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LLL – Lenstra, Lenstra, and Lovász, 1982

I On input a set of vectors {v1, v2, . . . , vd}, entered as row vectors in
a matrix M, output matrix with shorter vectors v ′

j
so that v ′

j =
∑

aivi for some ai ∈ Z.

I LLL outputs d vectors which are shorter and more orthogonal.
Each vector is an integer linear combination of the inputs.

I LLL uses many elements from Gram-Schmidt orthogonalization:
I for j = 1 to d
I for i = 1 to j − 1
I µij =

〈v∗
i ,vj〉

〈v∗
i ,v∗

i 〉
I v∗

j = vj −
∑j−1

i=1 µijv∗
i

I Note that the µij are not integers, so not permitted as coefficients.
I d vectors are LLL reduced for parameter 0.25 < δ < 1 if

I |µij | ≤ 0.5 for all 1 ≤ j < i ≤ d ,
I (δ − µ2

i−1i)||v∗
i−1||2 ≤ ||v∗

i ||2.
I This guarantees ||v1|| ≤ (2/

√
4δ − 1)(d−1)/2 det(M)1/d ,

where det(M) is the determinant of the matrix.
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LLL algorithm (from Cohen, GTM 138, transposed)
Input: {v1, v2, . . . , vd}, 0.25 < δ < 1
Output: LLL reduced matrix with parameter δ

1. k ← 2, kmax ← 1, v∗
1 ← v1, V1 = 〈v1, v1〉

2. if k ≤ kmax go to step 3
else kmax ← k, v∗

k ← vk , for j = 1 to k − 1
I put µjk ← 〈v∗

j , vk〉/Vj and v∗
k ← v∗

k − µjkv∗
j

Vk = 〈vk , vk〉
3. Execute RED(k, k − 1). If (δ − µ2

i−1i)Vk−1 > Vk execute SWAP(k)
and k ← max{2, k − 1}; else for = k − 2 down to 1 execute
RED(k, j) and k ← k + 1.

4. If k ≤ d go to step 2; else output basis {v1, v2, . . . , vd}.
I RED(k, j): If |µjk | ≤ 0.5 return; else q ← bµjke, vk ← vk − qvj ,

µjk ← µjk − q, for i = 1 to j − 1 put µik ← µik − qµij and return.
I SWAP(k): Swap vk and vk−1. If k > 2 for j = 1 to k − 2 swap µjk

and µjk−1 and update all variables to match (see p.88 in Cohen)
For a nice visualization with animation see pages 61–66 of
http://thijs.com/docs/lec1.pdf. (This might need Acroread.)
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Theorem by Howgrave-Graham
Let g(x) =

∑d−1
i=0 gix i ∈ Z[x ] of deg(g) = d − 1.

Let b, k ∈ Z>0. If
1. g(x0) ≡ 0 mod bk with |x0| ≤ X ,
2. ||g(xX )|| ≤ bk/

√
d

then g(x0) = 0 over Z.

Here ||g(xX )|| =
√

g2
0 + g2

1 X 2 + · · ·+ g2
d−1X 2(d−1) is

Euclidean norm of the coefficient vector of g(xX ).

Proof: Let v = (1, x0/X , x2
0 /X 2, . . . , xd−1

0 /X d−1) and
w = (g0, g1X , g2X 2, . . . , gd−1X d−1).
Note v · w = g(x0) and each entry in v is ≤ 1.

By Cauchy-Schwarz inequality |v · w | < ||v ||||w ||.
Strict inequality as they are not linearly dependent.
Here ||v || ≤

√
1 + 1 + 1 + · · ·+ 1 =

√
d and ||w || = ||g(xX )||.

Thus |g(x0)| = |v · w | < ||v ||||w || ≤
√

dbk/
√

d = bk .
If g(x0) ∈ bkZ and |g(x0)| < bk then g(x0) = 0.
If z ≡ 0 mod bk & |z| < bk then z = 0; using z ≡ 0 mod bk ⇔ z ∈ bkZ.

Tanja Lange RSA XI 4



Theorem by Howgrave-Graham
Let g(x) =

∑d−1
i=0 gix i ∈ Z[x ] of deg(g) = d − 1.

Let b, k ∈ Z>0. If
1. g(x0) ≡ 0 mod bk with |x0| ≤ X ,
2. ||g(xX )|| ≤ bk/

√
d

then g(x0) = 0 over Z.

