Cryptography I, homework sheet 5

Due: 21 October 2011, 10:45

1. Find the smallest positive integer x satisfying the following system of congruences, should such a solution exist.

$$\begin{array}{rcl} x & \equiv & 3 \mod 4 \\ x & \equiv & 6 \mod 12 \end{array}$$

2. Find the smallest positive integer x satisfying the following system of congruences, should such a solution exist.

 $\begin{array}{rrrr} x & \equiv & 4 \bmod 9 \\ x & \equiv & 10 \bmod 12 \end{array}$

- 3. Users A, B, C, D, and E are friends of S. They have public keys $(e_A, n_A) = (5, 62857), (e_B, n_B) = (5, 64541), (e_C, n_C) = (5, 69799), (e_D, n_D) = (5, 89179)$, and $(e_E, n_E) = (5, 82583)$. You know that S sends the same message to all of them and you observe the ciphertexts $c_A = 11529, c_B = 60248, c_C = 27504, c_D = 43997$, and $c_E = 44926$. What was the message?
- 4. Show how to retrieve the message m in RSA-OAEP from m'||r'.
- 5. The $n \times n$ matrices over \mathbb{R} form a vectorspace over \mathbb{R} , where \oplus is matrix addition and for $a \in \mathbb{R}$ and $A \in M_n(\mathbb{R})$ the operation $a \odot A$ is defined as multiplying every entry in A by a. (You do not need to show this.) What is the dimension of $M_n(\mathbb{R})$ as an \mathbb{R} vectorspace?

The following is an excerpt from the algebra and number theory script, check there for more details on vector spaces and field.

Definition 1 (Field)

A set K is a field with respect to two operations \circ, \diamond denoted by (K, \circ, \diamond) if

- 1. (K, \circ) is an abelian group.
- 2. (K^*,\diamond) is an abelian group, where $K^* = K \setminus \{e_\circ\}$ is all of K except for the neutral element with respect to \diamond .
- 3. The distributive law holds in K:

$$a \diamond (b \circ c) = a \diamond b \circ a \diamond c$$
 for all $a, b, c \in K$.

Let L be a field and $K \subseteq L$. If K is a field itself it is a subfield of L and L is an extension field of K.

Definition 2 (Vector space)

A set V is a vector space over a field (K, \circ, \diamond) with respect to one operation \oplus if

- 1. (V, \oplus) is an abelian group.
- 2. (K, \circ, \diamond) is a field. Let e_{\circ}, e_{\diamond} be the neutral elements with respect to \circ and \diamond .

3. There exists an operation $\odot: K \times V \to V$ such that for all $a, b \in K$ and for all $\underline{v}, \underline{w} \in V$ we have

$$(a \circ b) \odot \underline{v} = a \odot \underline{v} \oplus b \odot \underline{v}$$
$$a \odot (\underline{v} \oplus \underline{w}) = a \odot \underline{v} \oplus a \odot \underline{w}$$
$$e_{\diamond} \odot \underline{v} = \underline{v}$$

Example Consider the field $(\mathbb{R}, +, \cdot)$ and define an operation on the 3-tuples $(x, y, z) \in \mathbb{R}^3$ by componentwise addition $(x_1, y_1, z_1) \oplus (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$ and for $a \in \mathbb{R}$ let $a \odot (x_1, y_1, z_1) = (ax_1, ay_1, az_1)$.

Since \mathbb{R} is closed under addition and multiplication and since the distributive laws hold we have that \mathbb{R}^3 forms a vector space over \mathbb{R} with these operations.

The same holds for \mathbb{R}^n for any integer n. Usually we replace \oplus by + and omit \odot in \mathbb{R}^n .

Example The complex numbers \mathbb{C} form a vector space over the reals $(\mathbb{R}, +, \cdot)$ where the operations are defined as follows:

 \oplus is the standard addition of complex numbers, i.e. $(a + bi) \oplus (c + di) = (a + c) + (b + d)i$, and \odot is the standard multiplication, i.e. $a \odot (b + ci) = (a \cdot b) + (a \cdot c)i$, in which the first argument is restricted to \mathbb{R} .

This fulfills the definition since we have already seen that $(\mathbb{R}, +, \cdot)$ and $(\mathbb{C}, +, \cdot)$ are both fields. The last three conditions are automatically satisfied since \mathbb{C} is a field.

The example of \mathbb{C} being a vector space over \mathbb{R} can be generalized to arbitrary extension fields.

