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Galois  was  wounded  in  the  duel  and  was  abandoned  by  d'Herbinville  and  his  own  seconds  and
found by a peasant. He died in Cochin hospital on 31 May and his funeral was held on 2 June. It
was the focus for a Republican rally and riots followed which lasted for several days. 

Galois'  brother  and his  friend Chevalier  copied his  mathematical  papers  and sent  them to Gauss,
Jacobi and others. It had been Galois' wish that Jacobi and Gauss should give their opinions on his
work.  No record  exists  of  any comment  these  men made.  However  the  papers  reached  Liouville
who, in September 1843, announced to the Academy that he had found in Galois' papers a concise
solution 

...as  correct  as  it  is  deep of  this  lovely  problem: Given an irreducible  equation of  prime degree,
decide whether or not it is soluble by radicals.

 

Liouville published these papers of Galois in his Journal in 1846. 

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Galois.html

Johann Carl Friedrich Gauss

Born: 30 April 1777 in Brunswick, Duchy of Brunswick (now Germany)

Died: 23 Feb 1855 in Göttingen, Hanover (now Germany)

Carl  Friedrich  Gauss  worked  in  a  wide  variety  of  fields  in  both  mathematics  and  physics
incuding  number  theory,  analysis,  differential  geometry,  geodesy,  magnetism,  astronomy  and
optics. His work has had an immense influence in many areas.

At the age of seven, Carl Friedrich started elementary school, and his potential was noticed almost
immediately.  His  teacher,  Büttner,  and  his  assistant,  Martin  Bartels,  were  amazed  when  Gauss
summed the  integers  from 1  to  100  instantly  by  spotting  that  the  sum was  50  pairs  of  numbers
each pair summing to 101. 
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In 1788 Gauss began his education at the Gymnasium with the help of Büttner and Bartels, where
he  learnt  High  German  and  Latin.  After  receiving  a  stipend  from  the  Duke  of  Brunswick-
Wolfenbüttel,  Gauss  entered  Brunswick  Collegium  Carolinum  in  1792.  At  the  academy  Gauss
independently  discovered  Bode's  law,  the  binomial  theorem and the  arithmetic-  geometric  mean,
as well as the law of quadratic reciprocity and the prime number theorem. 

In  1795  Gauss  left  Brunswick  to  study  at  Göttingen  University.  Gauss's  teacher  there  was
Kaestner,  whom Gauss  often  ridiculed.  His  only  known  friend  amongst  the  students  was  Farkas
Bolyai. They met in 1799 and corresponded with each other for many years. 

Gauss  left  Göttingen  in  1798  without  a  diploma,  but  by  this  time  he  had  made  one  of  his  most
important discoveries - the construction of a regular 17-gon by ruler and compasses This was the
most  major  advance  in  this  field  since  the  time  of  Greek  mathematics  and  was  published  as
Section VII of Gauss's famous work, Disquisitiones Arithmeticae. 

Gauss  returned  to  Brunswick  where  he  received  a  degree  in  1799.  After  the  Duke of  Brunswick
had agreed to continue Gauss's stipend,  he requested that Gauss submit a doctoral  dissertation to
the  University  of  Helmstedt.  He  already  knew Pfaff,  who  was  chosen  to  be  his  advisor.  Gauss's
dissertation was a discussion of the fundamental theorem of algebra. 

With his stipend to support him, Gauss did not need to find a job so devoted himself to research.
He  published  the  book  Disquisitiones  Arithmeticae  in  the  summer  of  1801.  There  were  seven
sections, all but the last section, referred to above, being devoted to number theory. 

In June 1801, Zach, an astronomer whom Gauss had come to know two or three years previously,
published the orbital positions of Ceres, a new 'small planet' which was discovered by G Piazzi, an
Italian  astronomer  on  1  January,  1801.  Unfortunately,  Piazzi  had  only  been  able  to  observe  9
degrees of its orbit before it disappeared behind the Sun. Zach published several predictions of its
position,  including  one  by  Gauss  which  differed  greatly  from  the  others.  When  Ceres  was
rediscovered  by  Zach  on  7  December  1801  it  was  almost  exactly  where  Gauss  had  predicted.
Although  he  did  not  disclose  his  methods  at  the  time,  Gauss  had  used  his  least  squares
approximation method. 

In  June  1802  Gauss  visited  Olbers  who  had  discovered  Pallas  in  March  of  that  year  and  Gauss
investigated  its  orbit.  Olbers  requested  that  Gauss  be  made  director  of  the  proposed  new
observatory in Göttingen, but no action was taken. Gauss began corresponding with Bessel, whom
he did not meet until 1825, and with Sophie Germain. 
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Gauss  married  Johanna  Ostoff  on  9  October,  1805.  Despite  having  a  happy  personal  life  for  the
first  time,  his  benefactor,  the  Duke  of  Brunswick,  was  killed  fighting  for  the  Prussian  army.  In
1807 Gauss left Brunswick to take up the position of director of the Göttingen observatory. 

Gauss  arrived  in  Göttingen  in  late  1807.  In  1808  his  father  died,  and  a  year  later  Gauss's  wife
Johanna  died  after  giving  birth  to  their  second  son,  who  was  to  die  soon  after  her.  Gauss  was
shattered and wrote to Olbers asking him give him a home for a few weeks, 

to gather new strength in the arms of  your friendship - strength for a life  which is only valuable
because it belongs to my three small children.

 

Gauss  was  married  for  a  second  time  the  next  year,  to  Minna  the  best  friend  of  Johanna,  and
although they had three children, this marriage seemed to be one of convenience for Gauss.

 

Gauss's  work  never  seemed  to  suffer  from  his  personal  tragedy.  He  published  his  second  book,
Theoria  motus  corporum  coelestium  in  sectionibus  conicis  Solem  ambientium,  in  1809,  a  major
two volume treatise on the motion of celestial bodies. In the first volume he discussed differential
equations,  conic  sections  and  elliptic  orbits,  while  in  the  second  volume,  the  main  part  of  the
work,  he  showed  how  to  estimate  and  then  to  refine  the  estimation  of  a  planet's  orbit.  Gauss's
contributions  to  theoretical  astronomy  stopped  after  1817,  although  he  went  on  making
observations until the age of 70. 

Much of Gauss's time was spent on a new observatory, completed in 1816, but he still  found the
time to work on other subjects. His publications during this time include Disquisitiones generales
circa  seriem  infinitam,  a  rigorous  treatment  of  series  and  an  introduction  of  the  hypergeometric
function,  Methodus  nova  integralium  valores  per  approximationem  inveniendi,  a  practical  essay
on  approximate  integration,  Bestimmung  der  Genauigkeit  der  Beobachtungen,  a  discussion of
statistical  estimators,  and  Theoria  attractionis  corporum  sphaeroidicorum  ellipticorum
homogeneorum methodus  nova  tractata.  The  latter  work  was  inspired  by  geodesic  problems  and
was  principally  concerned  with  potential  theory.  In  fact,  Gauss  found  himself  more  and  more
interested in geodesy in the 1820's. 

