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Example

y2 = x3 − x over Fp, p = 1000003.

P = (101384, 614510) has order 2 · 532 · 89.

Given Q = aP = (670366, 740819), find a = logP Q

R = (532 · 89)P has order 2, and
S = (532 · 89)Q is multiple of R.

Easy to compute a1 = logR S .
Note S = (532 · 89)Q = (532 · 89)aP and (2 · 532 · 89)P =∞.

I a even, i.e., a = 2a′: S = (532 · 89)2a′P = a′∞ =∞
I a odd, i.e., a = 2a′ + 1: S = (532 · 89)(2a′ + 1)P = (532 · 89)P 6=∞

R = (2 · 53 · 89)P has order 53, and
S = (2 · 53 · 89)Q is multiple of R.

Compute a2 = logR S ≡ a mod 53. This is a DLP in a group of size 53.

Takes more effort than size 2, but much easier than size 500002.

Can use Pollard rho to attack this subgroup problem in
√

53π/2 steps.
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Running example continued
P = (101384, 614510) has order 2 · 532 · 89.

R = (532 · 89)P has order 2, and
S = (532 · 89)Q is multiple of R.
Compute a1 = logR S ≡ a mod 2.

R = (2 · 53 · 89)P has order 53, and
S = (2 · 53 · 89)Q is multiple of R.
Compute a2 = logR S ≡ a mod 53.

R = (2 · 532)P has order 89, and
S = (2 · 532)Q is multiple of R.
Compute a4 = logR S ≡ a mod 89.

Use Chinese Remainder Theorem
a ≡ a1 mod 2,
a ≡ a2 mod 53,
a ≡ a4 mod 89,

to determine a modulo 2 · 53 · 89. Cost: 1 +
√

53π/2 +
√

89π/2.
Note that cost counts steps, ignores computation of R and S .

But this misses a 53. Brute force search in residue class: cost +53.
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Are we there, yet?
R = (532 · 89)P has order 2, and
S = (532 · 89)Q is multiple of R.
Compute a1 = logR S ≡ a mod 2.

R = (2 · 89)P has order 532, and
S = (2 · 89)Q is multiple of R.
Compute a5 = logR S ≡ a mod 532.

R = (2 · 532)P has order 89, and
S = (2 · 532)Q is multiple of R.
Compute a4 = logR S ≡ a mod 89.

Use Chinese Remainder Theorem to determine a modulo 2 · 532 · 89.
a ≡ a1 mod 2,
a ≡ a5 mod 532,
a ≡ a4 mod 89,

Cost 1 +
√

532π/2 +
√

89π/2 = 79.24 instead of

cost 1 +
√

53π/2 +
√

89π/2 + 53 = 74.94.

Ratio would look worse without Pollard rho (no square roots):
1 + 2 · 53 + 89 = 196 vs 1 + 532 + 89 = 2899.
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Are we there, yet? This is not Pohlig–Hellman
R = (532 · 89)P has order 2, and
S = (532 · 89)Q is multiple of R.
Compute a1 = logR S ≡ a mod 2.
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Pohlig–Hellman for running example
R = (532 · 89)P has order 2, and
S = (532 · 89)Q is multiple of R.
Compute a1 = logR S ≡ a mod 2.

R = (2 · 53 · 89)P has order 53, and
S = (2 · 53 · 89)Q is multiple of R.
Compute a2 = logR S ≡ a mod 53.

T = (2 · 89)(Q − a2P) = (2 · 89)(a− a2)P is multiple of R
because a− a2 ≡ 0 mod 53, i.e. a− a2 = 53a′ and T = (2 · 89 · 53)a′P.
Compute a3 = logR T ≡ a′ mod 53.
Note a2 + 53a3 ≡ a mod 532.

R = (2 · 532)P has order 89, and
S = (2 · 532)Q is multiple of R.
Compute a4 = logR S ≡ a mod 89.

