
Elliptic-curve cryptography
Scalar multiplication, and timing attacks

Tanja Lange

Eindhoven University of Technology

2MMC10 – Cryptology



Double-and-add method

How to compute aP?

a = 44444 # our super secret scalar. No, not that one.

l = a.nbits()

A = a.bits()

R = P

for i in range(l-2,-1,-1):

R = 2 R

if A[i] == 1:

R = R + P

print(R)

This is basically Horner’s rule. E.g. a = 11 = 23 + 2 + 1 = (1011)2.

i = 2: bit is 0, R = 2P.
i = 1: bit is 1; R = 4P;R = 4P + P = 5P.
i = 0: bit is 1; R = 10P;R = 10P + P = 11P.

Tanja Lange Elliptic-curve cryptography 2



Double-and-add method

How to compute aP?

a = 44444 # our super secret scalar. No, not that one.

l = a.nbits()

A = a.bits()

R = P

for i in range(l-2,-1,-1):

R = 2 R

if A[i] == 1:

R = R + P

print(R)

This is basically Horner’s rule. E.g. a = 11 = 23 + 2 + 1 = (1011)2.

i = 2: bit is 0, R = 2P.

i = 1: bit is 1; R = 4P;R = 4P + P = 5P.
i = 0: bit is 1; R = 10P;R = 10P + P = 11P.

Tanja Lange Elliptic-curve cryptography 2



Double-and-add method

How to compute aP?

a = 44444 # our super secret scalar. No, not that one.

l = a.nbits()

A = a.bits()

R = P

for i in range(l-2,-1,-1):

R = 2 R

if A[i] == 1:

R = R + P

print(R)

This is basically Horner’s rule. E.g. a = 11 = 23 + 2 + 1 = (1011)2.

i = 2: bit is 0, R = 2P.
i = 1: bit is 1; R = 4P;R = 4P + P = 5P.

i = 0: bit is 1; R = 10P;R = 10P + P = 11P.

Tanja Lange Elliptic-curve cryptography 2



Double-and-add method

How to compute aP?

a = 44444 # our super secret scalar. No, not that one.

l = a.nbits()

A = a.bits()

R = P

for i in range(l-2,-1,-1):

R = 2 R

if A[i] == 1:

R = R + P

print(R)

This is basically Horner’s rule. E.g. a = 11 = 23 + 2 + 1 = (1011)2.

i = 2: bit is 0, R = 2P.
i = 1: bit is 1; R = 4P;R = 4P + P = 5P.
i = 0: bit is 1; R = 10P;R = 10P + P = 11P.

Tanja Lange Elliptic-curve cryptography 2



Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA,

BBB, CCC, . . . , CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . . , CRR takes slightly longer to fail.
Try CRA, CRB, CRC, . . . , CRY takes slightly longer to fail.

...
Password is CRYPTOLOGY.

1974: Exploit developed by Alan Bell for TENEX operating system.

Tanja Lange Elliptic-curve cryptography 3



Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB,

CCC, . . . , CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . . , CRR takes slightly longer to fail.
Try CRA, CRB, CRC, . . . , CRY takes slightly longer to fail.

...
Password is CRYPTOLOGY.

1974: Exploit developed by Alan Bell for TENEX operating system.

Tanja Lange Elliptic-curve cryptography 3



Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, . . .

, CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . . , CRR takes slightly longer to fail.
Try CRA, CRB, CRC, . . . , CRY takes slightly longer to fail.

...
Password is CRYPTOLOGY.

1974: Exploit developed by Alan Bell for TENEX operating system.

Tanja Lange Elliptic-curve cryptography 3



Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, . . . , CCC takes slightly longer to fail.
Try CAA,

CBB, CCC, . . . , CRR takes slightly longer to fail.
Try CRA, CRB, CRC, . . . , CRY takes slightly longer to fail.

...
Password is CRYPTOLOGY.

1974: Exploit developed by Alan Bell for TENEX operating system.

Tanja Lange Elliptic-curve cryptography 3



Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, . . . , CCC takes slightly longer to fail.
Try CAA, CBB,

CCC, . . . , CRR takes slightly longer to fail.
Try CRA, CRB, CRC, . . . , CRY takes slightly longer to fail.

...
Password is CRYPTOLOGY.

