RSA XI

LLL, Coppersmith/Howgrave-Graham, and stereotyped messages

Tanja Lange

Eindhoven University of Technology

2MMC10 - Cryptology

LLL – Lenstra, Lenstra, and Lovász, 1982

On input a set of vectors {v₁, v₂,..., v_d}, entered as row vectors in a matrix *M*, output matrix with shorter vectors v'_j so that v'_i = ∑ a_iv_i for some a_i ∈ Z.

LLL – Lenstra, Lenstra, and Lovász, 1982

- On input a set of vectors {v₁, v₂,..., v_d}, entered as row vectors in a matrix *M*, output matrix with shorter vectors v'_j so that v'_i = ∑ a_iv_i for some a_i ∈ Z.
- LLL outputs d vectors which are shorter and more orthogonal. Each vector is an integer linear combination of the inputs.
- LLL uses many elements from Gram-Schmidt orthogonalization:

• for
$$i = 1$$
 to $j - 1$

•
$$\mathbf{v}_j^* = \mathbf{v}_j - \sum_{i=1}^{j-1} \mu_{ij} \mathbf{v}_i^*$$

• Note that the μ_{ij} are not integers, so not permitted as coefficients.

▶ *d* vectors are LLL reduced for parameter $0.25 < \delta < 1$ if

•
$$|\mu_{ij}| \le 0.5$$
 for all $1 \le j < i \le d$,

•
$$(\delta - \mu_{i-1i}^2) ||\mathbf{v}_{i-1}^*||^2 \le ||\mathbf{v}_i^*||^2.$$

► This guarantees $||v_1|| \le (2/\sqrt{4\delta - 1})^{(d-1)/2} \det(M)^{1/d}$, where det(M) is the determinant of the matrix.

LLL algorithm (from Cohen, GTM 138, transposed)

Input: $\{v_1, v_2, \dots, v_d\}$, $0.25 < \delta < 1$ Output: LLL reduced matrix with parameter δ 1. $k \leftarrow 2$, $k_{max} \leftarrow 1$, $v_1^* \leftarrow v_1$, $V_1 = \langle v_1, v_1 \rangle$ 2. if $k \le k_{max}$ go to step 3 else $k_{max} \leftarrow k$, $v_k^* \leftarrow v_k$, for j = 1 to k - 1 \blacktriangleright put $\mu_{jk} \leftarrow \langle v_j^*, v_k \rangle / V_j$ and $v_k^* \leftarrow v_k^* - \mu_{jk} v_j^*$ $V_k = \langle v_k, v_k \rangle$

- 3. Execute RED(k, k 1). If $(\delta \mu_{i-1i}^2)V_{k-1} > V_k$ execute SWAP(k) and $k \leftarrow \max\{2, k-1\}$; else for = k 2 down to 1 execute RED(k, j) and $k \leftarrow k + 1$.
- 4. If $k \leq d$ go to step 2; else output basis $\{v_1, v_2, \ldots, v_d\}$.
- ▶ RED(k, j): If $|\mu_{jk}| \le 0.5$ return; else $q \leftarrow \lfloor \mu_{jk} \rfloor$, $v_k \leftarrow v_k qv_j$, $\mu_{jk} \leftarrow \mu_{jk} - q$, for i = 1 to j - 1 put $\mu_{ik} \leftarrow \mu_{ik} - q\mu_{ij}$ and return.
- SWAP(k): Swap v_k and v_{k−1}. If k > 2 for j = 1 to k − 2 swap µ_{jk} and µ_{jk−1} and update all variables to match (see p.88 in Cohen)

For a nice visualization with animation see pages 61-66 of http://thijs.com/docs/lec1.pdf. (This might need Acroread.)

Let
$$g(x) = \sum_{i=0}^{d-1} g_i x^i \in \mathbb{Z}[x]$$
 of deg $(g) = d - 1$.
Let $b, k \in \mathbb{Z}_{>0}$. If
1. $g(x_0) \equiv 0 \mod b^k$ with $|x_0| \le X$,
2. $||g(xX)|| \le b^k / \sqrt{d}$
then $g(x_0) = 0$ over \mathbb{Z} .

