RSA XI

LLL, Coppersmith/Howgrave-Graham, and stereotyped messages

Tanja Lange
Eindhoven University of Technology

2MMC10 - Cryptology

LLL — Lenstra, Lenstra, and Lovasz, 1982

» On input a set of vectors {vi, va,..., vg}, entered as row vectors in
a matrix M, output matrix with shorter vectors vj’
so that vj’ =" a;v; for some a; € Z.

Tanja Lange RSA Xl

LLL —

>

Lenstra, Lenstra, and Lovasz, 1982

On input a set of vectors {vi, va,..., v4}, entered as row vectors in
a matrix M, output matrix with shorter vectors vj’
so that vj’ =" a;v; for some a; € Z.
LLL outputs d vectors which are shorter and more orthogonal.
Each vector is an integer linear combination of the inputs.
LLL uses many elements from Gram-Schmidt orthogonalization:
> forj=1tod
> fori=1toj—1
> w=gEs
> v =y = Yy
Note that the pj; are not integers, so not permitted as coefficients.
d vectors are LLL reduced for parameter 0.25 < 6 < 1 if
> |py| <05 forall 1<j<i<d,
> (0 — pia)llvital? < vl
This guarantees ||v1|| < (2/v/40 — 1)(@=1/2 det(M)/¢,
where det(M) is the determinant of the matrix.

Tanja Lange RSA Xl

LLL algorithm (from Cohen, GTM 138, transposed)

Input: {vi,va,...,vg}, 025 <6 <1
Output: LLL reduced matrix with parameter §

1. k< 2, kpax < 1, Vik — v, Vi = <V1, V1>

2. if k < kmax g0 to step 3
else Kmax < k, Vi < v, for j=1to k—1

> put pjx < (v, vi)/Vj and v <= v — vy’
Vie = (Vk, vik)

3. Execute RED(k, k —1). If (6 — u? 1;)Vk—1 > Vi execute SWAP(k)
and k < max{2, k — 1}, else for = k — 2 down to 1 execute
RED(k,) and k + k + 1.

4. If k < d go to step 2; else output basis {vi,vs, ..., vg}.

» RED(k,j): If |ujx] < 0.5 return; else q < [pjx], vk < vk — qv;,

Wik < pjx — q, for i =1 to j — 1 put pjc <= pix — quj and return.

» SWAP(k): Swap vk and vi_1. If k > 2 for j =1 to k — 2 swap pj«
and /11 and update all variables to match (see p.88 in Cohen)

For a nice visualization with animation see pages 61-66 of
http://thijs.com/docs/lecl.pdf. (This might need Acroread.)

Tanja Lange RSA Xl

http://thijs.com/docs/lec1.pdf

Theorem by Howgrave-Graham

Let g(x) = X0 gix’ € Z[x] of deg(g) = d — 1.
Let b,k € Zso. If

1. g(x0) = 0 mod b with |x| < X,
2. [lg(xX)I| < b*/Vd
then g(xp) = 0 over Z.

Here [|g(eX)| = \/g8 + g2 X2 ++ -+ g5 X2V is
Euclidean norm of the coefficient vector of g(xX).

Proof: Let v = (1,x0/X,x3/X?, ..., x{71/X91) and
w = (g07g1X7g2X27 s 7gd71Xd_1)-
Note v - w = g(xo) and each entry in v is < 1.

Tanja Lange RSA Xl

Theorem by Howgrave-Graham

Let g(x) = X0 gix’ € Z[x] of deg(g) = d — 1.
Let b,k € Zso. If

1. g(x0) = 0 mod b with |x| < X,
2. [lg(xX)I| < b*/Vd
then g(xp) = 0 over Z.

Here [|g(eX)| = \/g8 + g2 X2 ++ -+ g5 X2V is
Euclidean norm of the coefficient vector of g(xX).

