Discrete logarithm problem Pohlig-Hellman example

Tanja Lange

Eindhoven University of Technology

2MMC10 - Cryptology

$$y^2 = x^3 - x$$
 over F_p , $p = 1000003$.
 $P = (101384, 614510)$ has order $2 \cdot 53^2 \cdot 89$.

Given Q = aP = (670366, 740819), find $a = \log_P Q$

$$y^2 = x^3 - x$$
 over F_p , $p = 1000003$.
 $P = (101384, 614510)$ has order $2 \cdot 53^2 \cdot 89$.
Given $Q = aP = (670366, 740819)$, find $a = \log_P Q$
 $R = (53^2 \cdot 89)P$ has order 2, and
 $S = (53^2 \cdot 89)Q$ is multiple of R .

$$y^2 = x^3 - x$$
 over F_p , $p = 1000003$.
 $P = (101384, 614510)$ has order $2 \cdot 53^2 \cdot 89$.
Given $Q = aP = (670366, 740819)$, find $a = \log_P Q$
 $R = (53^2 \cdot 89)P$ has order 2, and
 $S = (53^2 \cdot 89)Q$ is multiple of R .
Easy to compute $a_1 = \log_R S$

 $y^2 = x^3 - x$ over F_p , p = 1000003. P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$. Given Q = aP = (670366, 740819), find $a = \log_P Q$ $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Easy to compute $a_1 = \log_R S$.

Note $S = (53^2 \cdot 89)Q = (53^2 \cdot 89)aP$ and $(2 \cdot 53^2 \cdot 89)P = \infty$.

$$y^{2} = x^{3} - x \text{ over } F_{p}, p = 1000003.$$

$$P = (101384, 614510) \text{ has order } 2 \cdot 53^{2} \cdot 89.$$

Given $Q = aP = (670366, 740819), \text{ find } a = \log_{P} Q$

$$R = (53^{2} \cdot 89)P \text{ has order } 2, \text{ and}$$

$$S = (53^{2} \cdot 89)Q \text{ is multiple of } R.$$

Easy to compute $a_{1} = \log_{R} S.$
Note $S = (53^{2} \cdot 89)Q = (53^{2} \cdot 89)aP \text{ and } (2 \cdot 53^{2} \cdot 89)P = \infty.$
 $\blacktriangleright a \text{ even, i.e., } a = 2a': S = (53^{2} \cdot 89)2a'P = a'\infty = \infty$

$$y^{2} = x^{3} - x \text{ over } F_{p}, p = 1000003.$$

$$P = (101384, 614510) \text{ has order } 2 \cdot 53^{2} \cdot 89.$$
Given $Q = aP = (670366, 740819), \text{ find } a = \log_{P} Q$

$$R = (53^{2} \cdot 89)P \text{ has order } 2, \text{ and}$$

$$S = (53^{2} \cdot 89)Q \text{ is multiple of } R.$$
Easy to compute $a_{1} = \log_{R} S.$
Note $S = (53^{2} \cdot 89)Q = (53^{2} \cdot 89)aP \text{ and } (2 \cdot 53^{2} \cdot 89)P = \infty.$

$$\bullet a \text{ even, i.e., } a = 2a': S = (53^{2} \cdot 89)(2a' P) = a'\infty = \infty$$

$$\bullet a \text{ odd, i.e., } a = 2a' + 1: S = (53^{2} \cdot 89)(2a' + 1)P = (53^{2} \cdot 89)P \neq \infty$$

$$y^{2} = x^{3} - x \text{ over } F_{p}, p = 1000003.$$

$$P = (101384, 614510) \text{ has order } 2 \cdot 53^{2} \cdot 89.$$
Given $Q = aP = (670366, 740819), \text{ find } a = \log_{P} Q$

$$R = (53^{2} \cdot 89)P \text{ has order } 2, \text{ and}$$

$$S = (53^{2} \cdot 89)Q \text{ is multiple of } R.$$
Easy to compute $a_{1} = \log_{R} S \equiv a \mod 2.$
Note $S = (53^{2} \cdot 89)Q = (53^{2} \cdot 89)aP \text{ and } (2 \cdot 53^{2} \cdot 89)P = \infty.$