Use Chinese Remainder Theorem to determine a modulo 2 · 532 · 89.
a ≡ a1 mod 2,
a ≡ a2 + 53a3 mod 532,
a ≡ a4 mod 89,

Cost 1 + 2
√

53π/2 +
√

89π/2 = 31.07 < 74.94.
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√

53π/2 +
√

89π/2 = 31.07 < 74.94.
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Pohlig–Hellman overview
Pohlig–Hellman attack turns DLP a = logP Q in group of order

n =
∏

peii , pi prime , pi 6= pj , ei ∈ Z>0

into ∑
(ei DLPs in group of order pi ),∑

(ei + 1) scalar multiplications, and one application of the CRT.

Examples: n ∈ {61, 63, 64, 65}
I n = 64: 7 scalar multiplications (by 32), 16, 8, 4, 2, 1), 6 trivial DLs.

I n = 61: 1 DL in group of 61 elements (no effect of PH).

I n = 65 = 5 · 13: 4 scalar multiplications (by 13 and 5),
1 DL in group of 5 elements, 1 DL in group of 13 elements.

I n = 63 = 32 · 7: 5 scalar multiplications (by 21, 7, and 9),
2 DLs in group of 3 elements, 1 DL in group of 7 elements.

Pohlig-Hellman method reduces security of discrete logarithm problem in
group generated by P to security of largest prime order subgroup.

Many groups are much weaker than their size n predicts!

Tanja Lange Discrete logarithm problem 6



Pohlig–Hellman overview
Pohlig–Hellman attack turns DLP a = logP Q in group of order

n =
∏

peii , pi prime , pi 6= pj , ei ∈ Z>0

into ∑
(ei DLPs in group of order pi ),∑

(ei + 1) scalar multiplications, and one application of the CRT.

Examples: n ∈ {61, 63, 64, 65}
I n = 64: 7 scalar multiplications (by 32), 16, 8, 4, 2, 1), 6 trivial DLs.

I n = 61: 1 DL in group of 61 elements (no effect of PH).

I n = 65 = 5 · 13: 4 scalar multiplications (by 13 and 5),
1 DL in group of 5 elements, 1 DL in group of 13 elements.

I n = 63 = 32 · 7: 5 scalar multiplications (by 21, 7, and 9),
2 DLs in group of 3 elements, 1 DL in group of 7 elements.

Pohlig-Hellman method reduces security of discrete logarithm problem in
group generated by P to security of largest prime order subgroup.

Many groups are much weaker than their size n predicts!

Tanja Lange Discrete logarithm problem 6



Pohlig–Hellman overview
Pohlig–Hellman attack turns DLP a = logP Q in group of order

n =
∏

peii , pi prime , pi 6= pj , ei ∈ Z>0

into ∑
(ei DLPs in group of order pi ),∑

(ei + 1) scalar multiplications, and one application of the CRT.

Examples: n ∈ {61, 63, 64, 65}
I n = 64: 7 scalar multiplications (by 32), 16, 8, 4, 2, 1), 6 trivial DLs.

I n = 61: 1 DL in group of 61 elements (no effect of PH).

I n = 65 = 5 · 13: 4 scalar multiplications (by 13 and 5),
1 DL in group of 5 elements, 1 DL in group of 13 elements.

I n = 63 = 32 · 7: 5 scalar multiplications (by 21, 7, and 9),
2 DLs in group of 3 elements, 1 DL in group of 7 elements.

Pohlig-Hellman method reduces security of discrete logarithm problem in
group generated by P to security of largest prime order subgroup.

Many groups are much weaker than their size n predicts!

Tanja Lange Discrete logarithm problem 6



Pohlig–Hellman overview
Pohlig–Hellman attack turns DLP a = logP Q in group of order

n =
∏

peii , pi prime , pi 6= pj , ei ∈ Z>0

into ∑
(ei DLPs in group of order pi ),∑

(ei + 1) scalar multiplications, and one application of the CRT.

