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Example

y? = x3 — x over F,, p = 1000003.
P = (101384,614510) has order 2 - 532 - 89.

Given Q = aP = (670366, 740819), find a = logp Q@
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Example
y? = x3 — x over F,, p = 1000003.
P = (101384,614510) has order 2 - 532 - 89.
Given @ = aP = (670366,740819), find a = logp Q

R = (53% - 89)P has order 2, and
S = (532-89)Q is multiple of R.
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Example

y? = x3 — x over F,, p = 1000003.
P = (101384,614510) has order 2 - 532 - 89.

Given Q = aP = (670366, 740819), find a = logp Q

R = (53% - 89)P has order 2, and
S = (532-89)Q is multiple of R.

Easy to compute a; = logp S.
Note S = (532 -89)Q = (532 - 89)aP and (2532 -89)P = co.
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Example

y? = x3 — x over F,, p = 1000003.
P = (101384,614510) has order 2 - 532 - 89.
Given @ = aP = (670366,740819), find a = logp Q

R = (53% - 89)P has order 2, and

S = (532-89)Q is multiple of R.

Easy to compute a; = logp S.

Note S = (532 -89)Q = (532 - 89)aP and (2532 -89)P = co.
> aeven, ie,a=2a:S=(53?-89)2a'P = a'cc=c0
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Example

y? = x3 — x over F,, p = 1000003.
P = (101384,614510) has order 2 - 532 - 89.

Given Q = aP = (670366, 740819), find a = logp Q

R = (53% - 89)P has order 2, and
S = (532-89)Q is multiple of R.
Easy to compute a; = logp S.
Note S = (532 - 89)Q = (532 - 89)aP and (2 - 532 - 89)P = co.
> aeven, ie,a=2a:S=(53?-89)2a'P = a'cc=c0
> aodd, ie,a=2a+1: S =(53%-89)(2a' +1)P = (532-89)P # <
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Example

y? = x3 — x over F,, p = 1000003.
P = (101384,614510) has order 2 - 532 - 89.
Given @ = aP = (670366,740819), find a = logp Q
R = (53% - 89)P has order 2, and
S = (532-89)Q is multiple of R.
Easy to compute a; = logr S= a mod 2.
Note S = (532 -89)Q = (532 - 89)aP and (2532 -89)P = co.
> aeven, ie,a=2a:S=(53?-89)2a'P = a'cc=c0
> aodd, ie,a=2a+1: S =(53%-89)(2a' +1)P = (532-89)P # <
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Example
y? = x3 — x over F,, p = 1000003.
P = (101384,614510) has order 2 - 532 - 89.
Given @ = aP = (670366,740819), find a = logp Q

R = (53% - 89)P has order 2, and
S = (532-89)Q is multiple of R.

Easy to compute a; = logr S= a mod 2.
Note S = (532 -89)Q = (532 - 89)aP and (2532 -89)P = co.
> aeven, ie,a=2a:S=(53?-89)2a'P = a'cc=c0
> aodd, ie,a=2a+1: S =(53%-89)(2a' +1)P = (532-89)P # <

R = (2-53-89)P has order 53, and
S =(2-53-89)Q is multiple of R.
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Example
y? = x3 — x over F,, p = 1000003.
P = (101384,614510) has order 2 - 532 - 89.
Given @ = aP = (670366,740819), find a = logp Q

R = (53% - 89)P has order 2, and
S = (532-89)Q is multiple of R.

Easy to compute a; = logr S= a mod 2.
Note S = (532 -89)Q = (532 - 89)aP and (2532 -89)P = co.
> aeven, ie,a=2a:S=(53?-89)2a'P = a'cc=c0
> aodd, ie,a=2a+1: S =(53%-89)(2a' +1)P = (532-89)P # <
R = (2-53-89)P has order 53, and
S5 =(2-53-89)Q is multiple of R.

Compute a; = logr S = a mod 53. This is a DLP in a group of size 53.
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Example
y? = x3 — x over F,, p = 1000003.
P = (101384,614510) has order 2 - 532 - 89.
Given @ = aP = (670366,740819), find a = logp Q

R = (53% - 89)P has order 2, and
S = (532-89)Q is multiple of R.