$$\bullet a \text{ even, i.e., } a = 2a': S = (53^{2} \cdot 89)(2a' + 1)P = (53^{2} \cdot 89)P \neq \infty$$

$$y^{2} = x^{3} - x \text{ over } F_{p}, p = 1000003.$$

$$P = (101384, 614510) \text{ has order } 2 \cdot 53^{2} \cdot 89.$$

Given $Q = aP = (670366, 740819), \text{ find } a = \log_{P} Q$

$$R = (53^{2} \cdot 89)P \text{ has order } 2, \text{ and}$$

$$S = (53^{2} \cdot 89)Q \text{ is multiple of } R.$$

Easy to compute $a_{1} = \log_{R} S \equiv a \mod 2.$
Note $S = (53^{2} \cdot 89)Q = (53^{2} \cdot 89)aP \text{ and } (2 \cdot 53^{2} \cdot 89)P = \infty.$
 $\blacktriangleright a \text{ even, i.e., } a = 2a': S = (53^{2} \cdot 89)2a'P = a'\infty = \infty$
 $\blacktriangleright a \text{ odd, i.e., } a = 2a' + 1: S = (53^{2} \cdot 89)(2a' + 1)P = (53^{2} \cdot 89)P \neq \infty$

$$R = (2 \cdot 53 \cdot 89)P \text{ has order } 53, \text{ and}$$

 $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R.

 $v^2 = x^3 - x$ over F_p , p = 1000003. P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$. Given Q = aP = (670366, 740819), find $a = \log_P Q$ $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Easy to compute $a_1 = \log_R S \equiv a \mod 2$. Note $S = (53^2 \cdot 89)Q = (53^2 \cdot 89)aP$ and $(2 \cdot 53^2 \cdot 89)P = \infty$. ▶ a even, i.e., a = 2a': $S = (53^2 \cdot 89)2a'P = a'\infty = \infty$ ▶ a odd, i.e., a = 2a' + 1: $S = (53^2 \cdot 89)(2a' + 1)P = (53^2 \cdot 89)P \neq \infty$ $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$. This is a DLP in a group of size 53.

$$y^2 = x^3 - x$$
 over F_p , $p = 1000003$.
 $P = (101384, 614510)$ has order $2 \cdot 53^2 \cdot 89$.
Given $Q = aP = (670366, 740819)$, find $a = \log_P Q$
 $R = (53^2 \cdot 89)P$ has order 2, and
 $S = (53^2 \cdot 89)Q$ is multiple of R .
Easy to compute $a_1 = \log_R S \equiv a \mod 2$.
Note $S = (53^2 \cdot 89)Q = (53^2 \cdot 89)aP$ and $(2 \cdot 53^2 \cdot 89)P = \infty$.
 \bullet a even, i.e., $a = 2a'$: $S = (53^2 \cdot 89)2a'P = a'\infty = \infty$
 \bullet a odd, i.e., $a = 2a' + 1$: $S = (53^2 \cdot 89)(2a' + 1)P = (53^2 \cdot 89)P \neq \infty$
 $R = (2 \cdot 53 \cdot 89)P$ has order 53, and
 $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R .
Compute $a_2 = \log_R S \equiv a \mod 53$. This is a DLP in a group of size 53.
Takes more effort than size 2, but much easier than size 500002.
Can use Pollard rho to attack this subgroup problem in $\sqrt{53\pi/2}$ steps.

P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$.

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$.

 $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$.

 $R = (2 \cdot 53^2)P \text{ has order 89, and}$ $S = (2 \cdot 53^2)Q \text{ is multiple of } R.$ Compute $a_4 = \log_R S \equiv a \mod 89.$

P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$.

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$.

 $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$.

 $R = (2 \cdot 53^2)P$ has order 89, and $S = (2 \cdot 53^2)Q$ is multiple of R. Compute $a_4 = \log_R S \equiv a \mod 89$.

Use Chinese Remainder Theorem

 $a \equiv a_1 \mod 2,$ $a \equiv a_2 \mod 53,$ $a \equiv a_4 \mod 89,$

to determine a modulo

P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$.

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$.

 $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$.