1974: Exploit developed by Alan Bell for TENEX operating system.

Tanja Lange Elliptic-curve cryptography 3



Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, . . . , CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . .

, CRR takes slightly longer to fail.
Try CRA, CRB, CRC, . . . , CRY takes slightly longer to fail.

...
Password is CRYPTOLOGY.

1974: Exploit developed by Alan Bell for TENEX operating system.

Tanja Lange Elliptic-curve cryptography 3



Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, . . . , CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . . , CRR takes slightly longer to fail.
Try CRA,

CRB, CRC, . . . , CRY takes slightly longer to fail.
...

Password is CRYPTOLOGY.

1974: Exploit developed by Alan Bell for TENEX operating system.

Tanja Lange Elliptic-curve cryptography 3



Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, . . . , CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . . , CRR takes slightly longer to fail.
Try CRA, CRB,

CRC, . . . , CRY takes slightly longer to fail.
...

Password is CRYPTOLOGY.

1974: Exploit developed by Alan Bell for TENEX operating system.

Tanja Lange Elliptic-curve cryptography 3



Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, . . . , CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . . , CRR takes slightly longer to fail.
Try CRA, CRB, CRC, . . .

, CRY takes slightly longer to fail.
...

Password is CRYPTOLOGY.

1974: Exploit developed by Alan Bell for TENEX operating system.

Tanja Lange Elliptic-curve cryptography 3



Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, . . . , CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . . , CRR takes slightly longer to fail.
Try CRA, CRB, CRC, . . . , CRY takes slightly longer to fail.

...

Password is CRYPTOLOGY.

1974: Exploit developed by Alan Bell for TENEX operating system.

Tanja Lange Elliptic-curve cryptography 3



Timing attacks are not a new phenomenon

Password recovery if server compares letter by letter:

Try AAA, BBB, CCC, . . . , CCC takes slightly longer to fail.
Try CAA, CBB, CCC, . . . , CRR takes slightly longer to fail.
Try CRA, CRB, CRC, . . . , CRY takes slightly longer to fail.

...
Password is CRYPTOLOGY.

1974: Exploit developed by Alan Bell for TENEX operating system.

Tanja Lange Elliptic-curve cryptography 3



Reminder: double-and-add method

Compute aP given a and P.

a = 44444 # our super secret scalar. No, not that one.

l = a.nbits()

A = a.bits()

R = P

for i in range(l-2,-1,-1):

R = 2 R

if A[i] == 1:

R = R + P

print(R)

Tanja Lange Elliptic-curve cryptography 4



Reminder: double-and-add method

Compute aP given a and P.

a = 44444 # our super secret scalar. No, not that one.

l = a.nbits()

A = a.bits()

R = P

for i in range(l-2,-1,-1): # loop length depends on a

R = 2 R

if A[i] == 1:

R = R + P

print(R)

Tanja Lange Elliptic-curve cryptography 5



Reminder: double-and-add method

Compute aP given a and P.

a = 44444 # our super secret scalar. No, not that one.

l = a.nbits()

A = a.bits()

R = P

for i in range(l-2,-1,-1): # loop length depends on a

R = 2 R

if A[i] == 1: # branch depends on a

R = R + P

print(R)

Tanja Lange Elliptic-curve cryptography 6



Timings of scalar multiplication on NIST P-256

(Picture from TPM-Fail)
NIST P-256 is an elliptic curve standardized by NIST.
It is a Weierstrass curve modulo a 256-bit prime.

Timing depends strongly on the length of the scalar, also on Hamming
weight.

Tanja Lange Elliptic-curve cryptography 7

https://tpm.fail


Timings of scalar multiplication on NIST P-256

(Picture from TPM-Fail)
NIST P-256 is an elliptic curve standardized by NIST.
It is a Weierstrass curve modulo a 256-bit prime.
Timing depends strongly on the length of the scalar, also on Hamming
weight.
Tanja Lange Elliptic-curve cryptography 7

https://tpm.fail


Fixed window method

• Faster methods reduce the number of additions by using windows:
14019 =

11︸︷︷︸
3

0110︸ ︷︷ ︸
1 2

1100︸ ︷︷ ︸
3 0

0011︸ ︷︷ ︸
0 3

Precompute P, 2P, and 3P. Left window is innermost coefficient.

