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What other numbers are easy to factor?

Take n = 323

and note
323 = 324− 1 = 182 − 1 = (18− 1)(18 + 1) = 17 · 19.

Notice this by computing
√
n, here

√
323 = 17.97 . . .,

and observing that it is close to an integer.

Then try dividing n by b
√
nc, b
√
nc − 1, b

√
nc − 2, b

√
nc − 3, . . .

This degrades into factorization by trial division, so works for any n but is
efficient only for n of the form n = a2 − b2 for small b.
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Computing square roots mod n is equivalent to factoring n

Assume we are given an algorithm A which upon input c ∈ Z/n
returns b with c ≡ b2 mod n if such b exists.

If we can get
a2 ≡ b2 mod n⇔ a2 − b2 ≡ 0 mod n

with a 6≡ ±b mod n then gcd(a− b, n) is a nontrivial factor of n.

Pick random 1 < a < n, let c ≡ a2 mod n, ask A for square root of c .

With > 50% probability (see video and slides for Miller–Rabin test)
a 6≡ ±b mod n and gcd(a− b, n) factors n. Repeat if necessary.

We have now reduced computing square roots mod n to factoring n.

Computing square roots modulo prime powers is easy, see Tonelli–Shanks
in general. Even faster for special cases: For p ≡ 3 mod 4 we get
b ≡ c(p+1)/4 mod p as b2 ≡ c(p+1)/2 ≡ c(p−1)/2c ≡ c mod p.

Combine results using CRT to compute square roots modulo n.

Having shown both sides of the reduction, the problems are equivalent.
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How to use this?
Unlikely to find 0 < a, b < n with a2 ≡ b2 mod n by chance.
To try to build b:

Pick random ai , compute ci = (a2i mod n) ∈ [0, n − 1] and try to factor
this over Z. Obtain relation

ci =
∏

p
ei,j
j .

Hope to find some product of ci s that give even exponents on the right.
Note: do not reduce mod n when computing this product!

If
∏

ci has even exponents for all pj then∏
i

a2i ≡
∏
j

p
2ej
j mod n

and we have our desired equivalence of squares.

Large pj are less likely to appear twice. Define factor base

F = {pj |pj prime , pj < B}

for some bound B.
Store relations for ci that factor completely over F , i.e., are B-smooth.
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Example

Factor n = 299.
962 ≡ 246 mod n; 246 = 2 · 3 · 41

96 | 2 3 41

91 | 24 13
89 | 3 72

69 | 22 3 23
23 | 2 5 23
25 | 33

(89 · 25)2 ≡ 34 · 72 = (32 · 7)2 mod 299 and gcd(89 · 25− 9 · 7, 299) = 23.

Note: Small examples have wrong distribution, e.g.,
852 ≡ 49 mod 299 factors 299 instantly;
732 ≡ 246 mod 299, 246 = 2 · 3 · 41 gives complete match with 962,
even though 41 very unlikely to reappear.

For bigger sizes, store only exponents on right-hand side, consider matrix
over F2 to find relation.
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Example

Factor n = 299.
892 ≡ 147 mod n; 147 = 3 · 72

96 | 2 3 41
91 | 24 13
89 | 3 72

69 | 22 3 23
23 | 2 5 23
25 | 33

(89 · 25)2 ≡ 34 · 72 = (32 · 7)2 mod 299 and gcd(89 · 25− 9 · 7, 299) = 23.

Note: Small examples have wrong distribution, e.g.,
852 ≡ 49 mod 299 factors 299 instantly;
732 ≡ 246 mod 299, 246 = 2 · 3 · 41 gives complete match with 962,
even though 41 very unlikely to reappear.

For bigger sizes, store only exponents on right-hand side, consider matrix
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Example

Factor n = 299.
692 ≡ 276 mod n; 276 = 22 · 3 · 23

96 | 2 3 41
91 | 24 13
89 | 3 72

69 | 22 3 23

23 | 2 5 23
25 | 33

(89 · 25)2 ≡ 34 · 72 = (32 · 7)2 mod 299 and gcd(89 · 25− 9 · 7, 299) = 23.

Note: Small examples have wrong distribution, e.g.,
852 ≡ 49 mod 299 factors 299 instantly;
732 ≡ 246 mod 299, 246 = 2 · 3 · 41 gives complete match with 962,
even though 41 very unlikely to reappear.

For bigger sizes, store only exponents on right-hand side, consider matrix
over F2 to find relation.
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Example

Factor n = 299.
232 ≡ 230 mod n; 230 = 2 · 5 · 23

96 | 2 3 41
91 | 24 13
89 | 3 72

69 | 22 3 23
23 | 2 5 23

25 | 33

(89 · 25)2 ≡ 34 · 72 = (32 · 7)2 mod 299 and gcd(89 · 25− 9 · 7, 299) = 23.

Note: Small examples have wrong distribution, e.g.,
852 ≡ 49 mod 299 factors 299 instantly;
732 ≡ 246 mod 299, 246 = 2 · 3 · 41 gives complete match with 962,
even though 41 very unlikely to reappear.

For bigger sizes, store only exponents on right-hand side, consider matrix
over F2 to find relation.
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Example

Factor n = 299.
252 ≡ 27 mod n; 27 = 33
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89 | 3 72
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even though 41 very unlikely to reappear.
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Factorization using equivalence of squares
Target: odd integer n, want to factor it.

1. Fix a factor base F of small primes. Let f = |F|.
2. Repeat the following until f + 4 relations are collected.

2.1 Pick random integer a.
2.2 Compute c ≡ a2 mod n with c ∈ [0, n − 1].
2.3 Check whether c factors over the factor base, i.e. whether

c =
f∏

i=1

pi ei for pi ∈ F , ei ∈ N

If so, store relation (a, [e1, e2, . . . , ef ])

3. Put the exponents-part of the relations in a matrix, compute a
non-zero vector in the kernel of the matrix modulo 2.
If the matrix has no non-trivial vector, go back to collecting more
relations.

4. Put A the product of all a involved in the kernel vector (non-zero
entries).
Compute the product of all prime powers involved in the kernel
vector. All exponents are even, put B the square root.
Compute gcd(A− B, n).
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