Gauss  had  been asked in  1818 to  carry  out  a  geodesic  survey of  the  state  of  Hanover  to  link  up
with the existing Danish grid. Gauss was pleased to accept and took personal charge of the survey,
making measurements during the day and reducing them at night,  using his extraordinary mental
capacity for calculations.  He regularly  wrote to Schumacher,  Olbers  and Bessel,  reporting on his
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progress and discussing problems. 

Because  of  the  survey,  Gauss  invented  the  heliotrope  which worked  by reflecting  the  Sun's  rays
using a design of mirrors and a small telescope. However, inaccurate base lines were used for the
survey  and  an  unsatisfactory  network  of  triangles.  Gauss  often  wondered  if  he  would  have  been
better  advised  to  have  pursued  some  other  occupation  but  he  published  over  70  papers  between
1820 and 1830. 

In 1822 Gauss won the Copenhagen University Prize with Theoria attractionis... together with the
idea of mapping one surface onto another so that the two are similar in their smallest parts . This
paper  was  published  in  1825  and  led  to  the  much  later  publication  of  Untersuchungen  über
Gegenstände  der  Höheren  Geodäsie  (1843  and  1846).  The  paper  Theoria  combinationis
observationum  erroribus  minimis  obnoxiae  (1823),  with  its  supplement  (1828),  was  devoted  to
mathematical statistics, in particular to the least squares method. 

From the  early  1800's  Gauss  had  an  interest  in  the  question  of  the  possible  existence  of  a  non-
Euclidean  geometry.  He  discussed  this  topic  at  length  with  Farkas  Bolyai  and  in  his
correspondence  with  Gerling  and  Schumacher.  In  a  book  review  in  1816  he  discussed  proofs
which  deduced  the  axiom  of  parallels  from  the  other  Euclidean  axioms,  suggesting  that  he
believed  in  the  existence  of  non-Euclidean  geometry,  although  he  was  rather  vague.  Gauss
confided in Schumacher, telling him that he believed his reputation would suffer if he admitted in
public that he believed in the existence of such a geometry. 

In 1831 Farkas Bolyai sent to Gauss his son János Bolyai's work on the subject. Gauss replied 

to praise it would mean to praise myself.

 

Again, a decade later, when he was informed of Lobachevsky's work on the subject, he praised its
"genuinely geometric" character, while in a letter to Schumacher in 1846, states that he

 

had the same convictions for 54 years 

indicating that he had known of the existence of a non-Euclidean geometry since he was 15 years
of age (this seems unlikely).
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Gauss  had  a  major  interest  in  differential  geometry,  and  published  many  papers  on  the  subject.
Disquisitiones generales circa superficies curva (1828) was his most renowned work in this field.
In  fact,  this  paper  rose  from  his  geodesic  interests,  but  it  contained  such  geometrical  ideas  as
Gaussian curvature. The paper also includes Gauss's famous theorema egregrium: 

If an area in E3  can be developed (i.e. mapped isometrically) into another area of E3 , the values of
the Gaussian curvatures are identical in corresponding points.

 

The period 1817-1832 was a particularly distressing time for Gauss. He took in his sick mother in
1817, who stayed until her death in 1839, while he was arguing with his wife and her family about
whether they should go to Berlin. He had been offered a position at Berlin University and Minna
and her family were keen to move there. Gauss, however, never liked change and decided to stay
in Göttingen. In 1831 Gauss's second wife died after a long illness. 

In  1831,  Wilhelm Weber  arrived  in  Göttingen  as  physics  professor  filling  Tobias  Mayer's  chair.
Gauss had known Weber since 1828 and supported his appointment. Gauss had worked on physics
before 1831, publishing Uber ein neues allgemeines Grundgesetz der Mechanik, which contained
the  principle  of  least  constraint,  and  Principia  generalia  theoriae  figurae  fluidorum  in  statu
aequilibrii  which  discussed  forces  of  attraction.  These  papers  were  based  on  Gauss's  potential
theory,  which  proved  of  great  importance  in  his  work  on  physics.  He  later  came  to  believe  his
potential theory and his method of least squares provided vital links between science and nature. 

In 1832, Gauss and Weber began investigating the theory of terrestrial magnetism after Alexander
von  Humboldt  attempted  to  obtain  Gauss's  assistance  in  making  a  grid  of  magnetic  observation
points  around  the  Earth.  Gauss  was  excited  by  this  prospect  and  by  1840  he  had  written  three
important  papers  on  the  subject:  Intensitas  vis  magneticae  terrestris  ad  mensuram  absolutam
revocata  (1832),  Allgemeine  Theorie  des  Erdmagnetismus  (1839)  and  Allgemeine  Lehrsätze  in
Beziehung  auf  die  im  verkehrten  Verhältnisse  des  Quadrats  der  Entfernung  wirkenden
Anziehungs-  und  Abstossungskräfte  (1840).  These  papers  all  dealt  with  the  current  theories  on
terrestrial  magnetism,  including  Poisson's  ideas,  absolute  measure  for  magnetic  force  and  an
empirical definition of terrestrial magnetism. Dirichlet's principal was mentioned without proof. 

Allgemeine Theorie... showed that there can only be two poles in the globe and went on to prove
an  important  theorem,  which  concerned  the  determination  of  the  intensity  of  the  horizontal
component  of  the  magnetic  force  along  with  the  angle  of  inclination.  Gauss  used  the  Laplace
equation  to  aid  him  with  his  calculations,  and  ended  up  specifying  a  location  for  the  magnetic
South pole. 
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Humboldt  had  devised  a  calendar  for  observations  of  magnetic  declination.  However,  once
Gauss's  new  magnetic  observatory  (completed  in  1833  -  free  of  all  magnetic  metals)  had  been
built,  he  proceeded  to  alter  many  of  Humboldt's  procedures,  not  pleasing  Humboldt  greatly.
However, Gauss's changes obtained more accurate results with less effort. 

Gauss and Weber achieved much in their six years together. They discovered Kirchhoff's laws, as
well as building a primitive telegraph device which could send messages over a distance of 5000
ft.  However, this was just  an enjoyable pastime for Gauss. He was more interested in the task of
establishing  a  world-wide  net  of  magnetic  observation  points.  This  occupation  produced  many
concrete  results.  The  Magnetischer  Verein  and  its  journal  were  founded,  and  the  atlas of
geomagnetism was  published,  while  Gauss  and  Weber's  own  journal  in  which  their  results  were
published ran from 1836 to 1841. 

In 1837, Weber was forced to leave Göttingen when he became involved in a political dispute and,
from this time, Gauss's activity gradually decreased. He still produced letters in response to fellow
scientists'  discoveries  usually  remarking that  he  had  known the  methods for  years  but  had  never
felt  the  need  to  publish.  Sometimes  he  seemed  extremely  pleased  with  advances  made  by  other
mathematicians, particularly that of Eisenstein and of Lobachevsky. 

Gauss  spent  the  years  from 1845  to  1851  updating  the  Göttingen  University  widow's  fund.  This
work  gave  him  practical  experience  in  financial  matters,  and  he  went  on  to  make  his  fortune
through shrewd investments in bonds issued by private companies. 