 $R = (2 \cdot 53^2)P \text{ has order 89, and}$ $S = (2 \cdot 53^2)Q \text{ is multiple of } R.$ Compute $a_4 = \log_R S \equiv a \mod 89.$

Use Chinese Remainder Theorem

 $a \equiv a_1 \mod 2,$ $a \equiv a_2 \mod 53,$ $a \equiv a_4 \mod 89,$

to determine a modulo $2 \cdot 53 \cdot 89$.

P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$.

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$.

 $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$.

 $R = (2 \cdot 53^2)P \text{ has order 89, and}$ $S = (2 \cdot 53^2)Q \text{ is multiple of } R.$ Compute $a_4 = \log_R S \equiv a \mod 89.$

Use Chinese Remainder Theorem

 $a \equiv a_1 \mod 2$, $a \equiv a_2 \mod 53$, $a \equiv a_4 \mod 89$,

to determine a modulo $2 \cdot 53 \cdot 89$. Cost: $1 + \sqrt{53\pi/2} + \sqrt{89\pi/2}$. Note that cost counts steps, ignores computation of *R* and *S*.

P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$.

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$.

 $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$.

 $R = (2 \cdot 53^2)P \text{ has order 89, and}$ $S = (2 \cdot 53^2)Q \text{ is multiple of } R.$ Compute $a_4 = \log_R S \equiv a \mod 89.$

Use Chinese Remainder Theorem

 $a \equiv a_1 \mod 2$, $a \equiv a_2 \mod 53$, $a \equiv a_4 \mod 89$,

to determine a modulo $2 \cdot 53 \cdot 89$. Cost: $1 + \sqrt{53\pi/2} + \sqrt{89\pi/2}$. Note that cost counts steps, ignores computation of *R* and *S*.

But this misses a 53.

P = (101384, 614510) has order $2 \cdot 53^2 \cdot 89$.

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$.

 $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$.

 $R = (2 \cdot 53^2)P$ has order 89, and $S = (2 \cdot 53^2)Q$ is multiple of R. Compute $a_4 = \log_R S \equiv a \mod 89$.

Use Chinese Remainder Theorem

 $a \equiv a_1 \mod 2$, $a \equiv a_2 \mod 53$, $a \equiv a_4 \mod 89$,

to determine a modulo $2 \cdot 53 \cdot 89$. Cost: $1 + \sqrt{53\pi/2} + \sqrt{89\pi/2}$. Note that cost counts steps, ignores computation of *R* and *S*.

But this misses a 53. Brute force search in residue class: cost + 53.

Are we there, yet?

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$. $R = (2 \cdot 89)P$ has order 53^2 , and

 $S = (2 \cdot 89)Q$ is multiple of R. Compute $a_5 = \log_R S \equiv a \mod 53^2$.

Are we there, yet?

 $R = (53^2 \cdot 89)P \text{ has order 2, and}$ $S = (53^2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_1 = \log_R S \equiv a \mod 2.$ $R = (2 \cdot 89)P \text{ has order } 53^2, \text{ and}$ $S = (2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_5 = \log_R S \equiv a \mod 53^2.$ $R = (2 \cdot 53^2)P \text{ has order } 89, \text{ and}$ $S = (2 \cdot 53^2)Q \text{ is multiple of } R.$

Compute $a_4 = \log_R S \equiv a \mod 89$.

Use Chinese Remainder Theorem to determine a modulo $2 \cdot 53^2 \cdot 89$.

$$a \equiv a_1 \mod 2$$
,
 $a \equiv a_5 \mod 53^2$,
 $a \equiv a_4 \mod 89$,

Are we there, yet?

 $\begin{aligned} R &= (53^2 \cdot 89)P \text{ has order 2, and} \\ S &= (53^2 \cdot 89)Q \text{ is multiple of } R. \\ \text{Compute } a_1 &= \log_R S \equiv a \mod 2. \\ R &= (2 \cdot 89)P \text{ has order } 53^2, \text{ and} \\ S &= (2 \cdot 89)Q \text{ is multiple of } R. \\ \text{Compute } a_5 &= \log_R S \equiv a \mod 53^2. \end{aligned}$

 $R = (2 \cdot 53^2)P$ has order 89, and $S = (2 \cdot 53^2)Q$ is multiple of R. Compute $a_4 = \log_R S \equiv a \mod 89$.

