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How to implement curve arithmetic in practice?

In Fp with large p divisions are a lot more expensive than multiplications.

We use projective coordinates to delay inversions:
Use (X1 : Y1 : Z1) with Z1 6= 0 to represent (x1, y1) = (X1/Z1,Y1/Z1),
i. e., (X1 : Y1 : Z1) = (λX1 : λY1 : λZ1) for λ 6= 0.
Delay division till the end of scalar multiplication aP.

Derive formulas stating with (xi , yi ) = (Xi/Zi ,Yi/Zi ),
bring result onto same denominator Z3.

Feature: These formulas capture ∞ on Weierstrass curve as (0 : 1 : 0).

Sometimes cheaper to keep separate denominators:
(xi , yi ) = (Xi/Zi ,Yi/Ti ) represented as ((X : Z ), (Y : T )).

This is also the best way to see points at infinity on Edwards curves

((1 : 0), (±
√
d :
√
a)) and ((1 : ±

√
d), (1 : 0))

if these exist.
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Projective coordinates for Edwards curves

Taking inputs P1 = (X1 : Y1 : Z1),P2 = (X2 : Y2 : Z2),
producing P1 + P2 = P3 = (X3 : Y3 : Z3).

Optimized formulas:

A = Z1 · Z2; B = A2; C = X1 · X2; D = Y1 · Y2;

E = d · C · D; F = B − E ; G = B + E ;

X3 = A · F · ((X1 + Y1) · (X2 + Y2)− C − D);

Y3 = A · G · (D − C );

Z3 = F · G .

Needs 10M + 1S + 1d-mult + 7add.

See the EFD for many more formulas and the whole zoo of curve shapes.

As designer choose curves with small constants (under the condition that
the system is secure – we will see what that means soon).
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Example: Curve25519 (Bernstein 2006)

Let p = 2255 − 19,A = 486662,B = 1.

v2 = u3 + 486662u2 + u

Is standardized for DH computations for the Internet in RFC 7748

(A + 2)/4 = 121666 is smallest with all properties from
http://safecurves.cr.yp.to/.

This curve is birationally equivalent to Edwards curve

x2 + y2 = 1 + dx2y2 for d = 121665/121666.

Note that the map given on the board maps to a′x ′2 + y ′2 = 1 + d ′x ′2y ′2

with a′ = 486664, d ′ = 486660.
Note a′ = b2 in Fp and change x = bx ′, y = y ′.
This maps to x2 + y2 = 1 + dx2y2 with d = d ′/a′ = 121665/121666.
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