Stream Ciphers and Block Ciphers Guest Lecture for 2WC12 Cryptography I - Fall 2011

Ruben Niederhagen

December 2nd, 2011

Stream Ciphers:

- symmetric-key cipher
- state-driven: operates on arbitrary message length
- commonly used stream ciphers: A5/1 and A5/2 (GSM), RC4 (SSL, WEP), eSTREAM Project

Stream Ciphers:

- symmetric-key cipher
- state-driven: operates on arbitrary message length
- commonly used stream ciphers: A5/1 and A5/2 (GSM), RC4 (SSL, WEP), eSTREAM Project

Synchronous Stream Ciphers:

Given key K and initial state σ_0 : state: $\sigma_{i+1} = f(\sigma_i, K)$ key stream: $z_i = g(\sigma_i, K)$ cipher stream: $c_i = h(z_i, m_i)$

with next-state function fwith key-stream function gwith output function h

Stream Ciphers:

- symmetric-key cipher
- state-driven: operates on arbitrary message length
- commonly used stream ciphers: A5/1 and A5/2 (GSM), RC4 (SSL, WEP), eSTREAM Project

Synchronous Stream Ciphers:

Given key K and initial state σ_0 : state: $\sigma_{i+1} = f(\sigma_i, K)$ with nextkey stream: $z_i = g(\sigma_i, K)$ with key-s cipher stream: $c_i = z_i \oplus m_i$

with next-state function f with key-stream function g

Stream Ciphers:

- symmetric-key cipher
- state-driven: operates on arbitrary message length
- commonly used stream ciphers: A5/1 and A5/2 (GSM), RC4 (SSL, WEP), eSTREAM Project

Self-Synchronizing Stream Ciphers:

Given key K and initial state σ_0 : state: $\sigma_{i+1} = (c_i, c_{i-1}, \dots c_{i-t+1})$ key stream: $z_i = g(\sigma_i, K)$ with key-stream function gcipher stream: $c_i = h(z_i, m_i)$ with output function h

Stream Ciphers:

- symmetric-key cipher
- state-driven: operates on arbitrary message length
- commonly used stream ciphers: A5/1 and A5/2 (GSM), RC4 (SSL, WEP), eSTREAM Project

Self-Synchronizing Stream Ciphers:

Given key K and initial state σ_0 : state: $\sigma_{i+1} = (c_i, c_{i-1}, \dots c_{i-t+1})$ key stream: $z_i = g(\sigma_i, K)$ with key-stream function gcipher stream: $c_i = z_i \oplus m_i$

Block Ciphers:

- symmetric-key cipher
- memoryless: operates on a fixed-length block size
- commonly used block ciphers: DES, Triple-DES, AES

Block Ciphers:

- symmetric-key cipher
- memoryless: operates on a fixed-length block size
- commonly used block ciphers: DES, Triple-DES, AES

An *n*-bit block cipher is a function $E : \{0,1\}^n \times \mathfrak{K} \to \{0,1\}^n$. For each fixed $K \in \mathfrak{K}$ the map

$$E_{K}: \{0,1\}^{n} \to \{0,1\}^{n}, M \mapsto E(M,K)$$

is invertible (bijective) with inverse $E_{\mathcal{K}}^{-1}: \{0,1\}^n \to \{0,1\}^n$.

Mode of Operation:

- Electronic codebook (ECB) mode:
 - ► Encryption: obtain ciphertext C₁,..., C_t as C_i = E_K(M_i), i = 1...t
 - ▶ Decryption: obtain plaintext M₁,..., M_t as M_i = E_K⁻¹(C_i), i = 1...t

Mode of Operation:

- Electronic codebook (ECB) mode
- Cipher-block chaining (CBC) mode:
 Use a (non-secret) initialization vector (*IV*) of length *n* bits.
 - Encryption:
 - obtain ciphertext C_1, \ldots, C_t as $C_i = E_K(M_i \oplus C_{i-1}), i = 1 \ldots t, C_0 = IV$
 - Decryption:

obtain plaintext M_1, \ldots, M_t as $M_i = E_K^{-1}(C_i) \oplus C_{i-1}, i = 1 \ldots t, C_0 = IV$

