TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptography 1, Monday 11 April 2011

Name

Student number :

Exercise	1	2	3	4	5	total
points						

:

Notes: This exam consists of 5 exercises. You have from 14:00 - 17:00 to solve them. You can reach 50 points.

Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.

All answers must be submitted on TU/e letterhead; should you require more sheets ask the proctor. State your name on every sheet.

Do not write in red or with a pencil.

You are allowed to use any books and notes, e.g. your homework. You are not allowed to use the textbooks of your colleagues.

You are allowed to use a simple, non-graphical pocket calculator. Usage of laptops and cell phones is forbidden.

1. This exercise is about groups. Let M be the set of rotation matrices:

$$M = \left\{ \left(\begin{array}{cc} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{array} \right) \middle| \alpha \in \mathbb{R} \right\}.$$

We define an operation \circ on M as matrix multiplication

$$\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \circ \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a_1a_2 + b_1c_2 & a_1b_2 + b_1d_2 \\ c_1a_2 + d_1c_2 & c_1b_2 + d_1d_2 \end{pmatrix}.$$

- (a) Check whether (M, \circ) is a group.
- (b) Is (M, \circ) an abelian group? Justify your statement.

Hint: You can use the trigonometric addition formulas

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b),$$

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b).$$

2. This exercise is about polynomials.

(a) Compute the number $N_{11}(6)$ of irreducible polynomi	als
of degree 6 over \mathbb{F}_{11} .	2 points
(b) Factor $f(x) = x^5 - 1$ over \mathbb{F}_{11} .	3 points

- (c) Let p be prime. State all subfields of $\mathbb{F}_{p^{12}}$.
- 3. This exercise is about discrete logarithms in \mathbb{F}_{61} . The integer p = 61 is prime. Make sure to document all steps of the computations.
 - (a) Show that $\mathbb{F}_{61}^* = \langle 2 \rangle$, i.e. show that the order of 2 in \mathbb{F}_{61} is 60. 2 points
 - (b) Use the baby-step giant-step algorithm to break the discrete logarithm problem given by g = 2, $h = g^a = 26$, i.e., find a.

5 points

2 points

(c) Use the Pohlig-Hellman algorithm to break the discrete logarithm problem given by g = 2, $h = g^a = 26$, i.e., find a. 5 points

4 points

1 point

- 4. (a) Find all affine points on the twisted Edwards curve $-x^2 + y^2 = 1 7x^2y^2$ over \mathbb{F}_{13} .
 - (b) The points P = (9, 5) and Q = (10, 9) are on the curve. Compute [2]P + Q in affine coordinates. 4 points
 - (c) Translate the curve and P to Montgomery form

$$Bv^2 = u^3 + Au^2 + u.$$

3	points
2	points

4 points

(d) Compute $[2](\phi(P))$.

5. In this exercise you can use Rabin's irreducibility test and the theory behind it, but it might not be the fastest way. **Hint:** The polynomials g and h divide x^5-1 ; this gives you information

Hint: The polynomials g and h divide $x^3 - 1$; this gives you information about the order (in \mathbb{F}_p^*) of potential roots over \mathbb{F}_p and \mathbb{F}_{p^2} .

- (a) Let $g(x) = x^5 1$ over \mathbb{F}_{19} . What is the factorization pattern of g, i.e., what are the degrees of the irreducible factors of g over \mathbb{F}_{19} . Which is the smallest extension of \mathbb{F}_{19} over which g factors into linear factors? 5 points
- (b) Let $h(x) = x^4 + x^3 + x^2 + x + 1$ be a polynomial over \mathbb{F}_p where $p \equiv 2 \mod 5$ or $p \equiv 3 \mod 5$. Show that h is irreducible. Which is the smallest extension of \mathbb{F}_p over which g factors into linear factors? 4 points
- (c) Let p be prime with $p \equiv 2 \mod 7$. Show that there is no irreducible binomial of degree 7 over \mathbb{F}_p . In other words: Show that all polynomials of the form $x^7 b$ over \mathbb{F}_p are reducible if $p \equiv 2 \mod 7$.