Here
$$||g(xX)|| = \sqrt{g_0^2 + g_1^2 X^2 + \cdots + g_{d-1}^2 X^{2(d-1)}}$$
 is
Euclidean norm of the coefficient vector of $g(xX)$.

Proof: Let
$$v = (1, x_0/X, x_0^2/X^2, ..., x_0^{d-1}/X^{d-1})$$
 and $w = (g_0, g_1X, g_2X^2, ..., g_{d-1}X^{d-1})$.
Note $v \cdot w = g(x_0)$ and each entry in v is ≤ 1 .

Let
$$g(x) = \sum_{i=0}^{d-1} g_i x^i \in \mathbf{Z}[x]$$
 of deg $(g) = d - 1$.
Let $b, k \in \mathbf{Z}_{>0}$. If
1. $g(x_0) \equiv 0 \mod b^k$ with $|x_0| \le X$,
2. $||g(xX)|| \le b^k / \sqrt{d}$
then $g(x_0) = 0$ over \mathbf{Z} .

Here
$$||g(xX)|| = \sqrt{g_0^2 + g_1^2 X^2 + \cdots + g_{d-1}^2 X^{2(d-1)}}$$
 is
Euclidean norm of the coefficient vector of $g(xX)$.

Proof: Let
$$v = (1, x_0/X, x_0^2/X^2, ..., x_0^{d-1}/X^{d-1})$$
 and $w = (g_0, g_1X, g_2X^2, ..., g_{d-1}X^{d-1})$.
Note $v \cdot w = g(x_0)$ and each entry in v is ≤ 1 .
By Cauchy-Schwarz inequality $|v \cdot w| < ||v||||w||$.

Strict inequality as they are not linearly dependent. Here $||v|| \le \sqrt{1+1+1+\dots+1} = \sqrt{d}$ and ||w|| = ||g(xX)||.

Tanja Lange

Let
$$g(x) = \sum_{i=0}^{d-1} g_i x^i \in \mathbf{Z}[x]$$
 of deg $(g) = d - 1$.
Let $b, k \in \mathbf{Z}_{>0}$. If
1. $g(x_0) \equiv 0 \mod b^k$ with $|x_0| \le X$,
2. $||g(xX)|| \le b^k / \sqrt{d}$
then $g(x_0) = 0$ over \mathbf{Z} .

Here
$$||g(xX)|| = \sqrt{g_0^2 + g_1^2 X^2 + \cdots + g_{d-1}^2 X^{2(d-1)}}$$
 is
Euclidean norm of the coefficient vector of $g(xX)$.

Proof: Let
$$v = (1, x_0/X, x_0^2/X^2, ..., x_0^{d-1}/X^{d-1})$$
 and $w = (g_0, g_1X, g_2X^2, ..., g_{d-1}X^{d-1})$.
Note $v \cdot w = g(x_0)$ and each entry in v is ≤ 1 .

By Cauchy-Schwarz inequality $|v \cdot w| < ||v||||w||$. Strict inequality as they are not linearly dependent. Here $||v|| \le \sqrt{1+1+1+1+\cdots+1} = \sqrt{d}$ and ||w|| = ||g(xX)||. Thus $|g(x_0)| = |v \cdot w| < ||v||||w|| \le \sqrt{d}b^k/\sqrt{d} = b^k$.

Let
$$g(x) = \sum_{i=0}^{d-1} g_i x^i \in \mathbf{Z}[x]$$
 of deg $(g) = d - 1$.
Let $b, k \in \mathbf{Z}_{>0}$. If
1. $g(x_0) \equiv 0 \mod b^k$ with $|x_0| \le X$,
2. $||g(xX)|| \le b^k / \sqrt{d}$
then $g(x_0) = 0$ over \mathbf{Z} .

