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p − 1 method
Let s = 232792560 = lcm(1, 2, 3, 4, 5, . . . , 20).
Then 2s − 1 is divisible by

I 70 of the 168 primes ≤ 103;

I 156 of the 1229 primes ≤ 104;

I 296 of the 9592 primes ≤ 105;

I 470 of the 78498 primes ≤ 106; etc.

We know from Fermat’s little theorem that

ap−1 ≡ 1 mod p

for p prime and gcd(a, p) = 1. If p is a factor of m then p divides

gcd(ap−1 − 1,m).

To find p, compute gcd(as − 1,m) for s with many small prime factors.

Also need prime q|m with as − 1 6≡ 0 mod q, else gcd(as − 1,m) = m.

Odd prime p divides as − 1 if and only if the order of a in F∗p divides s.

The latter works for sure if p − 1 divides s, but this is not required.
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p − 1 method in practice

Put s = lcm(2, 3, . . . ,B1) for some B1. Pick random a. Compute

b ≡ as mod m and gcd(b − 1,m)

using fast exponentiation with reduction modulo m. s used repeatedly, so
worth it computing a good addition chain. At least use sliding windows.

We can reduce modulo m because computing gcd(as − 1,m) reduces
modulo m in the first step, so keep numbers < m in the exponentiation.

“Real” p − 1 computations have a second stage in which one computes
gcd((bq1 − 1)(bq2 − 1)(bq3 − 1) · · · (bqk − 1),m) for mall primes
B1 < q1, . . . , qk ≤ B2. Several tricks for speed, not exactly this formula.
Succeeds if order of a mod p divides sqi for some 1 ≤ i ≤ k.

Numbers are easy to factor if a factor p has smooth p − 1.

“Safe primes”, i.e., primes of the form 2p′ + 1, for p′ a prime, are harder
to factor with the p − 1 method.
This does not help against the NFS nor against p + 1 and ECM.
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The p + 1 factorization method
Let s = 232792560 = lcm(1, 2, 3, 4, 5, . . . , 20) and P = (3/5, 4/5) in the
group Clock(Q). Define (X ,Y ) = sP ∈ Q×Q.

The integer S2 = 5232792560X is divisible by
82 of the primes ≤ 103;
223 of the primes ≤ 104;
455 of the primes ≤ 105;
720 of the primes ≤ 106;
etc. For those primes, (X ,Y ) = (0,±1) on Clock(Fp).

Given an integer m, compute S2 ≡ 5sx(sP) mod m and gcd(S2,m)
hoping to factor m. Many p’s not found by F∗p are found by Clock(Fp).

The p + 1 method changes from computing in F∗p, thus succeeding when
ordp(a) divides s, to working in Clock(Fp), thus succeeding when
ordp(P) divides 2s.
ordp(a): order of a mod p in F∗

p ; ordp(P): order of P in Clock(Fp).

If p ≡ 3 mod 4 and p + 1 divides 232792560 then 5232792560X ≡ 0 mod p.
Proof: There are p + 1 points in Clock(Fp) for p ≡ 3 mod 4.

The p + 1 method succeeds if p + 1 divides s.
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The elliptic-curve method (ECM)
Pick curve E . Fix bounds B1,B2. Put s = lcm(2, 3, . . . ,B1).

Stage 1:
Pick point P on E over Z/m, compute R = sP.

Stage 2:
For small primes B1 < q1, . . . , qk ≤ B2 compute Ri = qiR.

Compute gcd
(∏

x(Ri ),m
)
.

If order of P in E/Fp (same curve, reduce mod p) divides some sqi ,
then modulo p we have Ri = (0, 1) (using Edwards).

ECM permits varying the curve. If a curve fails, try another.

|E (Fp)| ∈ [p + 1− 2
√
p, p + 1 + 2

√
p].

All primes ≤ H found after reasonable number of curves.

Plausible conjecture: if B1 is exp
√(

1
2

+ o(1)
)
log H log log H then, for each prime

p ≤ H, a uniform random curve mod p has chance ≥ 1/B
1+o(1)
1 to find p.

Find p using, ≤ B
1+o(1)
1 curves; ≤ B

2+o(1)
1 squarings. Time subexponential in H.

Actually need to generate point along with curve;
cannot compute square roots modulo m.

Fastest method
we have seen so far.

Tanja Lange RSA V 5



The elliptic-curve method (ECM)
Pick curve E . Fix bounds B1,B2. Put s = lcm(2, 3, . . . ,B1).

Stage 1:
Pick point P on E over Z/m, compute R = sP.