14019P = 4 (4 (4 (4 (4 (4 (3P) + P) + 2P) + 3P))) + 3P.

Same number of doublings, 4 instead of 7 additions.

• General case: width-w windows.
Start from least-significant bit (coefficient of 20)
turn w bits into coefficient in [2w − 1, 0],
pad with 0 bits if length is not a multiple of w .

E.g. w = 4, so coefficients in [15, 0].
14019 =

0011︸ ︷︷ ︸
3

0110︸ ︷︷ ︸
6

1100︸ ︷︷ ︸
12

0011︸ ︷︷ ︸
3

14019P = 16 (16 (16 (3P) + 6P) + 12P) + 3P.

Same number of doublings, 3 additions.

Tanja Lange Elliptic-curve cryptography 8



Fixed window method

• Faster methods reduce the number of additions by using windows:
14019 =11

11︸︷︷︸
3

0110

0110︸ ︷︷ ︸
1 2

1100

1100︸ ︷︷ ︸
3 0

0011

0011︸ ︷︷ ︸
0 3

Precompute P, 2P, and 3P. Left window is innermost coefficient.

14019P = 4 (4 (4 (4 (4 (4 (3P) + P) + 2P) + 3P))) + 3P.

Same number of doublings, 4 instead of 7 additions.

• General case: width-w windows.
Start from least-significant bit (coefficient of 20)
turn w bits into coefficient in [2w − 1, 0],
pad with 0 bits if length is not a multiple of w .

E.g. w = 4, so coefficients in [15, 0].
14019 =

0011︸ ︷︷ ︸
3

0110︸ ︷︷ ︸
6

1100︸ ︷︷ ︸
12

0011︸ ︷︷ ︸
3

14019P = 16 (16 (16 (3P) + 6P) + 12P) + 3P.

Same number of doublings, 3 additions.

Tanja Lange Elliptic-curve cryptography 8



Fixed window method

• Faster methods reduce the number of additions by using windows:
14019 = 11︸︷︷︸

3

0110︸ ︷︷ ︸
1 2

1100︸ ︷︷ ︸
3 0

0011︸ ︷︷ ︸
0 3

Precompute P, 2P, and 3P. Left window is innermost coefficient.

14019P = 4 (4 (4 (4 (4 (4 (3P) + P) + 2P) + 3P))) + 3P.

Same number of doublings, 4 instead of 7 additions.

• General case: width-w windows.
Start from least-significant bit (coefficient of 20)
turn w bits into coefficient in [2w − 1, 0],
pad with 0 bits if length is not a multiple of w .

E.g. w = 4, so coefficients in [15, 0].
14019 =

0011︸ ︷︷ ︸
3

0110︸ ︷︷ ︸
6

1100︸ ︷︷ ︸
12

0011︸ ︷︷ ︸
3

14019P = 16 (16 (16 (3P) + 6P) + 12P) + 3P.

Same number of doublings, 3 additions.

Tanja Lange Elliptic-curve cryptography 8



Fixed window method

• Faster methods reduce the number of additions by using windows:
14019 = 11︸︷︷︸

3

0110︸ ︷︷ ︸
1 2

1100︸ ︷︷ ︸
3 0

0011︸ ︷︷ ︸
0 3

Precompute P, 2P, and 3P. Left window is innermost coefficient.

14019P = 4 (4 (4 (4 (4 (4 (3P) + P) + 2P) + 3P))) + 3P.

Same number of doublings, 4 instead of 7 additions.

• General case: width-w windows.
Start from least-significant bit (coefficient of 20)
turn w bits into coefficient in [2w − 1, 0],
pad with 0 bits if length is not a multiple of w .

E.g. w = 4, so coefficients in [15, 0].
14019 =

0011︸ ︷︷ ︸
3

0110︸ ︷︷ ︸
6

1100︸ ︷︷ ︸
12

0011︸ ︷︷ ︸
3

14019P = 16 (16 (16 (3P) + 6P) + 12P) + 3P.

Same number of doublings, 3 additions.

Tanja Lange Elliptic-curve cryptography 8



Fixed window method

• Faster methods reduce the number of additions by using windows:
14019 = 11︸︷︷︸

3

0110︸ ︷︷ ︸
1 2

1100︸ ︷︷ ︸
3 0

0011︸ ︷︷ ︸
0 3

Precompute P, 2P, and 3P. Left window is innermost coefficient.