Here
$$||g(xX)|| = \sqrt{g_0^2 + g_1^2 X^2 + \cdots + g_{d-1}^2 X^{2(d-1)}}$$
 is
Euclidean norm of the coefficient vector of $g(xX)$.

Proof: Let
$$v = (1, x_0/X, x_0^2/X^2, ..., x_0^{d-1}/X^{d-1})$$
 and $w = (g_0, g_1X, g_2X^2, ..., g_{d-1}X^{d-1})$.
Note $v \cdot w = g(x_0)$ and each entry in v is ≤ 1 .

By Cauchy-Schwarz inequality $|v \cdot w| < ||v||||w||$. Strict inequality as they are not linearly dependent. Here $||v|| \le \sqrt{1+1+1+1+\cdots+1} = \sqrt{d}$ and ||w|| = ||g(xX)||. Thus $|g(x_0)| = |v \cdot w| < ||v||||w|| \le \sqrt{d}b^k/\sqrt{d} = b^k$. If $g(x_0) \in b^k \mathbb{Z}$ and $|g(x_0)| < b^k$ then $g(x_0) = 0$. If $z \equiv 0 \mod b^k \& |z| < b^k$ then

Tanja Lange

Let
$$g(x) = \sum_{i=0}^{d-1} g_i x^i \in \mathbf{Z}[x]$$
 of deg $(g) = d - 1$.
Let $b, k \in \mathbf{Z}_{>0}$. If
1. $g(x_0) \equiv 0 \mod b^k$ with $|x_0| \le X$,
2. $||g(xX)|| \le b^k / \sqrt{d}$
then $g(x_0) = 0$ over \mathbf{Z} .

Here
$$||g(xX)|| = \sqrt{g_0^2 + g_1^2 X^2 + \cdots + g_{d-1}^2 X^{2(d-1)}}$$
 is
Euclidean norm of the coefficient vector of $g(xX)$.

Proof: Let
$$v = (1, x_0/X, x_0^2/X^2, ..., x_0^{d-1}/X^{d-1})$$
 and $w = (g_0, g_1X, g_2X^2, ..., g_{d-1}X^{d-1})$.
Note $v \cdot w = g(x_0)$ and each entry in v is ≤ 1 .

By Cauchy-Schwarz inequality $|v \cdot w| < ||v||||w||$. Strict inequality as they are not linearly dependent. Here $||v|| \le \sqrt{1+1+1+1+\cdots+1} = \sqrt{d}$ and ||w|| = ||g(xX)||. Thus $|g(x_0)| = |v \cdot w| < ||v||||w|| \le \sqrt{d}b^k/\sqrt{d} = b^k$. If $g(x_0) \in b^k \mathbb{Z}$ and $|g(x_0)| < b^k$ then $g(x_0) = 0$. If $z \equiv 0 \mod b^k \& |z| < b^k$ then z = 0; using $z \equiv 0 \mod b^k \Leftrightarrow z \in b^k \mathbb{Z}$.

Tanja Lange

We want to find a polynomial g(x) and a root x_0 so that $g(x_0) \in b^k \mathbf{Z}$.

We want to find a polynomial g(x) and a root x_0 so that $g(x_0) \in b^k \mathbb{Z}$. Here are some polynomials that work: $g(x) \in b^k \mathbb{Z}$

We want to find a polynomial g(x) and a root x_0 so that $g(x_0) \in b^k \mathbb{Z}$. Here are some polynomials that work: $g(x) \in b^k \mathbb{Z} + b^k \times \mathbb{Z}$

We want to find a polynomial g(x) and a root x_0 so that $g(x_0) \in b^k \mathbb{Z}$. Here are some polynomials that work: $g(x) \in b^k \mathbb{Z} + b^k x \mathbb{Z} + b^k x^2 \mathbb{Z}$

We want to find a polynomial g(x) and a root x_0 so that $g(x_0) \in b^k \mathbb{Z}$. Here are some polynomials that work: $g(x) \in b^k \mathbb{Z} + b^k x \mathbb{Z} + b^k x^2 \mathbb{Z} + b^k x^3 \mathbb{Z} \cdots$.

