Cryptography I, homework sheet 4

Due: 14 October 2011, 10:45

- 1. Compute $\varphi(37800)$.
- 2. Compute $\varphi(1939201349958859167498240)$.
- 3. Execute the RSA key generation where p = 239, q = 433, and e = 23441.
- 4. RSA-encrypt the message 23 to a user with public key (e,n) = (17,11584115749). Document how you compute the exponentiation.
- 5. Find the smallest positive integer x satisfying the following system of congruences, should such a solution exist. If you don't know how to do this, check out the algorithm below.

 $x \equiv 0 \mod 3$ $x \equiv 1 \mod 5$ $x \equiv 2 \mod 8$

Theorem 1 (Chinese Remainder Theorem)

Let $r_1, \ldots, r_k \in \mathbb{Z}$ and let $0 \neq n_1, \cdots, n_k \in \mathbb{N}$ such that the n_i are pairwise coprime. The system of equivalences

 $X \equiv r_1 \bmod n_1,$ $X \equiv r_2 \bmod n_2,$ \vdots $X \equiv r_k \bmod n_k,$

has a solution X which is unique up to multiples of $N = n_1 \cdot n_2 \cdots n_k$. The set of all solutions is given by $\{X + aN | a \in \mathbb{Z}\} = X + N\mathbb{Z}$.

If the n_i are not all coprime the system might not have a solution at all. E.g. the system $X \equiv 1 \mod 8$ and $X \equiv 2 \mod 6$ does not have a solution since the first congruence implies that X is odd while the second one implies that X is even. If the system has a solution then it is unique only modulo $\operatorname{lcm}(n_1, n_2, \ldots, n_k)$. E.g. the system $X \equiv 4 \mod 8$ and $X \equiv 2 \mod 6$ has solutions and the solutions are unique modulo 24. Replace $X \equiv 2 \mod 6$ by $X \equiv 2 \mod 3$; the system still carries the same information but has coprime moduli and we obtain $X = 8a + 4 \equiv 2a + 1 \stackrel{!}{\equiv} 2 \mod 3$, thus $a \equiv 2 \mod 3$ and X = 8(3b + 2) + 4 = 24b + 20. The smallest positive solution is thus 20.

We now present a constructive algorithm to find this solution, making heavy use of the extended Euclidean algorithm presented in the previous section. Since all n_i are coprime, we have $gcd(n_i, N/n_i) = 1$ and we can compute u_i and v_i with

$$u_i n_i + v_i (N/n_i) = 1.$$

Let $e_i = v_i(N/n_i)$, then this equation becomes $u_i n_i + e_i = 1$ or $e_i \equiv 1 \mod n_i$. Furthermore, since all $n_j | (N/n_i)$ for $j \neq i$ we also have $e_i = v_i(N/n_i) \equiv 0 \mod n_j$ for $j \neq i$.

Using these values e_i a solution to the system of equivalences is given by

$$X = \sum_{i=1}^{k} r_i e_i,$$

since X satisfies $X \equiv r_i \mod n_i$ for each $1 \le i \le k$.

Example 2 Consider the system of integer equivalences

 $X \equiv 1 \mod 3,$ $X \equiv 2 \mod 5,$

 $X \equiv 5 \bmod 7.$

The moduli are coprime and we have N=105. For $n_1=3$, $N_1=35$ we get $v_1=2$ by just observing that $2 \cdot 35 = 70 \equiv 1 \mod 3$. So $e_1=70$. Next we compute $N_2=21$ and see $v_2=1$ since $21 \equiv 1 \mod 5$. This gives $e_2=21$. Finally, $N_3=15$ and $v_3=1$ so that $e_3=15$. The result is $X=70+2\cdot 21+5\cdot 15=187$ which indeed satisfies all 3 congruences. To obtain the smallest positive result we reduce 187 modulo N to obtain 82.

For easier reference we phrase this approach as an algorithm.

Algorithm 3 (Chinese remainder computation)

IN: system of k equivalences as $(r_1, n_1), (r_2, n_2), \dots (r_k, n_k)$ with pairwise coprime n_i OUT: smallest positive solution to system

- 1. $N \leftarrow \prod_{i=1}^k n_i$
- 2. $X \leftarrow 0$
- 3. for i = 1 to k
 - (a) $M \leftarrow N \operatorname{div} n_i$
 - (b) $v \leftarrow ((N_i)^{-1} \mod n_i)$ (use XGCD)
 - (c) $e \leftarrow vM$
 - (d) $X \leftarrow X + r_i e$
- 4. $X \leftarrow X \mod N$