14019P = 4 (4 (4 (4 (4 (4 (3P) + P) + 2P) + 3P))) + 3P.

Same number of doublings, 4 instead of 7 additions.

• General case: width-w windows.
Start from least-significant bit (coefficient of 20)
turn w bits into coefficient in [2w − 1, 0],
pad with 0 bits if length is not a multiple of w .

E.g. w = 4, so coefficients in [15, 0].
14019 = 0011

0011︸ ︷︷ ︸
3

0110

0110︸ ︷︷ ︸
6

1100

1100︸ ︷︷ ︸
12

0011

0011︸ ︷︷ ︸
3

14019P = 16 (16 (16 (3P) + 6P) + 12P) + 3P.

Same number of doublings, 3 additions.

Tanja Lange Elliptic-curve cryptography 8



Fixed window method

• Faster methods reduce the number of additions by using windows:
14019 = 11︸︷︷︸

3

0110︸ ︷︷ ︸
1 2

1100︸ ︷︷ ︸
3 0

0011︸ ︷︷ ︸
0 3

Precompute P, 2P, and 3P. Left window is innermost coefficient.

14019P = 4 (4 (4 (4 (4 (4 (3P) + P) + 2P) + 3P))) + 3P.

Same number of doublings, 4 instead of 7 additions.

• General case: width-w windows.
Start from least-significant bit (coefficient of 20)
turn w bits into coefficient in [2w − 1, 0],
pad with 0 bits if length is not a multiple of w .

E.g. w = 4, so coefficients in [15, 0].
14019 = 0011︸ ︷︷ ︸

3

0110︸ ︷︷ ︸
6

1100︸ ︷︷ ︸
12

0011︸ ︷︷ ︸
3

14019P = 16 (16 (16 (3P) + 6P) + 12P) + 3P.

Same number of doublings, 3 additions.

Tanja Lange Elliptic-curve cryptography 8



Fixed window method

• Faster methods reduce the number of additions by using windows:
14019 = 11︸︷︷︸

3

0110︸ ︷︷ ︸
1 2

1100︸ ︷︷ ︸
3 0

0011︸ ︷︷ ︸
0 3

Precompute P, 2P, and 3P. Left window is innermost coefficient.

14019P = 4 (4 (4 (4 (4 (4 (3P) + P) + 2P) + 3P))) + 3P.

Same number of doublings, 4 instead of 7 additions.

• General case: width-w windows.
Start from least-significant bit (coefficient of 20)
turn w bits into coefficient in [2w − 1, 0],
pad with 0 bits if length is not a multiple of w .

E.g. w = 4, so coefficients in [15, 0].
14019 = 0011︸ ︷︷ ︸

3

0110︸ ︷︷ ︸
6

1100︸ ︷︷ ︸
12

0011︸ ︷︷ ︸
3

14019P = 16 (16 (16 (3P) + 6P) + 12P) + 3P.

Same number of doublings, 3 additions.

Tanja Lange Elliptic-curve cryptography 8



Timings of scalar multiplication on NIST P-256

Larger windows reduce the variability through branching but accentuate
the length.

(Picture from TPM-Fail)

Tanja Lange Elliptic-curve cryptography 9

https://tpm.fail


Double-and-always-add

a = 44444 # our super secret scalar. No, not that one.

l = max # some maximum bit length, matching order(P)

A = a.digits(2,padto = l) # fill with 0 to lenght l

R = 0 # so initial doublings don’t matter, 0=0P

for i in range(l-1,-1,-1): # fixed-length loop

R = 2R

Q = R + P

R = (1 - A[i]) * R + A[i] * Q # selection by arithmetic

print(R)

This costs 1 addition per bit, so as slow as worst case,
but leads to uniform trace – if the other operations are uniform.

• Formulas for addition on Weierstrass curves have exceptions for
adding ∞, so initialization at ∞ does not work.

• Edwards curves have a complete addition law, easy to double or add
the neutral element (0, 1).

