Cryptography I, homework sheet 10 Due: 17 December 2010, 10:45

Both exercises should be done with the help of a computer but you should submit your programs as part of the homework solution. The program can be based on any computer algebra system, in particular for computing in \mathbb{F}_{1013}^* and \mathbb{F}_{1019}^* . Make sure that your programs compile and run correctly; my students will not debug your programs. The program should be humanly readable.

Here is some explanation for solving the first exercise:

Solving exercise 2 of sheet 9 involved computing the discrete logarithm modulo 253 and then trying all 4 possible solutions namely 122, 375, 628, and 881.

A more systematic way is given by the Pohlig-Hellman attack. This attack works in any group and is a way to reduce the reduce the hardness of the DLP to the hardness of the DLP in subgroups of prime order. In particular you'll see in the exercises below that it works against the DLP in \mathbb{F}_{1013}^* by solving DLPs in groups of size 2, 11, and 23.

Let G be a cyclic group generated by g and let the challenge be to find $\log_g h = k$. Let the group order n factor as $n = \prod_{i=1}^r p_i^{e_i}$ where $p_i \neq p_j$ for $i \neq j$. Then k can be computed from the information

$$k \equiv k_1 \mod p_1^{e_1}$$
$$k \equiv k_2 \mod p_2^{e_2}$$
$$k \equiv k_3 \mod p_3^{e_3}$$
$$\vdots$$
$$k \equiv k_r \mod p_r^{e_r}$$

by using the Chinese remainder theorem. This is because the $p_i^{e_i}$ are coprime and their product is n. So, if one can find the DL modulo all $p_i^{e_i}$ one can compute the entire DL. Put $n_i = n/p_i^{e_i}$. Since g has order n the element $g_i = g^{n_i}$ has order $p_i^{e_i}$. The element $h_i = h^{n_i}$

is in the subgroup generated by g_i and it holds that $h_i = g_i^{k_i}$, where $k_i \equiv k \mod p_i^{e_i}$. E.g. $\mathbb{F}_{16}^* = \langle g \rangle$ has 15 elements, so one can first solve the DLP $h = g^k$ modulo 3 and then

modulo 5. For such small numbers one can simply compute h^5 and compare it to $1, g^5$, and g^{10} to find whether k is equivalent to 0, 1, or 2 modulo 3. Then one compares h^3 to $1, g^3, g^6, g^9$, and g^{12} to see whether k is congruent to 0, 1, 2, 3, or 4 modulo 5.

The same approach works also for \mathbb{F}_{17}^* which has $16 = 2^4$ elements – but here one can do much better! Write $k = k_0 + k_1 2 + k_2 2^2 + k_3 2^3$. Then h^8 is either equal to 1 or to $-1 = g^8$ depending on whether k_0 is 0 or 1. Once that result is known we can compare $(h/g^{k_0})^4$ with 1 and -1 to find k_1 etc. So we can solve a much smaller DLP. Instead of going for kmodulo $p_i^{e_i}$ at once we can first obtain k modulo p_i , then modulo p_i^2 , then modulo p_i^3 , etc. till $p_i^{e_i}$ by each time solving a DLP in a group of size p_i . Numerical examples:

 $\mathbb{F}_{11}^* = \langle 2 \rangle$, find k so that $3 = 2^k$. So g = 2 and h = 3. Compute $n_1 = 10/2 = 5$, $g^{n_1} = 2^5 = -1$, and $h^{n_1} = 3^5 = 1$ to see that $k \equiv 0 \mod 2$. Then compute $n_2 = 10/5 = 2$, $g^{n_1} = 2^2 = 4$, $g^{2n_1} = 2^4 = 5$, $g^{3n_1} = 2^6 = 9$, and $g^{4n_1} = 2^8 = 3$ and compare that to

 $h^{n_2} = 3^2 = 9$ to see that $k \equiv 3 \mod 5$. These two congruences imply that k = 8 and indeed $g^8 = h$.

 $\mathbf{F}_{17}^* = \langle 3 \rangle$, find k so that $7 = 3^k$. So g = 3 and h = 7. In this example we will obtain k one bit at a time. First compare $h^8 = 7^8 = -1$ to 1 and -1 to see that $k \equiv 1 \mod 2$. Then compute h/g = 8 and then $(h/g)^4 = -1$, so also the next bit is 1 and we see $k \equiv 3 \mod 4$. Then compute $h/g^3 = 16$ and then $(h/g^3)^2 = 1$ to see that the next bit is 0, so $k \equiv 3 \mod 4$. Finally, since $h/g^3 = 16 = -1$ we see that the highest bit is 1, so $k \equiv 11 \mod 16$ and indeed $3^{11} = 7$. This solved the DLP in \mathbb{F}_{17}^* with just 4 very easy computations and comparisons. So computing DLs in fields \mathbb{F}_p with $p = 2^r + 1$ is easy.

This attack is called the *Pohlig-Hellman attack* and breaks the DLP by breaking it in subgroups of prime order. So the DLP in the full group is no harder than the DLP in the biggest prime-order subgroup. The two numerical examples were using a table to solve the smaller DLPs; usually the factors are too large for that and BSGS or Pollard rho are used as subroutines.

- 1. $3 \in \mathbb{F}_{1013}^*$ generates a group of order $1012 = 4 \cdot 11 \cdot 23$. Solve the discrete logarithm problem g = 3, h = 321 by using the Pohlig-Hellman attack, i.e. find an integer 0 < k < 1012 such that $h = g^k$ by computing first k modulo 2, 4, 11, and 23 and then computing k using the Chinese Remainder Theorem. For the individual DLPs you may use any strategy (complete table, BSGS, Pollard rho).
- 2. For a numerical example for the index calculus attack have a look at http://hyperelliptic.org/tanja/teaching/NTCrypto10/pictures/19-Nov-10, in particular IMGP2371.JPG.

Use factor base $\mathcal{F} = \{2, 3, 5, 7, 11, 13\}$ to solve the DLP h = 281, g = 2, in \mathbb{F}_{1019}^* .