Easy to compute a; = logr S= a mod 2.
Note S = (532-89)Q = (532 - 89)aP and (2-53%-89)P = oc.
> aeven, ie,a=2a:S=(53?-89)2a'P = a'cc=c0
> aodd, ie,a=2a+1: S =(53%-89)(2a' +1)P = (532-89)P # <
R = (2-53-89)P has order 53, and
S5 =(2-53-89)Q is multiple of R.
Compute a; = logr S = a mod 53. This is a DLP in a group of size 53.
Takes more effort than size 2, but much easier than size 500002.
Can use Pollard rho to attack this subgroup problem in /537 /2 steps.
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Running example continued
P = (101384, 614510) has order 2 - 532 - 89.
R = (53% - 89)P has order 2, and

S =(53?-89)Q is multiple of R.
Compute a; = logr S = a mod 2.

R =(2-53-89)P has order 53, and
S =1(2-53-89)Q is multiple of R.
Compute a; = logg S = a mod 53.
R = (2 - 53?)P has order 89, and

S = (2-53%)Q is multiple of R.
Compute a4 = logr S = a mod 89.
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Running example continued
P = (101384, 614510) has order 2 - 532 - 89.

R = (53% - 89)P has order 2, and
S =(53?-89)Q is multiple of R.
Compute a; = logr S = a mod 2.

R =(2-53-89)P has order 53, and
S =1(2-53-89)Q is multiple of R.
Compute a; = logg S = a mod 53.

R = (2 - 53?)P has order 89, and
S =(2-53%)Q is multiple of R.
Compute a4 = logr S = a mod 89.

Use Chinese Remainder Theorem
a=a; mod 2,
a = a, mod 53,
a = a4 mod 89,

to determine a modulo
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Running example continued
P = (101384, 614510) has order 2 - 532 - 89.

R = (53% - 89)P has order 2, and
S =(53?-89)Q is multiple of R.
Compute a; = logr S = a mod 2.

R =(2-53-89)P has order 53, and
S =1(2-53-89)Q is multiple of R.
Compute a; = logg S = a mod 53.

R = (2 - 53?)P has order 89, and
S =(2-53%)Q is multiple of R.
Compute a4 = logr S = a mod 89.

Use Chinese Remainder Theorem
a=a; mod 2,
a = a, mod 53,
a = a4 mod 89,

to determine a modulo 2 - 53 - 89.
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Running example continued
P = (101384, 614510) has order 2 - 532 - 89.

R = (53% - 89)P has order 2, and
S =(53?-89)Q is multiple of R.
Compute a; = logr S = a mod 2.

R =(2-53-89)P has order 53, and
S =1(2-53-89)Q is multiple of R.
Compute a; = logg S = a mod 53.

R = (2 - 53?)P has order 89, and
S =(2-53%)Q is multiple of R.
Compute a4 = logr S = a mod 89.

Use Chinese Remainder Theorem
a=a; mod 2,
a = a, mod 53,
a = a4 mod 89,
to determine a modulo 2 - 53 -89. Cost: 1+ +/537/2 + /897 /2.

Note that cost counts steps, ignores computation of R and S.
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Running example continued
P = (101384, 614510) has order 2 - 532 - 89.

R = (53% - 89)P has order 2, and
S =(53?-89)Q is multiple of R.
Compute a; = logr S = a mod 2.

R =(2-53-89)P has order 53, and
S =1(2-53-89)Q is multiple of R.
Compute a; = logg S = a mod 53.

R = (2 - 53?)P has order 89, and
S =(2-53%)Q is multiple of R.
Compute a4 = logr S = a mod 89.

Use Chinese Remainder Theorem
a=a; mod 2,
a = a, mod 53,
a = a4 mod 89,
to determine a modulo 2 - 53 -89. Cost: 1+ +/537/2 + /897 /2.

Note that cost counts steps, ignores computation of R and S.

But this misses a 53.
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Running example continued
P = (101384, 614510) has order 2 - 532 - 89.

R = (53% - 89)P has order 2, and
S =(53?-89)Q is multiple of R.
Compute a; = logr S = a mod 2.

R =(2-53-89)P has order 53, and
S =1(2-53-89)Q is multiple of R.
Compute a; = logg S = a mod 53.

R = (2 - 53?)P has order 89, and
S =(2-53%)Q is multiple of R.
Compute a4 = logr S = a mod 89.

Use Chinese Remainder Theorem
a=a; mod 2,
a = a, mod 53,
a = a4 mod 89,
to determine a modulo 2 - 53 -89. Cost: 1+ +/537/2 + /897 /2.

Note that cost counts steps, ignores computation of R and S.

