
Cryptography I, homework sheet 5
Due: 21 October 2011, 10:45

1. Find the smallest positive integer x satisfying the following system of congruences,
should such a solution exist.

x ≡ 3 mod 4
x ≡ 6 mod 12

2. Find the smallest positive integer x satisfying the following system of congruences,
should such a solution exist.

x ≡ 4 mod 9
x ≡ 10 mod 12

3. Users A,B, C, D, and E are friends of S. They have public keys (eA, nA) =
(5, 62857), (eB, nB) = (5, 64541), (eC , nC) = (5, 69799), (eD, nD) = (5, 89179), and
(eE , nE) = (5, 82583). You know that S sends the same message to all of them and
you observe the ciphertexts cA = 11529, cB = 60248, cC = 27504, cD = 43997, and
cE = 44926. What was the message?

4. Show how to retrieve the message m in RSA-OAEP from m′||r′.

5. The n× n matrices over IR form a vectorspace over IR, where ⊕ is matrix addition and
for a ∈ IR and A ∈ Mn(IR) the operation a � A is defined as multiplying every entry
in A by a. (You do not need to show this.) What is the dimension of Mn(IR) as an IR
vectorspace?

The following is an excerpt from the algebra and number theory script, check there for more
details on vector spaces and field.

Definition 1 (Field)
A set K is a field with respect to two operations ◦, � denoted by (K, ◦, �) if

1. (K, ◦) is an abelian group.

2. (K∗, �) is an abelian group, where K∗ = K\{e◦} is all of K except for the neutral
element with respect to ◦.

3. The distributive law holds in K:

a � (b ◦ c) = a � b ◦ a � c for all a, b, c ∈ K.

Let L be a field and K ⊆ L. If K is a field itself it is a subfield of L and L is an extension
field of K.

Definition 2 (Vector space)
A set V is a vector space over a field (K, ◦, �) with respect to one operation ⊕ if

1. (V,⊕) is an abelian group.

2. (K, ◦, �) is a field. Let e◦, e� be the neutral elements with respect to ◦ and �.
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3. There exists an operation � : K×V → V such that for all a, b ∈ K and for all v, w ∈ V
we have

(a ◦ b)� v = a� v ⊕ b� v

a� (v ⊕ w) = a� v ⊕ a� w

e� � v = v

Example Consider the field (IR,+, ·) and define an operation on the 3-tuples (x, y, z) ∈ IR3

by componentwise addition (x1, y1, z1)⊕ (x2, y2, z2) = (x1 +x2, y1 + y2, z1 + z2) and for a ∈ IR
let a� (x1, y1, z1) = (ax1, ay1, az1).
Since IR is closed under addition and multiplication and since the distributive laws hold we
have that IR3 forms a vector space over IR with these operations.
The same holds for IRn for any integer n. Usually we replace ⊕ by + and omit � in IRn.

Example The complex numbers C form a vector space over the reals (IR,+, ·) where the
operations are defined as follows:
⊕ is the standard addition of complex numbers, i.e. (a + bi) ⊕ (c + di) = (a + c) + (b + d)i,
and � is the standard multiplication, i.e. a � (b + ci) = (a · b) + (a · c)i, in which the first
argument is restricted to IR.
This fulfills the definition since we have already seen that (IR,+, ·) and (C ,+, ·) are both
fields. The last three conditions are automatically satisfied since C is a field.

The example of C being a vector space over IR can be generalized to arbitrary extension fields.

Example Let (K, ◦, �) be a field and let L ⊇ K be an extension field of K. Then L is a
vector space over K, where ⊕ = ◦ and � = �.

Example Let K be a field and consider the polynomial ring K [x] over K. We define ⊕ to be
the coefficientwise addition, i.e. the usual addition in K[x] and � as the multiplication of each
coefficient by a scalar from K, i.e. polynomial multiplication restricted to the case that one in-
put polynomial is constant. Since K[x] is a ring and K is a field, K[x] is a vector space over K.

Example Let K be a field, n ∈ IN and consider the subset Pn of K[x] of polynomials
of degree at most n, i.e. Pn = {f(x) ∈ K[x]|deg(f) ≤ n} . Since addition of polynomials
and multiplication by constants do not increase the degree, Pn is closed under addition and
multiplication by scalars from K and is thus a K-vector space.

Definition 3 (Linear combination, basis, dimension)
Let V be a vector space over the field K and let v1, v2, . . . , vn ∈ V .
A linear combination of the vectors v1, v2, . . . , vn is given by

n∑
i=1

λi � vi,

for some λ1, λ2, . . . , λn ∈ K, where the summation sign stands for repeated application of ⊕.
The elements v1, . . . , vn are linearly independent if

∑n
i=1 λi � vi = e⊕ implies that for all

1 ≤ i ≤ n we have λi = e◦.
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A set {v1, v2, . . . , vn} is a basis of V if v1, . . . , vn are linearly independent and each element
can be represented as a linear combination of them, i.e.

V =

{
n∑

i=1

λi � vi | λi ∈ K

}
.

The cardinality of the basis is the dimension of V , denoted by dimK(V ). Note that the
dimension can be infinite.

An alternative definition of basis are that {v1, v2, . . . , vn} is a minimal set of generators,
meaning that there are no fewer elements of V such that each element can be represented as
a linear combination of them. Yet another definition states that a basis is a maximal set of
linearly independent vectors.
Example Consider the vector space IR3. The vectors (1, 0, 0) and (0, 1, 0) are linearly inde-
pendent since

λ1(1, 0, 0) + λ2(0, 1, 0) = (λ1, λ2, 0) != (0, 0, 0)

forces λ1 = λ2 = 0. They do not form a basis since, e.g., the vector (0, 0, 3) cannot be
represented as a linear combination of them.
Since 2(1, 0, 0) = (2, 0, 0) the vectors (1, 0, 0) and (2, 0, 0) are linearly dependent.
The vectors (1, 0, 0), (0, 1, 0), and (1, 3, 0) are linearly dependent since a non-trivial linear
combination is given by

(1, 0, 0) + 3(0, 1, 0)− (1, 3, 0) = (0, 0, 0).

The vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are linearly independent and every other vector
(x, y, z) ∈ IR3 can be represented as a linear combination of them as

(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).

So we have that a basis of IR3 is given by {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and that the dimension
is dimIR(IR3) = 3. In general dimIR(IRn) = n.

Example We have already seen that the complex numbers form a vector space over the
reals. A basis is given by {1, i} and so the dimension is dimIR(C) = 2.

Example Let K be a field and let Pn ⊂ K [x] be the set of polynomials of degree at most n.
A basis is given by

{
1, x, x2, x3, . . . , xn

}
and so the dimension is dimK(Pn) = n + 1.

Alternative bases are easy to give. Since K is a field, xi can be replaced by aix
i for

any nonzero ai ∈ K, also linear combinations are possible. So another basis is given
by

{
5, 3x− 1,−x2, 2x3 + x, . . . , xn + xn−1 + xn−2 + · · ·+ x + 1

}
, since the degrees are all

different and so none can be a linear combination of the others, while using linear algebra we
can get every element as a linear combination.

Example K[x] is a K vectorspace with dimK(K[x]) = ∞.
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