Stage 2:
For small primes B1 < q1, . . . , qk ≤ B2 compute Ri = qiR.

Compute gcd
(∏

x(Ri ),m
)
.

If order of P in E/Fp (same curve, reduce mod p) divides some sqi ,
then modulo p we have Ri = (0, 1) (using Edwards).

ECM permits varying the curve. If a curve fails, try another.

|E (Fp)| ∈ [p + 1− 2
√
p, p + 1 + 2

√
p].

All primes ≤ H found after reasonable number of curves.

Plausible conjecture: if B1 is exp
√(

1
2

+ o(1)
)
log H log log H then, for each prime

p ≤ H, a uniform random curve mod p has chance ≥ 1/B
1+o(1)
1 to find p.

Find p using, ≤ B
1+o(1)
1 curves; ≤ B

2+o(1)
1 squarings. Time subexponential in H.

Actually need to generate point along with curve;
cannot compute square roots modulo m.

Fastest method
we have seen so far.

Tanja Lange RSA V 5



The elliptic-curve method (ECM)
Pick curve E . Fix bounds B1,B2. Put s = lcm(2, 3, . . . ,B1).

Stage 1:
Pick point P on E over Z/m, compute R = sP.

Stage 2:
For small primes B1 < q1, . . . , qk ≤ B2 compute Ri = qiR.

Compute gcd
(∏

x(Ri ),m
)
.

If order of P in E/Fp (same curve, reduce mod p) divides some sqi ,
then modulo p we have Ri = (0, 1) (using Edwards).

ECM permits varying the curve. If a curve fails, try another.

|E (Fp)| ∈ [p + 1− 2
√
p, p + 1 + 2

√
p].

All primes ≤ H found after reasonable number of curves.

Plausible conjecture: if B1 is exp
√(

1
2

+ o(1)
)
log H log log H then, for each prime

p ≤ H, a uniform random curve mod p has chance ≥ 1/B
1+o(1)
1 to find p.

Find p using, ≤ B
1+o(1)
1 curves; ≤ B

2+o(1)
1 squarings. Time subexponential in H.

Actually need to generate point along with curve;
cannot compute square roots modulo m.

Fastest method
we have seen so far.

Tanja Lange RSA V 5



The elliptic-curve method (ECM)
Pick curve E . Fix bounds B1,B2. Put s = lcm(2, 3, . . . ,B1).

Stage 1:
Pick point P on E over Z/m, compute R = sP.

Stage 2:
For small primes B1 < q1, . . . , qk ≤ B2 compute Ri = qiR.

Compute gcd
(∏

x(Ri ),m
)
.

If order of P in E/Fp (same curve, reduce mod p) divides some sqi ,
then modulo p we have Ri = (0, 1) (using Edwards).

ECM permits varying the curve. If a curve fails, try another.

|E (Fp)| ∈ [p + 1− 2
√
p, p + 1 + 2

√
p].

All primes ≤ H found after reasonable number of curves.

Plausible conjecture: if B1 is exp
√(

1
2

+ o(1)
)
log H log log H then, for each prime

p ≤ H, a uniform random curve mod p has chance ≥ 1/B
1+o(1)
1 to find p.

Find p using, ≤ B
1+o(1)
1 curves; ≤ B

2+o(1)
1 squarings. Time subexponential in H.

Actually need to generate point along with curve;
cannot compute square roots modulo m.

Fastest method
we have seen so far.

Tanja Lange RSA V 5



The elliptic-curve method (ECM)
Pick curve E . Fix bounds B1,B2. Put s = lcm(2, 3, . . . ,B1).

Stage 1:
Pick point P on E over Z/m, compute R = sP.

Stage 2:
For small primes B1 < q1, . . . , qk ≤ B2 compute Ri = qiR.

Compute gcd
(∏

x(Ri ),m
)
.

If order of P in E/Fp (same curve, reduce mod p) divides some sqi ,
then modulo p we have Ri = (0, 1) (using Edwards).

ECM permits varying the curve. If a curve fails, try another.

|E (Fp)| ∈ [p + 1− 2
√
p, p + 1 + 2

√
p].

All primes ≤ H found after reasonable number of curves.

Plausible conjecture: if B1 is exp
√(

1
2

+ o(1)
)
log H log log H then, for each prime

p ≤ H, a uniform random curve mod p has chance ≥ 1/B
1+o(1)
1 to find p.

Find p using, ≤ B
1+o(1)
1 curves; ≤ B

2+o(1)
1 squarings. Time subexponential in H.

Actually need to generate point along with curve;
cannot compute square roots modulo m.

Fastest method
we have seen so far.

Tanja Lange RSA V 5