Tanja Lange Elliptic-curve cryptography 10



Double-and-always-add

a = 44444 # our super secret scalar. No, not that one.

l = max # some maximum bit length, matching order(P)

A = a.digits(2,padto = l) # fill with 0 to lenght l

R = 0 # so initial doublings don’t matter, 0=0P

for i in range(l-1,-1,-1): # fixed-length loop

R = 2R

Q = R + P

R = (1 - A[i]) * R + A[i] * Q # selection by arithmetic

print(R)

This costs 1 addition per bit, so as slow as worst case,
but leads to uniform trace – if the other operations are uniform.

• Formulas for addition on Weierstrass curves have exceptions for
adding ∞, so initialization at ∞ does not work.

• Edwards curves have a complete addition law, easy to double or add
the neutral element (0, 1).

Tanja Lange Elliptic-curve cryptography 10



Montgomery ladder

def cswap(bit, R, S): # constant time conditional swap

dummy = bit * (R - S) # 0 or R - S

R = R - dummy # R or R - (R - S) = S

S = S + dummy # S or S + (R - S) = R

return (R, S)

a = 44444 # our super secret scalar. No, not that one.

l = max # some maximum bit length, matching order(P)

A = a.digits(2,padto = l) # fill with 0 to lenght l

P0 = 0 # so initial doublings don’t matter, 0=0P

P1 = P # difference P1 - P0 = P

for i in range(l-1,-1,-1): # fixed-length loop

(P0, P1) = cswap(A[i], P0, P1) # see above

P1 = P0 + P1 # addition with fixed difference

P0 = 2P0 # double point for which bit is set

(P0, P1) = cswap(A[i], P0, P1) # swap back, can merge

print(P0)

This uses one doubling and one addition per bit. No dummy additions.

Tanja Lange Elliptic-curve cryptography 11



Loop in Montgomery ladder

P0 = 0 # so initial doublings don’t matter, 0=0P

P1 = P # difference P1 - P0 = P

for i in range(l-1,-1,-1): # fixed-length loop

(P0, P1) = cswap(A[i], P0, P1) # see above

P1 = P0 + P1 # addition with fixed difference

P0 = 2P0 # double point for which bit is set

(P0, P1) = cswap(A[i], P0, P1) # swap back, can merge

print(P0)

if A[i]=0:
cswap(A[i], P0, P1) leaves fixed,
so the new values are
P0 = 2P0, P1 = P0 + P1

(no effect of swapping back).

if A[i]=1:
cswap(A[i], P0, P1) swaps,
so the new values are
P1 = 2P1, P0 = P0 + P1

(after swapping back).

Either way, P1 - P0 = P after each step.

Addition is of points with know difference called differential addition.
This uses one doubling and one differential addition per bit.

Tanja Lange Elliptic-curve cryptography 12



Loop in Montgomery ladder

P0 = 0 # so initial doublings don’t matter, 0=0P

P1 = P # difference P1 - P0 = P

for i in range(l-1,-1,-1): # fixed-length loop

(P0, P1) = cswap(A[i], P0, P1) # see above

P1 = P0 + P1 # addition with fixed difference

P0 = 2P0 # double point for which bit is set

(P0, P1) = cswap(A[i], P0, P1) # swap back, can merge

print(P0)

if A[i]=0:
cswap(A[i], P0, P1) leaves fixed,
so the new values are
P0 = 2P0, P1 = P0 + P1

(no effect of swapping back).

if A[i]=1:
cswap(A[i], P0, P1) swaps,
so the new values are
P1 = 2P1, P0 = P0 + P1

(after swapping back).

Either way, P1 - P0 = P after each step.

Addition is of points with know difference called differential addition.
This uses one doubling and one differential addition per bit.

Tanja Lange Elliptic-curve cryptography 12



Loop in Montgomery ladder

P0 = 0 # so initial doublings don’t matter, 0=0P

P1 = P # difference P1 - P0 = P

for i in range(l-1,-1,-1): # fixed-length loop

(P0, P1) = cswap(A[i], P0, P1) # see above

P1 = P0 + P1 # addition with fixed difference

P0 = 2P0 # double point for which bit is set

(P0, P1) = cswap(A[i], P0, P1) # swap back, can merge

print(P0)

if A[i]=0:
cswap(A[i], P0, P1) leaves fixed,
so the new values are
P0 = 2P0, P1 = P0 + P1

(no effect of swapping back).

if A[i]=1:
cswap(A[i], P0, P1) swaps,
so the new values are
P1 = 2P1, P0 = P0 + P1

(after swapping back).