Mode of Operation:

- Electronic codebook (ECB) mode
- Cipher-block chaining (CBC) mode
- Cipher feedback (CFB) mode:
 Use a (non-secret) initialization vector (*IV*) of length *n* bits.
 - Encryption: obtain ciphertext C₁,..., C_t as C_i = E_K(C_{i-1}) ⊕ M_i, i = 1...t, C₀ = IV
 Decryption:

obtain plaintext M_1, \ldots, M_t as $M_i = E_K(C_{i-1}) \oplus C_i, i = 1 \ldots t, C_0 = IV$

Mode of Operation:

- Electronic codebook (ECB) mode
- Cipher-block chaining (CBC) mode
- Cipher feedback (CFB) mode
- Output feedback (OFB) mode:
 Use a (non-secret) initialization vector (*IV*) of length *n* bits.
 - Encryption: obtain ciphertext C_1, \ldots, C_t as $C_i = O_i \oplus M_i, i = 1 \ldots t, O_i = E_K(O_{i-1}), O_0 = IV$
 - Decryption:

obtain plaintext M_1, \ldots, M_t as $M_i = O_i \oplus C_i, i = 1 \ldots t, O_i = E_K(O_{i-1}), O_0 = IV$

Mode of Operation:

- Electronic codebook (ECB) mode
- Cipher-block chaining (CBC) mode
- Cipher feedback (CFB) mode
- Output feedback (OFB) mode
- Counter (CTR) mode:
 Use a (non-secret) initialization vector (*IV*) of length *n* bits.
 - Encryption:

obtain ciphertext C_1, \ldots, C_t as

- $C_i = E_{\mathcal{K}}(N_i) \oplus M_i, i = 1 \dots t, N_i = N_{i-1} + 1 \mod 2^n, N_0 = IV$
- Decryption:

obtain plaintext M_1, \ldots, M_t as $M_i = E_K(N_i) \oplus C_i, i = 1 \ldots t, N_i = N_{i-1} + 1 \mod 2^n, N_0 = IV$

Properties of the Block-Cipher Modes of Operation

- ECB is considered insecure if applied to more than one block: Identical input blocks are mapped to identical output blocks.
- ► In CBC and CFB mode, the last ciphertext block C_t depends on all message blocks M₁,..., M_t, in ECB, OFB, and CTR mode each block of ciphertext C_i only on message block M_i.
- CBC, CFB, and OFB encryption can not be performed in parallel on several blocks, ECB and CTR encryption can. CBC and CFB decryption also can be performed in parallel.
- Only ECB and CTR allow random access to the ciphertext.
- CBC and ECB require padding of the input to a multiple of the block size, CFB, OFB, and CTR don't.
- ► For OFB, CFB, and CTR mode each two messages encrypted with he same key must use a different *IV*.
- Most widely used modes are CBC and CTR.

Properties of the Block-Cipher Modes of Operation

ECB is considered insecure if applied to more than one block: Identical input blocks are mapped to identical output blocks.

the block size, CFB, OFB, and CTR don't.

- ► For OFB, CFB, and CTR mode each two messages encrypted with he same key must use a different *IV*.
- Most widely used modes are CBC and CTR.

History:

- September 1997: NIST issued a public call for a new block cipher, supporting a block length of 128 bits and lengths of 128, 192, and 256 bits.
- August 1998 and March 1999: AES1 and AES2 conferences organized by NIST.
- August 1999: NIST announces 5 finalists:
 - MARS (IBM)
 - RCG (Rivest, Robshaw, Sidney, Yin)
 - Rijndael (Daemen, Rijmen)
 - Serpent (Anderson, Biham, Knudsen)
 - Twofish (Schneier)
- April 2000: AES3 conference
- October 2nd, 2000: NIST announces that Rijndael has been selected as the proposed AES

Parameters:

- fixed block size of 128bit
- ▶ variable key size (in bits): AES-128, AES-192, AES-256

Animation:

http://www.cs.bc.edu/~straubin/cs381-05/blockciphers/ rijndael_ingles2004.swf

Rijndael S-box:

For y in $GF(2^8) = GF(2)[x]/(x^8 + x^4 + x^3 + x + 1)$ compute

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

with $x = y^{-1}$.