Examples: n ∈ {61, 63, 64, 65}
I n = 64: 7 scalar multiplications (by 32), 16, 8, 4, 2, 1), 6 trivial DLs.

I n = 61: 1 DL in group of 61 elements (no effect of PH).

I n = 65 = 5 · 13: 4 scalar multiplications (by 13 and 5),
1 DL in group of 5 elements, 1 DL in group of 13 elements.

I n = 63 = 32 · 7: 5 scalar multiplications (by 21, 7, and 9),
2 DLs in group of 3 elements, 1 DL in group of 7 elements.

Pohlig-Hellman method reduces security of discrete logarithm problem in
group generated by P to security of largest prime order subgroup.

Many groups are much weaker than their size n predicts!
Tanja Lange Discrete logarithm problem 6



Handling of one prime power I

Let n =
∏

peii , for pi prime, pi 6= pj , ei ∈ Z>0.
This slide handles peii for one prime pi ; repeat to get all primes.

Put ni = n/pi . P has order n.
Ri = niP has order pi .
Si = niQ is multiple of Ri , i.e., Si = aiRi , where ai ≡ a mod pi .
Solve this problem with an appropriate method,
i.e., brute force for tiny pi , BSGS or Pollard rho for bigger ones.

If ei = 1 we are done.
Else we need to do ei − 1 more steps of the same hardness.

Each of these steps updates ni to ni/pi , does not touch Ri

(we solve another DLP in the group of order pi generated by Ri ),
and updates target Si :

Assume ei = 2:
We want new Si = ni to be multiple of Ri , but ni lost an extra pi and
unless ai = 0 in previous step we need to update Q to Q ′.
Si = ni (Q − aiP) = ni (a− ai )P = ni (pia

′)P = a′Ri .
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Handling of one prime power II
Let n =

∏
peii , for pi prime, pi 6= pj , ei ∈ Z>0.

This slide handles peii for one prime pi ; repeat to get all primes.

Put ni = n/pi . P has order n.
Ri = niP has order pi .

Let ai = ai,0 + ai,1pi + ai,2p
2
i + · · ·+ ai,ei−1p

ei−1
i and a ≡ ai mod peii .

We first compute ai,0, then ai,1, ai,2, . . .
Note ai − (ai,0 + ai,1pi ) = ai,2p

2
i + · · ·+ ai,ei−1p

ei−1
i is multiple of p2i .

In general ai − (ai,0 + ai,1pi + · · ·+ ai,j−1p
j−1
i ) = ai,jp

j
i + · · ·+ ai,ei−1p

ei−1
i

is multiple of pji .

Initialize Qi = Q and ai,−1 = 0. (So that all steps look the same).

The jth of the ei steps, for 0 ≤ j < ei :

I updates ni to ni/pi and Qi to Qi − ai,j−1p
j−1
i P;

ni looses factor pi , Qi gains an extra factor of pi .

I computes Si = niQi , a multiple of Ri , i.e., Si = ai,jRi , using the new
ni and Qi ;

I solves this DLP to get ai,j .
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Pohlig–Hellman attack
Input: points P,Q with Q = aP, order n =

∏r
i=1 p

ei
i of P

with pi 6= pj , ei ∈ Z>0, fully factored
Output: discrete logarithm a of Q base P

1. for i = 1 to r

1.1 put Qi = Q, ai,−1 = 0, ni = n/pi
1.2 compute Ri = niP
1.3 for j = 0 to ei − 1

1.3.1 compute ni = n/pj+1
i # divide old ni by pi unless j = 0

1.3.2 compute Qi = Qi − (ai,j−1p
j−1
i )P

1.3.3 compute Si = niQi
1.3.4 solve DLP Si = ai,jRi of order pi

1.4 compute ai =
∑ej−1

j=0 ai,jp
j
i

2. solve CRT
a ≡ a1 mod pe11
a ≡ a2 mod pe22

...
a ≡ ar mod perr

to get a mod n

CRT works because peii are coprime and have product n.
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