RSA IV

Factorization overview and Pollard rho

Tanja Lange (some slides joint work with Daniel J. Bernstein)

Eindhoven University of Technology

2MMC10 - Cryptology

Trial division.

Trial division.

The prime-number theorem says that there are about

 $n/\ln(n)$

primes up to n.

Trial division.

The prime-number theorem says that there are about

 $n/\ln(n)$

primes up to n.

That means roughly

 $(2^{2048}/\ln(2^{2048})) - (2^{2047}/\ln(2^{2047})) = 1.1377\cdot 10^{613}$

primes with 2048 bits.

No chance to find p or q by trial factorization.

Trial division.

The prime-number theorem says that there are about

 $n/\ln(n)$

primes up to n.

That means roughly

 $(2^{2048}/\ln(2^{2048})) - (2^{2047}/\ln(2^{2047})) = 1.1377\cdot 10^{613}$

primes with 2048 bits.

No chance to find p or q by trial factorization.

But: trial factorization is a useful step when factoring normal numbers.

Short summary of factorization methods

▶ For small factors: trial factorization.

Short summary of factorization methods

- ▶ For small factors: trial factorization.
- ► For medium factors:
 - Pollard's rho method.
 - ▶ p-1 method, p+1 method, ECM (elliptic curve method).

Short summary of factorization methods

- ► For small factors: trial factorization.
- For medium factors:
 - Pollard's rho method.
 - ▶ p-1 method, p+1 method, ECM (elliptic curve method).
- ► For RSA numbers: Number field sieve
 - Works by turning hard factorization of one number into many easier factorizations.
 - Uses sieving (think of Eratosthenes) to find small factors.
 - Uses the above to find medium size factors.
 - Also needs a stage of linear algebra at the end.
- The number field sieve has subexponential complexity, so we need to more than double the bit length to make the attack twice as hard.

Will use n for RSA numbers (hard to factor) and m for normal numbers. Typically, m is odd without very small prime divisors.

Pollard's rho method for factorization

Define $\rho_0=$ 0, $\rho_{k+1}=\rho_k^2+11.$

Every prime $\leq 2^{20}$ divides $S = (\rho_1 - \rho_2)(\rho_2 - \rho_4)(\rho_3 - \rho_6)\cdots(\rho_{3575} - \rho_{7150}).$ Also many larger primes do.

If such p divides m, it divides gcd(S, m). Computing S takes $\approx 2^{14}$ multiplications mod m, very little memory.

Compare to $\approx 2^{16}$ divisions for trial division up to 2^{20} .

Using Pollard rho to factor *m* means computing $\rho_{k+1} = \rho_k^2 + 11 \mod m$.

Pollard's rho method for factorization

Define $\rho_0=$ 0, $\rho_{k+1}=\rho_k^2+11.$

Every prime $\leq 2^{20}$ divides $S = (\rho_1 - \rho_2)(\rho_2 - \rho_4)(\rho_3 - \rho_6)\cdots(\rho_{3575} - \rho_{7150}).$ Also many larger primes do.

If such p divides m, it divides gcd(S, m). Computing S takes $\approx 2^{14}$ multiplications mod m, very little memory.

Compare to $\approx 2^{16}$ divisions for trial division up to 2^{20} .

Using Pollard rho to factor m means computing $\rho_{k+1} = \rho_k^2 + 11 \mod m$.

More generally: Choose z.

Compute
$$gcd(S, m)$$
 where $S = (\rho_1 - \rho_2)(\rho_2 - \rho_4) \cdots (\rho_z - \rho_{2z})$.

More generally: Choose z.

Compute gcd(S, m) where $S = (\rho_1 - \rho_2)(\rho_2 - \rho_4) \cdots (\rho_z - \rho_{2z})$.

How big does z have to be for all primes $\leq y$ to divide S?

More generally: Choose z.

Compute gcd(S, m) where $S = (\rho_1 - \rho_2)(\rho_2 - \rho_4) \cdots (\rho_z - \rho_{2z})$.

How big does z have to be for all primes $\leq y$ to divide S?

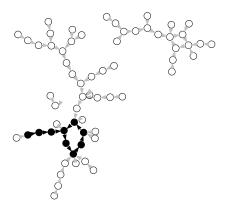
Consider walk ρ_i modulo p. There are p elements modulo p, so expect collision $\rho_i \equiv \rho_j \mod p$ after $\sqrt{\pi p/2}$ steps.

More generally: Choose z. Compute gcd(S, m) where $S = (\rho_1 - \rho_2)(\rho_2 - \rho_4) \cdots (\rho_z - \rho_{2z})$. How big does z have to be for all primes $\leq y$ to divide S?

Consider walk ρ_i modulo p. There are p elements modulo p, so expect collision $\rho_i \equiv \rho_j \mod p$ after $\sqrt{\pi p/2}$ steps.

Problem: We don't see collision as we work modulo *n*, not *p*. But *p* divides $gcd(\rho_i - \rho_j, m)$.

S implicitly uses Floyd, product reduces number of gcd steps: $\rho_i \equiv \rho_j \mod p \Rightarrow \rho_k \equiv \rho_{2k} \mod p$ for $k \in (j - i)\mathbf{Z} \cap [i, \infty] \cap [j, \infty]$.



More generally: Choose z. Compute gcd(S, m) where $S = (\rho_1 - \rho_2)(\rho_2 - \rho_4) \cdots (\rho_z - \rho_{2z})$. How big does z have to be for all primes $\leq y$ to divide S?

Consider walk ρ_i modulo p. There are p elements modulo p, so expect collision $\rho_i \equiv \rho_j \mod p$ after $\sqrt{\pi p/2}$ steps.

Problem: We don't see collision as we work modulo *n*, not *p*. But *p* divides $gcd(\rho_i - \rho_j, m)$.

S implicitly uses Floyd, product reduces number of gcd steps: $\rho_i \equiv \rho_j \mod p \Rightarrow \rho_k \equiv \rho_{2k} \mod p$ for $k \in (j - i)\mathbf{Z} \cap [i, \infty] \cap [j, \infty]$.

Plausible conjecture: $y^{1/2+o(1)}$; so $y^{1/2+o(1)}$ mults mod m.

Tanja Lange