Example Let (K, \circ, \diamond) be a field and let $L \supseteq K$ be an extension field of K. Then L is a vector space over K, where $\oplus = \circ$ and $\odot = \diamond$.

Example Let K be a field and consider the polynomial ring K[x] over K. We define \oplus to be the coefficientwise addition, i.e. the usual addition in K[x] and \odot as the multiplication of each coefficient by a scalar from K, i.e. polynomial multiplication restricted to the case that one input polynomial is constant. Since K[x] is a ring and K is a field, K[x] is a vector space over K.

Example Let K be a field, $n \in \mathbb{N}$ and consider the subset P_n of K[x] of polynomials of degree at most n, i.e. $P_n = \{f(x) \in K[x] | \deg(f) \leq n\}$. Since addition of polynomials and multiplication by constants do not increase the degree, P_n is closed under addition and multiplication by scalars from K and is thus a K-vector space.

Definition 3 (Linear combination, basis, dimension)

Let V be a vector space over the field K and let $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n \in V$. A linear combination of the vectors $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n$ is given by

$$\sum_{i=1}^n \lambda_i \odot \underline{v}_i,$$

for some $\lambda_1, \lambda_2, \ldots, \lambda_n \in K$, where the summation sign stands for repeated application of \oplus . The elements $\underline{v}_1, \ldots, \underline{v}_n$ are linearly independent if $\sum_{i=1}^n \lambda_i \odot \underline{v}_i = e_{\oplus}$ implies that for all $1 \leq i \leq n$ we have $\lambda_i = e_{\circ}$. A set $\{\underline{v}_1, \underline{v}_2, \ldots, \underline{v}_n\}$ is a basis of V if $\underline{v}_1, \ldots, \underline{v}_n$ are linearly independent and each element can be represented as a linear combination of them, i.e.

$$V = \left\{ \sum_{i=1}^{n} \lambda_i \odot \underline{v}_i \mid \lambda_i \in K \right\}.$$

The cardinality of the basis is the dimension of V, denoted by $\dim_K(V)$. Note that the dimension can be infinite.

An alternative definition of basis are that $\{\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n\}$ is a minimal set of generators, meaning that there are no fewer elements of V such that each element can be represented as a linear combination of them. Yet another definition states that a basis is a maximal set of linearly independent vectors.

Example Consider the vector space \mathbb{R}^3 . The vectors (1,0,0) and (0,1,0) are linearly independent since

$$\lambda_1(1,0,0) + \lambda_2(0,1,0) = (\lambda_1,\lambda_2,0) \stackrel{!}{=} (0,0,0)$$

forces $\lambda_1 = \lambda_2 = 0$. They do not form a basis since, e.g., the vector (0,0,3) cannot be represented as a linear combination of them.

Since 2(1,0,0) = (2,0,0) the vectors (1,0,0) and (2,0,0) are linearly dependent.

The vectors (1,0,0), (0,1,0), and (1,3,0) are linearly dependent since a non-trivial linear combination is given by

$$(1,0,0) + 3(0,1,0) - (1,3,0) = (0,0,0).$$

The vectors (1,0,0), (0,1,0), and (0,0,1) are linearly independent and every other vector $(x, y, z) \in \mathbb{R}^3$ can be represented as a linear combination of them as

$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).$$

So we have that a basis of \mathbb{R}^3 is given by $\{(1,0,0), (0,1,0), (0,0,1)\}$ and that the dimension is $\dim_{\mathbb{R}}(\mathbb{R}^3) = 3$. In general $\dim_{\mathbb{R}}(\mathbb{R}^n) = n$.

Example We have already seen that the complex numbers form a vector space over the reals. A basis is given by $\{1, i\}$ and so the dimension is $\dim_{\mathbb{R}}(\mathbb{C}) = 2$.

Example Let K be a field and let $P_n \subset K[x]$ be the set of polynomials of degree at most n. A basis is given by $\{1, x, x^2, x^3, \ldots, x^n\}$ and so the dimension is $\dim_K(P_n) = n + 1$. Alternative bases are easy to give. Since K is a field, x^i can be replaced by $a_i x^i$ for any nonzero $a_i \in K$, also linear combinations are possible. So another basis is given by $\{5, 3x - 1, -x^2, 2x^3 + x, \ldots, x^n + x^{n-1} + x^{n-2} + \cdots + x + 1\}$, since the degrees are all different and so none can be a linear combination of the others, while using linear algebra we can get every element as a linear combination.

Example K[x] is a K vectorspace with $\dim_K(K[x]) = \infty$.