Here ||g(xX )|| =
√

g2
0 + g2

1 X 2 + · · ·+ g2
d−1X 2(d−1) is

Euclidean norm of the coefficient vector of g(xX ).

Proof: Let v = (1, x0/X , x2
0 /X 2, . . . , xd−1

0 /X d−1) and
w = (g0, g1X , g2X 2, . . . , gd−1X d−1).
Note v · w = g(x0) and each entry in v is ≤ 1.

By Cauchy-Schwarz inequality |v · w | < ||v ||||w ||.
Strict inequality as they are not linearly dependent.
Here ||v || ≤

√
1 + 1 + 1 + · · ·+ 1 =

√
d and ||w || = ||g(xX )||.

Thus |g(x0)| = |v · w | < ||v ||||w || ≤
√

dbk/
√

d = bk .
If g(x0) ∈ bkZ and |g(x0)| < bk then g(x0) = 0.
If z ≡ 0 mod bk & |z| < bk then z = 0; using z ≡ 0 mod bk ⇔ z ∈ bkZ.

Tanja Lange RSA XI 4



Theorem by Howgrave-Graham
Let g(x) =

∑d−1
i=0 gix i ∈ Z[x ] of deg(g) = d − 1.

Let b, k ∈ Z>0. If
1. g(x0) ≡ 0 mod bk with |x0| ≤ X ,
2. ||g(xX )|| ≤ bk/

√
d

then g(x0) = 0 over Z.

Here ||g(xX )|| =
√

g2
0 + g2

1 X 2 + · · ·+ g2
d−1X 2(d−1) is

Euclidean norm of the coefficient vector of g(xX ).

Proof: Let v = (1, x0/X , x2
0 /X 2, . . . , xd−1

0 /X d−1) and
w = (g0, g1X , g2X 2, . . . , gd−1X d−1).
Note v · w = g(x0) and each entry in v is ≤ 1.

By Cauchy-Schwarz inequality |v · w | < ||v ||||w ||.
Strict inequality as they are not linearly dependent.
Here ||v || ≤

√
1 + 1 + 1 + · · ·+ 1 =

√
d and ||w || = ||g(xX )||.

Thus |g(x0)| = |v · w | < ||v ||||w || ≤
√

dbk/
√

d = bk .

If g(x0) ∈ bkZ and |g(x0)| < bk then g(x0) = 0.
If z ≡ 0 mod bk & |z| < bk then z = 0; using z ≡ 0 mod bk ⇔ z ∈ bkZ.

Tanja Lange RSA XI 4



Theorem by Howgrave-Graham
Let g(x) =

∑d−1
i=0 gix i ∈ Z[x ] of deg(g) = d − 1.

Let b, k ∈ Z>0. If
1. g(x0) ≡ 0 mod bk with |x0| ≤ X ,
2. ||g(xX )|| ≤ bk/

√
d

then g(x0) = 0 over Z.

Here ||g(xX )|| =
√

g2
0 + g2

1 X 2 + · · ·+ g2
d−1X 2(d−1) is

Euclidean norm of the coefficient vector of g(xX ).

Proof: Let v = (1, x0/X , x2
0 /X 2, . . . , xd−1

0 /X d−1) and
w = (g0, g1X , g2X 2, . . . , gd−1X d−1).
Note v · w = g(x0) and each entry in v is ≤ 1.

By Cauchy-Schwarz inequality |v · w | < ||v ||||w ||.
Strict inequality as they are not linearly dependent.
Here ||v || ≤

√
1 + 1 + 1 + · · ·+ 1 =

√
d and ||w || = ||g(xX )||.

Thus |g(x0)| = |v · w | < ||v ||||w || ≤
√

dbk/
√

d = bk .
If g(x0) ∈ bkZ and |g(x0)| < bk then g(x0) = 0.
If z ≡ 0 mod bk & |z| < bk then

z = 0; using z ≡ 0 mod bk ⇔ z ∈ bkZ.

Tanja Lange RSA XI 4



Theorem by Howgrave-Graham
Let g(x) =

∑d−1
i=0 gix i ∈ Z[x ] of deg(g) = d − 1.

Let b, k ∈ Z>0. If
1. g(x0) ≡ 0 mod bk with |x0| ≤ X ,
2. ||g(xX )|| ≤ bk/

√
d

then g(x0) = 0 over Z.