We want to find a polynomial g(x) and a root x_0 so that $g(x_0) \in b^k \mathbb{Z}$. Here are some polynomials that work: $g(x) \in b^k \mathbb{Z} + b^k x \mathbb{Z} + b^k x^2 \mathbb{Z} + b^k x^3 \mathbb{Z} \cdots$.

We have some polynomial f(x) to start with and know that $f(x_0) \in b^k \mathbb{Z}$ for the x_0 we're looking for.

We want to find a polynomial g(x) and a root x_0 so that $g(x_0) \in b^k \mathbb{Z}$. Here are some polynomials that work: $g(x) \in b^k \mathbb{Z} + b^k x \mathbb{Z} + b^k x^2 \mathbb{Z} + b^k x^3 \mathbb{Z} \cdots$.

We have some polynomial f(x) to start with and know that $f(x_0) \in b^k \mathbb{Z}$ for the x_0 we're looking for.

If deg(f) = t then we're looking for $g(x) \in b^k \mathbf{Z} + b^k x \mathbf{Z} + b^k x^2 \mathbf{Z} + \dots + b^k x^{t-1} \mathbf{Z} + f(x) \mathbf{Z}$. The polynomial f does not need an extra b^k .

We want to find a polynomial g(x) and a root x_0 so that $g(x_0) \in b^k \mathbb{Z}$. Here are some polynomials that work: $g(x) \in b^k \mathbb{Z} + b^k x \mathbb{Z} + b^k x^2 \mathbb{Z} + b^k x^3 \mathbb{Z} \cdots$.

We have some polynomial f(x) to start with and know that $f(x_0) \in b^k \mathbb{Z}$ for the x_0 we're looking for.

If $\deg(f) = t$ then we're looking for $g(x) \in b^k \mathbf{Z} + b^k x \mathbf{Z} + b^k x^2 \mathbf{Z} + \dots + b^k x^{t-1} \mathbf{Z} + f(x) \mathbf{Z}$. The polynomial f does not need an extra b^k .

If that's too restrictive we can expand to $g(x) \in b^k \mathbf{Z} + b^k x^2 \mathbf{Z} + \dots + b^k x^{t-1} \mathbf{Z} + f(x) \mathbf{Z} + xf(x) \mathbf{Z} + x^2 f(x) \mathbf{Z} + \dots$

What to look for and how to find it?

All of these attacks start by finding some polynomial f(x) for which a root modulo b^k is interesting. Let deg(f) = t and let $|x_0| \le X$ for some known X.

To find $g(x) \in b^k \mathbf{Z} + b^k x^2 \mathbf{Z} + \dots + b^k x^{t-1} \mathbf{Z} + f(x) \mathbf{Z} + xf(x) \mathbf{Z} + x^2 f(x) \mathbf{Z} + \cdots$ we will use LLL, which builds integer linear combinations of the input rows of a matrix. It returns a vector that is short in the Euclidean norm. (Hence we wanted that in the Howgrave-Graham theorem).

We set up a system of equations in the coefficient vectors, one row per option. $b^k \mathbf{Z}$ turns into coefficient b^k at the x^0 column etc.

For Howgrave-Graham we need to scale the column of x^s by X^s . So we get

$$\left(\begin{array}{cc} X & a \\ 0 & n \end{array}\right)$$

 $b^k = p$ but we only know n. But 2×2 likely too small.

What to look for and how to find it?

All of these attacks start by finding some polynomial f(x)for which a root modulo b^k is interesting. Let deg(f) = t and let $|x_0| \le X$ for some known X.