But this misses a 53. Brute force search in residue class: cost +53.
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Are we there, yet?

R = (532 - 89)P has order 2, and

S = (532 -89)Q is multiple of R.
Compute a; = logr S = a mod 2.
R = (2-89)P has order 532, and

S =1(2-89)Q is multiple of R.
Compute as = logg S = a mod 532.
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Are we there, yet?
R = (532 - 89)P has order 2, and
S =(53?-89)Q is multiple of R.
Compute a; = logr S = a mod 2.

R = (2-89)P has order 532, and
S =1(2-89)Q is multiple of R.
Compute as = logg S = a mod 532.

R = (2-53?)P has order 89, and
S = (2-53%)Q is multiple of R.
Compute a4 = logr S = a mod 89.

Use Chinese Remainder Theorem to determine a modulo 2 - 532 - 89.
a=a; mod 2,
a = as mod 532,
a = az mod 89,
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Are we there, yet?

R = (532 - 89)P has order 2, and
S =(53?-89)Q is multiple of R.
Compute a; = logr S = a mod 2.

R = (2-89)P has order 532, and
S =1(2-89)Q is multiple of R.
Compute as = logg S = a mod 532.

R = (2-53?)P has order 89, and
S = (2-53%)Q is multiple of R.
Compute a4 = logr S = a mod 89.

Use Chinese Remainder Theorem to determine a modulo 2 - 532 - 89.
a=a; mod 2,
a = as mod 532,
a = az mod 89,

Cost 1+ +/5321/2 + /897/2 = 79.24 instead of
cost 1+ +/537/2 + /897 /2 + 53
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Are we there, yet? This is not Pohlig—Hellman
R = (532 - 89)P has order 2, and
S = (532 -89)Q is multiple of R.
Compute a; = logr S = a mod 2.

R = (2-89)P has order 532, and
S =1(2-89)Q is multiple of R.
Compute as = logg S = a mod 532.

R = (2-53?)P has order 89, and
S = (2-53%)Q is multiple of R.
Compute a4 = logr S = a mod 89.

Use Chinese Remainder Theorem to determine a modulo 2 - 532 - 89.
a=a; mod 2,
a = as mod 532,
a = az mod 89,

Cost 1+ +/5321/2 + /897 /2 = 79.24 instead of
cost 1+ /53m/2 + \/897/2 + 53 = 74.94.

Ratio would look worse without Pollard rho (no square roots):
1+2-53+89 =196 vs 1+ 532+ 89 = 2899.
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Pohlig—Hellman for running example
R = (532 - 89)P has order 2, and
S = (532 -89)Q is multiple of R.
Compute a; = logg S = a mod 2.
R = (2-53-89)P has order 53, and
S =(2-53-89)Q is multiple of R.
Compute a; = logr S = a mod 53.
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Pohlig—Hellman for running example

R = (532 - 89)P has order 2, and

S =(53%-89)Q is multiple of R.

Compute a; = logg S = a mod 2.

R = (2-53-89)P has order 53, and

S =(2-53-89)Q is multiple of R.

Compute a; = logr S = a mod 53.

T=(2-89)(Q — aP) = (2-89)(a — az)P is multiple of R

because a — a, =0 mod 53, i.e. a—a; =533 and T = (2-89-53)a’P.
Compute a3 = logg T
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Pohlig—Hellman for running example

R = (532 - 89)P has order 2, and

S =(53%-89)Q is multiple of R.

Compute a; = logg S = a mod 2.

R = (2-53-89)P has order 53, and

S =(2-53-89)Q is multiple of R.

Compute a; = logr S = a mod 53.

T=(2-89)(Q — aP) = (2-89)(a — az)P is multiple of R

because a — a, =0 mod 53, i.e. a—a; =533 and T = (2-89-53)a’P.
Compute a3 = logp T = a’ mod 53.
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Pohlig—Hellman for running example
R = (532 - 89)P has order 2, and
S = (532 -89)Q is multiple of R.
Compute a; = logg S = a mod 2.

R = (2-53-89)P has order 53, and

S =(2-53-89)Q is multiple of R.

Compute a; = logz S = a mod 53.

T=(2-89)(Q — aP) = (2-89)(a — az)P is multiple of R

because a — a, =0 mod 53, i.e. a—a; =533 and T = (2-89-53)a’P.
Compute a3 = logp T = a’ mod 53.