Either way, P1 - P0 = P after each step.

Addition is of points with know difference called differential addition.
This uses one doubling and one differential addition per bit.

Tanja Lange Elliptic-curve cryptography 12



Montgomery differential addition

Let nP = (Un : Vn : Zn),mP = (Um : Vm : Zm) with known difference
(m − n)P = (Um−n : Vm−n : Zm−n) on

MA,B : Bv2 = u3 + Au2 + u.

We will only use U and Z ; cheaper by skipping V .

Addition: n 6= m

Um+n = Zm−n
(
(Um − Zm)(Un + Zn) + (Um + Zm)(Un − Zn)

)2
,

Zm+n = Um−n
(
(Um − Zm)(Un + Zn)− (Um + Zm)(Un − Zn)

)2
Doubling: n = m

4UnZn = (Un + Zn)2 − (Un − Zn)2,

U2n = (Un + Zn)2(Un − Zn)2,

Z2n = 4UnZn

(
(Un − Zn)2 +

(
(A + 2)/4

)
(4UnZn)

)
.

Differential addition takes 4M and 2S. Doubling takes 3M and 2S.
In ladder, m − n = 1, choose Zm−n = 1 and (A + 2)/4 small.
Then cost per bit: 5M and 4S. Also like Um−n small.

Tanja Lange Elliptic-curve cryptography 13



Montgomery differential addition

Let nP = (Un : Vn : Zn),mP = (Um : Vm : Zm) with known difference
(m − n)P = (Um−n : Vm−n : Zm−n) on

MA,B : Bv2 = u3 + Au2 + u.

We will only use U and Z ; cheaper by skipping V .

Addition: n 6= m

Um+n = Zm−n
(
(Um − Zm)(Un + Zn) + (Um + Zm)(Un − Zn)

)2
,

Zm+n = Um−n
(
(Um − Zm)(Un + Zn)− (Um + Zm)(Un − Zn)

)2
Doubling: n = m

4UnZn = (Un + Zn)2 − (Un − Zn)2,

U2n = (Un + Zn)2(Un − Zn)2,

Z2n = 4UnZn

(
(Un − Zn)2 +

(
(A + 2)/4

)
(4UnZn)

)
.

Differential addition takes 4M and 2S. Doubling takes 3M and 2S.

In ladder, m − n = 1, choose Zm−n = 1 and (A + 2)/4 small.
Then cost per bit: 5M and 4S. Also like Um−n small.

Tanja Lange Elliptic-curve cryptography 13



Montgomery differential addition

Let nP = (Un : Vn : Zn),mP = (Um : Vm : Zm) with known difference
(m − n)P = (Um−n : Vm−n : Zm−n) on

MA,B : Bv2 = u3 + Au2 + u.

We will only use U and Z ; cheaper by skipping V .

Addition: n 6= m

Um+n = Zm−n
(
(Um − Zm)(Un + Zn) + (Um + Zm)(Un − Zn)

)2
,

Zm+n = Um−n
(
(Um − Zm)(Un + Zn)− (Um + Zm)(Un − Zn)

)2
Doubling: n = m

4UnZn = (Un + Zn)2 − (Un − Zn)2,

U2n = (Un + Zn)2(Un − Zn)2,

Z2n = 4UnZn

(
(Un − Zn)2 +

(
(A + 2)/4

)
(4UnZn)

)
.

Differential addition takes 4M and 2S. Doubling takes 3M and 2S.
In ladder, m − n = 1, choose Zm−n = 1 and (A + 2)/4 small.
Then cost per bit: 5M and 4S. Also like Um−n small.

Tanja Lange Elliptic-curve cryptography 13



Example: Curve25519 (Bernstein 2006)

Let p = 2255 − 19,A = 486662,B = 1.

v2 = u3 + 486662u2 + u

Is standardized for DH computations for the Internet in RFC 7748

(A + 2)/4 = 121666 is smallest with all properties from
http://safecurves.cr.yp.to/.

This curve is birationally equivalent to Edwards curve

x2 + y2 = 1 + dx2y2 for d = 121665/121666.