Use Chinese Remainder Theorem to determine *a* modulo $2 \cdot 53^2 \cdot 89$.

$$a \equiv a_1 \mod 2$$
,
 $a \equiv a_5 \mod 53^2$,
 $a \equiv a_4 \mod 89$,

Cost $1 + \sqrt{53^2 \pi/2} + \sqrt{89\pi/2} = 79.24$ instead of cost $1 + \sqrt{53\pi/2} + \sqrt{89\pi/2} + 53$

Are we there, yet? This is not Pohlig-Hellman

 $R = (53^2 \cdot 89)P \text{ has order 2, and}$ $S = (53^2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_1 = \log_R S \equiv a \mod 2$. $R = (2 \cdot 89)P \text{ has order } 53^2, \text{ and}$ $S = (2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_5 = \log_R S \equiv a \mod 53^2$. $R = (2 \cdot 53^2)P \text{ has order } 89, \text{ and}$ $S = (2 \cdot 53^2)Q \text{ is multiple of } R.$ Compute $a_4 = \log_R S \equiv a \mod 89$.

Use Chinese Remainder Theorem to determine a modulo $2 \cdot 53^2 \cdot 89$.

$$a \equiv a_1 \mod 2$$
,
 $a \equiv a_5 \mod 53^2$,
 $a \equiv a_4 \mod 89$,

Cost $1 + \sqrt{53^2 \pi/2} + \sqrt{89\pi/2} = 79.24$ instead of cost $1 + \sqrt{53\pi/2} + \sqrt{89\pi/2} + 53 = 74.94$.

Ratio would look worse without Pollard rho (no square roots): $1 + 2 \cdot 53 + 89 = 196$ vs $1 + 53^2 + 89 = 2899$.

 $R = (53^2 \cdot 89)P \text{ has order 2, and}$ $S = (53^2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_1 = \log_R S \equiv a \mod 2.$ $R = (2 \cdot 53 \cdot 89)P \text{ has order 53, and}$ $S = (2 \cdot 53 \cdot 89)Q \text{ is multiple of } R.$

Compute $a_2 = \log_R S \equiv a \mod 53$.

 $R = (53^2 \cdot 89)P \text{ has order 2, and}$ $S = (53^2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_1 = \log_R S \equiv a \mod 2$. $R = (2 \cdot 53 \cdot 89)P \text{ has order 53, and}$ $S = (2 \cdot 53 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_2 = \log_R S \equiv a \mod 53$. $T = (2 \cdot 89)(Q - a_2P) = (2 \cdot 89)(a - a_2)P \text{ is multiple of } R$ because $a - a_2 \equiv 0 \mod 53$, i.e. $a - a_2 = 53a' \text{ and } T = (2 \cdot 89 \cdot 53)a'P$. Compute $a_3 = \log_R T$

 $R = (53^2 \cdot 89)P \text{ has order 2, and}$ $S = (53^2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_1 = \log_R S \equiv a \mod 2$. $R = (2 \cdot 53 \cdot 89)P \text{ has order 53, and}$ $S = (2 \cdot 53 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_2 = \log_R S \equiv a \mod 53$. $T = (2 \cdot 89)(Q - a_2P) = (2 \cdot 89)(a - a_2)P \text{ is multiple of } R$ because $a - a_2 \equiv 0 \mod 53$, i.e. $a - a_2 = 53a' \text{ and } T = (2 \cdot 89 \cdot 53)a'P$. Compute $a_3 = \log_R T \equiv a' \mod 53$.

 $R = (53^2 \cdot 89)P \text{ has order 2, and}$ $S = (53^2 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_1 = \log_R S \equiv a \mod 2$. $R = (2 \cdot 53 \cdot 89)P \text{ has order 53, and}$ $S = (2 \cdot 53 \cdot 89)Q \text{ is multiple of } R.$ Compute $a_2 = \log_R S \equiv a \mod 53$. $T = (2 \cdot 89)(Q - a_2P) = (2 \cdot 89)(a - a_2)P \text{ is multiple of } R$ because $a - a_2 \equiv 0 \mod 53$, i.e. $a - a_2 = 53a' \text{ and } T = (2 \cdot 89 \cdot 53)a'P$. Compute $a_3 = \log_R T \equiv a' \mod 53$. Note $a_2 + 53a_3 \equiv a \mod 53^2$.