Note a, 4+ 53a3 = a mod 532.
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Pohlig—Hellman for running example
R = (532 - 89)P has order 2, and
S = (532 -89)Q is multiple of R.
Compute a; = logg S = a mod 2.

R = (2-53-89)P has order 53, and

S =(2-53-89)Q is multiple of R.

Compute a; = logz S = a mod 53.

T=(2-89)(Q — aP) = (2-89)(a — az)P is multiple of R

because a — a, =0 mod 53, i.e. a—a; =533 and T = (2-89-53)a’P.
Compute a3 = logp T = a’ mod 53.

Note a, 4+ 53a3 = a mod 532.

R = (2 -532)P has order 89, and
S =(2-53%)Q is multiple of R.
Compute a4 = logr S = a mod 89.

Use Chinese Remainder Theorem to determine a modulo 2 - 532 - 89.
a = a; mod 2,
a = a + 53a3 mod 532,
a = a, mod 89,
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Pohlig—Hellman for running example
R = (532 - 89)P has order 2, and
S = (532 -89)Q is multiple of R.
Compute a; = logg S = a mod 2.

R = (2-53-89)P has order 53, and

S =(2-53-89)Q is multiple of R.

Compute a; = logz S = a mod 53.

T=(2-89)(Q — aP) = (2-89)(a — az)P is multiple of R

because a — a, =0 mod 53, i.e. a—a; =533 and T = (2-89-53)a’P.
Compute a3 = logp T = a’ mod 53.

Note a, 4+ 53a3 = a mod 532.

R = (2 -532)P has order 89, and

S =(2-53%)Q is multiple of R.

Compute a4 = logr S = a mod 89.

Use Chinese Remainder Theorem to determine a modulo 2 - 532 - 89.
a = a; mod 2,
a = a + 53a3 mod 532,
a = a, mod 89,

Cost 1+ 24/531/2 + /897 /2 = 31.07 < 74.94.
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Pohlig—Hellman overview
Pohlig—Hellman attack turns DLP a = logp Q in group of order

n=][r piprime,pi#pj e € Zso

into
Z(e,- DLPs in group of order p;),

> (e + 1) scalar multiplications, and one application of the CRT.
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Pohlig—Hellman overview
Pohlig—Hellman attack turns DLP a = logp Q in group of order

n=][r piprime,pi#pj e € Zso

into
Z(e,- DLPs in group of order p;),
> (e + 1) scalar multiplications, and one application of the CRT.
Examples: n € {61,63,64,65}
» n = 64: 7 scalar multiplications (by 32), 16, 8, 4, 2, 1), 6 trivial DLs.
» n=261: 1 DL in group of 61 elements (no effect of PH).
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Pohlig—Hellman overview
Pohlig—Hellman attack turns DLP a = logp Q in group of order

n=][r piprime,pi#pj e € Zso

into
Z(e,- DLPs in group of order p;),

> (e + 1) scalar multiplications, and one application of the CRT.
Examples: n € {61,63,64,65}
» n = 64: 7 scalar multiplications (by 32), 16, 8, 4, 2, 1), 6 trivial DLs.
» n=261: 1 DL in group of 61 elements (no effect of PH).

» n=65=>5"-13: 4 scalar multiplications (by 13 and 5),
1 DL in group of 5 elements, 1 DL in group of 13 elements.

» n =63 =327 5 scalar multiplications (by 21, 7, and 9),
2 DLs in group of 3 elements, 1 DL in group of 7 elements.
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Pohlig—Hellman overview
Pohlig—Hellman attack turns DLP a = logp Q in group of order

n=][r piprime,pi#pj e € Zso

into
Z(e,- DLPs in group of order p;),

> (e + 1) scalar multiplications, and one application of the CRT.
Examples: n € {61,63,64,65}
» n = 64: 7 scalar multiplications (by 32), 16, 8, 4, 2, 1), 6 trivial DLs.
» n=261: 1 DL in group of 61 elements (no effect of PH).

» n=65=>5"-13: 4 scalar multiplications (by 13 and 5),
1 DL in group of 5 elements, 1 DL in group of 13 elements.
» n =63 =327 5 scalar multiplications (by 21, 7, and 9),
2 DLs in group of 3 elements, 1 DL in group of 7 elements.
Pohlig-Hellman method reduces security of discrete logarithm problem in
group generated by P to security of largest prime order subgroup.