Proof: Let v = (1,x0/X,x3/X?, ..., x{71/X91) and
w = (g07g1X7g2X27 s 7gd71Xd_1)-

Note v - w = g(xp) and each entry in v is < 1.

By Cauchy-Schwarz inequality |v - w| < ||v]|||w]].

Strict inequality as they are not linearly dependent.

Here ||v|]| < VI+1+1+ - +1=+dand||w|=]|lg(xX)

Tanja Lange RSA Xl

Theorem by Howgrave-Graham
Let g(x) = X0 gix’ € Z[x] of deg(g) = d — 1.
Let b,k € Z~g. If
1. g(x0) = 0 mod b with |x| < X,
2. |lg(xX)|| < b*/Vd
then g(xp) = 0 over Z.

Here [|g(eX)| = \/g8 + g2 X2 ++ -+ g5 X2V is
Euclidean norm of the coefficient vector of g(xX).

Proof: Let v = (1,x0/X,x3/X?, ..., x{71/X91) and
w = (g07g1X7g2X27 s 7gd71Xd_1)-

Note v - w = g(xp) and each entry in v is < 1.

By Cauchy-Schwarz inequality |v - w| < ||v]|||w]].

Strict inequality as they are not linearly dependent.

Here ||v|| < VIF1+1+ ---+1=+/dand|lw|l =]|g(xX)||.
Thus |g(x0)| = |v - w| < [Iv]l[|w]| < Vdb*/Vd = b*.

Tanja Lange RSA Xl

Theorem by Howgrave-Graham
Let g(x) = X0 gix’ € Z[x] of deg(g) = d — 1.
Let b,k € Z~g. If
1. g(x0) = 0 mod b with |x| < X,
2. |lg(xX)|| < b*/Vd
then g(xp) = 0 over Z.

Here [|g(eX)| = \/g8 + g2 X2 ++ -+ g5 X2V is
Euclidean norm of the coefficient vector of g(xX).

Proof: Let v = (1,x0/X,x3/X?, ..., x{71/X91) and
w = (g07g1X7g2X27 s 7gd71Xd_1)-

Note v - w = g(xp) and each entry in v is < 1.

By Cauchy-Schwarz inequality |v - w| < ||v]|||w]].

Strict inequality as they are not linearly dependent.

Here ||v|]| < VI+1+1+ - +1=+dand||w|=]|lg(xX)
Thus [g(x0)| = |v - w| < [Jv][[|w]| < Vdb*/Vd = b*.

If g(x0) € b*Z and |g(x0)| < b* then g(x0) = 0.

If z=0mod b & |z| < b¥ then

Tanja Lange RSA Xl

Theorem by Howgrave-Graham
Let g(x) = X0 gix’ € Z[x] of deg(g) = d — 1.
Let b,k € Z~g. If
1. g(x0) = 0 mod b with |x| < X,
2. |lg(xX)|| < b*/Vd
then g(xp) = 0 over Z.

Here [|g(eX)| = \/g8 + g2 X2 ++ -+ g5 X2V is
Euclidean norm of the coefficient vector of g(xX).

Proof: Let v = (1,x0/X,x3/X?, ..., x{71/X91) and
w = (g07g1X7g2X27 s 7gd71Xd_1)-

Note v - w = g(xp) and each entry in v is < 1.

By Cauchy-Schwarz inequality |v - w| < ||v]|||w]].

Strict inequality as they are not linearly dependent.

Here ||v|| < VIF1+1+ ---+1=+/dand|lw|l =]|g(xX)||.
Thus |g(x0)| = |v - w| < [Iv]l[|w]| < Vdb*/Vd = b*.

If g(x0) € b*Z and |g(x0)| < b* then g(x0) = 0.
If z=0mod b & |z| < b¥ then z = 0; using z = 0 mod b¥ & z € b¥Z.

Tanja Lange RSA Xl

What to look for?

We want to find a polynomial g(x) and a root xg so that g(xo) € b*Z.