Two of  Gauss's  last  doctoral  students  were  Moritz  Cantor  and Dedekind.  Dedekind wrote  a  fine
description of his supervisor 

...  usually  he  sat  in  a  comfortable  attitude,  looking  down,  slightly  stooped,  with  hands  folded
above  his  lap.  He  spoke  quite  freely,  very  clearly,  simply  and  plainly:  but  when  he  wanted  to
emphasise  a  new viewpoint  ...  then he  lifted  his  head,  turned to  one  of  those  sitting  next  to  him,
and  gazed  at  him  with  his  beautiful,  penetrating  blue  eyes  during  the  emphatic  speech.  ...  If  he
proceeded from an explanation of principles to the development of mathematical formulas, then he
got up, and in a stately very upright posture he wrote on a blackboard beside him in his peculiarly
beautiful  handwriting:  he  always  succeeded  through  economy  and  deliberate  arrangement  in
making  do  with  a  rather  small  space.  For  numerical  examples,  on  whose  careful  completion  he
placed special value, he brought along the requisite data on little slips of paper. 

Gauss presented his golden jubilee lecture in 1849, fifty years after his diploma had been granted

444 APPENDICES



by  Hemstedt  University.  It  was  appropriately  a  variation  on  his  dissertation  of  1799.  From  the
mathematical  community  only  Jacobi  and  Dirichlet  were  present,  but  Gauss  received  many
messages and honours.

 

From  1850  onwards  Gauss's  work  was  again  of  nearly  all  of  a  practical  nature  although  he  did
approve  Riemann's  doctoral  thesis  and  heard  his  probationary  lecture.  His  last  known  scientific
exchange was with Gerling. He discussed a modified Foucalt pendulum in 1854. He was also able
to attend the opening of the new railway link between Hanover and Göttingen, but this proved to
be his last outing. His health deteriorated slowly, and Gauss died in his sleep early in the morning
of 23 February, 1855. 

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Gauss.html

Karl Gustav Jacob Jacobi

Born: 10 Dec 1804 in Potsdam, Prussia (now Germany)

Died: 18 Feb 1851 in Berlin, Germany

Karl Jacobi founded the theory of elliptic functions.

Jacobi's father was a banker and his family were prosperous so he received a good education at the
University  of Berlin.  He obtained his  Ph.D. in 1825 and taught  mathematics at  the University of
Königsberg from 1826 until his death, being appointed to a chair in 1832.

 

He founded the  theory  of  elliptic  functions  based  on four  theta  functions.  His  Fundamenta  nova
theoria functionum ellipticarum  in 1829 and its later supplements made basic contributions to the
theory of elliptic functions. 

In 1834 Jacobi proved that if a single-valued function of one variable is doubly periodic then the
ratio of the periods is imaginary. This result prompted much further work in this area, in particular
by Liouville and Cauchy. 
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Jacobi carried out important research in partial differential equations of the first order and applied
them to the differential equations of dynamics. 

He also worked on determinants  and studied the functional determinant now called the Jacobian.
Jacobi was not the first to study the functional determinant which now bears his name, it appears
first  in  a  1815  paper  of  Cauchy.  However  Jacobi  wrote  a  long  memoir  De  determinantibus
functionalibus  in 1841 devoted to the this determinant. He proves, among many other things, that
if a set of n functions in n variables are functionally related then the Jacobian is identically zero,
while if the functions are independent the Jacobian cannot be identically zero. 

Jacobi's  reputation  as  an  excellent  teacher  attracted  many  students.  He  introduced  the  seminar
method to teach students the latest advances in mathematics.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Jacobi.html

Adrien-Marie Legendre

Born: 18 Sept 1752 in Paris, France

Died: 10 Jan 1833 in Paris, France

Legendre's  major  work  on  elliptic  integrals  provided  basic  analytical  tools  for  mathematical
physics.

Legendre was educated at Collège Mazarin in Paris. From 1775 to 1780 he taught with Laplace at
École  Militaire  where  his  appointment  was  made  on  the  advice  of  d'Alembert.  Legendre  was
appointed to the Académie des Sciences in 1783 and remained there until it closed in 1793.

In 1782 Legendre determined the attractive force for certain solids of revolution by introducing an
infinite series of polynomials Pn  which are now called Legendre polynomials. 
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His major work on elliptic functions in Exercises du Calcul Intégral (1811,1817,1819) and elliptic
integrals in Traité des Fonctions Elliptiques  (1825,1826,1830) provided basic analytical  tools for
mathematical physics. 

In his famous textbook Éléments de géométrie (1794) he gave a simple proof that p is irrational as
well  as  the  first  proof  that  p2  is  irrational  and  conjectured  that  is  not  the  root  of  any  algebraic
equation of finite degree with rational coefficients i.e. is not algebraic. 

His attempt to prove the parallel postulate extended over 40 years. 

In 1824 Legendre refused to vote for the government's candidate for Institut National. Because of
this his pension was stopped and he died in poverty. Abel wrote in October 1826 

Legendre is an extremely amiable man, but unfortunately as old as the stones. 

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Legendre.html

August Ferdinand Möbius

Born: 17 Nov 1790 in Schulpforta, Saxony (now Germany)

Died: 26 Sept 1868 in Leipzig, Germany

August  Möbius  is  best  known  for  his  work  in  topology,  especially  for  his  conception  of  the
Möbius strip, a two dimensional surface with only one side.

August was the only child of Johann Heinrich Möbius, a dancing teacher, who died when August
was three years old. His mother was a descendant of Martin Luther. Möbius was educated at home
until  he  was  13  years  old  when,  already  showing  an  interest  in  mathematics,  he  went  to  the
College in Schulpforta in 1803.

 

In 1809 Möbius graduated from his College and he became a student at the University of Leipzig.
His family had wanted him study law and indeed he started to study this topic. However he soon
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discovered that it was not a subject that gave him satisfaction and in the middle of his first year of
study he decided to follow him own preferences rather than those of his family. He therefore took
up the study of mathematics, astronomy and physics. 

The  teacher  who  influenced  Möbius  most  during  his  time  at  Leipzig  was  his  astronomy  teacher
Karl Mollweide. Although an astronomer, Mollweide is well known for a number of mathematical
discoveries  in particular  the Mollweide  trigonometric  relations  he discovered  in 1807-09 and the
Mollweide map projection which preserves angles and so is a conformal projection. 

In 1813 Möbius travelled to Göttingen where he studied astronomy under Gauss. Now Gauss was
the director  of the Observatory in Göttingen but of course the greatest  mathematician of his  day,
so again Möbius studied under an astronomer whose interests were mathematical. From Göttingen
Möbius  went  to  Halle  where  he  studied  under  Johann  Pfaff,  Gauss's  teacher.  Under  Pfaff  he
studied  mathematics  rather  than  astronomy so  by  this  stage  Möbius  was  very  firmly  working  in
both fields. 

In 1815 Möbius wrote his doctoral thesis on The occultation of fixed stars and began work on his
Habilitation thesis.  In fact while he was writing this thesis there was an attempt to draft him into
the Prussian army. Möbius wrote 

This is the most horrible idea I have heard of, and anyone who shall venture, dare, hazard, make
bold and have the audacity to propose it will not be safe from my dagger.

