
Cryptography, exercise sheet 7 for 17 Oct 2023

1. Show that ElGamal encryption is re-randomizable, i.e., show that (r, c) and (rgk
′
,mhk

′
A )

decrypt to the same message for any k′. (We have covered this in class last Thu).

2. Show that ElGamal encryption is homomorphic, i.e., find some way to compbine ci-
phertexts (r1, c1) encrypting m1 and (r2, c2) encrypting m2 (both encrypted to public
key hA) so that the resulting ciphertext is an encryption of m1m2.
Note: This only involves the public values, no decryption.

3. Alice and Bob use ElGamal encryption. Eve learns that Bob’s random-number generator
is broken (details below) and she learns the decryption m1 of (r1, c1).

(a) Assume that Bob uses the same nonce k for all encryptions. Show how Eve can
decrypt (r2, c2).

(b) Assume that Bob increments his k for each encryption, i.e., that ki+1 = k1 + i.
Show how Eve can decrypt (ri, ci).

4. This exercise uses the example version of the Wegman-Carter message authentication
code with p = 1000003.

To authenticate the i-th ciphertext ci the sender expresses ci in base 106 as ci = ci,0 +
ci,1106 + ci,21012 + · · ·+ ci,k106k and computes the authenticator as

ti = (ci,0r
k+1 + ci,1r

k + ci,2r
k−1 + · · ·+ ci,kr mod p) + si mod 1000000.

For simplicity we will do i = 1 and omit the extra indices. Compute the authenticator
for c = 454356542435979283475928437, r = 483754, s = 342534.

5. The proper definition of Wegman–Carter MAC puts

ti =

 k∑
j=1

ci,jr
k+1−j mod p

 + si mod 2n

for ci a ciphertext of kn bits and p > 2n a prime.

Show that it is important that the powers of r start at r1 rather than at r0, i.e., show
how an outside attacker who does not have access to r or any of the si but sees some
(ci, ti, i) can compute some valid (c′, t′, i) on a new ciphertext c′ 6= ci if instead the
definition is

t′ =

 k∑
j=1

cj,r
k−j mod p

 + si mod 2n.

6. Majordomo is a program that manages Internet mailing lists. If you send a message
to majordomo@foodplus.com saying subscribe recipes, Majordomo will add you to
the recipes mailing list, and you will receive several interesting recipes by e-mail every
day.

It is easy to forge mail. You can subscribe a victim, let’s say God@heaven.af.mil, to
the recipes mailing list, and thousands more mailing lists, by sending fake subscription
requests to Majordomo. God@heaven.af.mil will then be flooded with mail.

Majordomo 1.94, released in October 1996, attempts to protect subscribers as follows.
After it receives your subscription request, it sends you a confirmation number. To



complete your subscription, you must send a second request containing the confirmation
number.

Majordomo 1.94 generates confirmation numbers as follows. There is a function h that
changes strings to numbers. The recipes mailing list has a secret string k. The
confirmation number for an address a is h(ka). For example, if the secret string
is ossifrage, and the address is God@heaven.af.mil, the confirmation number is
h(ossifrageGod@heaven.af.mil).

The function h produces a 32-bit result. Each letter is naturally represented
in a computer as a byte, i.e., an integer in [0, 255]. The string is read from
left to right. In the following “rotate left 4 bits” turns (b31, b30, . . . , b1, b0) into
(b27, b26, . . . , b1, b0, b31, b30, b29, b28).

The function h is computed as follows. Start with 0. Add the first byte of the string.
Rotate left 4 bits. Add the next byte of the string. Rotate left 4 bits. Continue adding
and rotating until the end of the string.

Explain how to subscribe God@heaven.af.mil to the recipes mailing list despite this
protection, and explain what Majordomo 1.94 should have done.

7. Show how to retrieve the message m in RSA-OAEP from M = (s, t). (See RSA I for
the definition of RSA-OAEP.) This is just considering the encoding and decoding of
the message and skips the RSA part. The functions G and H are cryptographic hash
functions, so you cannot invert them.

8. To do after Thursday’s lecture: In 2016 a bug was found in Signal for Android which
meant that in some cases the MAC was over a shorter part of the message, allowing an
attacker to append data to a message. More specifically, this bug applied to attachments
and came from an error in the code taking a 64-bit value for a 32-bit one. The part that
makes this relevant for 2MMC10 is that the implementation used AES in CBC mode.
Please read https://pwnaccelerator.github.io/2016/signal-part2.html.

https://pwnaccelerator.github.io/2016/signal-part2.html