Tanja Lange RSA Xl

What to look for?

We want to find a polynomial g(x) and a root xg so that g(xo) € b*Z.
Here are some polynomials that work:
g(x) € b*Z

Tanja Lange RSA Xl

What to look for?

We want to find a polynomial g(x) and a root xg so that g(xo) € b*Z.
Here are some polynomials that work:
g(x) € b*Z + bkxZ

Tanja Lange RSA Xl

What to look for?

We want to find a polynomial g(x) and a root xg so that g(xo) € b*Z.
Here are some polynomials that work:
g(x) € b*Z + b*xZ + bkx?Z

Tanja Lange RSA Xl

What to look for?

We want to find a polynomial g(x) and a root xg so that g(xo) € b*Z.
Here are some polynomials that work:
g(x) € b*Z + b*xZ + b*x2Z + b*x3Z - - -.

Tanja Lange RSA Xl

What to look for?

We want to find a polynomial g(x) and a root xg so that g(xo) € b*Z.
Here are some polynomials that work:
g(x) € b*Z + b*xZ + b*x2Z + b*x3Z - - -.

We have some polynomial f(x) to start with and know that
f(x0) € bXZ for the xo we're looking for.

Tanja Lange RSA Xl

What to look for?

We want to find a polynomial g(x) and a root xg so that g(xo) € b*Z.
Here are some polynomials that work:
g(x) € b*Z + b*xZ + b*x2Z + b*x3Z - - -.

We have some polynomial f(x) to start with and know that
f(x0) € bXZ for the xo we're looking for.

If deg(f) = t then we're looking for
g(x) € b*Z + b*XZ + b*x2Z + - - - + b*x'71Z + f(x)Z.
The polynomial f does not need an extra b.

Tanja Lange RSA Xl

What to look for?

We want to find a polynomial g(x) and a root xg so that g(xo) € b*Z.
Here are some polynomials that work:
g(x) € b*Z + b*xZ + b*x2Z + b*x3Z - - -.

We have some polynomial f(x) to start with and know that
f(x0) € bXZ for the xo we're looking for.

If deg(f) = t then we're looking for
g(x) € b*Z + b*XZ + b*x2Z + - - - + b*x'71Z + f(x)Z.
The polynomial f does not need an extra b.

If that's too restrictive we can expand to
g(x) €
b*Z 4+ b*XZ + b*X2Z + -+ bF X TIZ 4 F(X)Z 4+ xF (X)Z + X2 F(X)Z+- - -

Tanja Lange RSA Xl

What to look for and how to find it?

All of these attacks start by finding some polynomial f(x)
for which a root modulo b¥ is interesting.
Let deg(f) = t and let |xp| < X for some known X.

To find g(x) €

b*Z 4+ b*XZ + b*x?Z + - - - + b*xtTYZ 4 F(X)Z + xF (X)Z + x*F(X)Z + - -
we will use LLL, which builds integer linear combinations of the input
rows of a matrix. It returns a vector that is short in the Euclidean norm.
(Hence we wanted that in the Howgrave-Graham theorem).

We set up a system of equations in the coefficient vectors, one row per
option. b¥Z turns into coefficient b* at the x° column etc.

For Howgrave-Graham we need to scale the column of x* by X*.

So we get
X a
0 n

b* = p but we only know n.
But 2 x 2 likely too small.

Tanja Lange RSA Xl

What to look for and how to find it?

All of these attacks start by finding some polynomial f(x)
for which a root modulo b¥ is interesting.
Let deg(f) =t and let |xo| < X for some known X.

To find g(x) €

bXZ + bKXxZ + b*X?Z + - - + b*XxtTYZ + F(X)Z + XxF(X)Z + x*F(X)Z + - -
we will use LLL, which builds integer linear combinations of the input
rows of a matrix. It returns a vector that is short in the Euclidean norm.
(Hence we wanted that in the Howgrave-Graham theorem).