Here ||g(xX )|| =
√

g2
0 + g2

1 X 2 + · · ·+ g2
d−1X 2(d−1) is

Euclidean norm of the coefficient vector of g(xX ).

Proof: Let v = (1, x0/X , x2
0 /X 2, . . . , xd−1

0 /X d−1) and
w = (g0, g1X , g2X 2, . . . , gd−1X d−1).
Note v · w = g(x0) and each entry in v is ≤ 1.

By Cauchy-Schwarz inequality |v · w | < ||v ||||w ||.
Strict inequality as they are not linearly dependent.
Here ||v || ≤

√
1 + 1 + 1 + · · ·+ 1 =

√
d and ||w || = ||g(xX )||.

Thus |g(x0)| = |v · w | < ||v ||||w || ≤
√

dbk/
√

d = bk .
If g(x0) ∈ bkZ and |g(x0)| < bk then g(x0) = 0.
If z ≡ 0 mod bk & |z| < bk then z = 0; using z ≡ 0 mod bk ⇔ z ∈ bkZ.

Tanja Lange RSA XI 4



What to look for?

We want to find a polynomial g(x) and a root x0 so that g(x0) ∈ bkZ.

Here are some polynomials that work:
g(x) ∈ bkZ + bkxZ + bkx2Z + bkx3Z · · · .

We have some polynomial f (x) to start with and know that
f (x0) ∈ bkZ for the x0 we’re looking for.

If deg(f ) = t then we’re looking for
g(x) ∈ bkZ + bkxZ + bkx2Z + · · ·+ bkx t−1Z + f (x)Z.
The polynomial f does not need an extra bk .

If that’s too restrictive we can expand to
g(x) ∈
bkZ+bkxZ+bkx2Z+ · · ·+bkx t−1Z+ f (x)Z+ xf (x)Z+ x2f (x)Z+ · · · .
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What to look for and how to find it?
All of these attacks start by finding some polynomial f (x)
for which a root modulo bk is interesting.
Let deg(f ) = t and let |x0| ≤ X for some known X .

To find g(x) ∈
bkZ+ bkxZ+ bkx2Z+ · · ·+ bkx t−1Z+ f (x)Z+ xf (x)Z+ x2f (x)Z+ · · ·
we will use LLL, which builds integer linear combinations of the input
rows of a matrix. It returns a vector that is short in the Euclidean norm.
(Hence we wanted that in the Howgrave-Graham theorem).

We set up a system of equations in the coefficient vectors, one row per
option. bkZ turns into coefficient bk at the x0 column etc.

For Howgrave-Graham we need to scale the column of x s by X s .
So we get (

X a
0 n

)
bk = p but we only know n.
But 2× 2 likely too small.
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option. bkZ turns into coefficient bk at the x0 column etc.

For Howgrave-Graham we need to scale the column of x s by X s .
So we get  X 2 aX 0

0 X a
0 0 n


LLL gives ||v1|| ≤ (2/

√
4δ − 1)(d−1)/2 det(M)1/d , i.e.,

||g(xX )|| ≤ 2(X 3n)1/3 for δ = 1/2.
Then 2(X 3n)1/3 ≤ p/

√
3 for X < n1/6/

√
12 if p ≈ q.
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Stereotyped message with small e in RSA

n = random_prime(2ˆ160)*random_prime(2ˆ160)
m = Integer(’myfavoritesubjectiscryptology’,36)
c = mˆ3 % n # note small primes, reduction happens

Match this up with
g(x) ∈ bkZ + bkxZ + bkx2Z + · · ·+ bkx t−1Z + f (x)Z.
for bk = n, f (x) = (a + x)3 − c with

a = Integer(’myfavoritesubjectis0000000000’,36)

X = Integer(’zzzzzzzzzz’,36)
M = matrix([[Xˆ3, 3*Xˆ2*a, 3*X*aˆ2, aˆ3-c],

[0,n*Xˆ2,0,0],[0,0,n*X,0],[0,0,0,n]])

B = M.LLL()
Q = B[0][0]*xˆ3/Xˆ3+B[0][1]*xˆ2/Xˆ2+B[0][2]*x/X+B[0][3]

sage: Q.roots(ring=ZZ)[0][0].str(base=36)
’cryptology’
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