Note that the map given in part VI maps to a′x ′2 + y ′2 = 1 + d ′x ′2y ′2

with a′ = 486664, d ′ = 486660.
Note a′ = b2 in Fp and change x = bx ′, y = y ′.
This maps to x2 + y2 = 1 + dx2y2 with d = d ′/a′ = 121665/121666.

Tanja Lange Elliptic-curve cryptography 14

https://datatracker.ietf.org/doc/html/rfc7748
http://safecurves.cr.yp.to/


Example: Curve25519 (Bernstein 2006)

Let p = 2255 − 19,A = 486662,B = 1.

v2 = u3 + 486662u2 + u

Is standardized for DH computations for the Internet in RFC 7748

(A + 2)/4 = 121666 is smallest with all properties from
http://safecurves.cr.yp.to/.

This curve is birationally equivalent to Edwards curve

x2 + y2 = 1 + dx2y2 for d = 121665/121666.

Note that the map given in part VI maps to a′x ′2 + y ′2 = 1 + d ′x ′2y ′2

with a′ = 486664, d ′ = 486660.
Note a′ = b2 in Fp and change x = bx ′, y = y ′.
This maps to x2 + y2 = 1 + dx2y2 with d = d ′/a′ = 121665/121666.

Tanja Lange Elliptic-curve cryptography 14

https://datatracker.ietf.org/doc/html/rfc7748
http://safecurves.cr.yp.to/


Example: Curve25519 (Bernstein 2006)

Let p = 2255 − 19,A = 486662,B = 1.

v2 = u3 + 486662u2 + u

Is standardized for DH computations for the Internet in RFC 7748

(A + 2)/4 = 121666 is smallest with all properties from
http://safecurves.cr.yp.to/.

This curve is birationally equivalent to Edwards curve

x2 + y2 = 1 + dx2y2 for d = 121665/121666.

Note that the map given in part VI maps to a′x ′2 + y ′2 = 1 + d ′x ′2y ′2

with a′ = 486664, d ′ = 486660.

Note a′ = b2 in Fp and change x = bx ′, y = y ′.
This maps to x2 + y2 = 1 + dx2y2 with d = d ′/a′ = 121665/121666.

Tanja Lange Elliptic-curve cryptography 14

https://datatracker.ietf.org/doc/html/rfc7748
http://safecurves.cr.yp.to/


Example: Curve25519 (Bernstein 2006)

Let p = 2255 − 19,A = 486662,B = 1.

v2 = u3 + 486662u2 + u

Is standardized for DH computations for the Internet in RFC 7748

(A + 2)/4 = 121666 is smallest with all properties from
http://safecurves.cr.yp.to/.

This curve is birationally equivalent to Edwards curve

x2 + y2 = 1 + dx2y2 for d = 121665/121666.

Note that the map given in part VI maps to a′x ′2 + y ′2 = 1 + d ′x ′2y ′2

with a′ = 486664, d ′ = 486660.
Note a′ = b2 in Fp and change x = bx ′, y = y ′.

This maps to x2 + y2 = 1 + dx2y2 with d = d ′/a′ = 121665/121666.

Tanja Lange Elliptic-curve cryptography 14

https://datatracker.ietf.org/doc/html/rfc7748
http://safecurves.cr.yp.to/


Example: Curve25519 (Bernstein 2006)

Let p = 2255 − 19,A = 486662,B = 1.

v2 = u3 + 486662u2 + u

Is standardized for DH computations for the Internet in RFC 7748

(A + 2)/4 = 121666 is smallest with all properties from
http://safecurves.cr.yp.to/.

This curve is birationally equivalent to Edwards curve

x2 + y2 = 1 + dx2y2 for d = 121665/121666.

Note that the map given in part VI maps to a′x ′2 + y ′2 = 1 + d ′x ′2y ′2

with a′ = 486664, d ′ = 486660.
Note a′ = b2 in Fp and change x = bx ′, y = y ′.
This maps to x2 + y2 = 1 + dx2y2 with d = d ′/a′ = 121665/121666.

Tanja Lange Elliptic-curve cryptography 14

https://datatracker.ietf.org/doc/html/rfc7748
http://safecurves.cr.yp.to/

