
Cryptography I, homework sheet 5
Due: 15 October 2010, 10:45

1. Consider the subset Q(i) ⊂ C defined by

Q(i) = {a + bi|a, b ∈ Q}.

Show that (Q(i),+, ·) is a field, where addition and multiplication are defined as in C.

2. Let K be a field and let f(x) ∈ K[x]. Show that a ∈ K is a root of f if and only if
(x− a)|f(x). Hint: divide f(x) by x− a and study the remainder.

3. Factor x8 + x7 + x5 + x4 + x3 + 1 as a polynomial over ZZ/2 into irreducible polynomials.

4. The n× n matrices over IR form a vectorspace over IR, where ⊕ is matrix addition and for
a ∈ IR and A ∈ Mn(IR) the operation a�A is defined as multiplying every entry in A by a.
(You do not need to show this.) What is the dimension of Mn(IR) as an IR vectorspace?

The following is an excerpt from the script (see Sep 24 posting), check there for more details.

Definition 1 (Vector space)
A set V is a vector space over a field (K, ◦, �) with respect to one operation ⊕ if

1. (V,⊕) is an abelian group.

2. (K, ◦, �) is a field. Let e◦, e� be the neutral elements with respect to ◦ and �.

3. There exists an operation � : K × V → V such that for all a, b ∈ K and for all v, w ∈ V we
have

(a ◦ b)� v = a� v ⊕ b� v

a� (v ⊕ w) = a� v ⊕ a� w

e◦ � v = v

Example Consider the field (IR,+, ·) and define an operation on the 3-tuples (x, y, z) ∈ IR3 by
componentwise addition (x1, y1, z1) ⊕ (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2) and for a ∈ IR let
a� (x1, y1, z1) = (ax1, ay1, az1).
Since IR is closed under addition and multiplication and since the distributive laws hold we have
that IR3 forms a vector space over IR with these operations.
The same holds for IRn for any integer n. Usually we replace ⊕ by + and omit � in IRn.

Example The complex numbers C form a vector space over the reals (IR,+, ·) where the operations
are defined as follows:
⊕ is the standard addition of complex numbers, i.e. (a + bi) ⊕ (c + di) = (a + c) + (b + d)i, and
� is the standard multiplication, i.e. a� (b + ci) = (a · b) + (a · c)i, in which the first argument is
restricted to IR.
This fulfills the definition since we have already seen that (IR,+, ·) and (C ,+, ·) are both fields.
The last three conditions are automatically satisfied since C is a field.

The example of C being a vector space over IR can be generalized to arbitrary extension fields.

Example Let (K, ◦, �) be a field and let L ⊇ K be an extension field of K. Then L is a vector
space over K, where ⊕ = ◦ and � = �.

Example Let K be a field and consider the polynomial ring K [x] over K. We define ⊕ to be
the coefficientwise addition, i.e. the usual addition in K[x] and � as the multiplication of each
coefficient by a scalar from K, i.e. polynomial multiplication restricted to the case that one input
polynomial is constant. Since K[x] is a ring and K is a field, K[x] is a vector space over K.
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Example Let K be a field, n ∈ IN and consider the subset Pn of K[x] of polynomials of degree
at most n, i.e. Pn = {f(x) ∈ K[x]|deg(f) ≤ n} . Since addition of polynomials and multiplication
by constants do not increase the degree, Pn is closed under addition and multiplication by scalars
from K and is thus a K-vector space.

Definition 2 (Linear combination, basis, dimension)
Let V be a vector space over the field K and let v1, v2, . . . , vn ∈ V .
A linear combination of the vectors v1, v2, . . . , vn is given by

n∑
i=1

λi � vi,

for some λ1, λ2, . . . , λn ∈ K, where the summation sign stands for repeated application of ⊕.
The elements v1, . . . , vn are linearly independent if

∑n
i=1 λi�vi = e⊕ implies that for all 1 ≤ i ≤ n

we have λi = e◦.
A set {v1, v2, . . . , vn} is a basis of V if v1, . . . , vn are linearly independent and each element can
be represented as a linear combination of them, i.e.

V =

{
n∑

i=1

λi � vi | λi ∈ K

}
.

The cardinality of the basis is the dimension of V , denoted by dimK(V ). Note that the dimension
can be infinite.

An alternative definition of basis are that {v1, v2, . . . , vn} is a minimal set of generators, meaning
that there are no fewer elements of V such that each element can be represented as a linear
combination of them. Yet another definition states that a basis is a maximal set of linearly
independent vectors.
Example Consider the vector space IR3. The vectors (1, 0, 0) and (0, 1, 0) are linearly independent
since

λ1(1, 0, 0) + λ2(0, 1, 0) = (λ1, λ2, 0) != (0, 0, 0)
forces λ1 = λ2 = 0. They do not form a basis since, e.g., the vector (0, 0, 3) cannot be represented
as a linear combination of them.
Since 2(1, 0, 0) = (2, 0, 0) the vectors (1, 0, 0) and (2, 0, 0) are linearly dependent.
The vectors (1, 0, 0), (0, 1, 0), and (1, 3, 0) are linearly dependent since a non-trivial linear combi-
nation is given by

(1, 0, 0) + 3(0, 1, 0)− (1, 3, 0) = (0, 0, 0).
The vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are linearly independent and every other vector (x, y, z) ∈
IR3 can be represented as a linear combination of them as

(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).

So we have that a basis of IR3 is given by {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and that the dimension is
dimIR(IR3) = 3. In general dimIR(IRn) = n.

Example We have already seen that the complex numbers form a vector space over the reals. A
basis is given by {1, i} and so the dimension is dimIR(C) = 2.

Example Let K be a field and let Pn ⊂ K [x] be the set of polynomials of degree at most n. A
basis is given by

{
1, x, x2, x3, . . . , xn

}
and so the dimension is dimK(Pn) = n + 1.

Alternative bases are easy to give. Since K is a field, xi can be replaced by aix
i for

any nonzero ai ∈ K, also linear combinations are possible. So another basis is given by{
5, 3x− 1,−x2, 2x3 + x, . . . , xn + xn−1 + xn−2 + · · ·+ x + 1

}
, since the degrees are all different

and so none can be a linear combination of the others, while using linear algebra we can get every
element as a linear combination.

Example K[x] is a K vectorspace with dimK(K[x]) = ∞.
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