 

He  avoided  the  army  and  completed  his  Habilitation  thesis  on  Trigonometrical  equations.
Mollweide's  interest  in  mathematics was such that  he had moved from astronomy to the chair of
mathematics at Leipzig so Möbius had high hopes that he might be appointed to a professorship in
astronomy at Leipzig. Indeed he was appointed to the chair of astronomy and higher mechanics at
the  University  of  Leipzig  in  1816.  His  initial  appointment  was  as  Extraordinary  Professor  and it
was an appointment which came early in his career.

However  Möbius  did  not  receive  quick  promotion to  full  professor.  It  would appear  that  he  was
not a particularly good lecturer and this made his life difficult since he did not attract fee paying
students  to  his  lectures.  He  was  forced  to  advertise  his  lecture  courses  as  being  free  of  charge
before students thought his courses worth taking. 

He was offered a post as an astronomer in Greifswald in 1916 and then a post as a mathematician
at  Dorpat  in  1819.  He  refused  both,  partly  through  his  belief  in  the  high  quality  of  Leipzig
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University,  partly  through  his  loyalty  to  Saxony.  In  1825  Mollweide  died  and  Möbius  hoped  to
transfer to his chair of mathematics taking the route Mollweide had taken earlier. However it was
not to be and another mathematician was preferred for the post. 

By 1844 Möbius's reputation as a researcher led to an invitation from the University of Jena and at
this stage the University of Leipzig gave him the Full Professorship in astronomy which he clearly
deserved. 

From the time of his first appointment at Leipzig Möbius had also held the post of Observer at the
Observatory at  Leipzig.  He was involved the rebuilding of the Observatory and, from 1818 until
1821, he supervised the project. He visited several other observatories in Germany before making
his  recommendations  for  the  new  Observatory.  In  1820  he  married  and  he  was  to  have  one
daughter and two sons. In 1848 he became director of the Observatory. 

In  1844  Grassmann  visited  Möbius.  He  asked  Möbius  to  review  his  major  work  Die  lineale
Ausdehnundslehre, ein neuer Zweig der Mathematik  (1844) which contained many results similar
to Möbius's work. However Möbius did not understand the significance of Grassmann's work and
did  not  review  it.  He  did  however  persuade  Grassmann  to  submit  work  for  a  prize  and,  after
Grassmann won the prize, Möbius did write a review of his winning entry in 1847. 

Although  his  most  famous  work  is  in  mathematics,  Möbius  did  publish  important  work  on
astronomy.  He  wrote  De Computandis  Occultationibus  Fixarum per  Planetas  (1815)  concerning
occultations  of  the  planets.  He  also  wrote  on  the  principles  of  astronomy,  Die  Hauptsätze  der
Astronomie (1836) and on celestial mechanics Die Elemente der Mechanik des Himmels (1843). 

Möbius's  mathematical  publications,  although  not  always  original,  were  effective  and  clear
presentations. His contributions to mathematics are described by his biographer Richard Baltzer in
as follows:

The inspirations  for  his  research  he  found mostly  in  the  rich  well  of  his  own original  mind.  His
intuition,  the  problems  he  set  himself,  and  the  solutions  that  he  found,  all  exhibit  something
extraordinarily  ingenious,  something  original  in  an  uncontrived  way.  He  worked  without
hurrying,  quietly  on  his  own.  His  work  remained  almost  locked  away  until  everything  had  been
put  into  its  proper  place.  Without  rushing,  without  pomposity  and  without  arrogance,  he  waited
until the fruits of his mind matured. Only after such a wait did he publish his perfected works... 

Almost all Möbius's work was published in Crelle's Journal, the first journal devoted exclusively

Relevant Famous Mathematicians 449



to  publishing  mathematics.  Möbius's  1827  work  Der  barycentrische  Calkul,  on  analytical
geometry, became a classic and includes many of his results on projective and affine geometry. In
it  he  introduced  homogeneous  coordinates  and  also  discussed  geometric  transformations,  in
particular  projective  transformations.  He  introduced  a  configuration  now  called  a  Möbius  net,
which was to play an important role in the development of projective geometry.

 

Möbius's  name is  attached  to  many important  mathematical  objects  such  as  the  Möbius  function
which he introduced in the 1831 paper Uber eine besondere Art von Umkehrung der Reihen  and
the Möbius inversion formula. 

In 1837 he published Lehrbuch der Statik which gives a geometric treatment of statics. It led to the
study of systems of lines in space. 

Before the question on the four colouring of maps had been asked by Francis Guthrie, Möbius had
posed the following, rather easy, problem in 1840. 

There was once a king with five sons. In his will he stated that on his death his kingdom should be
divided  by  his  sons  into  five  regions  in  such  a  way  that  each  region  should  have  a  common
boundary with the other four. Can the terms of the will be satisfied?

 

The answer, of course, is negative and easy to show. However it does illustrate Möbius's interest
in topological ideas, an area in which he most remembered as a pioneer. In a memoir, presented to
the Académie des Sciences and only discovered after his death, he discussed the properties of one-
sided  surfaces  including  the  Möbius  strip  which  he  had  discovered  in  1858.  This  discovery  was
made as  Möbius  worked  on  a  question  on  the  geometric  theory  of  polyhedra  posed by the  Paris
Academy.

 

Although we know this as a Möbius strip today it was not Möbius who first described this object,
rather  by  any  criterion,  either  publication  date  or  date  of  first  discovery,  precedence  goes  to
Listing. 

A  Möbius  strip  is  a  two-dimensional  surface  with  only  one  side.  It  can  be  constructed  in  three
dimensions as follows. Take a rectangular strip of paper and join the two ends of the strip together
so that it has a 180 degree twist. It is now possible to start at a point A on the surface and trace out
a path that passes through the point which is apparently on the other side of the surface from A.
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The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Mobius.html

Joseph Henry Maclagen Wedderburn

Born: 2 Feb 1882 in Forfar, Angus, Scotland 

Died: 9 Oct 1948 in Princeton, New Jersey, USA

Joseph Wedderburn made important advances in the theory of rings, algebras and matrix theory.

He entered Edinburgh University in 1898, obtaining a degree in mathematics in 1903. Wedderburn
then  pursued  postgraduate  studies  in  Germany  spending  1903-1904  at  the  University  of  Leipzig
and then a semester at the University of Berlin. 

He  was  awarded  a  Carnegie  Scholarship  to  study  in  the  USA  and  he  spent  1904-1905  at  the
University of Chicago where he did joint work with Veblen. Returning to Scotland he worked for
4 years at Edinburgh as assistant to George Chrystal. From 1906 to 1908 he served as editor of the
Proceedings of the Edinburgh Mathematical Society. 

In  1909  Wedderburn  was  appointed  a  Preceptor  in  Mathematics  at  Princeton  where  he  joined
Veblen.  However  World  War  I  saw  Wedderburn  volunteer  for  the  British  Army  and  he  served,
partly in France, until the end of the war. 

