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Double-and-add method

How to compute aP?

a = 44444 # our super secret scalar. No, not that one.
1 = a.nbits()

A = a.bits()

Ee
I
o

for i in range(1-2,-1,-1):
= 2R
if A[i] ==
R=R+P
print (R)
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How to compute aP?

a = 44444 # our super secret scalar. No, not that one.
1 = a.nbits(O

A = a.bits()
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for i in range(1-2,-1,-1):
=2R
if A[i] ==
R=R+P
print (R)
This is basically Horner's rule. E.g. a=11=23+2+1=(1011),.

i =2: bitis0, R=2P.
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Double-and-add method

How to compute aP?

a = 44444 # our super secret scalar. No, not that one.
1 = a.nbits(O

A = a.bits()

=
I
o

for i in range(1-2,-1,-1):
=2R
if A[i] ==
R=R+P
print (R)
This is basically Horner's rule. E.g. a=11=23+2+1=(1011),.

i=2:bitis0, R=2P.
i=1:bitisl, R=4P;R=4P + P =5P.
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Double-and-add method

How to compute aP?

a = 44444 # our super secret scalar. No, not that one.
.nbits()
.bits()

in range(1-2,-1,-1):
2 R

if A[i] ==

R=R+P

print (R)
This is basically Horner's rule. E.g. a=11=23+2+1=(1011),.
i=2:bitis0, R=2P.
i=1: bitisl; R=4P;R=4P + P =5P.
i=0: bitisl; R=10P; R=10P + P =11P.
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Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:
Try AAA,
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Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:
Try AAA, BBB,
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Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:
Try AAA, BBB, CCC, ...
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Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, ..., CCC takes slightly longer to fail.
Try CAA,
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Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, ..., CCC takes slightly longer to fail.
Try CAA, CBB,
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Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, ..., CCC takes slightly longer to fail.
Try CAA, CBB, CCC, ...
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Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, ..., CCC takes slightly longer to fail.
Try CAA, CBB, CCC, ..., CRR takes slightly longer to fail.
Try CRA,
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Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, ..., CCC takes slightly longer to fail.
Try CAA, CBB, CCC, ..., CRR takes slightly longer to fail.
Try CRA, CRB,
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Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, ..., CCC takes slightly longer to fail.
Try CAA, CBB, CCC, ..., CRR takes slightly longer to fail.
Try CRA, CRB, CRC, ...
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Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, ..., CCC takes slightly longer to fail.
Try CAA, CBB, CCC, ..., CRR takes slightly longer to fail.

Try CRA, CRB, CRC, ..., CRY takes slightly longer to fail.
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Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, ..., CCC takes slightly longer to fail.
Try CAA, CBB, CCC, ..., CRR takes slightly longer to fail.

Try CRA, CRB, CRC, ..., CRY takes slightly longer to fail.

Password is CRYPTOLOGY.
1974: Exploit developed by Alan Bell for TENEX operating system.
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Reminder: double-and-add method

Compute aP given a and P.

a = 44444 # our super secret scalar. No, not that one.
1 = a.nbits()

A = a.bits()

=
I
o

for i in range(1-2,-1,-1):
= 2R
if A[i] ==
R=R+P
print (R)
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Reminder: double-and-add method

Compute aP given a and P.

a = 44444 # our super secret scalar. No, not that one.
1 = a.nbits()

A = a.bits()

=
I
o

for i in range(1-2,-1,-1): # loop length depends on a
=2R
if Afi] ==
R=R+P
print (R)
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Reminder: double-and-add method

Compute aP given a and P.

a = 44444 # our super secret scalar. No, not that one.
1 = a.nbits()

A = a.bitsQ
R=P
for i in range(1-2,-1,-1): # loop length depends on a
R=2R
if A[i] == 1: # branch depends on a
R=R+P

print (R)
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Timings of scalar multiplication on NIST P-256
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(Picture from TPM-Fail)
NIST P-256 is an elliptic curve standardized by NIST.
It is a Weierstrass curve modulo a 256-bit prime.
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Timings of scalar multiplication on NIST P-256
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CPU Cycles <107
(Picture from TPM-Fail)
NIST P-256 is an elliptic curve standardized by NIST.
It is a Weierstrass curve modulo a 256-bit prime.
Timing depends strongly on the length of the scalar, also on Hamming
weight.
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Fixed window method

