Cryptography, exercise sheet 2 for 10 Sep 2024

1. Show that

$$(x, y) + (-x, y) = (0, 1)$$

on a twisted Edwards curve $E_{a,d}: ax^2 + y^2 = 1 + dx^2y^2$. Note: We showed this for Edwards curves, show it for twisted Edwards curves. The main thing you need to show is that the resulting *y*-coordinate equals 1.

2. Show that the following correctly computes doubling

$$2(x,y) = \left(\frac{2xy}{(ax^2 + y^2)}, \frac{(y^2 - ax^2)}{(2 - ax^2 - y^2)}\right)$$

on a twisted Edwards curve $E_{a,d}: ax^2 + y^2 = 1 + dx^2y^2$.

- 3. Find all points (x_1, y_1) on the Edwards curve $x^2 + y^2 = 1 5x^2y^2$ over \mathbb{F}_{13} . Show how you can use symmetries in the curve equation. Do not solve this exercise by brute force over all pairs x, y.
- 4. Let $Bv^2 = u^3 + Au^2 + u$ be a Montgomery curve over \mathbb{F}_p and (A+2)/B be a square over \mathbb{F}_p .

Show that $(1, \pm \sqrt{(A+2)/B})$ are points on the curve and that they double to (0, 0) and thus have order 4.