On his return to Princeton he was soon promoted obtaining permanent tenure in 1921. He served
as  Editor  of  the  Annals  of  Mathematics  from  1912  to  1928.  From  about  the  end  of  this  period
Wedderburn  seemed  to  suffer  a  mild  nervous  breakdown  and  became  an  increasingly  solitary
figure. By 1945 the Priceton gave him early retirement in his own best interests. 

Wedderburn's best mathematical work was done before his war service. In 1905 he showed that a
non-commutatiove finite field could not exist. This had as a corollary the complete structure of all
finite  projective  geometries,  showing  that  in  all  these  geometries  Pascal's  theorem  is  a
consequence of Desargues' theorem. 
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In  1907 he published what  is  perhaps  his  most  famous paper  on the classification  of semisimple
algebras.  He showed that  every  semisimple algebra is  a direct  sum of simple algebras  and that  a
simple algebra was a matrix algebra over a division ring. 

In  total  he  published  around  40  works  mostly  on  rings  and  matrices.  His  most  famous  book  is
Lectures on Matrices (1934).

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Wedderburn.html
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Appendix D New Functions

É AddTwoLetters

AddTwoLetters adds two letters modulo 26, where a = 0, b = 1, …, z = 25.

AddTwoLetters@a_, b_D := FromCharacterCode@
Mod@HToCharacterCode@aD − 97L +HToCharacterCode@bD − 97L, 26D + 97D

Example:

AddTwoLetters@"b", "c"D
d

É CaesarCipher

Applies the Caesar cipher with a given key to a given plaintext of small letters.

CaesarCipher@plaintext_, key_D := FromCharacterCode@
Mod@ ToCharacterCode@plaintextD − 97 + key, 26D + 97D

Example:

plaintext = "typehereyourplaintextinsmallletters";
key = 24;
CaesarCipher@plaintext, keyD
rwncfcpcwmspnjyglrcvrglqkyjjjcrrcpq

É ColumnSwap

ColumnSwap interchanges columns i  and j  in matrix B .
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ColumnSwap@B_, i_, j_D := Module@8U, V<, U = Transpose@BD;
V = U@@iDD; U@@iDD = U@@jDD; U@@jDD = V; Transpose@UDD

Example:

Clear@a, b, c, d, e, f, g, h, i, j, k, lD; A =
ikjjjjjjj a b c d
e f g h
i j k l

y{zzzzzzz;
AA = ColumnSwap@A, 1, 4D; MatrixForm@AAD
ikjjjjjj d b c a
h f g e
l j k i

y{zzzzzz
É CoPrimeQ

CoPrime test if two integers are coprime, i.e. have gcd 1.

CoPrimeQ@n_Integer, m_IntegerD := GCD@n, mD == 1

Example:

CoPrimeQ@35, 91D
CoPrimeQ@36, 91D
False

True

É CoPrimes

CoPrimes  generates  a  list  of  all  integers  in  between  1  and  n  that  are  coprime  with  n .  In  other
words, it generates a reduced residue system modulo n .

Coprimes makes use of the function CoPrimeQ defined earlier.
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CoPrimes@n_Integer?PositiveD :=

Select@ Range@nD, CoPrimeQ@n, #D & D
Example:

CoPrimes@15D
81, 2, 4, 7, 8, 11, 13, 14<

É DivisorProduct

DivisorProduct calculates ¤d»n f @dD .

DivisorProduct@f_, n_D := Times @@ Hf ê@ Divisors@nDL
Example:

f@n_D := n
DivisorProduct@f, 25D
125

É DivisorSum

DivisorSum calculates ⁄d»n f @dD .

DivisorSum@f_, n_D := Plus @@ Hf ê@ Divisors@nDL
Example:

f@n_D := n
DivisorSum@f, 15D
24
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É EllipticAdd

EllipticAdd  evaluates  the  sum of  the  points  P  and  Q  on  an  elliptic  curve  over  p  given  by  the
equation y2 = x3 + a.x2 + b.x + c . Here p  is prime, p > 2.

EllipticAdd@p_, a_, b_, c_, P_List, Q_ListD :=

Module@8lam, x3, y3, P3<,
If@P == 8O<, R = Q, If@Q == 8O<, R = P, If@P@@1DD !=

Q@@1DD, 8lam = Mod@HQ@@2DD − P@@2DDL∗PowerMod@Q@@1DD − P@@1DD, p − 2, pD,
pD; x3 = Mod@lam2 − a −

P@@1DD − Q@@1DD, pD;
y3 = Mod@−Hlam Hx3 − P@@1DDL + P@@2DDL,

pD; R = 8x3, y3<<,
If@HP == QL fl HP != 8O<L,8lam = Mod@H3∗P@@1DD2 + 2 a∗P@@1DD + bL∗PowerMod@

2 P@@2DD, p − 2, pD, pD;
x3 = Mod@lam2 − a − P@@1DD − Q@@1DD,

pD;
y3 = Mod@−Hlam Hx3 − P@@1DDL + P@@2DDL,

pD; R = 8x3, y3<<, If@HP@@1DD == Q@@1DDL fl HP@@2DD != Q@@2DDL, R = 8O<DDDDD; RD
Example:

p = 11; a = 0; b = 6; c = 3;
EllipticAdd@p, a, b, c, 84, 6<, 89, 4<D
83, 9<
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É Entropy

Computes the entropy - p.log2 p - H1 - pL.log2H1 - pL  function.

Entropy@p_D = −p∗Log@2, pD − H1 − pL Log@2, 1 − pD;
Example:

Entropy@1ê2D
1

É ListQuadRes

ListQuadRes gives a listing of all the quadratic residues modulo p .

ListQuadRes@p_D :=

Select@Range@pD, JacobiSymbol@#1, pD == 1 &D
Example:

p = 17;
ListQuadRes@pD
81, 2, 4, 8, 9, 13, 15, 16<

É MultiEntropy

MultiEntropy evaluates -⁄i=1
n pi log2 pi  for a list 8p1, p2, …, pn< .

MultiEntropy@p_ListD := − ‚
i=1

Length@pD
p@@iDD ∗Log@2, p@@iDDD

Example:

p = 81ê4, 1ê4, 1 ê4, 1 ê4<;
MultiEntropy@pD
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É MultiplicativeOrder

MultiplicativeOrder  computes  the  multiplicative  order  of  an  integer  a  modulo  n ,  assuming  that
they are coprime. So, it outputs the smallest positive integer m  such that am ª 1 Hmod nL .

MultiplicativeOrder@a_, n_D :=

If@GCD@a, nD == 1, Divisors@ EulerPhi@nD D êê.8x_, y___< −> If@PowerMod@a, x, nD == 1, x, 8y<D D;
Example:

MultiplicativeOrder@2, 123456789123D
1285901112

É KnapsackForSuperIncreasingSequence

KnapsackForSuperIncreasingSequence  finds  the  80, 1<-solution  of  the  knapsack  problem⁄i=1
n xi.ai = S , where 8ai<i=1

n  is a superincreasing sequence. 