® Faster methods reduce the number of additions by using windows:
14019 =
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Fixed window method

® Faster methods reduce the number of additions by using windows:
14019 =11 0110 1100 0011
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Fixed window method

® Faster methods reduce the number of additions by using windows:
14019 = 11 0110 1100 0011
NN N
3 12 30 03
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Fixed window method

® Faster methods reduce the number of additions by using windows:
14019 = 11 0110 1100 0011
N S N

3 12 30 03
Precompute P, 2P, and 3P. Left window is innermost coefficient.

14019P =4 (4(4(4(4(4(3P) + P)+2P) +3P))) + 3P.

Same number of doublings, 4 instead of 7 additions.
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Fixed window method

® Faster methods reduce the number of additions by using windows:
14019 = 11 0110 1100 0011
N S N

3 12 30 03
Precompute P, 2P, and 3P. Left window is innermost coefficient.

14010P = 4 (4 (4 (4 (4 (4 (3P) + P) + 2P) + 3P))) + 3P.

Same number of doublings, 4 instead of 7 additions.

® General case: width-w windows.
Start from least-significant bit (coefficient of 2°)
turn w bits into coefficient in [2* — 1, 0],
pad with 0 bits if length is not a multiple of w.
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Fixed window method

® Faster methods reduce the number of additions by using windows:
14019 = 11 0110 1100 0011
N S N

3 12 30 03
Precompute P, 2P, and 3P. Left window is innermost coefficient.

14010P = 4 (4 (4 (4 (4 (4 (3P) + P) + 2P) + 3P))) + 3P.

Same number of doublings, 4 instead of 7 additions.

® General case: width-w windows.
Start from least-significant bit (coefficient of 2°)
turn w bits into coefficient in [2% — 1, 0],
pad with 0 bits if length is not a multiple of w.
E.g. w =4, so coefficients in [15,0].
14019 = 0011 0110 1100 0011
A S o
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Fixed window method

® Faster methods reduce the number of additions by using windows:
14019 = 11 0110 1100 0011
N S N

3 12 30 03
Precompute P, 2P, and 3P. Left window is innermost coefficient.

14010P = 4 (4 (4 (4 (4 (4 (3P) + P) + 2P) + 3P))) + 3P.

Same number of doublings, 4 instead of 7 additions.

® General case: width-w windows.
Start from least-significant bit (coefficient of 2°)
turn w bits into coefficient in [2* — 1, 0],
pad with 0 bits if length is not a multiple of w.

E.g. w =4, so coefficients in [15, 0].
14019 = 0011 0110 1100 0011
N N S N~
3 6 12 3

14019P = 16 (16 (16 (3P) + 6P) + 12P) + 3P.

Same number of doublings, 3 additions.
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Timings of scalar multiplication on NIST P-256
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Larger windows reduce the variability through branching but accentuate

the length.
(Picture from TPM-Fail)

Tanja Lange Elliptic-curve cryptography 9


https://tpm.fail

Double-and-always-add

a = 44444  # our super secret scalar. No, not that one.
1 = max # some maximum bit length, matching order(P)
A = a.digits(2,padto = 1) # £ill with O to lenght 1
R=0 # so initial doublings don’t matter, 0=0P
for i in range(1l-1,-1,-1): # fixed-length loop
R = 2R
Q=R+P
R = (1 - A[i]) * R + A[i] * Q # selection by arithmetic

print (R)

This costs 1 addition per bit, so as slow as worst case,
but leads to uniform trace — if the other operations are uniform.
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Double-and-always-add

a = 44444  # our super secret scalar. No, not that one.
1 = max # some maximum bit length, matching order(P)
A = a.digits(2,padto = 1) # £ill with O to lenght 1
R=0 # so initial doublings don’t matter, 0=0P
for i in range(1l-1,-1,-1): # fixed-length loop
R = 2R
Q=R+P
R = (1 - A[i]) * R + A[i] * Q # selection by arithmetic

print (R)

This costs 1 addition per bit, so as slow as worst case,
but leads to uniform trace — if the other operations are uniform.