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$. $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$. $T = (2 \cdot 89)(Q - a_2 P) = (2 \cdot 89)(a - a_2)P$ is multiple of R because $a - a_2 \equiv 0 \mod{53}$, i.e. $a - a_2 = 53a'$ and $T = (2 \cdot 89 \cdot 53)a'P$. Compute $a_3 = \log_R T \equiv a' \mod 53$. Note $a_2 + 53a_3 \equiv a \mod 53^2$. $R = (2 \cdot 53^2)P$ has order 89, and $S = (2 \cdot 53^2)Q$ is multiple of R. Compute $a_4 = \log_R S \equiv a \mod 89$. Use Chinese Remainder Theorem to determine a modulo $2 \cdot 53^2 \cdot 89$.

$$a \equiv a_1 \mod 2$$
,
 $a \equiv a_2 + 53a_3 \mod 53^2$,
 $a \equiv a_4 \mod 89$,

 $R = (53^2 \cdot 89)P$ has order 2, and $S = (53^2 \cdot 89)Q$ is multiple of R. Compute $a_1 = \log_R S \equiv a \mod 2$. $R = (2 \cdot 53 \cdot 89)P$ has order 53, and $S = (2 \cdot 53 \cdot 89)Q$ is multiple of R. Compute $a_2 = \log_R S \equiv a \mod 53$. $T = (2 \cdot 89)(Q - a_2 P) = (2 \cdot 89)(a - a_2)P$ is multiple of R because $a - a_2 \equiv 0 \mod{53}$, i.e. $a - a_2 = 53a'$ and $T = (2 \cdot 89 \cdot 53)a'P$. Compute $a_3 = \log_R T \equiv a' \mod 53$. Note $a_2 + 53a_3 \equiv a \mod 53^2$. $R = (2 \cdot 53^2)P$ has order 89, and $S = (2 \cdot 53^2)Q$ is multiple of R. Compute $a_4 = \log_R S \equiv a \mod 89$. Use Chinese Remainder Theorem to determine a modulo $2 \cdot 53^2 \cdot 89$.

$$a \equiv a_1 \mod 2,$$

$$a \equiv a_2 + 53a_3 \mod 53^2,$$

$$a \equiv a_4 \mod 89,$$

$$\text{Cost } 1 + 2\sqrt{53\pi/2} + \sqrt{89\pi/2} = 31.07 < 74.94.$$

Pohlig-Hellman attack turns DLP $a = \log_P Q$ in group of order

$$n = \prod p_i^{e_i}, \quad p_i \text{ prime }, p_i \neq p_j, e_i \in \mathsf{Z}_{>0}$$

into

$$\sum (e_i \text{ DLPs in group of order } p_i),$$

 $\sum (e_i + 1)$ scalar multiplications, and one application of the CRT.

Pohlig-Hellman attack turns DLP $a = \log_P Q$ in group of order

$$n = \prod p_i^{e_i}, \quad p_i \text{ prime }, p_i \neq p_j, e_i \in \mathsf{Z}_{>0}$$

into

$$\sum (e_i \text{ DLPs in group of order } p_i),$$

 $\sum (e_i + 1)$ scalar multiplications, and one application of the CRT. Examples: $n \in \{61, 63, 64, 65\}$

- \blacktriangleright n = 64: 7 scalar multiplications (by 32), 16, 8, 4, 2, 1), 6 trivial DLs.
- ▶ n = 61: 1 DL in group of 61 elements (no effect of PH).