KnapsackForSuperIncreasingSequence@a_List, S_D :=

Module@8n, x, X, T<, n = Length@aD; X = 8<;
T = S; While@n ≥ 1,
If@T ≥ a@@nDD, x = 1, x = 0D;
T = T − x∗a@@nDD; X = Join@8x<, XD;
n = n − 1D; If@T != 0, Print@"No solution"D, XDD

Example:

a = 822, 89, 345, 987, 4567, 45678<; S = 5665;
X = KnapsackForSuperIncreasingSequence@a, SD
81, 1, 0, 1, 1, 0<

É RowSwap

RowSwaps interchanges rows i  and j  in matrix B .
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RowSwap@B_, i_, j_D :=

Module@8U, V<, U = B; V = U@@iDD; U@@iDD = U@@jDD; U@@jDD = V; UD
Example:

Clear@a, b, c, d, e, f, g, h, i, j, k, lD; A =

i
k
jjjjjjjjjjjj
a b c
d e f
g h i
j k l

y
{
zzzzzzzzzzzz;

AA = RowSwap@A, 1, 4D; MatrixForm@AAD
i
kjjjjjjjjjjj
j k l
d e f
g h i
a b c

y
{zzzzzzzzzzz
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Symbols and Notations
�a, b� greatest common divisor, 344, 345

�a, b� least common multiple, 345

� u





m
� Jacobi symbol, 364

R 	 S residue class ring, 388

�s�x�� ideal generated by s�x�, 398

� congruent, 352

�� v �� length of vector, 393

U� orthogonal complement, 394

%�pU �x�, GF�2m�� Goppa code, 236

� Möbius function, 378

��x� number of primes � x, 344

� Euler totient function, 354

� Legendre symbol, 364


(f) output space of LFSR, 35

AC(k) auto-correlation, 28

Dn redundancy, 79

d(u) density of a knapsack, 269

� elliptic curve, 213

gcd greatest common divisor, 344, 345

f 
 minimal characteristic polynomial, 36

f +k/ linear complexity, 52

F[x] ring of polynomials over F, 395

�q finite field of q elements, 387

GF Galois field, 387
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h+p/ entropy, 76

H(X) entropy, 76

H+X « Y/ conditional entropy, 81

Iq+n/ number of irreducible polynomials of degree n over ¬q, 401

I +n/ number of binary, irreducible polynomials of degree n, 401

I(X,Y) mutual information, 82

lcm least common multiple , 345, 344

Lk linear complexity, 52

5 non-privileged set (of an access system), 322

NQR quadratic non-residue , 364

PD probability of a successful deception, 293

PI probability of a successful impersonation attack, 293

PS probability of a successful substitution attack, 293

7 privileged set  (of an access system), 322

Q+d/ cyclotomic polynomial, 420

QR quadratic residue , 364

Tr trace function, 424

V(n,q) n-dimensional vectorspace over GF+q/, 309

w(x) weight of a vector, 242

Àp integers modulo p, 395
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Index

A

Abelian group, 385
access structure, 322

complete, 322
perfect , 322

A-code (for message authentication), 292
Johansson's construction of A-code from EC-code, 309
from orthogonal array, 305

active cryptanalist, 3
addition of points on an elliptic curve, 225
addition chain, 113
additive group, 385
address, 98
alphabet, 2
algorithm

addition of points on an elliptic curve , 225
Baby-step Giant-step (for taking discrete logarithms), 130
Berlekamp-Massey, 56
bit swapping, 255
Cohen and Lenstra (deterministic primality test 1), 194
continued fraction, 371
conversion from integer to binary weight k vector, 283
decryption of Chor-Rivest, 284
Euclid (simple version), 348

(extended version), 349
factoring algorithms

Pollard p-1, 159
Pollard-�, 161
quadratic sieve, 167
random squares method, 163
Gauss (to find a primitive element), 423

Gram-Schmidt (for orthogonalization process), 272
Huffman (for data compression), 93
index-calculus (for taking discrete logarithms), 135
Floyd's cycle-finding algorithm, 133
knapsack problem for superincreasing sequences, 264
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L3 (for a lattice basis reduction), 277
Lempel-Ziv (for data compression) , 97
message authentication code based on DES, 290
Miller-Rabin primality test, 189
Pohlig-Hellman, 121
Pollard p-1 (for factoring), 159
Pollard-� (for factoring), 161
Pollard-U (for taking discrete logarithms), 131

 primality tests
Cohen and Lenstra (deterministic primality test 1), 194
Miller-Rabin (probabilistic primality test), 189
Solovay and Strassen (probabilistic primality test), 188

quadratic sieve factoring algorithm, 167
Secure Hash (SHA), 119
Solovay and Strassen (probabilistic primality test), 188
taking square roots modulo a prime number, 200

anomalous curve, 235
associative (operation), 384
attack

chosen plaintext, 4
ciphertext only, 3
Coppersmith (on RSA with related messages), 171
exhaustive key search, 10
impersonation, 292
incidence of coincidences (of Vigenère cryptosystem), 16
known plaintext, 3
Kasiski's method (of Vigenère cryptosystem), 19
known plaintext, 3
L3 (on the knapsack system), 275
Lagarias and Odlyzko, 270
microwave attack (physical attack of RSA), 181
substitution, 292
timing (physical attack of RSA), 180
Wiener (of RSA with small d), 176

authentication, 1
code, 291

from error-correcting codes, 309
from orthogonal array, 305
from projective plane, 303

matrix, 291
message authentication code, 289
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authenticator, 292
auto-correlation, 28

in-phase, 29
out-of-phase, 29

B

Baby-step Giant-step (for taking discrete logarithms), 130
basis, 392

lattice, 272
self-orthogonal, 394
self-orthonormal, 394
standard, 393
y-reduced (of a lattice), 274

Berlekamp-Massey algorithm, 56
bi-gram, 2
binary symmetric channel, 83
bit (unit of information), 75
bit swapping algorithm, 255
block, 28
block cipher, 63

Data Encryption Standard, 67
DES, 67
IDEA, 70
RC5, 72
Triple DES, 69

bound (square root), 294
branch point, 58
buffer

look-ahead, 98
search, 98
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C

Caesar cipher, 9
Carmichael number, 192
chain rule for conditional entropy, 81
challenge in

Fiat-Shamir protocol, 316
block cipher based identity verification protocol, 67

channel (secure), 3
characteristic (of a field), 409
characteristic polynomial, 35
Chinese Remainder Theorem, 361
Chor-Rivest cryptosytem, 279
chosen plaintext attack, 4
cipher (see cryptosystem)

block, 63
stream, 21

cipher block chaining, 64
cipher feedback mode, 65
ciphertext, 3
ciphertext only attack, 3
code