We set up a system of equations in the coefficient vectors, one row per
option. b*Z turns into coefficient b at the x° column etc.

For Howgrave-Graham we need to scale the column of x° by X*.

So we get
X% aX o0
0 X a
0 0 n

LLL gives ||v1]| < (2/v/40 — 1)(d=D/2det(M)/9, ie.,
llg(xX)|| < 2(X3n)'/3 for 6 = 1/2.
Then 2(X3n)Y/3 < p/+/3 for X < n*/®/\/12if p ~ q.

Tanja Lange RSA Xl

Stereotyped message with small e in RSA

=}
|

= random_prime(2°160)*random_prime(2°160)
m = Integer(’myfavoritesubjectiscryptology’,36)
=m"3 % n # note small primes, reduction happens

[e]
|

Tanja Lange RSA Xl

Stereotyped message with small e in RSA

n = random_prime(2°160)*random_prime (27160)
m = Integer(’myfavoritesubjectiscryptology’,36)
c=m3Y%n # note small primes, reduction happens

Match this up with
g(x) € bXZ + b*XZ + b*x?Z + - - - + b*x'71Z + f(x)Z.
for b = n, f(x) = (a + x)3 — c with

a = Integer(’myfavoritesubjectis0000000000°’,36)

Tanja Lange RSA Xl

Stereotyped message with small e in RSA

n = random_prime(2°160)*random_prime (27160)
m = Integer(’myfavoritesubjectiscryptology’,36)
c=m3Y%n # note small primes, reduction happens

Match this up with
g(x) € bXZ + b*XZ + b*x?Z + - - - + b*x'71Z + f(x)Z.
for b = n, f(x) = (a + x)3 — c with

a = Integer(’myfavoritesubjectis0000000000°’,36)

X = Integer(’zzzzzzzzzz’,36)
M = matrix([[X"3, 3*X"2*a, 3*X*a"2, a"3-c],
[0,n*X"2,0,0], [0,0,n*X,0],[0,0,0,n]])

Tanja Lange RSA Xl

Stereotyped message with small e in RSA

n = random_prime(2°160)*random_prime (27160)
m = Integer(’myfavoritesubjectiscryptology’,36)
c=m3Y%n # note small primes, reduction happens

Match this up with
g(x) € bXZ + b*XZ + b*x?Z + - - - + b*x'71Z + f(x)Z.
for b = n, f(x) = (a + x)3 — c with

a = Integer(’myfavoritesubjectis0000000000°’,36)

X = Integer(’zzzzzzzzzz’,36)

M = matrix([[X"3, 3*X"2*a, 3*X*a"2, a"3-c],
[0,n*X"2,0,0], [0,0,n%X,0],[0,0,0,n]1)

B = M.LLLO)

Q = B[0] [0]*x"3/X~3+B[0] [1]*x~2/X"2+B[0] [2]*x/X+B[0] [3]

Tanja Lange RSA Xl

Stereotyped message with small e in RSA

n = random_prime(2°160)*random_prime (27160)
m = Integer(’myfavoritesubjectiscryptology’,36)
c=m3Y%n # note small primes, reduction happens

Match this up with
g(x) € bXZ + b*XZ + b*x?Z + - - - + b*x'71Z + f(x)Z.
for b = n, f(x) = (a + x)3 — c with

a = Integer(’myfavoritesubjectis0000000000°’,36)

X = Integer(’zzzzzzzzzz’,36)

M = matrix([[X"3, 3*X"2*a, 3*X*a"2, a"3-c],
[0,n*X"2,0,0], [0,0,n%X,0],[0,0,0,n]1)

B = M.LLLO)

Q = B[0] [0]*x"3/X~3+B[0] [1]*x~2/X"2+B[0] [2]*x/X+B[0] [3]

sage: Q.roots(ring=7Z) [0] [0].str(base=36)
’cryptology’

Tanja Lange RSA Xl