Rijndael S-box:

	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
00	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
10	ca	82	c9	7d	fa	59	47	fO	ad	d4	a2	af	9c	a4	72	c0
20	b7	fd	93	26	36	3f	f7	сс	34	a5	e5	f1	71	d8	31	15
30	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
40	09	83	2c	1a	1b	6e	5a	a0	52	Зb	d6	b3	29	e3	2f	84
50	53	d1	00	ed	20	fc	b1	5Ъ	6a	cb	be	39	4a	4c	58	cf
60	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	Зc	9f	a8
70	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
80	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
90	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
a0	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b0	e7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
c0	ba	78	25	2e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	8b	8a
d0	70	Зe	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
e0	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
fO	8c	a1	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

Optimizations for 32-bit Architectures:

• Lookup tables T_0, \ldots, T_3 combining all steps.

Optimizations for 32-bit Architectures:

• Lookup tables T_0, \ldots, T_3 combining all steps.

Security Concerns:

- ► Theoretical attacks reduce security of AES-128 to 2^{126.1}.
- Cache-timing attacks are practical attacks but require precise timing measurements.
 - \rightarrow AES implementations must be resistant to timing attacks!

Optimizations for 32-bit Architectures:

• Lookup tables T_0, \ldots, T_3 combining all steps. \triangle

Security Concerns:

- ► Theoretical attacks reduce security of AES-128 to 2^{126.1}.
- Cache-timing attacks are practical attacks but require precise timing measurements.
 - \rightarrow AES implementations must be resistant to timing attacks!

Optimizations for 32-bit Architectures:

• Lookup tables T_0, \ldots, T_3 combining all steps. \triangle

Security Concerns:

- ► Theoretical attacks reduce security of AES-128 to 2^{126.1}.
- Cache-timing attacks are practical attacks but require precise timing measurements.
 - \rightarrow AES implementations must be resistant to timing attacks!

High-Speed Implementations:

- NaCl: http://nacl.cr.yp.to/features.html
- http://cryptojedi.org/crypto/index.shtml#aesbs

Plaintext-Based Attacks:

- known plaintext
- chosen plaintext
- adaptive chosen plaintext

Plaintext-Based Attacks:

- known plaintext
- chosen plaintext
- adaptive chosen plaintext

Ciphertext-Based Attacks:

- ciphertext only
- chosen ciphertext
- adaptive chosen ciphertext

Plaintext-Based Attacks:

- known plaintext
- chosen plaintext
- adaptive chosen plaintext

Linear Cryptanalysis:

known plaintext attack

statistical analysis against of large amounts of plaintext

Ciphertext-Based Attacks:

- ciphertext only
- chosen ciphertext
- adaptive chosen ciphertext

Plaintext-Based Attacks:

- known plaintext
- chosen plaintext
- adaptive chosen plaintext

Linear Cryptanalysis:

known plaintext attack

Ciphertext-Based Attacks:

- ciphertext only
- chosen ciphertext
- adaptive chosen ciphertext

statistical analysis against of large amounts of plaintext

Differential Cryptanalysis:

- chosen plaintext attack
- statistical analysis of the difference of two inputs and the difference of the outputs

Literature

Stream and Block Ciphers:

Chapter 6 and 7, *Handbook of Applied Cryptography*, A. Menezes, P. van Oorschot, and S. Vanstone, CRC Press, 1996.

AES: AES Proposal Rijndael, Joan Daemen, Vincent Rijmen

Linear and Differential Cryptanalysis:

A Tutorial on Linear and Differential Cryptanalysis, Howard M. Heys