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How to pick p and q in RSA KeyGen?

1. Generate p:

1.1 Pick random odd number of `/2 bits.
1.2 If number is prime, output, else return to 1.1.

2. Generate q

2.1 Pick random odd number of `/2 bits.
2.2 If number is prime, output, else return to 2.1.

3. Relabel to have p < q.

How do we find out “If number is prime”?

Could try trial division up to
√
p / sieve of Eratosthenes.

Numbers within reach would be easy to factor by the same methods.

Primality tests and primality proofs work much faster but do not
(typically) find factors of composite numbers.

A primality test is correct if it outputs “composite”, does not give
definitive answer on primality. (Better called compositeness proofs).

A primality proof is correct if it outputs “prime”, does not give definitive
answer on compositeness.

Tanja Lange RSA III 2



How to pick p and q in RSA KeyGen?

1. Generate p:

1.1 Pick random odd number of `/2 bits.
1.2 If number is prime, output, else return to 1.1.

2. Generate q

2.1 Pick random odd number of `/2 bits.
2.2 If number is prime, output, else return to 2.1.

3. Relabel to have p < q.

How do we find out “If number is prime”?
Could try trial division up to

√
p / sieve of Eratosthenes.

Numbers within reach would be easy to factor by the same methods.

Primality tests and primality proofs work much faster but do not
(typically) find factors of composite numbers.

A primality test is correct if it outputs “composite”, does not give
definitive answer on primality. (Better called compositeness proofs).

A primality proof is correct if it outputs “prime”, does not give definitive
answer on compositeness.

Tanja Lange RSA III 2



How to pick p and q in RSA KeyGen?

1. Generate p:

1.1 Pick random odd number of `/2 bits.
1.2 If number is prime, output, else return to 1.1.

2. Generate q

2.1 Pick random odd number of `/2 bits.
2.2 If number is prime, output, else return to 2.1.

3. Relabel to have p < q.

How do we find out “If number is prime”?
Could try trial division up to

√
p / sieve of Eratosthenes.

Numbers within reach would be easy to factor by the same methods.

Primality tests and primality proofs work much faster but do not
(typically) find factors of composite numbers.

A primality test is correct if it outputs “composite”, does not give
definitive answer on primality. (Better called compositeness proofs).

A primality proof is correct if it outputs “prime”, does not give definitive
answer on compositeness.

Tanja Lange RSA III 2



How to pick p and q in RSA KeyGen?

1. Generate p:

1.1 Pick random odd number of `/2 bits.
1.2 If number is prime, output, else return to 1.1.

2. Generate q

2.1 Pick random odd number of `/2 bits.
2.2 If number is prime, output, else return to 2.1.

3. Relabel to have p < q.

How do we find out “If number is prime”?
Could try trial division up to

√
p / sieve of Eratosthenes.

Numbers within reach would be easy to factor by the same methods.

Primality tests and primality proofs work much faster but do not
(typically) find factors of composite numbers.

A primality test is correct if it outputs “composite”, does not give
definitive answer on primality. (Better called compositeness proofs).

A primality proof is correct if it outputs “prime”, does not give definitive
answer on compositeness.

Tanja Lange RSA III 2



Fermat’s primality test

If p is prime then
ap−1 ≡ 1 mod p

for all 0 < a < p.

Fermat’s primality test repeats the following steps with different choices
of 1 < a < p:

1. If gcd(a, p) 6= 1 output “composite, factor gcd(a, p)”.

2. If ap−1 6≡ 1 mod p output “composite”.

3. Else output “probably prime”.

Most composite numbers get caught after a few runs of Fermat’s
primality test.

Carmichael numbers are a class of exceptions to Fermat’s primality test.
These are composite numbers m so that an−1 ≡ 1 mod n for all
0 < a < n with gcd(a, n) = 1.
These still get caught in the first step, but take a lot longer to find.
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Miller–Rabin primality test

This test does not have exceptions.

If p is prime then a2 ≡ 1 mod p has exactly 2 solutions a ≡ ±1 mod p.

If n = pq for primes p, q then

a ≡ 1 mod p

a ≡ −1 mod q

describes a 6≡ ±1 mod n with a2 ≡ 1 mod n by CRT.

Example: 42 ≡ 1 mod 15 and 4 ≡ 1 mod 3, 4 ≡ −1 mod 5..

For a composite n at most 1/2 of a with a2 ≡ 1 mod n are in ±1.

Problem: we cannot compute square roots.

Can compute exponentiation with integer exponent.
For p a prime, a(p−1)/2 ≡ ±1 mod p because of Fermat.
If this is 1 try a(p−1)/4 etc. – provided that p − 1 is divisible by 4, 8 etc.

Let p − 1 = 2st with t odd. So we can compute a(p−1)/2s .
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Miller–Rabin primality test

Let p − 1 = 2st with t odd.

1. Pick random 1 < b < p.

2. Compute c ≡ bt mod p.

3. If c ≡ ±1 mod p output “probably prime”.

4. For i = 1 to s − 1

4.1 c ← c2 mod p.
4.2 If c = 1 output “composite”.
4.3 If c = −1 output “probably prime”

5. Output “composite”.

c will square to 1, so no info.

← means to assign

p does not pass Fermat test

or c 6= ±1 squares to 1.

Composite p has probability ≤ 1/2 of passing as “probably prime”.

Repeat k times to probability ≤ 1/2k of passing as “probably prime”.
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Pocklington primality proof
If there exist a, q ∈ N with

I q prime, q|(p − 1), and q >
√
p − 1,

I ap−1 ≡ 1 mod p, and

I gcd(a(p−1)/q − 1, p) = 1 then p is prime.

This criterion fails for some p.

Else p fails Fermat test for a.

Else we get a factor of p.

Example:
p = 103, so p − 1 = 102 = 2 · 3 · 17.
Put q = 17 then q >

√
103− 1 = 9.148 . . ..

Take a = 2. Compute 2102 ≡ 1 mod 103.
gcd(2(103−1)/17 − 1, 103) = gcd(26 − 1, 103) = gcd(63, 103) = 1.

This shows that 103 is prime if 17 is prime.

Because 17− 1 = 24 we cannot use Pocklington to prove primality.
But this is a smaller problem (still more than half the bitlength).

Pocklington leads to sequence of primes, here 103, 17.
Generalizations exist.
Much more general ECPP: elliptic-curve primality proofs.
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