Many groups are much weaker than their size n predicts!
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Handling of one prime power |

Let n =[] p{, for pi prime, pi # pj, &i € Z>o.
This slide handles p{’ for one prime p;; repeat to get all primes.
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Handling of one prime power |
Let n =[] p{, for pi prime, pi # pj, &i € Z>o.
This slide handles p{’ for one prime p;; repeat to get all primes.

Put n; = n/p;. P has order n.
R; = n;P has order p;.
Si = n;Q is multiple of R;, i.e., S; = a;R;, where a; = a mod p;.

Tanja Lange Discrete logarithm problem



Handling of one prime power |

Let n =[] p{, for pi prime, pi # pj, &i € Z>o.
This slide handles p{’ for one prime p;; repeat to get all primes.

Put n; = n/p;. P has order n.

R; = n;P has order p;.

Si = n;Q is multiple of R;, i.e., S; = a;R;, where a; = a mod p;.
Solve this problem with an appropriate method,

i.e., brute force for tiny p;, BSGS or Pollard rho for bigger ones.
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Handling of one prime power |

Let n =[] p{, for pi prime, pi # pj, &i € Z>o.
This slide handles p{’ for one prime p;; repeat to get all primes.

Put n; = n/p;. P has order n.

R; = n;P has order p;.

Si = n;Q is multiple of R;, i.e., S; = a;R;, where a; = a mod p;.
Solve this problem with an appropriate method,

i.e., brute force for tiny p;, BSGS or Pollard rho for bigger ones.

If & =1 we are done.
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Handling of one prime power |

Let n =[] p{, for pi prime, pi # pj, &i € Z>o.
This slide handles p{’ for one prime p;; repeat to get all primes.

Put n; = n/p;. P has order n.

R; = n;P has order p;.

Si = n;Q is multiple of R;, i.e., S; = a;R;, where a; = a mod p;.
Solve this problem with an appropriate method,

i.e., brute force for tiny p;, BSGS or Pollard rho for bigger ones.

If & =1 we are done.
Else we need to do e; — 1 more steps of the same hardness.
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Handling of one prime power |

Let n =[] p{, for pi prime, pi # pj, &i € Z>o.
This slide handles p{’ for one prime p;; repeat to get all primes.

Put n; = n/p;. P has order n.

R; = n;P has order p;.

Si = n;Q is multiple of R;, i.e., S; = a;R;, where a; = a mod p;.
Solve this problem with an appropriate method,

i.e., brute force for tiny p;, BSGS or Pollard rho for bigger ones.

If & =1 we are done.
Else we need to do e; — 1 more steps of the same hardness.

Each of these steps updates n; to n;/p;, does not touch R;
(we solve another DLP in the group of order p; generated by R;),
and updates target S;:
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Handling of one prime power |

Let n =[] p{, for pi prime, pi # pj, &i € Z>o.
This slide handles p{’ for one prime p;; repeat to get all primes.

Put n; = n/p;. P has order n.

R; = n;P has order p;.

Si = n;Q is multiple of R;, i.e., S; = a;R;, where a; = a mod p;.
Solve this problem with an appropriate method,

i.e., brute force for tiny p;, BSGS or Pollard rho for bigger ones.

If & =1 we are done.
Else we need to do e; — 1 more steps of the same hardness.

Each of these steps updates n; to n;/p;, does not touch R;
(we solve another DLP in the group of order p; generated by R;),
and updates target S;:

Assume ¢; = 2:
We want new S; = n;@ to be multiple of R;,
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Handling of one prime power |

Let n =[] p{, for pi prime, pi # pj, &i € Z>o.
This slide handles p{’ for one prime p;; repeat to get all primes.

Put n; = n/p;. P has order n.

R; = n;P has order p;.

Si = n;Q is multiple of R;, i.e., S; = a;R;, where a; = a mod p;.
Solve this problem with an appropriate method,

i.e., brute force for tiny p;, BSGS or Pollard rho for bigger ones.

If & =1 we are done.
Else we need to do e; — 1 more steps of the same hardness.

Each of these steps updates n; to n;/p;, does not touch R;
(we solve another DLP in the group of order p; generated by R;),
and updates target S;:

Assume ¢; = 2:
We want new S; = n;@ to be multiple of R;, but n; lost an extra p; and
unless a; = 0 in previous step we need to update @ to Q.
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Handling of one prime power |

Let n =[] p{, for pi prime, pi # pj, &i € Z>o.
This slide handles p{’ for one prime p;; repeat to get all primes.

