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How to factor RSA numbers?

Trial division.

The prime-number theorem says that there are about

n/ ln(n)

primes up to n.

That means roughly

(22048/ ln(22048))− (22047/ ln(22047)) = 1.1377 · 10613

primes with 2048 bits.

No chance to find p or q by trial factorization.

But: trial factorization is a useful step when factoring normal numbers.
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Short summary of factorization methods

I For small factors: trial factorization.

I For medium factors:
I Pollard’s rho method.
I p − 1 method, p + 1 method, ECM (elliptic curve method).

I For RSA numbers: Number field sieve
I Works by turning hard factorization of one number into many easier

factorizations.
I Uses sieving (think of Eratosthenes) to find small factors.
I Uses the above to find medium size factors.
I Also needs a stage of linear algebra at the end.

I The number field sieve has subexponential complexity, so we need to
more than double the bit length to make the attack twice as hard.

Will use n for RSA numbers (hard to factor) and m for normal numbers.
Typically, m is odd without very small prime divisors.
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Pollard’s rho method for factorization

Define ρ0 = 0, ρk+1 = ρ2k + 11.

Every prime ≤ 220 divides
S = (ρ1 − ρ2)(ρ2 − ρ4)(ρ3 − ρ6) · · · (ρ3575 − ρ7150).
Also many larger primes do.

If such p divides m, it divides gcd(S ,m).
Computing S takes ≈ 214 multiplications mod m, very little memory.

Compare to ≈ 216 divisions for trial division up to 220.

Using Pollard rho to factor m means computing ρk+1 = ρ2k + 11 mod m.

More generally: Choose z .
Compute gcd(S ,m) where S = (ρ1 − ρ2)(ρ2 − ρ4) · · · (ρz − ρ2z).

Tanja Lange RSA IV 4



Pollard’s rho method for factorization

Define ρ0 = 0, ρk+1 = ρ2k + 11.

Every prime ≤ 220 divides
S = (ρ1 − ρ2)(ρ2 − ρ4)(ρ3 − ρ6) · · · (ρ3575 − ρ7150).
Also many larger primes do.

If such p divides m, it divides gcd(S ,m).
Computing S takes ≈ 214 multiplications mod m, very little memory.

Compare to ≈ 216 divisions for trial division up to 220.

Using Pollard rho to factor m means computing ρk+1 = ρ2k + 11 mod m.

More generally: Choose z .
Compute gcd(S ,m) where S = (ρ1 − ρ2)(ρ2 − ρ4) · · · (ρz − ρ2z).

Tanja Lange RSA IV 4



Analysis of Pollard’s rho method for factorization
More generally: Choose z .
Compute gcd(S ,m) where S = (ρ1 − ρ2)(ρ2 − ρ4) · · · (ρz − ρ2z).

How big does z have to be for all primes ≤ y to divide S?

Consider walk ρi modulo p.
There are p elements modulo p, so
expect collision ρi ≡ ρj mod p after√
πp/2 steps.

Problem: We don’t see collision as
we work modulo n, not p.
But p divides gcd(ρi − ρj ,m).

S implicitly uses Floyd,
product reduces number of gcd steps:
ρi ≡ ρj mod p ⇒ ρk ≡ ρ2k mod p
for k ∈ (j − i)Z ∩ [i ,∞] ∩ [j ,∞].

Plausible conjecture: y1/2+o(1); so y1/2+o(1) mults mod m.
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