® Formulas for addition on Weierstrass curves have exceptions for
adding oo, so initialization at co does not work.

® Edwards curves have a complete addition law, easy to double or add
the neutral element (0, 1).
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Montgomery ladder

def cswap(bit, R, S): # constant time conditional swap
dummy = bit * (R-S) # Oor R - S
R = R - dummy #RorR- (R-5S) =358
S =S + dummy #SorS+ (R-S8) =R
return (R, 3)
a = 44444  # our super secret scalar. No, not that one.
1 = max # some maximum bit length, matching order(P)
A = a.digits(2,padto = 1) # fill with O to lenght 1
PO =0 # so initial doublings don’t matter, 0=0P
P1 =P # difference P1 - PO = P
for i in range(1-1,-1,-1): # fixed-length loop
(PO, P1) = cswap(A[i], PO, P1) # see above
P1 = PO + P1 # addition with fixed difference
PO = 2P0 # double point for which bit is set
(PO, P1) = cswap(A[i]l, PO, P1) # swap back, can merge
print (PO)

This uses one doubling and one addition per bit. No dummy additions.
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Loop in Montgomery ladder

PO =0 # so initial doublings don’t matter, 0=0P
P1 =P # difference P1 - PO = P
for i in range(1l-1,-1,-1): # fixed-length loop
(PO, P1) = cswap(A[i]l, PO, P1) # see above
P1 PO + P1 # addition with fixed difference
PO = 2P0 # double point for which bit is set
(PO, P1) = cswap(A[i], PO, P1) # swap back, can merge
print (PO)
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Loop in Montgomery ladder

PO =0 # so initial doublings don’t matter, 0=0P
P1 =P # difference P1 - PO = P
for i in range(1l-1,-1,-1): # fixed-length loop
(PO, P1) = cswap(A[i]l, PO, P1) # see above
P1 PO + P1 # addition with fixed difference
PO = 2P0 # double point for which bit is set
(PO, P1) = cswap(A[i], PO, P1) # swap back, can merge
print (PO)

if A[i]=0: if A[i]=1:

cswap(A[i], PO, P1) leaves fixed, cswap(A[i], PO, P1) swaps,
so the new values are so the new values are

PO = 2P0, P1 = PO + P1 P1 = 2P1, PO = PO + P1

(no effect of swapping back). (after swapping back).
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Loop in Montgomery ladder

PO =0 # so initial doublings don’t matter, 0=0P
P1 =P # difference P1 - PO = P
for i in range(1l-1,-1,-1): # fixed-length loop
(PO, P1) = cswap(A[i]l, PO, P1) # see above
P1 PO + P1 # addition with fixed difference
PO = 2P0 # double point for which bit is set
(PO, P1) = cswap(A[i], PO, P1) # swap back, can merge
print (PO)

if A[1]1=0: if A[i]=1:

cswap(A[i], PO, P1) leaves fixed, cswap(A[i], PO, P1) swaps,
so the new values are so the new values are

PO = 2P0, P1 = PO + P1 P1 = 2P1, PO = PO + P1
(no effect of swapping back). (after swapping back).

Either way, P1 - PO = P after each step.

Addition is of points with know difference called differential addition.
This uses one doubling and one differential addition per bit.
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Montgomery differential addition

Let nP = (U, : Vi, : Z,),mP = (U, : Vi : Z) with known difference
(m—=nmP=(Unzn:Vmon:Zn_n)on

Map : Bv? = u® + Av® + u.
We will only use U and Z; cheaper by skipping V.
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Montgomery differential addition
Let nP = (U, : Vi, : Z,),mP = (U, : Vi : Z) with known difference
(m—=nmP=(Unzn:Vmon:Zn_n)on
Map : Bv? = u® + Av® + u.
We will only use U and Z; cheaper by skipping V.
Addition: n# m
Unin = Zm-n((Un = Zn)(Un+ Za) + (Un + Zn)(Un = Z1))*,

Zern = Umfn((Um - Zm)(Un + Zn) - (Um + Zm)(Un - Zn))2
Doubling: n=m
4UnZn = (Un + Zn)2 - (Un - Zn)27
U2n = (Un + Zn)z(Un - Zn)27

Z2n - 4UnZn((Un - Zn)2 + ((A + 2)/4) (4U"Z")) .