To find $g(x) \in$ $b^{k}\mathbf{Z} + b^{k}x\mathbf{Z} + b^{k}x^{2}\mathbf{Z} + \dots + b^{k}x^{t-1}\mathbf{Z} + f(x)\mathbf{Z} + xf(x)\mathbf{Z} + x^{2}f(x)\mathbf{Z} + \dots$ we will use LLL, which builds integer linear combinations of the input rows of a matrix. It returns a vector that is short in the Euclidean norm. (Hence we wanted that in the Howgrave-Graham theorem).

We set up a system of equations in the coefficient vectors, one row per option. $b^k \mathbf{Z}$ turns into coefficient b^k at the x^0 column etc.

For Howgrave-Graham we need to scale the column of x^s by X^s . So we get

$$\left(\begin{array}{ccc} X^2 & aX & 0\\ 0 & X & a\\ 0 & 0 & n \end{array}\right)$$

LLL gives $||v_1|| \leq (2/\sqrt{4\delta-1})^{(d-1)/2} \det(M)^{1/d}$, i.e., $||g(xX)|| \leq 2(X^3n)^{1/3}$ for $\delta = 1/2$. Then $2(X^3n)^{1/3} < p/\sqrt{3}$ for $X < n^{1/6}/\sqrt{12}$ if $p \approx q$. Tanja Lange RSA XI

- n = random_prime(2^160)*random_prime(2^160)
- m = Integer('myfavoritesubjectiscryptology',36)
- c = m^3 % n # note small primes, reduction happens

n = random_prime(2^160)*random_prime(2^160)
m = Integer('myfavoritesubjectiscryptology',36)
c = m^3 % n # note small primes, reduction happens

Match this up with $g(x) \in b^k \mathbf{Z} + b^k x \mathbf{Z} + b^k x^2 \mathbf{Z} + \dots + b^k x^{t-1} \mathbf{Z} + f(x) \mathbf{Z}.$ for $b^k = n, f(x) = (a+x)^3 - c$ with

a = Integer('myfavoritesubjectis000000000',36)

n = random_prime(2^160)*random_prime(2^160)
m = Integer('myfavoritesubjectiscryptology',36)
c = m^3 % n # note small primes, reduction happens

Match this up with

$$g(x) \in b^k \mathbf{Z} + b^k x \mathbf{Z} + b^k x^2 \mathbf{Z} + \dots + b^k x^{t-1} \mathbf{Z} + f(x) \mathbf{Z}.$$

for $b^k = n, f(x) = (a+x)^3 - c$ with

- a = Integer('myfavoritesubjectis000000000',36)

n = random_prime(2^160)*random_prime(2^160)
m = Integer('myfavoritesubjectiscryptology',36)
c = m^3 % n # note small primes, reduction happens

Match this up with

$$g(x) \in b^k \mathbf{Z} + b^k x \mathbf{Z} + b^k x^2 \mathbf{Z} + \dots + b^k x^{t-1} \mathbf{Z} + f(x) \mathbf{Z}.$$

for $b^k = n, f(x) = (a+x)^3 - c$ with

a = Integer('myfavoritesubjectis000000000',36)

B = M.LLL() Q = B[0][0]*x^3/X^3+B[0][1]*x^2/X^2+B[0][2]*x/X+B[0][3]

n = random_prime(2^160)*random_prime(2^160)
m = Integer('myfavoritesubjectiscryptology',36)
c = m^3 % n # note small primes, reduction happens

Match this up with $g(x) \in b^k \mathbf{Z} + b^k x \mathbf{Z} + b^k x^2 \mathbf{Z} + \dots + b^k x^{t-1} \mathbf{Z} + f(x) \mathbf{Z}.$ for $b^k = n, f(x) = (a+x)^3 - c$ with

a = Integer('myfavoritesubjectis000000000',36)

B = M.LLL() Q = B[0][0]*x^3/X^3+B[0][1]*x^2/X^2+B[0][2]*x/X+B[0][3]

```
sage: Q.roots(ring=ZZ)[0][0].str(base=36)
'cryptology'
```

Tanja Lange