Pohlig-Hellman attack turns DLP $a = \log_P Q$ in group of order

$$n = \prod p_i^{e_i}, \quad p_i \text{ prime }, p_i \neq p_j, e_i \in \mathsf{Z}_{>0}$$

into

$$\sum (e_i \text{ DLPs in group of order } p_i),$$

 $\sum (e_i + 1)$ scalar multiplications, and one application of the CRT. Examples: $n \in \{61, 63, 64, 65\}$

- \blacktriangleright n = 64: 7 scalar multiplications (by 32), 16, 8, 4, 2, 1), 6 trivial DLs.
- ▶ n = 61: 1 DL in group of 61 elements (no effect of PH).
- n = 65 = 5 · 13: 4 scalar multiplications (by 13 and 5), 1 DL in group of 5 elements, 1 DL in group of 13 elements.
- n = 63 = 3² · 7: 5 scalar multiplications (by 21, 7, and 9),
 2 DLs in group of 3 elements, 1 DL in group of 7 elements.

Pohlig-Hellman attack turns DLP $a = \log_P Q$ in group of order

$$n = \prod p_i^{e_i}, \quad p_i \text{ prime }, p_i \neq p_j, e_i \in \mathsf{Z}_{>0}$$

into

$$\sum (e_i \text{ DLPs in group of order } p_i),$$

 $\sum (e_i + 1)$ scalar multiplications, and one application of the CRT. Examples: $n \in \{61, 63, 64, 65\}$

- ▶ n = 64: 7 scalar multiplications (by 32), 16, 8, 4, 2, 1), 6 trivial DLs.
- ▶ n = 61: 1 DL in group of 61 elements (no effect of PH).
- n = 65 = 5 · 13: 4 scalar multiplications (by 13 and 5), 1 DL in group of 5 elements, 1 DL in group of 13 elements.
- ▶ $n = 63 = 3^2 \cdot 7$: 5 scalar multiplications (by 21, 7, and 9), 2 DLs in group of 3 elements, 1 DL in group of 7 elements.

Pohlig-Hellman method reduces security of discrete logarithm problem in group generated by P to security of largest prime order subgroup.

Many groups are much weaker than their size n predicts!

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes.

Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in Z_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes.

Put $n_i = n/p_i$. *P* has order *n*.

 $R_i = n_i P$ has order p_i .

 $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method,

i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method, i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

If $e_i = 1$ we are done.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method, i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

If $e_i = 1$ we are done. Else we need to do $e_i - 1$ more steps of the same hardness.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method, i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

If $e_i = 1$ we are done. Else we need to do $e_i - 1$ more steps of the same hardness.

Each of these steps updates n_i to n_i/p_i , does not touch R_i (we solve another DLP in the group of order p_i generated by R_i), and updates target S_i :

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method, i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

If $e_i = 1$ we are done. Else we need to do $e_i - 1$ more steps of the same hardness.

Each of these steps updates n_i to n_i/p_i , does not touch R_i (we solve another DLP in the group of order p_i generated by R_i), and updates target S_i :

Assume $e_i = 2$: We want new $S_i = n_i Q$ to be multiple of R_i ,

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method, i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

If $e_i = 1$ we are done. Else we need to do $e_i - 1$ more steps of the same hardness.

Each of these steps updates n_i to n_i/p_i , does not touch R_i (we solve another DLP in the group of order p_i generated by R_i), and updates target S_i :

Assume $e_i = 2$: We want new $S_i = n_i Q$ to be multiple of R_i , but n_i lost an extra p_i and unless $a_i = 0$ in previous step we need to update Q to Q'.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method, i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

If $e_i = 1$ we are done. Else we need to do $e_i - 1$ more steps of the same hardness.

Each of these steps updates n_i to n_i/p_i , does not touch R_i (we solve another DLP in the group of order p_i generated by R_i), and updates target S_i :

Assume $e_i = 2$: We want new $S_i = n_i Q'$ to be multiple of R_i , but n_i lost an extra p_i and unless $a_i = 0$ in previous step we need to update Q to Q'.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i . $S_i = n_i Q$ is multiple of R_i , i.e., $S_i = a_i R_i$, where $a_i \equiv a \mod p_i$. Solve this problem with an appropriate method, i.e., brute force for tiny p_i , BSGS or Pollard rho for bigger ones.

If $e_i = 1$ we are done. Else we need to do $e_i - 1$ more steps of the same hardness.