Differential addition takes 4M and 2S. Doubling takes 3M and 2S.
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Montgomery differential addition
Let nP = (U, : Vi, : Z,),mP = (U, : Vi : Z) with known difference
(m—=nmP=(Unzn:Vmon:Zn_n)on
Map : Bv? = u® + Av® + u.
We will only use U and Z; cheaper by skipping V.
Addition: n# m
Unin = Zm-n((Un = Zn)(Un+ Za) + (Un + Zn)(Un = Z1))*,

Zern = Umfn((Um - Zm)(Un + Zn) - (Um + Zm)(Un - Zn))2
Doubling: n=m
4UnZn = (Un + Zn)2 - (Un - Zn)27
U2n = (Un + Zn)z(Un - Zn)27

Z2n - 4UnZn((Un - Zn)2 + ((A + 2)/4) (4U"Z")) .

Differential addition takes 4M and 2S. Doubling takes 3M and 2S.
In ladder, m — n =1, choose Z,,_, =1 and (A + 2)/4 small.
Then cost per bit: 5M and 4S. Also like Up,_,, small.

Tanja Lange Elliptic-curve cryptography



Example: Curve25519 (Bernstein 2006)

Let p = 2255 — 19, A = 486662, B = 1.

vZ = u® + 486662u° + u

Is standardized for DH computations for the Internet in RFC 7748

(A+2)/4 = 121666 is smallest with all properties from
http://safecurves.cr.yp.to/.
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Example: Curve25519 (Bernstein 2006)

Let p = 2255 — 19, A = 486662, B = 1.

vZ = u® + 486662u° + u

Is standardized for DH computations for the Internet in RFC 7748

(A+2)/4 = 121666 is smallest with all properties from
http://safecurves.cr.yp.to/.

This curve is birationally equivalent to Edwards curve

x* +y? =1+ dx’y? for d = 121665,/121666.

Tanja Lange Elliptic-curve cryptography


https://datatracker.ietf.org/doc/html/rfc7748
http://safecurves.cr.yp.to/

Example: Curve25519 (Bernstein 2006)

Let p = 2255 — 19, A = 486662, B = 1.

v? = u® + 486662u% + u
Is standardized for DH computations for the Internet in RFC 7748

(A+2)/4 = 121666 is smallest with all properties from
http://safecurves.cr.yp.to/.

This curve is birationally equivalent to Edwards curve

x* +y? =1+ dx’y? for d = 121665,/121666.

Note that the map given in part VI maps to a'x’? + y'2 = 1 + d'x"?y"?
with &’ = 486664, d’ = 486660.
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Example: Curve25519 (Bernstein 2006)

Let p = 2255 — 19, A = 486662, B = 1.

vZ = u® + 486662u° + u

Is standardized for DH computations for the Internet in RFC 7748

(A+2)/4 = 121666 is smallest with all properties from
http://safecurves.cr.yp.to/.

This curve is birationally equivalent to Edwards curve

x* +y? =1+ dx’y? for d = 121665,/121666.

Note that the map given in part VI maps to a'x’? + y'2 = 1 + d'x"?y"?
with &’ = 486664, d’ = 486660.
Note a’ = b? in F, and change x = bx', y = y'.
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Example: Curve25519 (Bernstein 2006)

Let p = 2255 — 19, A = 486662, B = 1.

v? = u® + 486662u% + u
Is standardized for DH computations for the Internet in RFC 7748

(A+2)/4 = 121666 is smallest with all properties from
http://safecurves.cr.yp.to/.

This curve is birationally equivalent to Edwards curve

x* +y? =1+ dx’y? for d = 121665,/121666.

Note that the map given in part VI maps to a'x’? + y'2 = 1 + d'x"?y"?
with &’ = 486664, d’ = 486660.

Note a’ = b? in F, and change x = bx', y = y'.

This maps to x? + y? = 1 + dx?y? with d = d’/a’ = 121665/121666.
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