A- (for message authentication), 292
authentication, 291
Goppa, 237
hash, 288
instantaneous, 88
message authentication, 289
prefix, 88
source, 87
uniquely decodable, 87
U.D., 87

codebook mode, 63
codeword, 237
Cohen and Lenstra (deterministic primality test; version1), 194
collision resistant

strong, 288
weak, 288

column transposition (cipher), 21
commutative (operation), 383
complete
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access structure, 322
residue system, 353

computationally secure, 287
conditional

entropy, 81
probability, 80

confidentiality, 1
congruence relation

linear, 358
quadratic, 364

congruent, 352
conjugate, 412
consistency condition (of Kolmogorov), 4
continued fraction, 369
conventional cryptosystem, 3
convergent, 373
Coppersmith's attack on RSA with related messages, 171
coprime, 346
cryptanalist, 3

active, 3
passive, 3

cryptanalysis , 1
differential (for block ciphers), 72
incidence of coincidences, 16
Kasiski's method, 19
linear (for block ciphers), 72
the method of the probable world, 11

cryptographic transformation, 2
cryptography, 1
cryptology, 1
cryptosystem

Caesar, 9
Chor-Rivest, 279
column transposition , 21
conventional, 3
Data Encryption Standard, 67
DES, 67
Diffie-Hellman key exchange protocol, 115
Diffie-Hellman key exchange protocol over elliptic curves, 232
ElGamal public key cryptosystems, 116

secrecy scheme, 116
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signature scheme, 118
Enigma, 24
Hagelin, 22
IDEA, 70
knapsack, 268
LFSR, 32
linear feedback shift register, 32
logarithm system (key exchange), 115
McEliece (secrecy scheme), 243
Niederreiter (secrecy scheme, 261
one-time pad, 20
Playfair, 20
polyalphabetic substitution, 15
product, 21
public key, 105
Rabin (variant to RSA), 198
RC5
RSA, 72

secrecy, 150
signature, 153
signature and privacy, 155

simple substitution, 10
symmetric, 3
transposition, 21
Triple DES, 69
unconditionally secure, 84
Vernam, 20
Vigenère, 13

curve
anomalous, 235
elliptic, 213
singular, 235
supersingular, 235

cyclic group, 389
cyclotomic polynomial, 420

D

data compression, 87
Huffman, 93
Lempel-Ziv, 97
universal data compression, 97
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Data Encryption Standard, 67
deception, 293
decoding

algorithm, 237
information set, 255

decryption, 3
degree of

 field element, 414
polynomial, 395

density of a knapsack, 271
dependent (linearly), 392
depth (of an orthogonal array), 305
derivative, 222
DES, 67
dictionary, 98
differential cryptanalysis (for block ciphers), 72
Diffie-Hellman key exchange protocol, 115
Diffie-Hellman key exchange protocol over elliptic curves, 232
digital signature schemes

Digital Signature Standard, 119
ElGamal, 118
Nyberg-Rueppel, 120
RSA, 153
Schnorr, 120

Digital Signature Standard, 119
dimension of 

linear code, 237
vector space, 393

discrete logarithm problem, 113
discrete logarithm problem over elliptic curves, 231
distance

Hamming (between codewords), 237
minimum (of a code), 237
unicity (of a cryptosystem), 80

distributive, 386
divide

integer, 343
polynomial, 396
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E

ElGamal public key cryptosystems, 116
secrecy scheme, 116
signature scheme, 118

elliptic curve, 213
encryption, 3
Enigma, 24
entropy, 76

conditional, 81
equivalence

class, 388
relation, 387

equivocation (conditional entropy), 81
error-correcting capability, 237
Euclid

algorithm (simple version), 348
algorithm (extended version), 349
person, 425
theorem of, 344

Euler
person, 426
theorem of, 356
totient function, 354

exhaustive key search, 10
expansion factor (of a visual secret sharing scheme), 333
extension field, 410
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F

factorization algorithms
Pollard p-1, 159
Pollard-�, 161
quadratic sieve, 167
random squares method, 163

Fano plane, 297
feedback

coefficients, 33
function, 31
mode, 66
shift register, 31

Fermat
person, 428
theorem of, 357

Fibonacci numbers, 350
field, 387

extension, 410
ground, 410
sub-, 387

finite, 387
Floyd's cycle-finding algorithm, 133
function

feedback, 31
generating, 35
hash, 288
Möbius, 378
multiplicative, 357
one-way, 107

one-way function for hash functions, 288
trapdoor, 107

Fundamental Theorem of Number Theory, 347
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G

Galois
field, 387
person, 434

gap, 28
Gauss 

algorithm (to find a primitive element), 423
person, 439
quadratic reciprocity law, 368

gcd, see greatest common divisor
generate a

group, 389
ideal, 398

generating function, 35
generator of finite field, 405
generator matrix of a linear code, 237
GF, 387
Golomb's randomness postulates, 29
Goppa code, 237
Gram-Schmidt  algorithm (for orthogonalization process), 272
greatest common divisor of

integers, 344
polynomials, 396

ground field, 410
group, 384

Abelian, 385
additive, 385
cyclic, 389
multiplicative, 385
sub-, 385

H

Hagelin rotor machine, 22
Hamming distance (between codewords), 237
hash code/function, 288
Hasse (theorem on the number of points on a curve), 215
homogenize, 235
Huffman algorithm (for data compression), 93
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I

IDEA, 70
ideal, 386
ideal secret sharing scheme, 329
identity verification protocol

based on a block cipher, 67
Fiat-Shamir, 316
Schnorr, 319

impersonation attack, 292
incidence matrix, 298
incidence of coincidences, 16
inclusion and exclusion, principle of, 381
independent (linearly), 392
index (of an orthogonal array), 305
index-calculus method (for taking discrete logarithms), 135
inequality

Kraft, 89
MacMillan, 88

information, 75
mutual, 82
rate (of a secret sharing scheme), 329
set decoding (of a linear code), 255

inner product, 393
standard, 393

in-phase autocorrelation, 29
instantaneous code, 88
integrity, 1
inverse (in general), 384

multiplicative, 386
inversion formula of Möbius, 379
irreducible (polynomial), 396
isomorphic (of two fields), 410
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J

Jacobi
person, 445
symbol, 364

joint distribution, 80
Johansson construction of A-code from EC-code, 309

K

Kasiski's method, 19
key, 3

exhaustive search , 10
space, 3
exchange system, 114

Diffie-Hellman (modular arithmetic), 115
Diffie-Hellman over elliptic curves, 232

knapsack
cryptosystem, 268
problem, 263

known plaintext attack, 3
Kolmogorov's consistency condition, 4
Kraft inequality, 89

L

L3 � algorithm (for a lattice basis reduction), 277
L3 � attack (on the knapsack system), 275
Lagarias and Odlyzko attack, 270
LaGrange interpolation formula, 324
language, 2
lattice, 271
lcm, see least common multiple
least common multiple

for integers, 345
for polynomials, 396

Legendre
person, 446
symbol, 364

Lempel-Ziv data compression technique, 97
length of

addition chain, 113
code, 237
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feedback shift register, 31
vector, 393