Each of these steps updates n_i to n_i/p_i , does not touch R_i (we solve another DLP in the group of order p_i generated by R_i), and updates target S_i :

Assume $e_i = 2$: We want new $S_i = n_i Q'$ to be multiple of R_i , but n_i lost an extra p_i and unless $a_i = 0$ in previous step we need to update Q to Q'. $S_i = n_i(Q - a_iP) = n_i(a - a_i)P = n_i(p_ia')P = a'R_i$.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes.

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_j$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes.

Put $n_i = n/p_i$. *P* has order *n*. $R_i = n_i P$ has order p_i .

Let $a_i = a_{i,0} + a_{i,1}p_i + a_{i,2}p_i^2 + \dots + a_{i,e_i-1}p_i^{e_i-1}$ and $a \equiv a_i \mod p_i^{e_i}$.

We first compute $a_{i,0}$, then $a_{i,1}, a_{i,2}, ...$ Note $a_i - (a_{i,0} + a_{i,1}p_i) = a_{i,2}p_i^2 + \cdots + a_{i,e_i-1}p_i^{e_i-1}$ is multiple of p_i^2 .

Let $n = \prod p_i^{e_i}$, for p_i prime, $p_i \neq p_i$, $e_i \in \mathbb{Z}_{>0}$. This slide handles $p_i^{e_i}$ for one prime p_i ; repeat to get all primes. Put $n_i = n/p_i$. P has order n. $R_i = n_i P$ has order p_i . Let $a_i = a_{i,0} + a_{i,1}p_i + a_{i,2}p_i^2 + \dots + a_{i,e_i-1}p_i^{e_i-1}$ and $a \equiv a_i \mod p_i^{e_i}$. We first compute $a_{i,0}$, then $a_{i,1}, a_{i,2}, \ldots$ Note $a_i - (a_{i,0} + a_{i,1}p_i) = a_{i,2}p_i^2 + \dots + a_{i,e_i-1}p_i^{e_i-1}$ is multiple of p_i^2 . In general $a_i - (a_{i,0} + a_{i,1}p_i + \dots + a_{i,i-1}p_i^{j-1}) = a_{i,i}p_i^j + \dots + a_{i,e_{i-1}}p_i^{e_{i-1}}$ is multiple of p_i^J . Initialize $Q_i = Q$ and $a_{i,-1} = 0$. (So that all steps look the same).

The *j*th of the e_i steps, for $0 \le j < e_i$:

- updates n_i to n_i/p_i and Q_i to Q_i a_{i,j-1}p_i^{j-1}P; n_i looses factor p_i, Q_i gains an extra factor of p_i.
- computes S_i = n_iQ_i, a multiple of R_i, i.e., S_i = a_{i,j}R_i, using the new n_i and Q_i;
- solves this DLP to get a_{i,j}.

Tanja Lange

Discrete logarithm problem

Pohlig-Hellman attack

Input: points P, Q with Q = aP, order $n = \prod_{i=1}^{r} p_i^{e_i}$ of P with $p_i \neq p_i, e_i \in \mathbb{Z}_{>0}$, fully factored Output: discrete logarithm a of Q base P1. for i = 1 to r 1.1 put $Q_i = Q$, $a_{i,-1} = 0$, $n_i = n/p_i$ 1.2 compute $R_i = n_i P$ 1.3 for i = 0 to $e_i - 1$ 1.3.1 compute $n_i = n/p_i^{j+1}$ # divide old n_i by p_i unless j = 01.3.2 compute $Q_i = Q_i - (a_{i,i-1}p_i^{j-1})P$ 1.3.3 compute $S_i = n_i Q_i$ 1.3.4 solve DLP $S_i = a_{i,j}R_i$ of order p_i 1.4 compute $a_i = \sum_{i=0}^{e_j - 1} a_{i,i} p_i^j$ 2. solve CRT $a \equiv a_1 \mod p_1^{e_1}$ $a \equiv a_2 \mod p_2^{e_2}$ $\begin{array}{rcl} \vdots \\ a &\equiv & a_r \bmod p_r^{e_r} \end{array}$ to get a mod n

CRT works because $p_i^{e_i}$ are coprime and have product *n*.

Tanja Lange

Discrete logarithm problem