Put n; = n/p;. P has order n.

R; = n;P has order p;.

Si = n;Q is multiple of R;, i.e., S; = a;R;, where a; = a mod p;.
Solve this problem with an appropriate method,

i.e., brute force for tiny p;, BSGS or Pollard rho for bigger ones.

If & =1 we are done.
Else we need to do e; — 1 more steps of the same hardness.

Each of these steps updates n; to n;/p;, does not touch R;
(we solve another DLP in the group of order p; generated by R;),
and updates target S;:

Assume ¢ = 2:
We want new S; = n;Q’ to be multiple of R;, but n; lost an extra p; and
unless a; = 0 in previous step we need to update Q to Q.
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Handling of one prime power |

Let n =[] p{, for pi prime, pi # pj, &i € Z>o.
This slide handles p{’ for one prime p;; repeat to get all primes.

Put n; = n/p;. P has order n.

R; = n;P has order p;.

Si = n;Q is multiple of R;, i.e., S; = a;R;, where a; = a mod p;.
Solve this problem with an appropriate method,

i.e., brute force for tiny p;, BSGS or Pollard rho for bigger ones.

If & =1 we are done.
Else we need to do e; — 1 more steps of the same hardness.

Each of these steps updates n; to n;/p;, does not touch R;
(we solve another DLP in the group of order p; generated by R;),
and updates target S;:

Assume ¢ = 2:

We want new S; = n;Q’ to be multiple of R;, but n; lost an extra p; and
unless a; = 0 in previous step we need to update Q to Q.

Si=ni(Q — a;P) = ni(a— a;))P = n;j(p;a )P = a'R;.
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Handling of one prime power I

Let n =[] p{, for pi prime, pi # pj, &i € Z>o.
This slide handles p{’ for one prime p;; repeat to get all primes.
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Handling of one prime power I
Let n =[] p{, for pi prime, pi # pj, &i € Z>o.
This slide handles p{’ for one prime p;; repeat to get all primes.
Put n; = n/p;. P has order n.
R; = n;P has order p;.

1

Let a; = aj0 + ai1pi + a,-72p,-2 4+ -+ a,-7e,._1p,-e"_ and a = a; mod pf".

We first compute aj o, then a;1,ai2,...
_ 2 ei—1 . 2
Note a; — (ajo + ai1pi) = ai2p; + -+ + aj,e—1P; is multiple of p?.

i
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Handling of one prime power I

Let n =[] p{, for pi prime, pi # pj, &i € Z>o.
This slide handles p{’ for one prime p;; repeat to get all primes.

Put n; = n/p;. P has order n.
R; = n;P has order p;.

1

Let a; = aj0 + ai1pi + a,-72p,-2 4+ -+ a,-7e,._1p,-e"_ and a = a; mod pf".

We first compute aj o, then a;1,ai2,...
_ 2 ei—1 . 2
Note a; — (ajo + ai1pi) = ai2p; + -+ + aj,e—1P; is multiple of p7.

j—1 j e—1
In general a; — (a0 +ai1pi+- - +aij1p ) = 3P+ +aie-1P]

is multiple of p{
Initialize Q; = Q and a; _; = 0. (So that all steps look the same).

The jth of the ¢; steps, for 0 < j < e;:
> updates n; to n;/p; and Q; to Q; — a,-7j_1p{_1P;
n; looses factor p;, Q; gains an extra factor of p;.
> computes S; = n;Q;, a multiple of R;, i.e., S; = a; jR;, using the new
n; and Q;;
> solves this DLP to get a; ;.
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Pohlig—Hellman attack

Input: points P, Q with Q = aP, order n =[]'_, p{" of P
with p; # pj, ei € Z>o, fully factored
Output: discrete logarithm a of @ base P

1. fori=1tor

1.1 put Q= Q, aj,—1 =0,n; = n/p;
1.2 compute R; = n;P
13 forj=0toeg —1

1.3.1 compute n; = n/p/™"  # divide old n; by p; unless j =0
1.3.2 compute Q; = Q; — (a,-wj,lpfl)P

1.3.3 compute S; = n; Q;

1.3.4 solve DLP S; = a; jR; of order p;

e—1
1.4 compute a; = > 7, ajjpl
2. solve CRT o
a = a; mod p]
a = apmod p3
a = a,modp;

to get a mod n

CRT works because p;" are coprime and have product n.
Tanja Lange Discrete logarithm problem