LFSR, 32
line (in projective plane), 295
linear

combination, 392
complexity, 49
congruence relation, 358
cryptanalysis (for block ciphers), 72
equivalence, 49
feedback shift register, 32
(sub-)space, 391

linearly
dependent, 392
independent, 392

linked list, 98
logarithm system, 115
log table, 414
look-ahead buffer, 98

M

MAC (message authentication code), 289
MacMillan inequality, 88
Markov process, 6
matrix

authentication, 291
incidence, 298
generator, 237
parity check, 241

maximal element (of an access structure), 322
message authentication code, 289
microwave attack (physical attack of RSA), 181
Miller-Rabin (probabilistic primality test), 189
minimal

characteristic polynomial, 51
distance (of a code), 237
element (of an access structure), 322
polynomial, 413

minimum distance (of a code), 237
Möbius

function, 378
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inversion formula, 379
multiplicative inversion formula, 380
person, 447

modes of encryption of a block cipher
cipher block chaining, 64
cipher feedback mode, 65
codebook, 63

modulo, 352
monic (polynomial), 401
multiplicative

function, 357
group, 385
inverse, 386
inversion formula of Möbius, 380
order of a group element, 389

mutual information, 82

N

n-gram, 2
Niederreiter encryption scheme, 261
non-privileged subset of an access structure, 322
non-singular curve, 235
NP-complete problem, 244
NQR, 364
n-th root of unity, 405

 primitive, 405
Nyberg-Rueppel signature scheme, 120

O

one-time pad, 20
one-way function for

hash codes, 288
public key cryptosystem, 107

operation(s), 383
Abelian, 385
associative, 384
commutative,383 
distributive, 386

order of
cyclic group, 389
element in a group, 389
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finite field, 387
multiplicative (of a group element), 389
projective plane, 296

orthogonal, 394
array, 305
complement, 394
self-, 394

out-of-phase autocorrelation, 29

P

parity check matrix of a linear code, 241
passive cryptanalist, 3
perfect

access structure, 322
authentication code, 294
secrecy, 84

period of
polynomial, 38
sequence, 28

periodic sequence, 28
plaintext, 3

source, 4
plane

Fano, 297
projective, 295

Playfair cipher, 20
PN sequence, 34
Pohlig-Hellman algorithm, 121
point (in projective plane), 295
point at infinity, 213
Pollard p-1 method for factoring integers, 159
Pollard-� method for factoring integers, 161
Pollard-U method for taking discrete logarithms, 131
polyalphabetic substitution, 15
polynomial, 395

characteristic, 35
cyclotomic, 420
minimal, 413
minimal characteristic, 51
monic, 401
primitive, 414

Index 485



reciprocal, 35
positive definite, 393
power series, 35
prefix code, 88
prime, 343

number theorem, 344
safe, 161

primality test
Cohen and Lenstra (deterministic; version1), 194
Miller-Rabin (probabilistic test), 189
Solovay and Strassen (probabilistic), 188

primitive
element, 405
n-th root of unity, 405
polynomial, 414

principal ideal ring, 398
Principle of inclusion and exclusion, 381
privacy, 1
privileged subset of an access structure, 322
product cipher, 21
projective plane, 295

authentication code, 303
protocol, 315

Diffie-Hellman key exchange, 115
Diffie-Hellman key exchange over elliptic curves, 232
identity verification (based on a block cipher), 67
Fiat-Shamir identity verification, 316
Schnorr's identification, 319
zero-knowledge, 315

pseudo-random, 28
public key cryptosystem,  105

Q

QR, 364
quadratic

congruence relation, 364
 non-residue, 364
 reciprocity law of Gauss, 368
 residue, 364
 sieve factoring algorithm, 167
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R

Rabin cryptosystem, 198
randomness postulates of Golomb, 29
random squares method for factoring, 163
RC5, 72
reciprocal polynomial, 35
reduced

basis (of a lattice), 274
residue system, 355

reducible (polynomial), 396
reduction process (in Huffman's algorithm), 93
redundancy (in plaintext), 79
reflexivity (of a relation), 387
relation, 387

equivalence, 387
residue
 class ring, 388
 complete, 353
 quadratic, 364

quadratic non, 364
response in, 355

Fiat-Shamir protocol, 316
block cipher based identity verification protocol, 67

ring, (in general), 386
principal ideal, 398
residue class, 388
sub-, 386

root of unity
RSA, 405

privacy, 150
signature, 153
signature and privacy, 155

run, 28
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S

safe prime, 161
scalar multiple of point on an elliptic curve, 229
scheme

 secrecy, 106
ElGamal, 116
McEliece, 243
RSA, 150

secret sharing, 322
signature (ElGamal), 118
threshold, 323

Schnorr's identification protocol, 319
search buffer, 98
secret sharing scheme, 322

ideal, 329
visual, 333

secure channel, 3
Secure Hash Algorithm, 119
security

computational, 287
unconditional, 287

self-orthogonal (basis), 394
self-orthonormal (basis), 394
Schnorr signature scheme, 120
Schnorr's Idenitification Protocol, 319
SHA (Secure Hash Algorithm), 119
share, 322
signature equation, 119
signature scheme, 108

Digital Signature Standard, 119
ElGamal, 118
Nyberg-Rueppel, 120
RSA, 153
Schnorr, 120

simple substitution, 10
singular

curve, 235
point, 235

sliding window, 98
smooth number, 135
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Solovay and Strassen probabilistic primality test, 188
source (of plaintext), 4
source coding, 87
space
 linear sub-, 391
 trivial, 391
 vector, 391
span, 392
splitting process (in Huffman's algorithm), 93
square root (taking them modulo a prime number), 200
square root bound, 294
standard basis, 393
standard inner product, 393
state, 31
stationary, 7
stream cipher, 21
strong

collision resistant, 288
liar (for primality), 189
witness (for compositeness), 189

subfield, 387
subgroup, 385
subring, 386
subspace (linear), 391
substitution

attack, 292
polyalphabetic, 15
simple, 10

superincreasing (sequence), 263
supersingular curve, 235
symbol

Jacobi, 364
Legendre, 364

symmetric cryptosystem, 3
symmetry (of a relation), 387
syndrome (of a received vector), 241

T

table
log, 414
Vigenère, 14
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tangent, 221
text, 2
theorem

Chinese Remainder, 361
Euclid, 344
Euler, 356
Fermat, 357
fundamental (in number theory),  347
Wedderburn, 387

threshold scheme, 323
timing attack (physical attack of RSA), 180
trace, 424
transitivity (of a relation), 387
transposition cipher, 21
trapdoor function, 107
tri-gram, 2
Triple DES, 69
trivial vectorspace, 391

U

U.D. code, 87
unconditionally secure

cryptosystem, 84
signature scheme, 287

unicity distance, 80
unique factorization theorem, 396
uniquely decodable code, 87
unit-element, 384
universal data compression, 97

V

vector, 391
space, 391

Vernam cipher, 20
Vigenère

cryptosystem, 13
table, 14

visual
secret sharing scheme, 333
threshold value, 333
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W

weak collision resistant, 288
Wedderburn

person, 451
theorem, 387

Weierstrass equation, 213
weight, 242
Wiener attack, 176
witness (in Fiat-Shamir protocol), 316

X

Xedni (method to solve the elliptic curve discrete logarithm problem), 234

Y

 y-reduced basis (of a lattice), 274

Z

zero element of
additive group, 385
vector space, 391

zero-divisors, 387
zero-knowledge protocol, 315
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